1
|
Torres-Huerta A, Ruley-Haase K, Reed T, Boger-May A, Rubadeux D, Mayer L, Rajashekara AM, Hiller M, Frech M, Roncagli C, Pedersen C, Camacho MC, Hollmer L, English L, Kane G, Boone DL. Retinoid orphan receptor gamma t (rorγt) promotes inflammatory eosinophilia but is dispensable for innate immune-mediated colitis. PLoS One 2024; 19:e0300892. [PMID: 38512959 PMCID: PMC10956760 DOI: 10.1371/journal.pone.0300892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel diseases (IBD) result from uncontrolled inflammation in the intestinal mucosa leading to damage and loss of function. Both innate and adaptive immunity contribute to the inflammation of IBD and innate and adaptive immune cells reciprocally activate each other in a forward feedback loop. In order to better understand innate immune contributions to IBD, we developed a model of spontaneous 100% penetrant, early onset colitis that occurs in the absence of adaptive immunity by crossing villin-TNFAIP3 mice to RAG1-/- mice (TRAG mice). This model is driven by microbes and features increased levels of innate lymphoid cells in the intestinal mucosa. To investigate the role of type 3 innate lymphoid cells (ILC3) in the innate colitis of TRAG mice, we crossed them to retinoid orphan receptor gamma t deficient (Rorγt-/-) mice. Rorγt-/- x TRAG mice exhibited markedly reduced eosinophilia in the colonic mucosa, but colitis persisted in these mice. Colitis in Rorγt-/- x TRAG mice was characterized by increased infiltration of the intestinal mucosa by neutrophils, inflammatory monocytes, macrophages and other innate cells. RNA and cellular profiles of Rorγt-/- x TRAG mice were consistent with a lack of ILC3 and ILC3 derived cytokines, reduced antimicrobial factors, increased activation oof epithelial repair processes and reduced activation of epithelial cell STAT3. The colitis in Rorγt-/- x TRAG mice was ameliorated by antibiotic treatment indicating that microbes contribute to the ILC3-independent colitis of these mice. Together, these gene expression and cell signaling signatures reflect the double-edged sword of ILC3 in the intestine, inducing both proinflammatory and antimicrobial protective responses. Thus, Rorγt promotes eosinophilia but Rorγt and Rorγt-dependent ILC3 are dispensable for the innate colitis in TRAG mice.
Collapse
Affiliation(s)
- Alvaro Torres-Huerta
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States of America
| | - Katelyn Ruley-Haase
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Theodore Reed
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Antonia Boger-May
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States of America
| | - Derek Rubadeux
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Lauren Mayer
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | | | - Morgan Hiller
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Madeleine Frech
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Connor Roncagli
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Cameron Pedersen
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Mary Catherine Camacho
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Lauren Hollmer
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Lauren English
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Grace Kane
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - David L. Boone
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States of America
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| |
Collapse
|
2
|
Yu Y, Bian Y, Shi JX, Gu Y, Yuan DP, Yu B, Shi L, Dou DH. Geniposide promotes splenic Treg differentiation to alleviate colonic inflammation and intestinal barrier injury in ulcerative colitis mice. Bioengineered 2022; 13:14616-14631. [PMID: 36694912 PMCID: PMC9995132 DOI: 10.1080/21655979.2022.2092678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Geniposide has been proven to have a therapeutic effect on ulcerative colitis (UC) in animals, but its potential mechanism in UC remains to be clarified. The purpose of this study was to confirm the efficacy of geniposide in UC and to investigate the possible mechanism of geniposide in UC treatment. In vivo, geniposide relieved weight loss and reduced intestinal tissue damage in UC mice. Geniposide decreased the levels of IL-1β and TNF-α and increased IL-10 levels in the colon and serum of UC mice. Geniposide increased FOXP3 expression in the colon and the number of CD4+ FOXP3+ cells in the spleen of UC mice. BD750 abolished the above regulatory effect of GE on UC mice. In vitro, geniposide increased the number of CD4+ FOXP3+ cells in spleen cells from normal mice, decreased the levels of IL-1β, CCL2 and TNF-α in the supernatant of LPS-treated Caco-2 cells, and decreased the protein expression of Beclin-1 and Occludin in cacO-2 cells. Epirubicin inhibited the effect of geniposide on increasing the number of CD4+ FOXP3+ cells in spleen cells, attenuated the inhibitory effect of geniposide on proinflammatory factors and attenuated the upregulation of geniposide on tight junction proteins in LPS-treated Caco-2 cells in the coculture system. In conclusion, geniposide has an effective therapeutic effect on UC. Increasing Treg differentiation of spleen cells is the mechanism by which geniposide alleviates intestinal inflammation and barrier injury in UC.
Collapse
Affiliation(s)
- Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Xin Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Gu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-Ping Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Hai Dou
- Department of Pharmacy, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
3
|
Boger-May A, Reed T, LaTorre D, Ruley-Haase K, Hoffman H, English L, Roncagli C, Overstreet AM, Boone D. Altered microbial biogeography in an innate model of colitis. Gut Microbes 2022; 14:2123677. [PMID: 36162004 PMCID: PMC9519015 DOI: 10.1080/19490976.2022.2123677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the spatial organization, or biogeography, of colonic microbes have been observed in human inflammatory bowel disease (IBD) and mouse models of IBD. We have developed a mouse model of IBD that occurs spontaneously and consistently in the absence of adaptive immunity. Mice expressing tumor necrosis factor-induced protein 3 (TNFAIP3) in intestinal epithelial cells (villin-TNFAIP3) develop colitis when interbred with Recombination Activating 1-deficient mice (RAG1<sup>-/-</sup>). The colitis in villin-TNFAIP3 × RAG1<sup>-/-</sup> (TRAG) mice is prevented by antibiotics, indicating a role for microbes in this innate colitis. We therefore explored the biogeography of microbes and responses to antibiotics in TRAG colitis. Laser capture microdissection and 16S rRNA sequencing revealed altered microbial populations across the transverse axis of the colon as the inner mucus layer of TRAG, but not RAG1<sup>-/-</sup>, mice was infiltrated by microbes, which included increased abundance of the classes Gammaproteobacteria and Actinobacteria. Along the longitudinal axis differences in the efficacy of antibiotics to prevent colitis were evident. Neomycin was most effective for prevention of inflammation in the cecum, while ampicillin was most effective in the proximal and distal colon. RAG1<sup>-/-</sup>, but not TRAG, mice exhibited a structured pattern of bacterial abundance with decreased Firmicutes and Proteobacteria but increased Bacteroidetes along the proximal to distal axis of the gut. TRAG mice exhibited increased relative abundance of potential pathobionts including <i>Bifidobacterium animalis</i> along the longitudinal axis of the gut whereas others, like <i>Helicobacter hepaticus</i> were increased only in the cecum. Potential beneficial organisms including <i>Roseburia</i> were decreased in the proximal regions of the TRAG colon, while <i>Bifidobacterium pseudolongulum</i> was decreased in the TRAG distal colon. Thus, the innate immune system maintains a structured, spatially organized, gut microbiome along the transverse and longitudinal axis of the gut, and disruption of this biogeography is a feature of innate immune colitis.
Collapse
Affiliation(s)
- Antonia Boger-May
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, USA
| | - Theodore Reed
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Diana LaTorre
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Katelyn Ruley-Haase
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, USA
| | - Hunter Hoffman
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, USA
| | - Lauren English
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Connor Roncagli
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Anne-Marie Overstreet
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, USA
| | - David Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, USA
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
4
|
Overstreet AMC, Grayson BE, Boger A, Bakke D, Carmody EM, Bales CE, Paski SC, Murphy SF, Dethlefs CR, Shannon KJ, Adlaka KR, Wolford CE, Campiti VJ, Raghunandan CV, Seeley RJ, Boone DL. Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity. Sci Rep 2021; 11:9477. [PMID: 33947892 PMCID: PMC8096951 DOI: 10.1038/s41598-021-88928-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Obesity and its sequelae have a major impact on human health. The stomach contributes to obesity in ways that extend beyond its role in digestion, including through effects on the microbiome. Gastrokine-1 (GKN1) is an anti-amyloidogenic protein abundantly and specifically secreted into the stomach lumen. We examined whether GKN1 plays a role in the development of obesity and regulation of the gut microbiome. Gkn1-/- mice were resistant to diet-induced obesity and hepatic steatosis (high fat diet (HFD) fat mass (g) = 10.4 ± 3.0 (WT) versus 2.9 ± 2.3 (Gkn1-/-) p < 0.005; HFD liver mass (g) = 1.3 ± 0.11 (WT) versus 1.1 ± 0.07 (Gkn1-/-) p < 0.05). Gkn1-/- mice also exhibited increased expression of the lipid-regulating hormone ANGPTL4 in the small bowel. The microbiome of Gkn1-/- mice exhibited reduced populations of microbes implicated in obesity, namely Firmicutes of the class Erysipelotrichia. Altered metabolism consistent with use of fat as an energy source was evident in Gkn1-/- mice during the sleep period. GKN1 may contribute to the effects of the stomach on the microbiome and obesity. Inhibition of GKN1 may be a means to prevent obesity.
Collapse
Affiliation(s)
- Anne-Marie C Overstreet
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Bernadette E Grayson
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Antonia Boger
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Danika Bakke
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Erin M Carmody
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Cayla E Bales
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | | | - Stephen F Murphy
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kara J Shannon
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Katie R Adlaka
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Claire E Wolford
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Vincent J Campiti
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Christina V Raghunandan
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Randy J Seeley
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA.
- Department of Biology, University of Notre Dame, South Bend, IN, USA.
| |
Collapse
|
5
|
Liu L, Tian C, Dong B, Xia M, Cai Y, Hu R, Chu X. Models to evaluate the barrier properties of mucus during drug diffusion. Int J Pharm 2021; 599:120415. [PMID: 33647411 DOI: 10.1016/j.ijpharm.2021.120415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Mucus is widely disseminated in the nasal cavity, oral cavity, respiratory tract, eyes, gastrointestinal tract, and reproductive tract to prevent the invasion of pathogenic bacteria and toxins. The mucus layer through its continuous secretion can prevent the passage of macromolecular substances such as pathogenic bacteria and toxins, thereby reducing the occurrence of inflammation. Without a doubt, mucus also hinders oral absorption. The physiological and biochemical properties of intestinal mucus and the different types of mucus barrier models need to be predominated. To find ways to increase the bioavailability of drugs in the future, this article summarizes mucus composition, barrier properties, mucus models, and mucoadhesive/mucopenetrating particles to highlight the information they can afford. Collectively, the review seeks to provide a state-of-the-art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Liu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chunling Tian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Baoqi Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengqiu Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rongfeng Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Colquhoun C, Duncan M, Grant G. Inflammatory Bowel Diseases: Host-Microbial-Environmental Interactions in Dysbiosis. Diseases 2020; 8:E13. [PMID: 32397606 PMCID: PMC7348996 DOI: 10.3390/diseases8020013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are world-wide health problems in which intestinal dysbiosis or adverse functional changes in the microbiome are causative or exacerbating factors. The reduced abundance and diversity of the microbiome may be a result of a lack of exposure to vital commensal microbes or overexposure to competitive pathobionts during early life. Alternatively, many commensal bacteria may not find a suitable intestinal niche or fail to proliferate or function in a protective/competitive manner if they do colonize. Bacteria express a range of factors, such as fimbriae, flagella, and secretory compounds that enable them to attach to the gut, modulate metabolism, and outcompete other species. However, the host also releases factors, such as secretory IgA, antimicrobial factors, hormones, and mucins, which can prevent or regulate bacterial interactions with the gut or disable the bacterium. The delicate balance between these competing host and bacteria factors dictates whether a bacterium can colonize, proliferate or function in the intestine. Impaired functioning of NOD2 in Paneth cells and disrupted colonic mucus production are exacerbating features of CD and UC, respectively, that contribute to dysbiosis. This review evaluates the roles of these and other the host, bacterial and environmental factors in inflammatory bowel diseases.
Collapse
Affiliation(s)
| | | | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.C.); (M.D.)
| |
Collapse
|
7
|
Yin A, Luo Y, Chen W, He M, Deng JH, Zhao N, Cao L, Wang L. FAM96A Protects Mice From Dextran Sulfate Sodium (DSS)-Induced Colitis by Preventing Microbial Dysbiosis. Front Cell Infect Microbiol 2019; 9:381. [PMID: 31803631 PMCID: PMC6876263 DOI: 10.3389/fcimb.2019.00381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Family with sequence similarity 96 member A (FAM96A) is an evolutionarily conserved intracellular protein that is involved in the maturation of the Fe/S protein, iron regulatory protein 1 (IRP1), and the mitochondria-related apoptosis of gastrointestinal stromal tumor cells. In this study, we used a mouse model of chemically induced colitis to investigate the physiological role of FAM96A in intestinal homeostasis and inflammation. At baseline, colons from Fam96a−/− mice exhibited microbial dysbiosis, dysregulated epithelial cell turnover, an increased number of goblet cells, and disordered tight junctions with functional deficits affecting intestinal permeability. After cohousing, the differences between wild-type and Fam96a−/− colons were abrogated, suggesting that FAM96A affects colonic epithelial cells in a microbiota-dependent manner. Fam96a deficiency in mice resulted in increased susceptibility to dextran sulfate sodium (DSS)-induced colitis. Importantly, the colitogenic activity of Fam96a−/− intestinal microbiota was transferable to wild-type littermate mice via fecal microbial transplantation (FMT), leading to exacerbation of DSS-induced colitis. Taken together, our data indicate that FAM96A helps to maintain colonic homeostasis and protect against DSS-induced colitis by preventing gut microbial dysbiosis. This study used gene knockout animals to help to understand the in vivo effects of the Fam96a gene for the first time and provides new evidence regarding host–microbiota interactions.
Collapse
Affiliation(s)
- Ang Yin
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Yang Luo
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Wei Chen
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Minwei He
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Jin Hai Deng
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Ning Zhao
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Lulu Cao
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| | - Lu Wang
- Department of Immunology, Center for Human Disease Genomics, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Ministry of Health, Beijing, China
| |
Collapse
|
8
|
Hu T, Hu W, Ma L, Zeng X, Liu J, Cheng B, Yang P, Qiu S, Yang G, Chen D, Liu Z. pVAX1-A20 alleviates colitis in mice by promoting regulatory T cells. Dig Liver Dis 2019; 51:790-797. [PMID: 30528569 DOI: 10.1016/j.dld.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/11/2022]
Abstract
AIM To investigate whether the intrarectal administration of the ubiquitin E3 ligase A20 (A20) attenuates intestinal inflammation and influences regulatory T cells in experimental colitis. METHODS A dextran sulfate sodium induced chronic colitis mouse model was established. The symptoms and manifestations of colitis and the severity of colonic mucosal inflammation were evaluated. The protective role of A20 expression in the intestine was analyzed after the administration of a pVAX1-A20 recombinant eukaryotic vector, which was encapsulated into poly(L-lactide-co-glycolide) as a nanoparticle. RESULTS pVAX1-A20 administration markedly ameliorated colonic tissue damage and reduced intestinal inflammation via the suppression of the mucosal mitogen-activated protein kinase and nuclear factor (NF)-κB signaling cascade. Furthermore, pVAX1-A20 promoted the splenic regulatory T cell population and forkhead box P3 expression in colonic tissue. CONCLUSION A20 plays a key role in the regulation of intestinal inflammation and that the overexpression of A20 in the intestine protects mice from dextran sulfate sodium induced chronic colitis.
Collapse
Affiliation(s)
- Tianyong Hu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | | | - Li Ma
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Xianhai Zeng
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Jiangqi Liu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Baohui Cheng
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Pingchang Yang
- Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, China
| | - Shuqi Qiu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Gui Yang
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Donghui Chen
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Zhiqiang Liu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China.
| |
Collapse
|
9
|
Elevated A20 promotes TNF-induced and RIPK1-dependent intestinal epithelial cell death. Proc Natl Acad Sci U S A 2018; 115:E9192-E9200. [PMID: 30209212 DOI: 10.1073/pnas.1810584115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial cell (IEC) death is a common feature of inflammatory bowel disease (IBD) that triggers inflammation by compromising barrier integrity. In many patients with IBD, epithelial damage and inflammation are TNF-dependent. Elevated TNF production in IBD is accompanied by increased expression of the TNFAIP3 gene, which encodes A20, a negative feedback regulator of NF-κB. A20 in intestinal epithelium from patients with IBD coincided with the presence of cleaved caspase-3, and A20 transgenic (Tg) mice, in which A20 is expressed from an IEC-specific promoter, were highly susceptible to TNF-induced IEC death, intestinal damage, and shock. A20-expressing intestinal organoids were also susceptible to TNF-induced death, demonstrating that enhanced TNF-induced apoptosis was a cell-autonomous property of A20. This effect was dependent on Receptor Interacting Protein Kinase 1 (RIPK1) activity, and A20 was found to associate with the Ripoptosome complex, potentiating its ability to activate caspase-8. A20-potentiated RIPK1-dependent apoptosis did not require the A20 deubiquitinase (DUB) domain and zinc finger 4 (ZnF4), which mediate NF-κB inhibition in fibroblasts, but was strictly dependent on ZnF7 and A20 dimerization. We suggest that A20 dimers bind linear ubiquitin to stabilize the Ripoptosome and potentiate its apoptosis-inducing activity.
Collapse
|
10
|
Overstreet A, LaTorre D, Abernathy-Close L, Murphy S, Rhee L, Boger A, Adlaka K, Iverson A, Bakke D, Weber C, Boone D. The JAK inhibitor ruxolitinib reduces inflammation in an ILC3-independent model of innate immune colitis. Mucosal Immunol 2018; 11:1454-1465. [PMID: 29988117 PMCID: PMC6162142 DOI: 10.1038/s41385-018-0051-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Innate immunity contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms of IBD mediated by innate immunity are incompletely understood and there are limited models of spontaneous innate immune colitis to address this question. Here we describe a new robust model of colitis occurring in the absence of adaptive immunity. RAG1-deficient mice expressing TNFAIP3 in intestinal epithelial cells (TRAG mice) spontaneously developed 100% penetrant, early-onset colitis that was limited to the colon and dependent on intestinal microbes but was not transmissible to co-housed littermates. TRAG colitis was associated with increased mucosal numbers of innate lymphoid cells (ILCs) and depletion of ILC prevented colitis in TRAG mice. ILC depletion also therapeutically reversed established colitis in TRAG mice. The colitis in TRAG mice was not prevented by interbreeding to mice lacking group 3 ILC nor by depletion of TNF. Treatment with the JAK inhibitor ruxolitinib ameliorated colitis in TRAG mice. This new model of colitis, with its predictable onset and colon-specific inflammation, will have direct utility in developing a more complete understanding of innate immune mechanisms that can contribute to colitis and in pre-clinical studies for effects of therapeutic agents on innate immune-mediated IBD.
Collapse
Affiliation(s)
- A.M. Overstreet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| | - D.L. LaTorre
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - L. Abernathy-Close
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| | - S.F. Murphy
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - L. Rhee
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - A.M. Boger
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| | - K.R. Adlaka
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - A.M. Iverson
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - D.S. Bakke
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - C.R. Weber
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - D.L. Boone
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA,Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| |
Collapse
|
11
|
Abstract
The intestinal tract is a site of intense immune cell activity that is poised to mount an effective response against a pathogen and yet maintain tolerance toward commensal bacteria and innocuous dietary antigens. The role of cell death in gut pathologies is particularly important as the intestinal epithelium undergoes self-renewal every 4-7 days through a continuous process of cell death and cell division. Cell death is also required for removal of infected, damaged, and cancerous cells. Certain forms of cell death trigger inflammation through release of damage-associated molecular patterns. Further, molecules involved in cell death decisions also moonlight as critical nodes in immune signaling. The manner of cell death is, therefore, highly instructive of the immunological consequences that ensue. Perturbations in cell death pathways can impact the regulation of the immune system with deleterious consequences. In this review, we discuss the various forms of cell death with a special emphasis on lytic cell death pathways of pyroptosis and necroptosis and their implications in inflammation and cancer in the gut. Understanding the implications of distinct cell death pathways will help in the development of therapeutic interventions in intestinal pathologies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
12
|
Liu X, Lu J, Liu Z, Zhao J, Sun H, Wu N, Liu H, Liu W, Hu Z, Meng G, Shen L, Miller AW, Su B, Li X, Kang Z. Intestinal Epithelial Cell-Derived LKB1 Suppresses Colitogenic Microbiota. THE JOURNAL OF IMMUNOLOGY 2018; 200:1889-1900. [PMID: 29352002 DOI: 10.4049/jimmunol.1700547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Dysregulation of the immune barrier function of the intestinal epithelium can often result in dysbiosis. In this study we report a novel role of intestinal epithelial cell (IEC)-derived liver kinase B1 (LKB1) in suppressing colitogenic microbiota. IEC-specific deletion of LKB1 (LKB1ΔIEC) resulted in an increased susceptibility to dextran sodium sulfate (DSS)-induced colitis and a definitive shift in the composition of the microbial population in the mouse intestine. Importantly, transfer of the microbiota from LKB1ΔIEC mice was sufficient to confer increased susceptibility to DSS-induced colitis in wild-type recipient mice. Collectively, the data indicate that LKB1 deficiency in intestinal epithelial cells nurtures the outgrowth of colitogenic bacteria in the commensal community. In addition, LKB1 deficiency in the intestinal epithelium reduced the production of IL-18 and antimicrobial peptides in the colon. Administration of exogenous IL-18 restored the expression of antimicrobial peptides, corrected the outgrowth of several bacterial genera, and rescued the LKB1ΔIEC mice from increased sensitivity to DSS challenge. Taken together, our study reveals an important function of LKB1 in IECs for suppressing colitogenic microbiota by IL-18 expression.
Collapse
Affiliation(s)
- Xia'nan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinfeng Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenshan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junjie Zhao
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuqin Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guangxun Meng
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aaron W Miller
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195.,Department of Urology, Cleveland Clinic, Cleveland, OH 44195; and
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | - Zizhen Kang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; .,Department of Immunology, Cleveland Clinic, Cleveland, OH 44195.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| |
Collapse
|
13
|
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18:861-869. [PMID: 28722711 DOI: 10.1038/ni.3772] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022]
Abstract
A properly mounted immune response is indispensable for recognizing and eliminating danger arising from foreign invaders and tissue trauma. However, the 'inflammatory fire' kindled by the host response must be tightly controlled to prevent it from spreading and causing irreparable damage. Accordingly, acute inflammation is self-limiting and is normally attenuated after elimination of noxious stimuli, restoration of homeostasis and initiation of tissue repair. However, unresolved inflammation may lead to the development of chronic autoimmune and degenerative diseases and cancer. Here, we discuss the key molecular mechanisms that contribute to the self-limiting nature of inflammatory signaling, with emphasis on the negative regulation of the NF-κB pathway and the NLRP3 inflammasome. Understanding these negative regulatory mechanisms should facilitate the development of much-needed therapeutic strategies for treatment of inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Hadisaputri YE, Miyazaki T, Yokobori T, Sohda M, Sakai M, Ozawa D, Hara K, Honjo H, Kumakura Y, Kuwano H. TNFAIP3 overexpression is an independent factor for poor survival in esophageal squamous cell carcinoma. Int J Oncol 2017; 50:1002-1010. [PMID: 28197630 DOI: 10.3892/ijo.2017.3869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α induced protein 3 (TNFAIP3) is a protein that is induced by TNF-mediated NF-κB activation and has a dual function in regulating NF-κB. TNFAIP3 is associated with inflammatory carcinogenesis in many cancer types. However, the clinical significance of TNFAIP3 expression and function in esophageal squamous cell carcinoma (ESCC) has not yet been reported. We examined 149 ESCC tissue specimens to determine the clinical significance of TNFAIP3 by immunohistochemistry. Western blot analyses were used to detect TNFAIP3 expression in TE-1, TE-8, TE-15 and KYSE-70 ESCC cells and in Het-1A, a non-cancerous esophageal cell line. TNFAIP3 protein knockdown was conducted using small-interfering RNA to investigate its impact on cell proliferation, migration and invasion. Significant correlations between TNFAIP3 expression and differentiation (P=0.04) among clinicopathological characteristics of ESCC patients were demonstrated, and high TNFAIP3 expression was associated with poor survival (P=0.02). Moreover, multivariate analysis result showed that high TNFAIP3 expression was an independent factor for poor survival (P=0.04). In vitro analysis showed high expression of TNFAIP3 protein in TE-15 cells and low expression in Het-1A cells. Furthermore, the proliferation, migration and invasion of TE-15 cells after TNFAIP3 suppression by siRNA were significantly reduced. These findings suggest that TNFAIP3 protein may be an independent prognostic marker for poor survival, and a promising target for ESCC therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Daigo Ozawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keigo Hara
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroaki Honjo
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yuji Kumakura
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
15
|
Volynets V, Rings A, Bárdos G, Ostaff MJ, Wehkamp J, Bischoff SC. Intestinal barrier analysis by assessment of mucins, tight junctions, and α-defensins in healthy C57BL/6J and BALB/cJ mice. Tissue Barriers 2016; 4:e1208468. [PMID: 27583194 DOI: 10.1080/21688370.2016.1208468] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 12/23/2022] Open
Abstract
The intestinal barrier is gaining increasing attention because it is related to intestinal homeostasis and disease. Different parameters have been used in the past to assess intestinal barrier functions in experimental studies; however most of them are poorly defined in healthy mice. Here, we compared a number of barrier markers in healthy mice, established normal values and correlations. In 48 mice (24 C57BL/6J, 24 BALB/cJ background), we measured mucus thickness, and expression of mucin-2, α-defensin-1 and -4, zonula occludens-1, occludin, junctional adhesion molecule-A, claudin-1, 2 and -5. We also analyzed claudin-3 and fatty acid binding protein-2 in urine and plasma, respectively. A higher expression of mucin-2 protein was found in the colon compared to the ileum. In contrast, the α-defensins-1 and -4 were expressed almost exclusively in the ileum. The protein expression of the tight junction molecules claudin-1, occludin and zonula occludens-1 did not differ between colon and ileum, although some differences occurred at the mRNA level. No age- or gender-related differences were found. Differences between C57BL/6J and BALB/cJ mice were found for α-defensin-1 and -4 mRNA expression, and for urine and plasma marker concentrations. The α-defensin-1 mRNA correlated with claudin-5 mRNA, whereas α-defensin-4 mRNA correlated with claudin-3 concentrations in urine. In conclusion, we identified a number of murine intestinal barrier markers requiring tissue analyses or measurable in urine or plasma. We provide normal values for these markers in mice of different genetic background. Such data might be helpful for future animal studies in which the intestinal barrier is of interest.
Collapse
Affiliation(s)
- Valentina Volynets
- Department of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| | - Andreas Rings
- Department of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| | - Gyöngyi Bárdos
- Department of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| | - Maureen J Ostaff
- University of Colorado, Anschutz Medical Campus , Denver, CO, USA
| | - Jan Wehkamp
- Department of Internal Medicine, University of Tübingen , Tübingen, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| |
Collapse
|
16
|
Zhao D, Xu A, Dai Z, Peng J, Zhu M, Shen J, Zheng Q, Ran Z. WNT5A transforms intestinal CD8αα⁺ IELs into an unconventional phenotype with pro-inflammatory features. BMC Gastroenterol 2015; 15:173. [PMID: 26652024 PMCID: PMC4676129 DOI: 10.1186/s12876-015-0402-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/27/2015] [Indexed: 01/22/2023] Open
Abstract
Background Intestinal intraepithelial lymphocytes that reside within the epithelium of the intestine form one of the main branches of the immune system. A majority of IELs express CD8α homodimer together with other molecules associated with immune regulation. Growing evidence points to the WNT signaling pathway as a pivotal piece in the immune balance and focuses on its direct regulation in intestinal epithelium. Therefore we decided to investigate its role in IELs’ immune status determination. Method DSS colitis was induced in male C57BL mice. IELs were isolated from colon samples using mechanical dissociation followed by percoll gradient purification and Magnetic-activated cell sorting. Phenotype and cytokine production and condition with Wnts were analyzed by flow cytometry, real-time PCR or ELISA. Proliferation of lymphocytes were evaluated using CFSE dilution. Cell responses after WNT pathway interference were also evaluated. Results Non-canonical WNT pathway elements represented by FZD5, WNT5A and NFATc1 were remarkably elevated in colitis IELs. The non-canonical WNT5A skewed them into a pro-inflammatory category as measured by inhibitory cell surface marker LAG3, LY49E, NKG2A and activated marker CD69 and FASL. Gaining of a pro-inflammatory marker was correlated with increased IFN-γ production but not TNF whilst decreased TGF-β and IL-10. Both interrupting WNT5A/PKC pathway and adding canonical WNT stimulants could curtail its immune-activating effect. Conclusion Canonical and non-canonical WNT signals act in opposing manners concerning determining CD8αα+ IELs immune status. Targeting non-canonical WNT pathway may be promising in tackling inflammatory bowel disease.
Collapse
Affiliation(s)
- Di Zhao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Antao Xu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhanghan Dai
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jiangchen Peng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Mingming Zhu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qing Zheng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
17
|
Yi H, Yu C, Zhang H, Song D, Jiang D, Du H, Wang Y. Cathelicidin-BF suppresses intestinal inflammation by inhibiting the nuclear factor-κB signaling pathway and enhancing the phagocytosis of immune cells via STAT-1 in weanling piglets. Int Immunopharmacol 2015; 28:61-9. [DOI: 10.1016/j.intimp.2015.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
|