1
|
Zheng X, Sun Y, Guo S, Yu J, Huang R, Zhang F. The effect of Broussonetia papyrifera silage on intestinal health indicators and fecal bacterial composition in Kazakh sheep. Front Vet Sci 2025; 12:1543302. [PMID: 40078209 PMCID: PMC11897045 DOI: 10.3389/fvets.2025.1543302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Hybrid Broussonetia papyrifera shows great promise for use in antibiotic-free feed, potentially contributing to the green and sustainable development of the animal husbandry industry. In this study, we investigated the impact of Broussonetia papyrifera silage on the intestinal health of Kazakh sheep. Forty healthy male Kazakh sheep, aged 5 months and weighing an average of 28.28 ± 1.14 kg, were randomly assigned to either a control or an experimental group, each comprising four replicates, with five sheep per replicate. The control group was fed a basal diet, while the experimental group received a diet supplemented with 20% Broussonetia papyrifera silage (dry matter basis). The 70-day experiment included a 10-day adaptation phase followed by a 60-day feeding trial. The results showed that there was no significant difference in growth performance or apparent nutrient digestibility between the experimental and control groups (p > 0.05). However, the experimental group exhibited significantly greater total antioxidant capacity, alongside higher contents of superoxide dismutase, catalase, glutathione peroxidase, immunoglobulins A, M, and G, and interleukins-2, -6, and -8 in the intestinal mucosa; in contrast, malondialdehyde and interleukin-4 contents were significantly reduced (p < 0.01). Furthermore, the dietary inclusion of Broussonetia papyrifera silage resulted in a reduction in the relative abundance of the bacterial genera Turicibacter and Romboutsia (p < 0.05). In conclusion, the feeding of Broussonetia papyrifera silage to Kazakh sheep significantly enhanced immune function, increased antioxidant capacity, and reduced the relative abundance of potentially pathogenic bacteria in the sheep without negatively impacting their growth or nutrient digestion, thus supporting the overall health of the animals.
Collapse
Affiliation(s)
| | | | | | | | - Rongzheng Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Fanfan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
2
|
Zhang R, Ding N, Feng X, Liao W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Front Immunol 2025; 16:1529958. [PMID: 39911400 PMCID: PMC11794507 DOI: 10.3389/fimmu.2025.1529958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The gut microbiome has emerged as a pivotal area of research due to its significant influence on the immune system and cognitive functions. Cognitive disorders, including dementia and Parkinson's disease, represent substantial global health challenges. This review explores the relationship between gut microbiota, immune modulation, and cognitive decline, with a particular focus on the gut-brain axis. Research indicates that gut bacteria produce metabolites, including short-chain fatty acids (SCFAs), which affect mucosal immunity, antigen presentation, and immune responses, thereby influencing cognitive functions. A noteworthy correlation has been identified between imbalances in the gut microbiome and cognitive impairments, suggesting novel pathways for the treatment of cognitive disorders. Additionally, factors such as diet, environment, and pharmaceuticals play a role in shaping the composition of the gut microbiome, subsequently impacting both immune and cognitive health. This article aims to clarify the complex interactions among gut microbiota, immune regulation, and cognitive disorders, evaluating their potential as therapeutic targets. The goal is to promote microbiome-based treatments and lay the groundwork for future research in this field.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Ning Ding
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Xicui Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
3
|
Janssen AWF, van der Lugt B, Duivenvoorde LPM, Vos AP, Bastiaan-Net S, Tomassen MMM, Verbokkem JAC, Blok-Heimerikx E, Hooiveld GJEJ, van Baarlen P, Ferrier L, van der Zande M. Comparison of iPSC-derived human intestinal epithelial cells with Caco-2 cells and human in vivo data after exposure to Lactiplantibacillus plantarum WCFS1. Sci Rep 2024; 14:26464. [PMID: 39488516 PMCID: PMC11531526 DOI: 10.1038/s41598-024-74802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
To investigate intestinal health and its potential disruptors in vitro, representative models are required. Human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cells (IECs) more closely resemble the in vivo intestinal tissue than conventional in vitro models like human colonic adenocarcinoma Caco-2 cells. However, the potential of IECs to study immune-related responses upon external stimuli has not been investigated in detail yet. The aim of the current study was to evaluate immune-related effects of IECs by challenging them with a pro-inflammatory cytokine cocktail. Subsequently, the effects of Lactiplantibacillus plantarum WCFS1 were investigated in unchallenged and challenged IECs. All exposures were compared to Caco-2 cells and in vivo data where possible. Upon the inflammatory challenge, IECs and Caco-2 cells induced a pro-inflammatory response which was strongest in IECs. Heat-killed L. plantarum exerted the strongest effect on immune parameters in the IEC model, while L. plantarum in the stationary growth phase had most pronounced effects on immune-related gene expression in Caco-2 cells. Unfortunately, comparison to in vivo transcriptomics data showed limited similarities, which could be explained by essential differences in the study setups. Altogether, hiPSC-derived IECs show a high potential as a model to study immune-related responses in the intestinal epithelium in vitro.
Collapse
Grants
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- KB37-001-003 Dutch ministries of Agriculture, Nature and Food Quality and Economic affairs
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
- LWV19125 Top consortium for Knowledge and Innovation (TKI) Agri & Food
Collapse
Affiliation(s)
- Aafke W F Janssen
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Benthe van der Lugt
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Arjan Paul Vos
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Janine A C Verbokkem
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Emmie Blok-Heimerikx
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Laurent Ferrier
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Meike van der Zande
- Wageningen Food Safety Research, Part of Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Liang M, Sun X, Guo M, Wu H, Zhao L, Zhang J, He J, Ma X, Yu Z, Yong Y, Gooneratne R, Ju X, Liu X. Baicalin methyl ester prevents the LPS - induced mice intestinal barrier damage in vivo and in vitro via P65/TNF-α/MLCK/ZO-1 signal pathway. Biomed Pharmacother 2024; 180:117417. [PMID: 39298909 DOI: 10.1016/j.biopha.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The effect of baicalin methyl ester (BME) on the regulation of mice intestinal barrier in the inflammatory response was studied in vivo and in vitro. Thirty six C57/BL mice were randomly divided into six groups (n = 6): control group; LPS group (LPS 3.5 mg/kg given intraperitoneal [ip] on day 7 of the study only), PBS group, and three BME groups (low: 50 mg/kg; medium: 100 mg/kg; high: 200 mg/kg) orally dosed with BME for 7d and LPS ip on day 7. All mice were sacrificed on day 8, and jejunum tissue collected for histopathology (H&E and PAS staining), protein expression of pro-inflammatory factors (TNF-α, IL-6, IL-8, IFN-γ) by ELISA, and intestinal tight junction proteins (ZO-1, occludin, claudin-1 and claudin-4) by Western Blot. Compared with the control group, LPS significantly increased the serum cytokines DAO (p < 0.01) and DLA (p < 0.01), upregulated the expression of pro-inflammatory factors, MLCK proteins (p <0.05) and increased the MLCK/ZO-1ratio (p <0.001). LPS also decreased the expression of claudin-4 (p < 0.01) in the jejunum and induced an inflammatory response damaging the jejunal mucosal barrier. Pretreatment with BME (100-200 mg/kg) significantly decreased the cytokines DAO (p < 0.05) and DLA (p < 0.01) in the serum, pro-inflammatory factors in the jejunum, significantly down-regulated the expression of MLCK (p <0.05) and the ratio of MLCK/ZO-1(p <0.001) but upregulated the expressions of ZO-1(p < 0.01), occludin (p < 0.05), claudin-1(p < 0.05) and claudin-4 (p < 0.05), and thereby restored the intestinal tissue structure, suggestive of alleviation of LPS-induced intestinal inflammation by BME. In vitro, MODE-K cells (derived from mice intestinal epithelium) were exposed to BME at 0 (control group-No LPS), 10, 20 and 40 μM BME for 24 h prior to LPS addition at 50 μg/mL for 2 h. LPS significantly increased the expression of pro-inflammatory factors, MLCK (p < 0.01) and the ratio of MLCK/ZO-1(p <0.001), decreased the expressions of ZO-1 (p < 0.05), occludin (p < 0.01), claudin-1 (p < 0.01) and claudin-4 (p < 0.01) in MODE-K cells compared with the control group. Compared with the LPS group, BME (10 - 40 μM) significantly decreased the expression of pro-inflammatory factors, MLCK (p < 0.05) and the ratio of MLCK/ZO-1(p <0.01) but increased the expressions of ZO-1(p < 0.01), occludin (p < 0.05) and claudin-4(p < 0.01) indicating an up-regulation of the expression of tight junction proteins by BME. On addition of extrinsic TNF-α plus LPS, the TNF- α level increased (p < 0.001) in MODE-K cells and the protein expression of MLCK (p < 0.01) was markedly up-regulated. Molecular docking predicted BME interacted with P65 by forming hydrogen bonds. IP-WB further confirmed that BME was directly bound to P65 protein in MODE-K cells. In conclusion, BME was able to restore the intestinal barrier through the P65 / TNF-α / MLCK / ZO-1 signaling pathway.
Collapse
Affiliation(s)
- Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
5
|
Xiong M, Liu Z, Wang B, Sokolich T, Graham N, Chen M, Wang WL, Boldin MP. The epithelial C15ORF48/miR-147-NDUFA4 axis is an essential regulator of gut inflammation, energy metabolism, and the microbiome. Proc Natl Acad Sci U S A 2024; 121:e2315944121. [PMID: 38917002 PMCID: PMC11228508 DOI: 10.1073/pnas.2315944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic inflammation is epidemiologically linked to the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, our understanding of the molecular mechanisms controlling gut inflammation remains insufficient, hindering the development of targeted therapies for IBD and CRC. In this study, we uncovered C15ORF48/miR-147 as a negative regulator of gut inflammation, operating through the modulation of epithelial cell metabolism. C15ORF48/miR-147 encodes two molecular products, C15ORF48 protein and miR-147-3p microRNA, which are predominantly expressed in the intestinal epithelium. C15ORF48/miR-147 ablation leads to gut dysbiosis and exacerbates chemically induced colitis in mice. C15ORF48 and miR-147-3p work together to suppress colonocyte metabolism and inflammation by silencing NDUFA4, a subunit of mitochondrial complex IV (CIV). Interestingly, the C15ORF48 protein, a structural paralog of NDUFA4, contains a unique C-terminal α-helical domain crucial for displacing NDUFA4 from CIV and its subsequent degradation. NDUFA4 silencing hinders NF-κB signaling activation and consequently attenuates inflammatory responses. Collectively, our findings have established the C15ORF48/miR-147-NDUFA4 molecular axis as an indispensable regulator of gut homeostasis, bridging mitochondrial metabolism and inflammation.
Collapse
Affiliation(s)
- Min Xiong
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Ze Liu
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Thomas Sokolich
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Natalie Graham
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Meirong Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Wei-Le Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| | - Mark P. Boldin
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA91010
| |
Collapse
|
6
|
Song YJ, Liu HX, Yang XG. The deposition of lanthanum carbonate may activate macrophages to induce gastrointestinal mucosal injury in patients with chronic kidney disease: an in vitro caco-2/THP-1 macrophage coculture model study. J Biol Inorg Chem 2024; 29:101-112. [PMID: 38148422 DOI: 10.1007/s00775-023-02033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/11/2023] [Indexed: 12/28/2023]
Abstract
The aim of this study was to investigate the effect and possible underlying mechanism of La2(CO3)3 deposition on GI mucosal inflammation. Our results showed that La2(CO3)3 can dissolve in artificial gastric fluids and form lanthanum phosphate (LaPO4) precipitates with an average size of about 1 μm. To mimic the intestinal mucosa and epithelial barrier, we established a Caco-2/THP-1 macrophage coculture model and a Caco-2 monoculture model, respectively. Our findings demonstrated that the medium of THP-1 macrophages stimulated by LaPO4 particles can damage the Caco-2 monolayer integrity in the coculture model, while the particles themselves had no direct impact on the Caco-2 monolayer integrity in the monoculture model. We measured values of trans-epithelial electrical resistance and detected images using a laser scanning confocal microscope. These results indicate that continuous stimulation of LaPO4 particles on macrophages can lead to a disruption of intestinal epithelium integrity. In addition, LaPO4 particles could stimulate THP-1 macrophages to secrete both IL-1β and IL-8. Although LaPO4 particles can also promote Caco-2 cells to secrete IL-8, the secretion was much lower than that produced by THP-1 macrophages. In summary, the deposition of La2(CO3)3 has been shown to activate macrophages and induce damage to intestinal epithelial cells, which may exacerbate inflammation in patients with chronic kidney disease. Therefore, patients taking lanthanum carbonate, especially those with gastrointestinal mucosal inflammation, should be mindful of the potential for drug deposition in the GI system.
Collapse
Affiliation(s)
- Ya-Ju Song
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hui-Xue Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Gai Yang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Shi Y, Liu L, Yin M, Zhao Z, Liang Y, Sun K, Li Y. Mucus- and pH-mediated controlled release of core-shell chitosan nanoparticles in the gastrointestinal tract for diabetes treatment. J Drug Target 2023; 31:65-73. [PMID: 35861405 DOI: 10.1080/1061186x.2022.2104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the successful oral delivery of peptide drugs, considerable barriers created by the harsh environment of the gastrointestinal tract, mucus, and epithelial cells must be overcome. This study was to establish a core-shell structure with chitosan (CS) nanoparticles (NP) as the core and poly-N-(2-hydroxypropyl) methacrylamide (pHPMA) as the intelligent escape shell to overcome pH and mucus barriers and improve the delivery efficiency of peptide drugs. A core-shell system (COS) composed of pHPMA-AT-1002-cys-chitosan (LRA-PA-CNPs) was prepared and used for the treatment of type 2 diabetes mellitus with the large-molecule peptide drug liraglutide (LRA). The complete COS system was observed through electron microscopy; the particle size of the LRA-PA-CNPs was approximately 160 nm; the encapsulation efficiency was approximately 69% ± 5%; the zeta potential was close to neutral; the mucus and epithelial penetration of the COS system were increased; and animal experiments showed that the COS system enhanced the oral hypoglycaemic effect of LRA.HIGHLIGHTSIntelligent escape material of poly-N-(2-hydroxypropyl) methacrylamide as the shell.Core-shell nanoparticles penetrate the mucus layer and exposing the chitosan core.Overcome pH and mucus barriers to improve the delivery efficiency of peptide drugs.
Collapse
Affiliation(s)
- Yanan Shi
- College of Life Science, Yantai University, Yantai, China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai, China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhenyu Zhao
- College of Life Science, Yantai University, Yantai, China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| |
Collapse
|
8
|
Chen Y, Li D, Sun L, Qi K, Shi L. Pharmacological inhibition of toll-like receptor 4 with TLR4-IN-C34 modulates the intestinal flora homeostasis and the MyD88/NF-κB axis in ulcerative colitis. Eur J Pharmacol 2022; 934:175294. [PMID: 36152840 DOI: 10.1016/j.ejphar.2022.175294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4, a highly conserved protein of innate immunity, is responsible for the regulation and maintenance of homeostasis. It has been implicated in the progression of ulcerative colitis (UC) by interacting with its downstream pathway myeloid differentiation factor 88 (MyD88) and nuclear factor kappa B (NF-κB). This study aimed to evaluate the effect of a specific inhibitor of toll-like receptor 4, TLR4-IN-C34 on gut microbiota to elucidate its mechanism in UC mice. Dextran sulfate sodium significantly induced weight loss, diarrhea and rectal bleeding, and colonic damage in mice, which occurred concomitant with dysbiosis of intestinal flora. Intestinal dysbiosis were partially ameliorated by TLR4-IN-C34. Meanwhile, a reduction in inflammatory cell infiltration, enhanced antioxidant activity in colon tissues, and reconstruction of intestinal barrier were observed in mice administrated with TLR4-IN-C34. MyD88 and NF-κB were significantly reduced after TLR4-IN-C34 treatment. MyD88-/- mice were found with improved dysbiosis of intestinal flora, which was mitigated by overexpression of NF-κB. Collectively, our results suggest that TLR4-IN-C34 alleviates UC in mice by blocking the MyD88/NF-κB pathway to improve intestinal flora dysbiosis, inflammatory infiltration, oxidative stress and intestinal barrier function.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Dongyue Li
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Liying Sun
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Kai Qi
- Department of Emergency, Ye County Hospital of Traditional Chinese Medicine, Pingdingshan, 467200, Henan, PR China
| | - Lijun Shi
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| |
Collapse
|
9
|
Thenet S, Carrière V. Special Issue on the "Regulation and Physiopathology of the Gut Barrier". Int J Mol Sci 2022; 23:10638. [PMID: 36142548 PMCID: PMC9502765 DOI: 10.3390/ijms231810638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of gut barrier integrity in intestinal homeostasis and the consequences of its alteration in the etiology of human pathologies have been subjects of exponentially growing interest during the last decade [...].
Collapse
Affiliation(s)
- Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, F-75012 Paris, France
- EPHE, PSL University, F-75014 Paris, France
| | - Véronique Carrière
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012 Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, F-75012 Paris, France
| |
Collapse
|
10
|
Gonzalez OA, Kirakodu S, Nguyen LM, Orraca L, Novak MJ, Gonzalez-Martinez J, Ebersole JL. Comparative Analysis of Gene Expression Patterns for Oral Epithelial Cell Functions in Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 3:863231. [PMID: 35677025 PMCID: PMC9169451 DOI: 10.3389/froh.2022.863231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The structure and function of epithelial cells are critical for the construction and maintenance of intact epithelial surfaces throughout the body. Beyond the mechanical barrier functions, epithelial cells have been identified as active participants in providing warning signals to the host immune and inflammatory cells and in communicating various detailed information on the noxious challenge to help drive specificity in the characteristics of the host response related to health or pathologic inflammation. Rhesus monkeys were used in these studies to evaluate the gingival transcriptome for naturally occurring disease samples (GeneChip® Rhesus Macaque Genome Array) or for ligature-induced disease (GeneChip® Rhesus Gene 1.0 ST Array) to explore up to 452 annotated genes related to epithelial cell structure and functions. Animals were distributed by age into four groups: ≤ 3 years (young), 3–7 years (adolescent), 12–16 years (adult), and 18–23 years (aged). For naturally occurring disease, adult and aged periodontitis animals were used, which comprised 34 animals (14 females and 20 males). Groups of nine animals in similar age groups were included in a ligature-induced periodontitis experiment. A buccal gingival sample from either healthy or periodontitis-affected tissues were collected, and microarray analysis performed. The overall results of this investigation suggested a substantial alteration in epithelial cell functions that occurs rapidly with disease initiation. Many of these changes were prolonged throughout disease progression and generally reflect a disruption of normal cellular functions that would presage the resulting tissue destruction and clinical disease measures. Finally, clinical resolution may not signify biological resolution and represent a continued risk for disease that may require considerations for additional biologically specific interventions to best manage further disease.
Collapse
Affiliation(s)
- Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Linh M. Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Luis Orraca
- School of Dentistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Michael J. Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Janis Gonzalez-Martinez
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Jeffrey L. Ebersole
| |
Collapse
|
11
|
Palladino RA, Olmeda MF, Juliano N, Bargo F, Ipharraguerre IR. Daily fecal pH pattern and variation in lactating dairy cows. JDS COMMUNICATIONS 2022; 3:106-109. [PMID: 36339732 PMCID: PMC9623698 DOI: 10.3168/jdsc.2021-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/05/2022] [Indexed: 06/16/2023]
Abstract
Evidence supports a causal link between anomalous intestinal function and impaired performance in dairy cows. Consequently, digesta pH values obtained from colon, cecum, and rectum are increasingly used to monitor intestinal function in dairy cows. We conducted a study to describe the daily dynamics of fecal pH in lactating dairy cows. The study lasted 4 d and individual records of dry matter intake, milk yield, and fecal pH were taken. Samples of feces were taken every 4 h during the 4-d study, and sampling time was adjusted ahead by 1 h daily so that a sample was obtained for each 1-h interval of the day. Data were analyzed using a mixed-effect model including time as fixed effect and cow as a random factor. We performed a cosinor analysis using pH data at different time points to determine whether fecal pH followed a biorhythmic pattern. On average, cows consumed 19.1 ± 1.55 kg/d of dry matter and produced 26.3 ± 4.16 kg/d of milk. The most relevant results confirmed a biorhythmic pattern for feces pH around feeding time: mesor (midline estimating statistic of rhythm) 6.20, amplitude 0.28, and acrophase 5.66. Additionally, we found a positive relationship between dry matter intake and amplitude, possibly because of an increase in the amount of fermentable carbohydrate reaching the hindgut in response to increasing intake. When using fecal pH as an indicator of intestinal function, it is critical to obtain samples at several time points to capture its daily rhythmicity and to report sampling time relative to feeding.
Collapse
Affiliation(s)
- Rafael Alejandro Palladino
- CONICET, Ruta 4 y Juan XXIII, Lavallol 1832, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Ruta 4 y Juan XXIII, Lavallol 1832, Argentina
- Fundación Instituto de la Leche, Ruta 205 km 51, Paraje Estancia San Martín, Cañuelas 1814, Argentina
| | - María Florencia Olmeda
- Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Ruta 4 y Juan XXIII, Lavallol 1832, Argentina
- Fundación Instituto de la Leche, Ruta 205 km 51, Paraje Estancia San Martín, Cañuelas 1814, Argentina
| | - Nicolás Juliano
- CONICET, Ruta 4 y Juan XXIII, Lavallol 1832, Argentina
- Fundación Instituto de la Leche, Ruta 205 km 51, Paraje Estancia San Martín, Cañuelas 1814, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, Ciudad Autónoma de Buenos Aires 1417, Argentina
| | - Fernando Bargo
- Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Ruta 4 y Juan XXIII, Lavallol 1832, Argentina
- Fundación Instituto de la Leche, Ruta 205 km 51, Paraje Estancia San Martín, Cañuelas 1814, Argentina
| | | |
Collapse
|
12
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
13
|
Yoo I, Kye YC, Han J, Kim M, Lee S, Jung W, Hong M, Park TS, Yun CH, Ka H. Uterine epithelial expression of the tumor necrosis factor superfamily: a strategy for immune privilege during pregnancy in a true epitheliochorial placentation species. Biol Reprod 2021; 102:828-842. [PMID: 31901087 DOI: 10.1093/biolre/ioz233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/06/2020] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
The maternal immune system tolerates semi-allogeneic placental tissues during pregnancy. Fas ligand (FASLG) and tumor necrosis factor superfamily 10 (TNFSF10) are known to be components of maternal immune tolerance in humans and mice. However, the role of FASLG and TNFSF10 in the tolerance process has not been studied in pigs, which form a true epitheliochorial type placenta. Thus, the present study examined the expression and function of FASLG and TNFSF10 and their receptors at the maternal-conceptus interface in pigs. The endometrium and conceptus tissues expressed FASLG and TNFSF10 and their receptor mRNAs during pregnancy in a stage-specific manner. During pregnancy, FASLG and TNFSF10 proteins were localized predominantly to endometrial luminal epithelial cells with strong signals on Day 30 to term and on Day 15, respectively, and receptors for TNFSF10 were localized to some stromal cells. Interferon-γ (IFNG) increased the expression of TNFSF10 and FAS in endometrial tissues. Co-culture of porcine endometrial epithelial cells over-expressing TNFSF10 with peripheral blood mononuclear cells yielded increased apoptotic cell death of lymphocytes and myeloid cells. In addition, many apoptotic T cells were found in the endometrium on Day 15 of pregnancy. The present study demonstrated that FASLG and TNFSF10 were expressed at the maternal-conceptus interface and conceptus-derived IFNG increased endometrial epithelial TNFSF10, which, in turn, induced apoptotic cell death of immune cells. These results suggest that endometrial epithelial FASLG and TNFSF10 may be critical for the formation of micro-environmental immune privilege at the maternal-conceptus interface for the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Yoon Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Minjeong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| |
Collapse
|
14
|
Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021; 10:cells10071775. [PMID: 34359944 PMCID: PMC8304699 DOI: 10.3390/cells10071775] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The microbial metabolite butyrate serves as a link between the intestinal microbiome and epithelium. The monocarboxylate transporters MCT1 and SMCT1 are the predominant means of butyrate transport from the intestinal lumen to epithelial cytoplasm, where the molecule undergoes rapid β-oxidation to generate cellular fuel. However, not all epithelial cells metabolize butyrate equally. Undifferentiated colonocytes, including neoplastic cells and intestinal stem cells at the epithelial crypt base preferentially utilize glucose over butyrate for cellular fuel. This divergent metabolic conditioning is central to the phenomenon known as “butyrate paradox”, in which butyrate induces contradictory effects on epithelial proliferation in undifferentiated and differentiated colonocytes. There is evidence that accumulation of butyrate in epithelial cells results in histone modification and altered transcriptional activation that halts cell cycle progression. This manifests in the apparent protective effect of butyrate against colonic neoplasia. A corollary to this process is butyrate-induced inhibition of intestinal stem cells. Yet, emerging research has illustrated that the evolution of the crypt, along with butyrate-producing bacteria in the intestine, serve to protect crypt base stem cells from butyrate’s anti-proliferative effects. Butyrate also regulates epithelial inflammation and tolerance to antigens, through production of anti-inflammatory cytokines and induction of tolerogenic dendritic cells. The role of butyrate in the pathogenesis and treatment of intestinal neoplasia, inflammatory bowel disease and malabsorptive states is evolving, and holds promise for the potential translation of butyrate’s cellular function into clinical therapies.
Collapse
|
15
|
Di W, Lv Y, Xia F, Sheng Y, Liu J, Ding G. Improvement of intestinal stem cells and barrier function via energy restriction in middle-aged C57BL/6 mice. Nutr Res 2020; 81:47-57. [PMID: 32877836 DOI: 10.1016/j.nutres.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 05/14/2020] [Accepted: 06/22/2020] [Indexed: 01/21/2023]
Abstract
This study aimed to reveal the impact of energy restriction on the intestine via structural and molecular changes in terms of intestinal stem cell (ISC) function, ISC niche, intestinal epithelial barrier function, and intestinal immune function. Female C57BL/6J mice, aged 12 months, fed a commercial chow were used in this study. The ISC function, ISC niche, intestinal epithelial barrier function, and intestinal immune function were assessed. Energy restriction reversed aging-induced intestinal shortening and made the crypts shallower. The intestinal epithelial cells isolated from the intestine showed a significant increase in the expression levels of stem cell-associated genes in small intestinal epithelial cells as detected by flow cytometry. Despite the increase in the number of stem cells and the expression levels of markers, no increase or decrease was found in the enteroid complexity of the small intestine and colonic enteroid formation in vitro. The colonic mucous layer was measured in mice of the energy restricted (ER)-treated group to investigate the epithelial barrier function in the colon. The results revealed that the barrier was more complete. The fluorescence intensity of tight junction markers claudin-2 and zonula occludens-1 increased and the mRNA expression profiles of monocyte chemotactic protein 1 and interleukin-6 decreased in the colon of mice in the ER-treated group. The beneficial effects of ER on the colon in terms of the integrity of the mucosal barrier and alleviation of inflammation were confirmed, thus highlighting the importance of modulating the intestinal function in developing effective antiaging dietary interventions.
Collapse
Affiliation(s)
- Wenjuan Di
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Lv
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xia
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlu Sheng
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Supplementation with yeast culture improves the integrity of intestinal tight junction proteins via NOD1/NF‐κB P65 pathway in weaned piglets and H2O2-challenged IPEC-J2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Bruning EE, Coller JK, Wardill HR, Bowen JM. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease. J Cell Physiol 2020; 236:877-888. [PMID: 32730645 DOI: 10.1002/jcp.29976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle-associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site-specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site-specific TLR4 expression in inflammation and disease, particularly the impact of epithelial-specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell-specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site-specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases.
Collapse
Affiliation(s)
- Elise E Bruning
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Hannah R Wardill
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.,Department of Paediatric Oncology/Haematology, The University of Groningen (University Medical Centre Groningen), Groningen, The Netherlands
| | - Joanne M Bowen
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol 2019; 34. [PMID: 30407731 DOI: 10.1111/omi.12251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
This study examined the oral epithelial immunotranscriptome response patterns modulated by oral bacterial planktonic or biofilm challenge. We assessed gene expression patterns when epithelial cells were challenged with a multispecies biofilm composed of Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis representing a type of periodontopathic biofilm compared to challenge with the same species of planktonic bacteria. Of the 579 human immunology genes, a substantial signal of the epithelial cells was observed to 181 genes. Biofilm challenged stimulated significant elevations compared to planktonic bacteria for IL32, IL8, CD44, B2M, TGFBI, NFKBIA, IL1B, CD59, IL1A, CCL20 representing the top 10 signals comprising 55% of the overall signal for the epithelial cell responses. Levels of PLAU, CD9, IFITM1, PLAUR, CD24, TNFSF10, and IL1RN were all elevated by each of the planktonic bacterial challenge vs the biofilm responses. While the biofilms up-regulated 123/579 genes (>2-fold), fewer genes were increased by the planktonic species (36 [S gordonii], 30 [F nucleatum], 44 [P gingivalis]). A wide array of immune genes were regulated by oral bacterial challenge of epithelial cells that would be linked to the local activity of innate and adaptive immune response components in the gingival tissues. Incorporating bacterial species into a structured biofilm dramatically altered the number and level of genes expressed. Additionally, a specific set of genes were significantly decreased with the multispecies biofilms suggesting that some epithelial cell biologic pathways are down-regulated when in contact with this type of pathogenic biofilm.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada.,College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, Kentucky
| | - Rebecca Peyyala
- College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, Kentucky
| | - Octavio A Gonzalez
- College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, Kentucky.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells 2019; 8:cells8020135. [PMID: 30744042 PMCID: PMC6407111 DOI: 10.3390/cells8020135] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell⁻enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.
Collapse
|
22
|
Ebersole JL, Orraca L, Novak MJ, Kirakodu S, Gonzalez-Martinez J, Gonzalez OA. Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:143-163. [PMID: 31732940 DOI: 10.1007/978-3-030-28524-1_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells and functions of the epithelium are critical to the health of the oral cavity. We used a nonhuman primate model to profile the transcriptome of gingival tissues in health across the lifespan and hypothesized that in older animals, epithelial-related transcriptome patterns would reflect epithelial cells that are aggressively responsive to the surrounding environment and less able to modulate and resolve the noxious challenge from the bacteria. Rhesus monkeys (n = 34) with a healthy periodontium were distributed into four groups: ≤3 years (young), 3-7 years (adolescent), 12-16 years (adult), and 18-23 years (aged), and a buccal gingival sample from the premolar/molar region of each animal was obtained. RNA was subjected to a microarray analysis (GeneChip® Rhesus Macaque Genome Array, Affymetrix), and 336 genes examined that are linked to epithelium and epithelial cell functions categorized into 9 broad functional groups: extracellular matrix and cell structure; extracellular matrix remodeling enzymes; cell adhesion molecules, cytoskeleton regulation; inflammatory response; growth factors; kinases/cell signaling; cell surface receptors; junction associated molecules; autophagy/apoptosis; antimicrobial peptides; and transcription factors. Total of 255 genes displayed a normalized signal >100, and differences across the age groups were observed primarily in extracellular matrix and cell structure, cell adhesion molecules, and cell surface receptor gene categories with elevations in the aged tissues. Keratins 2, 5, 6B, 13, 16, 17 were all significantly increased in healthy-aged tissues versus adults, and keratins 1 and 2 were significantly decreased in young animals. Approximately 15 integrins are highly expressed in the gingival tissues across the age groups with only ITGA8, ITGAM (CD11b), and ITGB2 significantly increased in the aged tissues. Little impact of aging on desmosomal/hemidesmosomal genes was noted. These results suggest that healthy gingival aging has a relatively limited impact on the broader functions of the epithelium and epithelial cells, with some effects on genes for extracellular matrix and cell adhesion molecules (e.g., integrins). Thus, while there is a substantial impact of aging on immune system targets even in healthy gingiva, it appears that the epithelial barrier remains reasonably molecularly intact in this model system.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, University College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, University College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|