1
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
2
|
Choi JW, Shin J, Zhou Z, Song HJ, Bae GS, Kim MS, Park SJ. Myricetin ameliorates the severity of pancreatitis in mice by regulating cathepsin B activity and inflammatory cytokine production. Int Immunopharmacol 2024; 136:112284. [PMID: 38823179 DOI: 10.1016/j.intimp.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/β-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Joonyeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ziqi Zhou
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Hanbang Cardio-Renal Syndrome Research Center, School of Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea; Research Center of Traditional Korean Medicine, Wonkwang University, Iksan-daero 460, Iksan, Jeollabuk-do 54538, Republic of Korea.
| |
Collapse
|
3
|
Zaman S, Gorelick F. Acute pancreatitis: pathogenesis and emerging therapies. JOURNAL OF PANCREATOLOGY 2024; 7:10-20. [PMID: 38524855 PMCID: PMC10959536 DOI: 10.1097/jp9.0000000000000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
Acute pancreatitis is a severe inflammatory disorder with limited treatment options. Improved understanding of disease mechanisms has led to new and potential therapies. Here we summarize what we view as some of the most promising new therapies for treating acute pancreatitis, emphasizing the rationale of specific treatments based on disease mechanisms. Targeted pharmacologic interventions are highlighted. We explore potential treatment benefits and risks concerning reducing acute injury, minimizing complications, and improving long-term outcomes. Mechanisms associated with acute pancreatitis initiation, perpetuation, and reconstitution are highlighted, along with potential therapeutic targets and how these relate to new treatments.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
| | - Fred Gorelick
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
- Veteran’s Administration Healthcare System, West Haven, CT 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
4
|
Akshintala VS, Husain SZ, Brenner TA, Singh A, Singh VK, Khashab MA, Sperna Weiland CJ, van Geenen EJM, Bush N, Barakat M, Srivastava A, Kochhar R, Talukdar R, Rodge G, Wu CCH, Lakhtakia S, Sinha SK, Goenka MK, Reddy DN. Rectal INdomethacin, oral TacROlimus, or their combination for the prevention of post-ERCP pancreatitis (INTRO Trial): Protocol for a randomized, controlled, double-blinded trial. Pancreatology 2022; 22:887-893. [PMID: 35872074 DOI: 10.1016/j.pan.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/12/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis remains the most common and morbid complication of endoscopic retrograde cholangiopancreatography (ERCP). The use of rectal indomethacin and pancreatic duct stenting has been shown to reduce the incidence and severity of post-ERCP pancreatitis (PEP), but these interventions have limitations. Recent clinical and translational evidence suggests a role for calcineurin inhibitors in the prevention of pancreatitis, with multiple retrospective case series showing a reduction in PEP rates in tacrolimus users. METHODS The INTRO trial is a multicenter, international, randomized, double-blinded, controlled trial. A total of 4,874 patients undergoing ERCP will be randomized to receive either oral tacrolimus (5 mg) or oral placebo 1-2 h before ERCP, and followed for 30 days post-procedure. Blood and pancreatic aspirate samples will also be collected in a subset of patients to quantify tacrolimus levels. The primary outcome of the study is the incidence of PEP. Secondary endpoints include the severity of PEP, ERCP-related complications, adverse drug events, length of hospital stay, cost-effectiveness, and the pharmacokinetics, pharmacodynamics, and pharmacogenomics of tacrolimus immune modulation in the pancreas. CONCLUSIONS The INTRO trial will assess the role of calcineurin inhibitors in PEP prophylaxis and develop a foundation for the clinical optimization of this therapeutic strategy from a pharmacologic and economic standpoint. With this clinical trial, we hope to demonstrate a novel approach to PEP prophylaxis using a widely available and well-characterized class of drugs. TRIAL REGISTRATION NCT05252754, registered on February 14, 2022.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Todd A Brenner
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Anmol Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Vikesh K Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mouen A Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Erwin J M van Geenen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nikhil Bush
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Monique Barakat
- Division of Pediatric Gastroenterology, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Ananta Srivastava
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Rupjyoti Talukdar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Gajanan Rodge
- Department of Gastroenterology, Apollo Multispecialty Hospitals, Kolkata, India
| | - Clement C H Wu
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Sundeep Lakhtakia
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Saroj K Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Mahesh K Goenka
- Department of Gastroenterology, Apollo Multispecialty Hospitals, Kolkata, India
| | - D Nageshwar Reddy
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|
5
|
A review of the rationale for the testing of the calcineurin inhibitor tacrolimus for post-ERCP pancreatitis prevention. Pancreatology 2022; 22:678-682. [PMID: 35872075 DOI: 10.1016/j.pan.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/11/2022]
Abstract
Endoscopic retrograde cholangiopancreatography (ERCP) is commonly performed for the management of pancreaticobiliary disorders. The most troublesome ERCP-associated adverse event is post-ERCP pancreatitis (PEP), which occurs in up to 15% of all patients undergoing ERCP. A substantial body of preclinical data support a mechanistic rationale for calcineurin inhibitors in preventing PEP. The findings are coupled with recent clinical data suggesting lower rates of PEP in patients who concurrently use the calcineurin inhibitor tacrolimus (e.g., solid organ transplant recipients). In this review, we will firstly summarize data in support of testing the use of tacrolimus for PEP prophylaxis, either in combination with rectal indomethacin or by itself. Secondly, we propose that administering tacrolimus through the rectal route could be favorable for PEP prophylaxis over other routes of administration.
Collapse
|
6
|
Voronina S, Chvanov M, De Faveri F, Mayer U, Wileman T, Criddle D, Tepikin A. Autophagy, Acute Pancreatitis and the Metamorphoses of a Trypsinogen-Activating Organelle. Cells 2022; 11:cells11162514. [PMID: 36010591 PMCID: PMC9406838 DOI: 10.3390/cells11162514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have highlighted the importance of autophagy and particularly non-canonical autophagy in the development and progression of acute pancreatitis (a frequent disease with considerable morbidity and significant mortality). An important early event in the development of acute pancreatitis is the intrapancreatic activation of trypsinogen, (i.e., formation of trypsin) leading to the autodigestion of the organ. Another prominent phenomenon associated with the initiation of this disease is vacuolisation and specifically the formation of giant endocytic vacuoles in pancreatic acinar cells. These organelles develop in acinar cells exposed to several inducers of acute pancreatitis (including taurolithocholic acid and high concentrations of secretagogues cholecystokinin and acetylcholine). Notably, early trypsinogen activation occurs in the endocytic vacuoles. These trypsinogen-activating organelles undergo activation, long-distance trafficking, and non-canonical autophagy. In this review, we will discuss the role of autophagy in acute pancreatitis and particularly focus on the recently discovered LAP-like non-canonical autophagy (LNCA) of endocytic vacuoles.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Chvanov
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesca De Faveri
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tom Wileman
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - David Criddle
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence:
| |
Collapse
|
7
|
Cridge H, Lim SY, Algül H, Steiner JM. New insights into the etiology, risk factors, and pathogenesis of pancreatitis in dogs: Potential impacts on clinical practice. J Vet Intern Med 2022; 36:847-864. [PMID: 35546513 PMCID: PMC9151489 DOI: 10.1111/jvim.16437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
While most cases of pancreatitis in dogs are thought to be idiopathic, potential risk factors are identified. In this article we provide a state‐of‐the‐art overview of suspected risk factors for pancreatitis in dogs, allowing for improved awareness and detection of potential dog‐specific risk factors, which might guide the development of disease prevention strategies. Additionally, we review important advances in our understanding of the pathophysiology of pancreatitis and potential areas for therapeutic manipulation based thereof. The outcome of pathophysiologic mechanisms and the development of clinical disease is dependent on the balance between stressors and protective mechanisms, which can be evaluated using the critical threshold theory.
Collapse
Affiliation(s)
- Harry Cridge
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sue Yee Lim
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| | - Hana Algül
- Gastrointestinal Cancer and Inflammatory Research Laboratory, Technical University of Munich, Munich, Germany
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, USA
| |
Collapse
|
8
|
Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021; 101:1691-1744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Shuang Peng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
The role of Ca2+ signalling in the physiology and pathophysiology of exocrine pancreas. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Wen L, Javed TA, Dobbs AK, Brown R, Niu M, Li L, Khalid A, Barakat MT, Xiao X, Yimlamai D, Konnikova L, Yu M, Byersdorfer CA, Husain SZ. The Protective Effects of Calcineurin on Pancreatitis in Mice Depend on the Cellular Source. Gastroenterology 2020; 159:1036-1050.e8. [PMID: 32445858 PMCID: PMC7502475 DOI: 10.1053/j.gastro.2020.05.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBC△/△) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBC△/△ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.
Collapse
Affiliation(s)
- Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tanveer A Javed
- Division of Pediatric Gastroenterology, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rebecca Brown
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mengya Niu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Li
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Asna Khalid
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Monique T Barakat
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California; Department of Medicine, Stanford University, Palo Alto, California
| | - Xiangwei Xiao
- Division of Pediatric Surgery, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dean Yimlamai
- Division of Pediatric Gastroenterology, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mang Yu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine and the Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, California.
| |
Collapse
|
11
|
Li X, Li J, Martinez EC, Froese A, Passariello CL, Henshaw K, Rusconi F, Li Y, Yu Q, Thakur H, Nikolaev VO, Kapiloff MS. Calcineurin Aβ-Specific Anchoring Confers Isoform-Specific Compartmentation and Function in Pathological Cardiac Myocyte Hypertrophy. Circulation 2020; 142:948-962. [PMID: 32611257 DOI: 10.1161/circulationaha.119.044893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of cardiac myocyte hypertrophy in disease. An unexplained paradox is how the β isoform of the calcineurin catalytic A-subunit (CaNAβ) is required for induction of pathological myocyte hypertrophy, despite calcineurin Aα expression in the same cells. It is unclear how the pleiotropic second messenger Ca2+ drives excitation-contraction coupling while not stimulating hypertrophy by calcineurin in the normal heart. Elucidation of the mechanisms conferring this selectivity in calcineurin signaling should reveal new strategies for targeting the phosphatase in disease. METHODS Primary adult rat ventricular myocytes were studied for morphology and intracellular signaling. New Förster resonance energy transfer reporters were used to assay Ca2+ and calcineurin activity in living cells. Conditional gene deletion and adeno-associated virus-mediated gene delivery in the mouse were used to study calcineurin signaling after transverse aortic constriction in vivo. RESULTS CIP4 (Cdc42-interacting protein 4)/TRIP10 (thyroid hormone receptor interactor 10) was identified as a new polyproline domain-dependent scaffold for CaNAβ2 by yeast 2-hybrid screen. Cardiac myocyte-specific CIP4 gene deletion in mice attenuated pressure overload-induced pathological cardiac remodeling and heart failure. Blockade of CaNAβ polyproline-dependent anchoring using a competing peptide inhibited concentric hypertrophy in cultured myocytes; disruption of anchoring in vivo using an adeno-associated virus gene therapy vector inhibited cardiac hypertrophy and improved systolic function after pressure overload. Live cell Förster resonance energy transfer biosensor imaging of cultured myocytes revealed that Ca2+ levels and calcineurin activity associated with the CIP4 compartment were increased by neurohormonal stimulation, but minimally by pacing. Conversely, Ca2+ levels and calcineurin activity detected by nonlocalized Förster resonance energy transfer sensors were induced by pacing and minimally by neurohormonal stimulation, providing functional evidence for differential intracellular compartmentation of Ca2+ and calcineurin signal transduction. CONCLUSIONS These results support a structural model for Ca2+ and CaNAβ compartmentation in cells based on an isoform-specific mechanism for calcineurin protein-protein interaction and localization. This mechanism provides an explanation for the specific role of CaNAβ in hypertrophy and its selective activation under conditions of pathologic stress. Disruption of CaNAβ polyproline-dependent anchoring constitutes a rational strategy for therapeutic targeting of CaNAβ-specific signaling responsible for pathological cardiac remodeling in cardiovascular disease deserving of further preclinical investigation.
Collapse
Affiliation(s)
- Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Kathryn Henshaw
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Francesca Rusconi
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| |
Collapse
|
12
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
13
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
14
|
Gukovskaya AS, Gorelick FS, Groblewski GE, Mareninova OA, Lugea A, Antonucci L, Waldron RT, Habtezion A, Karin M, Pandol SJ, Gukovsky I. Recent Insights Into the Pathogenic Mechanism of Pancreatitis: Role of Acinar Cell Organelle Disorders. Pancreas 2019; 48:459-470. [PMID: 30973461 PMCID: PMC6461375 DOI: 10.1097/mpa.0000000000001298] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute pancreatitis (AP) is a potentially lethal inflammatory disease that lacks specific therapy. Damaged pancreatic acinar cells are believed to be the site of AP initiation. The primary function of these cells is the synthesis, storage, and export of digestive enzymes. Beginning in the endoplasmic reticulum and ending with secretion of proteins stored in zymogen granules, distinct pancreatic organelles use ATP produced by mitochondria to move and modify nascent proteins through sequential vesicular compartments. Compartment-specific accessory proteins concentrate cargo and promote vesicular budding, targeting, and fusion. The autophagy-lysosomal-endosomal pathways maintain acinar cell homeostasis by removing damaged/dysfunctional organelles and recycling cell constituents for substrate and energy. Here, we discuss studies in experimental and genetic AP models, primarily from our groups, which show that acinar cell injury is mediated by distinct mechanisms of organelle dysfunction involved in protein synthesis and trafficking, secretion, energy generation, and autophagy. These early AP events (often first manifest by abnormal cytosolic Ca signaling) in the acinar cell trigger the inflammatory and cell death responses of pancreatitis. Manifestations of acinar cell organelle disorders are also prominent in human pancreatitis. Our findings suggest that targeting specific mediators of organelle dysfunction could reduce disease severity.
Collapse
Affiliation(s)
- Anna S. Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, CA
| | - Fred S. Gorelick
- Department of Cell Biology Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Olga A. Mareninova
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, CA
| | - Aurelia Lugea
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA
| | - Richard T. Waldron
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, CA
| |
Collapse
|
15
|
Research Progress on the Relationship Between Acute Pancreatitis and Calcium Overload in Acinar Cells. Dig Dis Sci 2019; 64:25-38. [PMID: 30284136 DOI: 10.1007/s10620-018-5297-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis is a human disease with multiple causes that leads to autodigestion of the pancreas. There is sufficient evidence to support the key role of sustained increase in cytosolic calcium concentrations in the early pathogenesis of the disease. To clarify the mechanism of maintaining calcium homeostasis in the cell and pathological processes caused by calcium overload would help to research directly targeted therapeutic agents. We will specifically review the following: intracellular calcium homeostasis and regulation, the occurrence of calcium overload in acinar cells, the role of calcium overload in the pathogenesis of AP, the treatment strategy proposed for calcium overload.
Collapse
|
16
|
Gildart M, Kapiloff MS, Dodge-Kafka KL. Calcineurin-AKAP interactions: therapeutic targeting of a pleiotropic enzyme with a little help from its friends. J Physiol 2018; 598:3029-3042. [PMID: 30488951 PMCID: PMC7586300 DOI: 10.1113/jp276756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023] Open
Abstract
The ubiquitous Ca2+ /calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac hypertrophy whose therapeutic targeting in heart disease has been elusive due to its role in other essential biological processes. Calcineurin is targeted to diverse intracellular compartments by association with scaffold proteins, including by multivalent A-kinase anchoring proteins (AKAPs) that bind protein kinase A and other important signalling enzymes determining cardiac myocyte function and phenotype. Calcineurin anchoring by AKAPs confers specificity to calcineurin function in the cardiac myocyte. Targeting of calcineurin 'signalosomes' may provide a rationale for inhibiting the phosphatase in disease.
Collapse
Affiliation(s)
- Moriah Gildart
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Kimberly L Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
17
|
Abu-El-Haija M, Lowe ME. Pediatric Pancreatitis-Molecular Mechanisms and Management. Gastroenterol Clin North Am 2018; 47:741-753. [PMID: 30337030 DOI: 10.1016/j.gtc.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pediatric pancreatitis is an emerging field with an increasing incidence of disease. Management of pediatric pancreatitis is understudied and, therefore, extrapolated from adult studies (although the etiologies are different). There is evidence that feeding is safe in mild acute pancreatitis in children without increased pain or length of stay. Studies are needed to predict course of the disease, disease severity, and risk of chronic pancreatitis in children.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 2010, Cincinnati, Ohio 45229, USA
| | - Mark E Lowe
- Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, 660 South Euclid Avenue, MPRB 4th Floor, Campus Box 8208, St Louis, MO 63110, USA.
| |
Collapse
|
18
|
Norberg KJ, Nania S, Li X, Gao H, Szatmary P, Segersvärd R, Haas S, Wagman A, Arnelo U, Sutton R, Heuchel RL, Löhr JM. RCAN1 is a marker of oxidative stress, induced in acute pancreatitis. Pancreatology 2018; 18:734-741. [PMID: 30139658 DOI: 10.1016/j.pan.2018.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date, there still is a lack of specific acute pancreatitis markers and specifically an early marker that can reliably predict disease severity. The inflammatory response in acute pancreatitis is mediated in part through oxidative stress and calcineurin-NFAT (Nuclear Factor of Activated T-cells) signaling, which is inducing its own negative regulator, regulator of calcineurin 1 (RCAN1). Caerulein induction is a commonly used in vivo model of experimental acute pancreatitis. Caerulein induces CN-NFAT signaling, reactive oxygen species and inflammation. METHODS To screen for potential markers of acute pancreatitis, we used the caerulein model of experimental acute pancreatitis (AP) in C57Bl/6 J mice. Pancreata from treated and control mice were used for expression profiling. Promising gene candidates were validated in cell culture experiments using primary murine acinar cells and rat AR42J cells. These candidates were then further tested for their usefulness as biomarkers in mouse and human plasma. RESULTS We identified a number of novel genes, including Regulator of calcineurin 1 (Rcan1) and Sestrin 2 (Sesn2) and demonstrated that they are induced by oxidative stress, by stimulation with H2O2 and by inhibiting caerulein stimulated expression with the antioxidant N-acetylcysteine. We found Rcan1 protein to be significantly elevated in AP-induced mouse plasma as well as in plasma from AP patients. CONCLUSION We demonstrated that Rcan1 is regulated by oxidative stress and identified RCAN1 as a potential diagnostic marker of AP.
Collapse
Affiliation(s)
- K Jessica Norberg
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Salvatore Nania
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Xuan Li
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Hui Gao
- Dept. of Biosciences and Nutrition (BioNut), Karolinska Institutet, Stockholm, Sweden
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Ralf Segersvärd
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Haas
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Wagman
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Urban Arnelo
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Rainer L Heuchel
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - J Matthias Löhr
- Pancreas Cancer Research Lab, Dept. of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden; Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
19
|
Autophagy impairment in pancreatic acinar cells causes zymogen granule accumulation and pancreatitis. Biochem Biophys Res Commun 2018; 503:2576-2582. [DOI: 10.1016/j.bbrc.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
|
20
|
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R. NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 2016; 16:477-88. [PMID: 27282980 DOI: 10.1016/j.pan.2016.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
Abstract
The incidence of acute pancreatitis (AP) is increasing globally and mortality could be high among patients with organ failure and infected necrosis. The predominant factors responsible for the morbidity and mortality of AP are systemic inflammatory response syndrome and multiorgan dysfunction. Even though preclinical studies have shown antisecretory agents (somatostatin), antioxidants (S-adenosyl methionine [SAM], selenium), protease inhibitors, platelet activating factor inhibitor (Lexipafant), and anti-inflammatory immunomodulators (eg. prostaglandin E, indomethacin) to benefit AP in terms of reducing the severity and/or mortality, most of these agents have shown heterogeneous results in clinical studies. Several years of experimental studies have implicated nuclear factor-kappa B (NF-κB) activation as an early and central event in the progression of inflammation in AP. In this manuscript, we review the literature on the role of NF-κB in the pathogenesis of AP, its early intraacinar activation, and how it results in progression of the disease. We also discuss why anti-protease, antisecretory, and anti-inflammatory agents are unlikely to be effective in clinical acute pancreatitis. NF-κB, being a central molecule that links the initial acinar injury to systemic inflammation and perpetuate the inflammation, we propose that more studies be focussed towards targeted inhibition of NF-κB activity. Direct NF-κB inhibition strategies have already been attempted in patients with various cancers. So far, peroxisome proliferator activator receptor gamma (PPAR-γ) ligand, pyrrolidine dithiocarbamate (PDTC), proteasome inhibitor and calpain I inhibitor have been shown to have direct inhibitory effects on NF-κB activation in experimental AP.
Collapse
Affiliation(s)
- Aparna Jakkampudi
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Ramaiah Jangala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - B Ratnakar Reddy
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Sasikala Mitnala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - D Nageshwar Reddy
- Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Rupjyoti Talukdar
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| |
Collapse
|
21
|
Jin S, Orabi AI, Le T, Javed TA, Sah S, Eisses JF, Bottino R, Molkentin JD, Husain SZ. Exposure to Radiocontrast Agents Induces Pancreatic Inflammation by Activation of Nuclear Factor-κB, Calcium Signaling, and Calcineurin. Gastroenterology 2015; 149:753-64.e11. [PMID: 25980752 PMCID: PMC4550538 DOI: 10.1053/j.gastro.2015.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Radiocontrast agents are required for radiographic procedures, but these agents can injure tissues by unknown mechanisms. We investigated whether exposure of pancreatic tissues to radiocontrast agents during endoscopic retrograde cholangiopancreatography (ERCP) causes pancreatic inflammation, and studied the effects of these agents on human cell lines and in mice. METHODS We exposed mouse and human acinar cells to the radiocontrast agent iohexol (Omnipaque; GE Healthcare, Princeton, NJ) and measured intracellular release of Ca(2+), calcineurin activation (using a luciferase reporter), activation of nuclear factor-κB (NF-κB, using a luciferase reporter), and cell necrosis (via propidium iodide uptake). We infused the radiocontrast agent into the pancreatic ducts of wild-type mice (C57BL/6) to create a mouse model of post-ERCP pancreatitis; some mice were given intraperitoneal injections of the calcineurin inhibitor FK506 before and after infusion of the radiocontrast agent. CnAβ(-/-) mice also were used. This experiment also was performed in mice given infusions of adeno-associated virus 6-NF-κB-luciferase, to assess activation of this transcription factor in vivo. RESULTS Incubation of mouse and human acinar cells, but not HEK293 or COS7 cells, with iohexol led to a peak and then plateau in Ca(2+) signaling, along with activation of the transcription factors NF-κB and nuclear factor of activated T cells. Suppressing Ca(2+) signaling or calcineurin with BAPTA, cyclosporine A, or FK506 prevented activation of NF-κB and acinar cell injury. Calcineurin Aβ-deficient mice were protected against induction of pancreatic inflammation by iohexol. The calcineurin inhibitor FK506 prevented contrast-induced activation of NF-κB in pancreata of mice, this was observed by live imaging of mice given infusions of adeno-associated virus 6-NF-κB-luciferase. CONCLUSIONS Radiocontrast agents cause pancreatic inflammation in mice, via activation of NF-κB, Ca(2+) signaling, and calcineurin. Calcineurin inhibitors might be developed to prevent post-ERCP pancreatitis in patients.
Collapse
Affiliation(s)
- Shunqian Jin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| | - Abrahim I. Orabi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| | - Tianming Le
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| | - Tanveer A. Javed
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| | - Swati Sah
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| | - John F. Eisses
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, 15212
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH, 45229
| | - Sohail Z. Husain
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224
| |
Collapse
|
22
|
Lewarchik CM, Orabi AI, Jin S, Wang D, Muili KA, Shah AU, Eisses JF, Malik A, Bottino R, Jayaraman T, Husain SZ. The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury. Am J Physiol Gastrointest Liver Physiol 2014; 307:G574-81. [PMID: 25012845 PMCID: PMC4154117 DOI: 10.1152/ajpgi.00143.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca(2+) dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 μM) or carbachol (1 mM). Ryanodine (100 μM) pretreatment reduced the magnitude of the Ca(2+) signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 μM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 μM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage (P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca(2+) signals and cell injury.
Collapse
Affiliation(s)
| | | | | | | | - Kamaldeen A. Muili
- 3Department of Neurological Surgery, Comprehensive Cancer Center, Wexner Medical Center, Ohio State University, Columbus, Ohio;
| | | | | | | | - Rita Bottino
- 4Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Thottala Jayaraman
- 2Dental Medicine, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| | | |
Collapse
|
23
|
Kolodecik T, Shugrue C, Ashat M, Thrower EC. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol 2014; 4:415. [PMID: 24474939 PMCID: PMC3893685 DOI: 10.3389/fphys.2013.00415] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 12/16/2022] Open
Abstract
PURPOSE OF THE REVIEW Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer. RECENT FINDINGS Intracellular activation of both pancreatic enzymes and the transcription factor NF-κB are important mechanisms that induce acute pancreatitis (AP). Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogenic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16) can ultimately lead to development of pancreatic cancer. SUMMARY Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.
Collapse
Affiliation(s)
- Thomas Kolodecik
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| | - Christine Shugrue
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| | - Munish Ashat
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| | - Edwin C. Thrower
- Digestive Diseases Section, Department of Internal Medicine, Yale UniversityNew Haven, CT, USA
- VA HealthcareWest Haven, CT, USA
| |
Collapse
|
24
|
Myer JR, Romach EH, Elangbam CS. Species- and dose-specific pancreatic responses and progression in single- and repeat-dose studies with GI181771X: a novel cholecystokinin 1 receptor agonist in mice, rats, and monkeys. Toxicol Pathol 2014; 42:260-274. [PMID: 24178573 DOI: 10.1177/0192623313506792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Compound-induced pancreatic injury is a serious liability in preclinical toxicity studies. However, its relevance to humans should be cautiously evaluated because of interspecies variations. To highlight such variations, we evaluated the species- and dose-specific pancreatic responses and progression caused by GI181771X, a novel cholecystokinin 1 receptor agonist investigated by GlaxoSmithKline for the treatment of obesity. Acute (up to 2,000 mg/kg GI181771X, as single dose) and repeat-dose studies in mice and/or rats (0.25-250 mg/kg/day for 7 days to 26 weeks) showed wide-ranging morphological changes in the pancreas that were dose and duration dependent, including necrotizing pancreatitis, acinar cell hypertrophy/atrophy, zymogen degranulation, focal acinar cell hyperplasia, and interstitial inflammation. In contrast to rodents, pancreatic changes were not observed in cynomolgus monkeys given GI181771X (1-500 mg/kg/day with higher systemic exposure than rats) for up to 52 weeks. Similarly, no GI181771X treatment-associated abnormalities in pancreatic structure were noted in a 24-week clinical trial with obese patients (body mass index >30 or >27 kg/m(2)) as assessed by abdominal ultrasound or by magnetic resonance imaging. Mechanisms for interspecies variations in the pancreatic response to CCK among rodents, monkeys, and humans and their relevance to human risk are discussed.
Collapse
Affiliation(s)
- James R Myer
- 1Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
25
|
Orabi AI, Muili KA, Wang D, Jin S, Perides G, Husain SZ. Preparation of pancreatic acinar cells for the purpose of calcium imaging, cell injury measurements, and adenoviral infection. J Vis Exp 2013:e50391. [PMID: 23851390 DOI: 10.3791/50391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pancreatic acinar cell is the main parenchymal cell of the exocrine pancreas and plays a primary role in the secretion of pancreatic enzymes into the pancreatic duct. It is also the site for the initiation of pancreatitis. Here we describe how acinar cells are isolated from whole pancreas tissue and intracellular calcium signals are measured. In addition, we describe the techniques of transfecting these cells with adenoviral constructs, and subsequently measuring the leakage of lactate dehydrogenase, a marker of cell injury, during conditions that induce acinar cell injury in vitro. These techniques provide a powerful tool to characterize acinar cell physiology and pathology.
Collapse
Affiliation(s)
- Abrahim I Orabi
- Rangos Research Center, Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC
| | | | | | | | | | | |
Collapse
|
26
|
Mishra V, Cline R, Noel P, Karlsson J, Baty CJ, Orlichenko L, Patel K, Trivedi RN, Husain SZ, Acharya C, Durgampudi C, Stolz DB, Navina S, Singh VP. Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium. PLoS One 2013; 8:e66471. [PMID: 23824669 PMCID: PMC3688910 DOI: 10.1371/journal.pone.0066471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/07/2013] [Indexed: 12/12/2022] Open
Abstract
Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825) on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated independent of an increase in cytosolic calcium. Other players resulting in acinar injury along with the Src family of tyrosine kinases remain to be explored.
Collapse
Affiliation(s)
- Vivek Mishra
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Cline
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Pawan Noel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jenny Karlsson
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Catherine J. Baty
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lidiya Orlichenko
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Krutika Patel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ram Narayan Trivedi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sohail Z. Husain
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Chathur Acharya
- Department of Medicine, University of Pittsburgh Medical Center, Passavant, Pennsylvania, United States of America
| | - Chandra Durgampudi
- Department of Medicine, University of Pittsburgh Medical Center, Passavant, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Navina
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay P. Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Muili KA, Jin S, Orabi AI, Eisses JF, Javed TA, Le T, Bottino R, Jayaraman T, Husain SZ. Pancreatic acinar cell nuclear factor κB activation because of bile acid exposure is dependent on calcineurin. J Biol Chem 2013; 288:21065-21073. [PMID: 23744075 DOI: 10.1074/jbc.m113.471425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biliary pancreatitis is the most common etiology of acute pancreatitis, accounting for 30-60% of cases. A dominant theory for the development of biliary pancreatitis is the reflux of bile into the pancreatic duct and subsequent exposure to pancreatic acinar cells. Bile acids are known to induce aberrant Ca(2+) signals in acinar cells as well as nuclear translocation of NF-κB. In this study, we examined the role of the downstream Ca(2+) target calcineurin on NF-κB translocation. Freshly isolated mouse acinar cells were infected for 24 h with an adenovirus expressing an NF-κB luciferase reporter. The bile acid taurolithocholic acid-3-sulfate caused NF-κB activation at concentrations (500 μm) that were associated with cell injury. We show that the NF-κB inhibitor Bay 11-7082 (1 μm) blocked translocation and injury. Pretreatment with the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the calcineurin inhibitors FK506 and cyclosporine A, or use of acinar cells from calcineurin Aβ-deficient mice each led to reduced NF-κB activation with taurolithocholic acid-3-sulfate. Importantly, these manipulations did not affect LPS-induced NF-κB activation. A critical upstream regulator of NF-κB activation is protein kinase C, which translocates to the membranes of various organelles in the active state. We demonstrate that pharmacologic and genetic inhibition of calcineurin blocks translocation of the PKC-δ isoform. In summary, bile-induced NF-κB activation and acinar cell injury are mediated by calcineurin, and a mechanism for this important early inflammatory response appears to be upstream at the level of PKC translocation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rita Bottino
- Internal Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Thotalla Jayaraman
- Internal Medicine, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | |
Collapse
|
28
|
Lerch MM, Halangk W, Mayerle J. Preventing pancreatitis by protecting the mitochondrial permeability transition pore. Gastroenterology 2013; 144:265-269. [PMID: 23260493 DOI: 10.1053/j.gastro.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, Greifswald University Medicine, Greifswald, Germany.
| | - Walter Halangk
- Department of Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia Mayerle
- Department of Medicine A, Greifswald University Medicine, Greifswald, Germany
| |
Collapse
|
29
|
Muili KA, Wang D, Orabi AI, Sarwar S, Luo Y, Javed TA, Eisses JF, Mahmood SM, Jin S, Singh VP, Ananthanaravanan M, Perides G, Williams JA, Molkentin JD, Husain SZ. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem 2013; 288:570-80. [PMID: 23148215 PMCID: PMC3537054 DOI: 10.1074/jbc.m112.428896] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/08/2012] [Indexed: 12/29/2022] Open
Abstract
Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca(2+). Thus, it would be clinically relevant to know the targets of this aberrant Ca(2+) signal. We hypothesized that the Ca(2+)-activated phosphatase calcineurin is such a Ca(2+) target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca(2+). Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aβ (CnAβ) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca(2+) generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.
Collapse
Affiliation(s)
| | - Dong Wang
- From the Department of Pediatrics and
- the Department of Chemistry, Fudan University, Shanghai 200433, China
- the Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | - Vijay P. Singh
- Internal Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Meena Ananthanaravanan
- the Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06519
| | - George Perides
- the Department of Surgery, Tufts University Medical Center, Boston, Massachusetts 02111
| | - John A. Williams
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Jeffery D. Molkentin
- the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW In this article, recent advances in the pathogenesis of acute pancreatitis have been reviewed. RECENT FINDINGS Pathologic intra-acinar trypsinogen activation had been hypothesized to be the central mechanism of pancreatitis for over a century. This hypothesis could be explored for the first time with the development of a novel mouse model lacking pathologic intra-acinar trypsinogen activation. It became clear that intra-acinar trypsinogen activation contributes to early acinar injury, but local and systemic inflammation progress independently during pancreatitis. Early intra-acinar nuclear factor kappa B (NFκB) activation, which occurs parallel to but independent of trypsinogen activation, may be crucial in pancreatitis. Although the mechanism of NFκB and trypsinogen activation is not entirely clear, further insights have been made into key pathogenic cellular events such as calcium signaling, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, autophagy and impaired trafficking, and lysosomal and secretory responses. Cellular intrinsic damage-sensing mechanisms that lead to activation of the inflammatory response aimed at repair, but lead to disease when overwhelmed, are beginning to be understood. SUMMARY New findings necessitate a paradigm shift in our understanding of acute pancreatitis. Intra-acinar trypsinogen activation leads to early pancreatic injury, but the inflammatory response of acute pancreatitis develops independently, driven by early activation of inflammatory pathways.
Collapse
|