1
|
Suntornsaratoon P, Antonio JM, Flores J, Upadhyay R, Veltri J, Bandyopadhyay S, Dadala R, Kim M, Liu Y, Balasubramanian I, Turner JR, Su X, Li WV, Gao N, Ferraris RP. Lactobacillus rhamnosus GG Stimulates Dietary Tryptophan-Dependent Production of Barrier-Protecting Methylnicotinamide. Cell Mol Gastroenterol Hepatol 2024; 18:101346. [PMID: 38641207 PMCID: PMC11193042 DOI: 10.1016/j.jcmgh.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND & AIMS Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan (trp), are unclear. METHODS Untargeted metabolomic and transcriptomic analyses were performed in LGG monocolonized germ-free mice fed trp-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions. Multiomic correlations using a newly developed algorithm discovered novel metabolites tightly linked to tight junction and cell differentiation genes whose abundances were regulated by LGG and dietary trp. Barrier-modulation by these metabolites were functionally tested in Caco2 cells, mouse enteroids, and dextran sulfate sodium experimental colitis. The contribution of these metabolites to barrier protection is delineated at specific tight junction proteins and enterocyte-promoting factors with gain and loss of function approaches. RESULTS LGG, strictly with dietary trp, promotes the enterocyte program and expression of tight junction genes, particularly Ocln. Functional evaluations of fecal and serum metabolites synergistically stimulated by LGG and trp revealed a novel vitamin B3 metabolism pathway, with methylnicotinamide (MNA) unexpectedly being the most robust barrier-protective metabolite in vitro and in vivo. Reduced serum MNA is significantly associated with increased disease activity in patients with inflammatory bowel disease. Exogenous MNA enhances gut barrier in homeostasis and robustly promotes colonic healing in dextran sulfate sodium colitis. MNA is sufficient to promote intestinal epithelial Ocln and RNF43, a master inhibitor of Wnt. Blocking trp or vitamin B3 absorption abolishes barrier recovery in vivo. CONCLUSIONS Our study uncovers a novel LGG-regulated dietary trp-dependent production of MNA that protects the gut barrier against colitis.
Collapse
Affiliation(s)
- Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - John Veltri
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | - Rhema Dadala
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Michael Kim
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riverside, California
| | - Nan Gao
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Biological Sciences, Rutgers University, Newark, New Jersey.
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
2
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
3
|
Levanovich PE, Daugherty AM, Komnenov D, Rossi NF. Dietary fructose and high salt in young male Sprague Dawley rats induces salt-sensitive changes in renal function in later life. Physiol Rep 2022; 10:e15456. [PMID: 36117446 PMCID: PMC9483717 DOI: 10.14814/phy2.15456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023] Open
Abstract
Dietary fructose and salt are associated with hypertension and renal disease. Dietary input during critical postnatal periods may impact pathophysiology in maturity. The highest consumption of fructose occurs during adolescence. We hypothesized that a diet high in fructose with or without high salt in young male Sprague Dawley rats will lead to salt-sensitive hypertension, albuminuria, and decreased renal function in maturity. Four groups were studied from age 5 weeks: 20% glucose + 0.4% salt (GCS-GCS) or 20% fructose + 4% salt throughout (FHS-FHS). Two groups received 20% fructose + 0.4% salt or 20% fructose + 4% salt for 3 weeks (Phase I) followed by 20% glucose + 0.4% salt (Phase II). In Phase III (age 13-15 weeks), these two groups were challenged with 20% glucose + 4% salt, (FCS-GHS) and (FHS-GHS), respectively. Each group fed fructose in Phase I exhibited significantly higher MAP than GCS-GCS in Phase III. Net sodium balance, unadjusted, or adjusted for caloric intake and urine flow rate, and cumulative sodium balance were positive in FHS during Phase I and were significantly higher in FCS-GHS, FHS-GHS, and FHS-FHS vs GCS-GCS during Phase III. All three groups fed fructose during Phase I displayed significantly elevated albuminuria. GFR was significantly lower in FHS-FHS vs GCS-GCS at maturity. Qualitative histology showed mesangial expansion and hypercellularity in FHS-FHS rats. Thus, fructose ingestion during a critical period in rats, analogous to human preadolescence and adolescence, results in salt-sensitive hypertension and albuminuria in maturity. Prolonged dietary fructose and salt ingestion lead to a decline in renal function with evidence suggestive of mesangial hypercellularity.
Collapse
Affiliation(s)
| | - Ana M. Daugherty
- Department of Psychology and Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Dragana Komnenov
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
| | - Noreen F. Rossi
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
- John D. Dingell VA Medical CenterDetroitMichiganUSA
| |
Collapse
|
4
|
Comparative Effects of Allulose, Fructose, and Glucose on the Small Intestine. Nutrients 2022; 14:nu14153230. [PMID: 35956407 PMCID: PMC9370476 DOI: 10.3390/nu14153230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite numerous studies on the health benefits of the rare sugar allulose, its effects on intestinal mucosal morphology and function are unclear. We therefore first determined its acute effects on the small intestinal transcriptome using DNA microarray analysis following intestinal allulose, fructose and glucose perfusion in rats. Expression levels of about 8-fold more genes were altered by allulose compared to fructose and glucose perfusion, suggesting a much greater impact on the intestinal transcriptome. Subsequent pathway analysis indicated that nutrient transport, metabolism, and digestive system development were markedly upregulated, suggesting allulose may acutely stimulate these functions. We then evaluated whether allulose can restore rat small intestinal structure and function when ingested orally following total parenteral nutrition (TPN). We also monitored allulose effects on blood levels of glucagon-like peptides (GLP) 1 and 2 in TPN rats and normal mice. Expression levels of fatty acid binding and gut barrier proteins were reduced by TPN but rescued by allulose ingestion, and paralleled GLP-2 secretion potentially acting as the mechanism mediating the rescue effect. Thus, allulose can potentially enhance disrupted gut mucosal barriers as it can more extensively modulate the intestinal transcriptome relative to glucose and fructose considered risk factors of metabolic disease.
Collapse
|
5
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-Specific Fructose Metabolism in Obesity and Diabetes. Curr Diab Rep 2020; 20:64. [PMID: 33057854 DOI: 10.1007/s11892-020-01342-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide up-to-date and comprehensive discussion of tissue-specific fructose metabolism in the context of diabetes, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS Increased intake of dietary fructose is a risk factor for a myriad of metabolic complications. Tissue-specific fructose metabolism has not been well delineated in terms of its contribution to detrimental health effects associated with fructose intake. Since inhibitors targeting fructose metabolism are being developed for the management of NAFLD and diabetes, it is essential to recognize how inability of one tissue to metabolize fructose may affect metabolism in the other tissues. The primary sites of fructose metabolism are the liver, intestine, and kidney. Skeletal muscle and adipose tissue can also metabolize a large portion of fructose load, especially in the setting of ketohexokinase deficiency, the rate-limiting enzyme of fructose metabolism. Fructose can also be sensed by the pancreas and the brain, where it can influence essential functions involved in energy homeostasis. Lastly, fructose is metabolized by the testes, red blood cells, and lens of the eye where it may contribute to infertility, advanced glycation end products, and cataracts, respectively. An increase in sugar intake, particularly fructose, has been associated with the development of obesity and its complications. Inhibition of fructose utilization in tissues primary responsible for its metabolism alters consumption in other tissues, which have not been traditionally regarded as important depots of fructose metabolism.
Collapse
Affiliation(s)
- Robert N Helsley
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Francois Moreau
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Aurelia Radulescu
- Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, 40536, USA
| | - Brian DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63131, USA
| | - Samir Softic
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 138 Leader Ave, Lexington, KY, 40506, USA.
| |
Collapse
|
7
|
Al-Jawadi A, Patel CR, Shiarella RJ, Romelus E, Auvinen M, Guardia J, Pearce SC, Kishida K, Yu S, Gao N, Ferraris RP. Cell-Type-Specific, Ketohexokinase-Dependent Induction by Fructose of Lipogenic Gene Expression in Mouse Small Intestine. J Nutr 2020; 150:1722-1730. [PMID: 32386219 PMCID: PMC7330472 DOI: 10.1093/jn/nxaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression. OBJECTIVES We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes. METHODS We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose. RESULTS Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes. CONCLUSIONS Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes.
Collapse
Affiliation(s)
- Arwa Al-Jawadi
- Present address for AA-J: Thermo Fisher Scientific, 5823 Newton Drive, Carlsbad, CA 92008 USA
| | - Chirag R Patel
- Present address for CRP: Independent Drug Safety Consultant, 1801 Augustine Cut-off, Wilmington, DE 19803
| | - Reilly J Shiarella
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Emmanuellie Romelus
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Madelyn Auvinen
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Joshua Guardia
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Sarah C Pearce
- Present address for SCP: Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development, and Engineering Center (NSRDEC), 15 General Greene Avenue, Natick, MA 01760-5018
| | - Kunihiro Kishida
- Present address for KK: Department of Science and Technology on Food Safety, Kindai University, Wakayama 649-6493, Japan
| | - Shiyan Yu
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
8
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
9
|
Jaiswal N, Agrawal S, Agrawal A. High fructose-induced metabolic changes enhance inflammation in human dendritic cells. Clin Exp Immunol 2019; 197:237-249. [PMID: 30919933 DOI: 10.1111/cei.13299] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are critical antigen-presenting cells which are the initiators and regulators of the immune response. Numerous studies support the idea that dietary sugars influence DC functions. Increased consumption of fructose has been thought to be the leading cause of metabolic disorders. Although evidence supports their association with immune dysfunction, the specific mechanisms are not well understood. Fructose is one of the main dietary sugars in our diet. Therefore, here we compared the effect of fructose and glucose on the functions of human DCs. High levels of D-fructose compared to D-glucose led to activation of DCs in vitro by promoting interleukin (IL)-6 and IL-1β production. Moreover, fructose exposed DCs also induced interferon (IFN)-γ secretion from T cells. Proinflammatory response of DCs in high fructose environment was found to be independent of the major known metabolic regulators or glycolytic control. Instead, DC activation on acute exposure to fructose was via activation of receptor for advanced glycation end product (RAGE) in response to increased accumulation of advanced glycation end products (AGE). However, chronic exposure of DCs to high fructose environment induced a shift towards glycolysis compared to glucose cultured DCs. Further investigations revealed that the AGEs formed by fructose induced increased levels of inflammatory cytokines in DCs compared to AGEs from glucose. In summary, understanding the link between metabolic changes and fructose-induced DC activation compared to glucose has broad implications for immune dysfunction associated with metabolic disorders.
Collapse
Affiliation(s)
- N Jaiswal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - S Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - A Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Abstract
Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.
Collapse
Affiliation(s)
- Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07946, USA;
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA;
| | - Chirag R Patel
- Independent Drug Safety Consulting, Wilmington, Delaware 19803, USA;
| |
Collapse
|
11
|
Kishida K, Pearce SC, Yu S, Gao N, Ferraris RP. Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 2017; 312:G592-G605. [PMID: 28336548 PMCID: PMC5495913 DOI: 10.1152/ajpgi.00416.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/31/2023]
Abstract
Nutrient sensing triggers responses by the gut-brain axis modulating hormone release, feeding behavior and metabolism that become dysregulated in metabolic syndrome and some cancers. Except for absorptive enterocytes and secretory enteroendocrine cells, the ability of many intestinal cell types to sense nutrients is still unknown; hence we hypothesized that progenitor stem cells (intestinal stem cells, ISC) possess nutrient sensing ability inherited by progenies during differentiation. We directed via modulators of Wnt and Notch signaling differentiation of precursor mouse intestinal crypts into specialized organoids each containing ISC, enterocyte, goblet, or Paneth cells at relative proportions much higher than in situ as determined by mRNA expression and immunocytochemistry of cell type biomarkers. We identified nutrient sensing cell type(s) by increased expression of fructolytic genes in response to a fructose challenge. Organoids comprised primarily of enterocytes, Paneth, or goblet, but not ISC, cells responded specifically to fructose without affecting nonfructolytic genes. Sensing was independent of Wnt and Notch modulators and of glucose concentrations in the medium but required fructose absorption and metabolism. More mature enterocyte- and goblet-enriched organoids exhibited stronger fructose responses. Remarkably, enterocyte organoids, upon forced dedifferentiation to reacquire ISC characteristics, exhibited a markedly extended lifespan and retained fructose sensing ability, mimicking responses of some dedifferentiated cancer cells. Using an innovative approach, we discovered that nutrient sensing is likely repressed in progenitor ISCs then irreversibly derepressed during specification into sensing-competent absorptive or secretory lineages, the surprising capacity of Paneth and goblet cells to detect fructose, and the important role of differentiation in modulating nutrient sensing.NEW & NOTEWORTHY Small intestinal stem cells differentiate into several cell types transiently populating the villi. We used specialized organoid cultures each comprised of a single cell type to demonstrate that 1) differentiation seems required for nutrient sensing, 2) secretory goblet and Paneth cells along with enterocytes sense fructose, suggesting that sensing is acquired after differentiation is triggered but before divergence between absorptive and secretory lineages, and 3) forcibly dedifferentiated enterocytes exhibit fructose sensing and lifespan extension.
Collapse
Affiliation(s)
- Kunihiro Kishida
- 1Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Sarah C. Pearce
- 1Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Shiyan Yu
- 2Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Nan Gao
- 2Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Ronaldo P. Ferraris
- 1Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| |
Collapse
|
12
|
Chen G, Jia P. Allopurinol decreases serum uric acid level and intestinal glucose transporter-5 expression in rats with fructose-induced hyperuricemia. Pharmacol Rep 2016; 68:782-6. [PMID: 27258609 DOI: 10.1016/j.pharep.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND High fructose consumption is considered to be related to the increasing prevalence of hyperuricemia (HUA). Glucose transporters (GLUT) 2 and 5 are crucial for fructose absorption and transporter. Effects of anti-HUA drugs, allopurinol (API) and benzbromarone (BBR), on expressions of GLUT5 and GLUT2 are not evaluated. METHOD Wistar rats were given 10% fructose in drinking water for 60 days to induce HUA, and 5mg/kg API and 10mg/kg BBR were intragastricly treated for 30 days. Serum level of uric acid and xanthine oxidase (XOD) activity in liver were determined. Expressions of GLUT2 and GLUT5 in intestine were analyzed by immunohistochemistry staining assay and Western blot assay. RESULTS Treatment with API or BBR significantly decreased the serum level of uric acid in HUA rats induced by fructose. Meanwhile, API treatment significantly reduced the XOD activity in liver and GLUT5 expression in intestine. However, BBR treatment did not show inhibitory effects on hepatic XOD activity and intestinal GLUT5 expression. In addition, treatment with API or BBR did not show any effect on GLUT2 expression in intestine. CONCLUSION API decreases serum level of uric acid in fructose-induced HUA rats. The mechanisms are associated with suppressing XOD activity in liver to reduce uric acid production, and inhibiting GLUT5 expression in intestine to reduce fructose absorption.
Collapse
Affiliation(s)
- Gang Chen
- Chongqing Key Laboratory of Nature Medicine Research, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China; Chongqing Key Lab of Catalysis and Functional Organic Molecules, College of Environment and Resource, Chongqing Technology and Business University, Chongqing, China.
| | - Ping Jia
- Department of Combination of Chinese and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Patel C, Sugimoto K, Douard V, Shah A, Inui H, Yamanouchi T, Ferraris RP. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G779-90. [PMID: 26316589 PMCID: PMC4628968 DOI: 10.1152/ajpgi.00188.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/25/2015] [Indexed: 01/31/2023]
Abstract
Elevated blood fructose concentrations constitute the basis for organ dysfunction in fructose-induced metabolic syndrome. We hypothesized that diet-induced changes in blood fructose concentrations are regulated by ketohexokinase (KHK) and the fructose transporter GLUT5. Portal and systemic fructose concentrations determined by HPLC in wild-type mice fed for 7 days 0% free fructose were <0.07 mM, were independent of time after feeding, were similar to those of GLUT5(-/-), and did not lead to hyperglycemia. Postprandial fructose levels, however, increased markedly in those fed isocaloric 20% fructose, causing significant hyperglycemia. Deletion of KHK prevented fructose-induced hyperglycemia, but caused dramatic hyperfructosemia (>1 mM) with reversed portal to systemic gradients. Systemic fructose in wild-type and KHK(-/-) mice changed by 0.34 and 1.8 mM, respectively, for every millimolar increase in portal fructose concentration. Systemic glucose varied strongly with systemic, but not portal, fructose levels in wild-type, and was independent of systemic and portal fructose in KHK(-/-), mice. With ad libitum feeding for 12 wk, fructose-induced hyperglycemia in wild-type, but not hyperfructosemia in KHK(-/-) mice, increased HbA1c concentrations. Increasing dietary fructose to 40% intensified the hyperfructosemia of KHK(-/-) and the fructose-induced hyperglycemia of wild-type mice. Fructose perfusion or feeding in rats also caused duration- and dose-dependent hyperfructosemia and hyperglycemia. Significant levels of blood fructose are maintained independent of dietary fructose, KHK, and GLUT5, probably by endogenous synthesis of fructose. KHK prevents hyperfructosemia and fructose-induced hyperglycemia that would markedly increase HbA1c levels. These findings explain the hyperfructosemia of human hereditary fructosuria as well as the hyperglycemia of fructose-induced metabolic syndrome.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Keiichiro Sugimoto
- Research and Development Center, Nagaoka Perfumery Co., Ltd., Ibaraki, Osaka, Japan; Center for Research and Development of Bioresources, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Veronique Douard
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Ami Shah
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Hiroshi Inui
- Center for Research and Development of Bioresources, Osaka Prefecture University, Sakai, Osaka, Japan; Department of Clinical Nutrition, College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka, Japan; and
| | | | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey;
| |
Collapse
|
14
|
Astbury S, Mostyn A, Symonds ME, Bell RC. Nutrient availability, the microbiome, and intestinal transport during pregnancy. Appl Physiol Nutr Metab 2015; 40:1100-6. [DOI: 10.1139/apnm-2015-0117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adequate adaptation of the gastrointestinal tract is important during pregnancy to ensure that the increased metabolic demands by the developing fetus are met. These include changes in surface area mediated by villus hypertrophy and enhanced functional capacity of individual nutrient receptors, including those transporting glucose, fructose, leucine, and calcium. These processes are regulated either by the enhanced nutrient demand or are facilitated by changes in the secretion of pregnancy hormones. Our review also covers recent research into the microbiome, and how pregnancy could lead to microbial adaptations, which are beneficial to the mother, yet are also similar to those seen in the metabolic syndrome. The potential role of diet in modulating the microbiome during pregnancy, as well as the potential for the intestinal microbiota to induce pregnancy complications, are examined. Gaps in the current literature are highlighted, including those where only historical evidence is available, and we suggest areas that should be a priority for further research. In summary, although a significant degree of adaptation has been described, there are both well-established processes and more recent discoveries, such as changes within the maternal microbiome, that pose new questions as to how the gastrointestinal tract effectively adapts to pregnancy, especially in conjunction with maternal obesity.
Collapse
Affiliation(s)
- Stuart Astbury
- Department of Agricultural, Food and Nutritional Science, Human Nutrition, Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alison Mostyn
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Michael E. Symonds
- Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rhonda C. Bell
- Department of Agricultural, Food and Nutritional Science, Human Nutrition, Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
15
|
Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. FASEB J 2015; 29:4046-58. [PMID: 26071406 PMCID: PMC4550372 DOI: 10.1096/fj.15-272195] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/02/2015] [Indexed: 01/03/2023]
Abstract
Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.
Collapse
Affiliation(s)
- Chirag Patel
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Veronique Douard
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ronaldo P Ferraris
- *Department of Pharmacology and Physiology, New Jersey Medical School, and Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
16
|
Tharabenjasin P, Douard V, Patel C, Krishnamra N, Johnson RJ, Zuo J, Ferraris RP. Acute interactions between intestinal sugar and calcium transport in vitro. Am J Physiol Gastrointest Liver Physiol 2014; 306:G1-12. [PMID: 24177030 DOI: 10.1152/ajpgi.00263.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fructose consumption by Americans has increased markedly, whereas Ca(2+) intake has decreased below recommended levels. Because fructose metabolism decreases enterocyte ATP concentrations, we tested the hypothesis that luminal fructose acutely reduces active, diet-inducible Ca(2+) transport in the small intestine. We confirmed that the decrease in ATP concentrations was indeed greater in fructose- compared with glucose-incubated mucosal homogenates from wild-type and was prevented in fructose-incubated homogenates from ketohexokinase (KHK)(-/-) mice. We then induced active Ca(2+) transport by chronically feeding wild-type, fructose transporter glucose transporter 5 (GLUT5)(-/-), as well as KHK(-/-) mice a low Ca(2+) diet and measured transepithelial Ca(2+) transport in everted duodenal sacs incubated in solutions containing glucose, fructose, or their nonmetabolizable analogs. The diet-induced increase in active Ca(2+) transport was proportional to dramatic increases in expression of the Ca(2+)-selective channel transient receptor potential vanilloid family calcium channel 6 as well as of the Ca(2+)-binding protein 9k (CaBP9k) but not that of the voltage-dependent L-type channel Ca(v)1.3. Crypt-villus distribution of CaBP9k seems heterogeneous, but low Ca(2+) diets induce expression in more cells. In contrast, KHK distribution is homogeneous, suggesting that fructose metabolism can occur in all enterocytes. Diet-induced Ca(2+) transport was not enhanced by addition of the enterocyte fuel glutamine and was always greater in sacs of wild-type, GLUT5(-/-), and KHK(-/-) mice incubated with fructose or nonmetabolizable sugars than those incubated with glucose. Thus duodenal Ca(2+) transport is not affected by fructose and enterocyte ATP concentrations but instead may decrease with glucose metabolism, as Ca(2+) transport remains high with 3-O-methylglucose that is also transported by sodium-glucose cotransporter 1 but cannot be metabolized.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Dept. of Pharmacology & Physiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School (NJMS 185 South Orange Ave., Newark, NJ 07103.
| | | | | | | | | | | | | |
Collapse
|
17
|
Regnault TRH, Gentili S, Sarr O, Toop CR, Sloboda DM. Fructose, pregnancy and later life impacts. Clin Exp Pharmacol Physiol 2013; 40:824-37. [DOI: 10.1111/1440-1681.12162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Timothy RH Regnault
- Department of Obstetrics and Gynaecology; Children's Health Research Institute; Western University; London ON Canada
| | - Sheridan Gentili
- School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide SA Australia
| | - Ousseynou Sarr
- Department of Obstetrics and Gynaecology; Children's Health Research Institute; Western University; London ON Canada
| | - Carla R Toop
- School of Pharmacy and Medical Sciences; Sansom Institute for Health Research; University of South Australia; Adelaide SA Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences; Faculty of Health Sciences; McMaster University; Hamilton ON Canada
| |
Collapse
|
18
|
Douard V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol 2012; 591:401-14. [PMID: 23129794 DOI: 10.1113/jphysiol.2011.215731] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fructose intake has increased dramatically since humans were hunter-gatherers, probably outpacing the capacity of human evolution to make physiologically healthy adaptations. Epidemiological data indicate that this increasing trend continued until recently. Excessive intakes that chronically increase portal and peripheral blood fructose concentrations to >1 and 0.1 mm, respectively, are now associated with numerous diseases and syndromes. The role of the fructose transporters GLUT5 and GLUT2 in causing, contributing to or exacerbating these diseases is not well known. GLUT5 expression seems extremely low in neonatal intestines, and limited absorptive capacities for fructose may explain the high incidence of malabsorption in infants and cause problems in adults unable to upregulate GLUT5 levels to match fructose concentrations in the diet. GLUT5- and GLUT2-mediated fructose effects on intestinal electrolyte transporters, hepatic uric acid metabolism, as well as renal and cardiomyocyte function, may play a role in fructose-induced hypertension. Likewise, GLUT2 may contribute to the development of non-alcoholic fatty liver disease by facilitating the uptake of fructose. Finally, GLUT5 may play a role in the atypical growth of certain cancers and fat tissues. We also highlight research areas that should yield information needed to better understand the role of these GLUTs in fructose-induced diseases.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology & Physiology, UMDNJ – New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07101-1749, USA
| | | |
Collapse
|
19
|
Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Biochem J 2011; 435:43-53. [PMID: 21222652 DOI: 10.1042/bj20101987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metabolic complications arising from excessive fructose consumption are increasing dramatically even in young children, but little is known about ontogenetic mechanisms regulating Glut5 [glucose transporter 5; encoded by the Slc2a5 (solute carrier family 2 member 5) gene]. Glut5 expression is low postnatally and does not increase, unless luminal fructose and systemic glucocorticoids are present, until ≥ 14 days of age, suggesting substrate-inducible age- and hormone-sensitive regulation. In the present study, we perfused intestines of 10- and 20-day-old rats with either fructose or glucose then analysed the binding of Pol II (RNA polymerase II) and GR (glucocorticoid receptor), as well as acetylation of histones H3 and H4 by chromatin immunoprecipitation. Abundance of Glut5 mRNA increased only with fructose perfusion and age, a pattern that matched that of Pol II binding and histone H3 acetylation to the Glut5 promoter. Although many regions of the Glut5 promoter respond to developmental signals, fewer regions perceive dietary signals. Age- but not fructose-dependent expression of Sglt1 [sodium-dependent glucose co-transporter 1 encoded by the Slc5a1(solute carrier family 5 member 1) gene] also correlated with Pol II binding and histone H3 acetylation. In contrast, G6Pase (glucose-6-phosphatase; encoded by the G6pc gene) expression, which decreases with age and increases with fructose, is associated only with age-dependent changes in histone H4 acetylation. Induction of Glut5 during ontogenetic development appears to be specifically mediated by GR translocation to the nucleus and subsequent binding to the Glut5 promoter, whereas the glucocorticoid-independent regulation of Sglt1 by age was not associated with any GR binding to the Sglt1 promoter.
Collapse
|
20
|
Jones HF, Butler RN, Brooks DA. Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 2011; 300:G202-6. [PMID: 21148401 DOI: 10.1152/ajpgi.00457.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose (r = 0.86, P < 0.001). Thus there is a dose-dependent and limited absorption capacity even in healthy individuals. Changes in fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients.
Collapse
Affiliation(s)
- Hilary F Jones
- Mechanisms in Cell Biology and Disease Research Group, Sansom Institute for Health Research, Univ. of South Australia, South Australia 5001, Australia
| | | | | |
Collapse
|
21
|
Boudry G, David ES, Douard V, Monteiro IM, Le Huërou-Luron I, Ferraris RP. Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Pediatr Gastroenterol Nutr 2010; 51:380-401. [PMID: 20808244 DOI: 10.1097/mpg.0b013e3181eb5ad6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To support rapid growth and a high metabolic rate, infants require enormous amounts of nutrients. The small intestine must have the complete array of transporters that absorb the nutrients released from digested food. Failure of intestinal transporters to function properly often presents symptoms as "failure to thrive" because nutrients are not absorbed and as diarrhea because unabsorbed nutrients upset luminal osmolality or become substrates of intestinal bacteria. We enumerate the nutrients that constitute human milk and various infant milk formulas, explain their importance in neonatal nutrition, then describe for each nutrient the transporter(s) that absorbs it from the intestinal lumen into the enterocyte cytosol and from the cytosol to the portal blood. More than 100 membrane and cytosolic transporters are now thought to facilitate absorption of minerals and vitamins as well as products of digestion of the macronutrients carbohydrates, proteins, and lipids. We highlight research areas that should yield information needed to better understand the important role of these transporters during normal development.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut National de Recherche Agronomique, UMR1079 Système d'Elevage, Nutrition, Animale et Humaine, St-Gilles, France
| | | | | | | | | | | |
Collapse
|
22
|
Castaneda-Sceppa C, Subramanian S, Castaneda F. Protein kinase C mediated intracellular signaling pathways are involved in the regulation of sodium-dependent glucose co-transporter SGLT1 activity. J Cell Biochem 2010; 109:1109-17. [PMID: 20069550 DOI: 10.1002/jcb.22489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sodium-dependent glucose co-transporter (SGLT1) is regulated by protein kinases. The aim of the present study was to examine the role of protein kinase C (PKC) in the regulation of rabbit (rb) SGLT1 activity as determined by alpha-methyl-D-glucopyranoside (AMG) uptake and to identify the cellular mechanisms involved in this process. For this purpose Chinese hamster ovary cells expressing rbSGLT1 (CHO-G6D3) were treated with PKC activators and inhibitors. PKC activators did not exert any effect on AMG uptake, as corroborated by mutation of the putative phosphorylation sites of PKC. In contrast, the PKC inhibitor bisindolylmaleimide I (BIM) increased AMG uptake. This effect was associated with translocation of rbSGLT1 from the intracellular pool to the plasma membrane demonstrated by pre-treatment of G6D3 cells with cytochalasin D that abolished the effect of BIM. In addition, intracellular signaling pathways (p38/MAPK, ERK/MAPK, JNK/MAPK, and PI3K/Akt/mTOR) were associated with PKC-regulated AMG uptake. Moreover, rbSGLT1 mRNA level was higher in BIM-treated cells than in untreated, control cells. This effect was completely abolished by actinomycin D treatment. The present study demonstrates that PKC regulates rbSGLT1 activity via a complex intracellular mechanism that involves sorting and transcriptional regulation of rbSGLT1. The study findings suggest the involvement of two complementary opposite mechanism of action, in which the balance between two antagonistic effects, namely stimulation and inhibition of the transporter, regulates the activity of rbSGLT1 by PKC.
Collapse
|
23
|
Drozdowski LA, Clandinin T, Thomson ABR. Ontogeny, growth and development of the small intestine: Understanding pediatric gastroenterology. World J Gastroenterol 2010; 16:787-99. [PMID: 20143457 PMCID: PMC2825325 DOI: 10.3748/wjg.v16.i7.787] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout our lifetime, the intestine changes. Some alterations in its form and function may be genetically determined, and some are the result of adaptation to diet, temperature, or stress. The critical period programming of the intestine can be modified, such as from subtle differences in the types and ratios of n3:m6 fatty acids in the diet of the pregnant mother, or in the diet of the weanlings. This early forced adaptation may persist in later life, such as the unwanted increased intestinal absorption of sugars, fatty acids and cholesterol. Thus, the ontogeny, early growth and development of the intestine is important for the adult gastroenterologist to appreciate, because of the potential for these early life events to affect the responsiveness of the intestine to physiological or pathological challenges in later life.
Collapse
|
24
|
Liao SF, Harmon DL, Vanzant ES, McLeod KR, Boling JA, Matthews JC. The small intestinal epithelia of beef steers differentially express sugar transporter messenger ribonucleic acid in response to abomasal versus ruminal infusion of starch hydrolysate1,2. J Anim Sci 2010; 88:306-14. [DOI: 10.2527/jas.2009-1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Douard V, Asgerally A, Sabbagh Y, Sugiura S, Shapses SA, Casirola D, Ferraris RP. Dietary fructose inhibits intestinal calcium absorption and induces vitamin D insufficiency in CKD. J Am Soc Nephrol 2009; 21:261-71. [PMID: 19959720 DOI: 10.1681/asn.2009080795] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal disease leads to perturbations in calcium and phosphate homeostasis and vitamin D metabolism. Dietary fructose aggravates chronic kidney disease (CKD), but whether it also worsens CKD-induced derangements in calcium and phosphate homeostasis is unknown. Here, we fed rats diets containing 60% glucose or fructose for 1 mo beginning 6 wk after 5/6 nephrectomy or sham operation. Nephrectomized rats had markedly greater kidney weight, blood urea nitrogen, and serum levels of creatinine, phosphate, and calcium-phosphate product; dietary fructose significantly exacerbated all of these outcomes. Expression and activity of intestinal phosphate transporter, which did not change after nephrectomy or dietary fructose, did not correlate with hyperphosphatemia in 5/6-nephrectomized rats. Intestinal transport of calcium, however, decreased with dietary fructose, probably because of fructose-mediated downregulation of calbindin 9k. Serum calcium levels, however, were unaffected by nephrectomy and diet. Finally, only 5/6-nephrectomized rats that received dietary fructose demonstrated marked reductions in 25-hydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(3) levels, despite upregulation of 1alpha-hydroxylase. In summary, excess dietary fructose inhibits intestinal calcium absorption, induces marked vitamin D insufficiency in CKD, and exacerbates other classical symptoms of the disease. Future studies should evaluate the relevance of monitoring fructose consumption in patients with CKD.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07101-1709, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Roche M, Neti PVSV, Kemp FW, Agrawal A, Attanasio A, Douard V, Muduli A, Azzam EI, Norkus E, Brimacombe M, Howell RW, Ferraris RP. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport. Am J Physiol Regul Integr Comp Physiol 2009; 298:R173-82. [PMID: 19907007 DOI: 10.1152/ajpregu.00612.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with (137)Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100x the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by approximately 10-20% and d-fructose uptake by 25-85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had > or = 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional, and radiation-damaged intestines can still respond to dietary stimuli.
Collapse
Affiliation(s)
- Marjolaine Roche
- Department of Pharmacology and Physiology, New Jersey Medical School, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zanobbio L, Palazzo M, Gariboldi S, Dusio GF, Cardani D, Mauro V, Marcucci F, Balsari A, Rumio C. Intestinal glucose uptake protects liver from lipopolysaccharide and D-galactosamine, acetaminophen, and alpha-amanitin in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1066-76. [PMID: 19700751 DOI: 10.2353/ajpath.2009.090071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently observed that oral administration of D-glucose saves animals from lipopolysaccharide (LPS)-induced death. This effect is the likely consequence of glucose-induced activation of the sodium-dependent glucose transporter-1. In this study, we investigated possible hepatoprotective effects of glucose-induced, sodium-dependent, glucose transporter-1 activation. We show that oral administration of D-glucose, but not of either D-fructose or sucrose, prevents LPS-induced liver injury, as well as liver injury and death induced by an overdose of acetaminophen. In both of these models, physiological liver morphology is maintained and organ protection is confirmed by unchanged levels of the circulating markers of hepatotoxicity, such as alanine transaminase or lactate dehydrogenase. In addition, D-glucose was found to protect the liver from alpha-amanitin-induced liver injury. In this case, in contrast to the previously described models, a second signal had to be present in addition to glucose to achieve protective efficacy. Toll-like receptor 4 stimulation that was induced by low doses of LPS was identified as such a second signal. Eventually, the protective effect of orally administered glucose on liver injury induced by LPS, overdose of acetaminophen, or alpha-amanitin was shown to be mediated by the anti-inflammatory cytokine interleukin-10. These findings, showing glucose-induced protective effects in several animal models of liver injury, might be relevant in view of possible therapeutic interventions against different forms of acute hepatic injury.
Collapse
Affiliation(s)
- Laura Zanobbio
- Faculty of Pharmacy, Department of Human Morphology and Biomedical Sciences Città Studi, Università degli Studi di Milano, via Mangiagalli 31, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 2008; 295:E227-37. [PMID: 18398011 PMCID: PMC2652499 DOI: 10.1152/ajpendo.90245.2008] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/27/2008] [Indexed: 12/11/2022]
Abstract
Fructose is now such an important component of human diets that increasing attention is being focused on the fructose transporter GLUT5. In this review, we describe the regulation of GLUT5 not only in the intestine and testis, where it was first discovered, but also in the kidney, skeletal muscle, fat tissue, and brain where increasing numbers of cell types have been found to have GLUT5. GLUT5 expression levels and fructose uptake rates are also significantly affected by diabetes, hypertension, obesity, and inflammation and seem to be induced during carcinogenesis, particularly in the mammary glands. We end by highlighting research areas that should yield information needed to better understand the role of GLUT5 during normal development, metabolic disturbances, and cancer.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101, USA
| | | |
Collapse
|
29
|
Douard V, Choi HI, Elshenawy S, Lagunoff D, Ferraris RP. Developmental reprogramming of rat GLUT5 requires glucocorticoid receptor translocation to the nucleus. J Physiol 2008; 586:3657-73. [PMID: 18556366 DOI: 10.1113/jphysiol.2008.155226] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fructose consumption has increased dramatically but little is known about mechanisms regulating the intestinal fructose transporter GLUT5 in vivo. In neonatal rats, GLUT5 can be induced only by luminal fructose and only after 14 days of age, unless the gut is primed with dexamethasone prior to fructose perfusion. To elucidate the mechanisms underlying dexamethasone modulation of GLUT5 development, we first identified the receptor mediating its effects then determined whether those effects were genomic. The glucocorticoid receptor (GR) antagonist RU486 dose-dependently prevented the dexamethasone-mediated effects on body weight, intestinal arginase2 (a known GR-regulated gene) and GLUT5. In contrast, an antagonist of the mineralocorticoid receptor as well as agonists of progesterone (PR) and pregnane-X (PXR) receptors did not block the effects of dexamethasone. These receptor antagonists and agonists had no effect on the intestinal glucose transporter SGLT1. Translocation of the GR into the enterocyte nucleus occurred only in dexamethasone-injected pups perfused with fructose, was accompanied by marked increases in brush border GLUT5 abundance, and was blocked by RU486. A priming duration of approximately 24 h is optimal for induction but actinomycin D injection before dexamethasone priming prevented dexamethasone from allowing luminal fructose to induce GLUT5. Actinomycin D had no effect on dexamethasone-independent fructose-induced increases in glucose-6-phosphatase mRNA abundance, suggesting that it did not prevent fructose-induction of GLUT5, but instead prevented dexamethasone-induced synthesis of an intermediate required by fructose for GLUT5 regulation. In suckling rats < 14 days old, developmental regulation of transporters may involve cross-talk between hormonal signals modulating intestinal maturation and nutrient signals regulating specific transporters.
Collapse
Affiliation(s)
- Véronique Douard
- Department of Pharmacology and Physiology, NJ Medical School, 185 S. Orange Avenue, Newark, NJ 07101, USA
| | | | | | | | | |
Collapse
|
30
|
Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr 2008; 87:1028-38. [PMID: 18400728 PMCID: PMC2430509 DOI: 10.1093/ajcn/87.4.1028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While searching by microarray for sugar-responsive genes, we inadvertently discovered that sodium-phosphate cotransporter 2B (NaPi-2b) mRNA concentrations were much lower in fructose-perfused than in glucose-perfused intestines of neonatal rats. Changes in NaPi-2b mRNA abundance by sugars were accompanied by similar changes in NaPi-2b protein abundance and in rates of inorganic phosphate (Pi) uptake. OBJECTIVE We tested the hypothesis that luminal fructose regulates NaPi-2b. DESIGN We perfused into the intestine fructose, glucose, and nonmetabolizable or poorly transported glucose analogs as well as phlorizin. RESULTS NaPi-2b mRNA concentrations and Pi uptake rates in fructose-perfused intestines were approximately 30% of those in glucose and its analogs. NaPi-2b inhibition by fructose is specific because the mRNA abundance and activity of the fructose transporter GLUT5 (glucose transporter 5) increased with fructose perfusion, whereas those of other transporters were independent of the perfusate. Plasma Pi after 4 h of perfusion was independent of the perfusate, probably because normal kidneys can maintain normophosphatemia. Inhibiting glucose-6-phosphatase, another fructose-responsive gene, with tungstate or vanadate nonspecifically inhibited NaPi-2b mRNA expression and Pi uptake in both glucose- or fructose-perfused intestines. The AMP kinase (AMPK)-activator AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) enhanced and the fatty acid synthase-AMPK inhibitor C75 (3-carboxy-4-octyl-2-methylenebutyrolactone trans-4-carboxy-5-octyl-3-methylenebutyrolactone) prevented fructose inhibition of NaPi-2b but had no effect on expression of other transporters. NaPi-2b expression decreased markedly with age and was inhibited by fructose in all age groups. CONCLUSIONS Energy levels in enterocytes may play a role in NaPi-2b inhibition by luminal fructose. Consumption of fructose that supplies approximately 10% of caloric intake by Americans clearly affects absorption of Pi and may promote Pi homeostasis in patients with impaired renal function.
Collapse
Affiliation(s)
- Séverine Kirchner
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
31
|
Douard V, Cui XL, Soteropoulos P, Ferraris RP. Dexamethasone sensitizes the neonatal intestine to fructose induction of intestinal fructose transporter (Slc2A5) function. Endocrinology 2008; 149:409-23. [PMID: 17947353 PMCID: PMC2194616 DOI: 10.1210/en.2007-0906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent dramatic increase in fructose consumption is tightly correlated with an equally dramatic surge in the incidence of type 2 diabetes and obesity in children, but little is known about dietary fructose metabolism and absorption in neonates. The expression of the rat intestinal fructose transporter GLUT5 [Slc2A5, a member of the glucose transporter family (GLUT)] can be specifically induced by its substrate fructose, but only after weaning begins at 14 d of age. In suckling rats younger than 14 d old, dietary fructose cannot enhance GLUT5 expression. The aim of this study was to identify the mechanisms allowing fructose to stimulate GLUT5 during weaning. After intestines were perfused with fructose or glucose (control), using microarray hybridization we showed that of 5K genes analyzed in 10-d-old pups, only 13 were fructose responsive. Previous work found approximately 50 fructose-responsive genes in 20-d-old pups. To identify fructose-responsive genes whose expression also changed with age, intestines of 10- and 20-d-old littermate pups perfused with fructose were compared by microarray. Intestines of 10- and 20-d-old pups perfused with glucose were used to segregate age- but not fructose-responsive genes. About 28 genes were up- and 22 down-regulated in 20- relative to 10-d-old pups, under conditions of fructose perfusion, and many were found, by cluster analysis, to be regulated by corticosterone. When dexamethasone was injected into suckling pups before fructose perfusion, the expression of GLUT5 but not that of the sodium glucose cotransporter (SGLT) 1 and of GLUT2, as well as the uptake of fructose but not of glucose increased dramatically. Thus, dexamethasone, which allows dietary fructose to precociously stimulate intestinal fructose absorption, can mimic the effect of age and modify developmental timing mechanisms regulating GLUT5.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07101-1709, USA
| | | | | | | |
Collapse
|
32
|
Kirchner S, Kwon E, Muduli A, Cerqueira C, Cui XL, Ferraris RP. Vanadate but not tungstate prevents the fructose-induced increase in GLUT5 expression and fructose uptake by neonatal rat intestine. J Nutr 2006; 136:2308-13. [PMID: 16920846 DOI: 10.1093/jn/136.9.2308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intermediary signals, precociously enhancing GLUT5 transcription in response to perfusion of its substrate, fructose, in the small intestine of neonatal rats, are not known. Because glucose-6-phosphatase (G6Pase), glucose-6-phosphate translocase (G6PT), and fructose-1,6-bisphosphatase (FBPase) expression increases parallel to or precedes that of GLUT5, we investigated the link between these gluconeogenic genes and GLUT5 by using vanadate or tungstate, potent inhibitors of gluconeogenesis. Small intestinal perfusions of 20-d-old rats were performed with fructose alone, fructose + vanadate or tungstate, glucose alone, and glucose + vanadate or tungstate. As expected, fructose, but not glucose nor glucose + inhibitor perfusion, increased GLUT5 mRNA abundance and fructose transport. Fructose perfusion dramatically increased G6Pase mRNA abundance but had no effect on G6Pase activity. In sharp contrast, fructose perfusion did not increase FBPase gene expression but stimulated FBPase activity. Both vanadate and tungstate significantly inhibited G6Pase activity but did not prevent the fructose-induced increases in G6Pase and G6PT gene expression. Perfusion with fructose + vanadate prevented the fructose-induced increases in fructose transport and GLUT5 mRNA abundance, whereas perfusion with fructose + tungstate did not. Interestingly, vanadate, but not tungstate, inhibited the fructose-induced increase in FBPase activity. Thus, vanadate inhibition of fructose-induced increases in FBPase activity paralleled exactly vanadate inhibition of fructose-induced increases in GLUT5 mRNA abundance and activity. Fructose-induced changes in FBPase activity may regulate changes in GLUT5 expression and activity in the small intestine of neonatal rats. The marked increases in intestinal G6Pase and GLUT5 mRNA abundance may be a parallel response to different factors released during fructose perfusion.
Collapse
Affiliation(s)
- Séverine Kirchner
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey (UMDNJ)-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
33
|
Gavete ML, Martín MA, Alvarez C, Escrivá F. Maternal food restriction enhances insulin-induced GLUT-4 translocation and insulin signaling pathway in skeletal muscle from suckling rats. Endocrinology 2005; 146:3368-78. [PMID: 15905322 DOI: 10.1210/en.2004-1658] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Restriction of protein calories during stages of immaturity has a major influence on glucose metabolism and increases the risk of type 2 diabetes in adulthood. However, it is known that reduction of food intake alleviates insulin resistance. We previously demonstrated an improved insulin-induced glucose uptake in skeletal muscle of chronically undernourished adult rats. The purpose of this work was to investigate whether this condition is present during suckling, a period characterized by physiological insulin resistance as well as elucidate some of the underlying mechanisms. With this aim, 10-d-old pups from food-restricted dams were studied. We showed that undernourished suckling rats are glucose normotolerants, despite their depressed insulin secretion capacity. The content of the main glucose transporters in muscle, GLUT-4 and GLUT-1, was not affected by undernutrition, but fractionation studies showed an improved insulin-stimulated GLUT-4 translocation. p38MAPK protein, implicated in up-regulation of intrinsic activity of translocated GLUT-4, was increased. These changes suggest an improved insulin-induced glucose uptake associated with undernutrition. Insulin receptor content as well as that of both regulatory and catalytic phosphoinositol 3-kinase subunits was increased by food restriction. Insulin receptor substrate-1-associated phosphoinositol 3-kinase activity after insulin was enhanced in undernourished rats, as was phospho-glycogen synthase kinase-3, in line with insulin hypersensitivity. Surprisingly, protein tyrosine phosphatase-1B association with insulin receptor was also increased by undernutrition. These adaptations to a condition of severely limited nutritional resources might result in changes in the development of key tissues and be detrimental later in life, when a correct amount of nutrients is available, as the thrifty phenotype hypothesis predicts.
Collapse
Affiliation(s)
- M L Gavete
- Instituto de Bioquímica (Consejo Superior de Investigaciones Centíficas-Universidad Complutense de Madrid), Facultad de Farmacia, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Cui XL, Schlesier AM, Fisher EL, Cerqueira C, Ferraris RP. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1310-20. [PMID: 15691865 DOI: 10.1152/ajpgi.00550.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Expression of rat glucose transporter-5 (GLUT5) is tightly regulated during development. Expression and activity are low throughout the suckling and weaning stages, but perfusion of the small intestinal lumen with fructose solutions during weaning precociously enhances GLUT5 activity and expression. Little is known, however, about the signal transduction pathways involved in the substrate-induced precocious GLUT5 development. We found that wortmannin and LY-294002, inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) specifically inhibited the increase in fructose uptake rate and brush-border GLUT5 protein abundance but not GLUT5 mRNA abundance. Perfusion of EGF, an activator of PI3-kinase, also resulted in a marked wortmannin-inhibitable increase in fructose uptake. Perfusion of fructose for 4 h increased cytosolic immunostaining of phosphatidylinositol-3,4,5-triphosphate (PIP(3)), the primary product of PI3-kinase, mainly in the mid- to upper-villus regions in which the brush-border membrane also stained strongly with GLUT5. Perfusion of glucose for 4 h had little effect on fructose or glucose uptake and PIP(3) or GLUT5 staining. SH-5, an Akt inhibitor, prevented the increase in fructose uptake and GLUT5 protein induced by fructose solutions, and had no effect on glucose uptake. The PI3-kinase/Akt signaling pathway may be involved in the synthesis and/or recruitment to the brush border of GLUT5 transporters by luminal fructose in the small intestine of weaning rats. Increases in fructose transport during the critical weaning period when rats are shifting to a new diet may be modulated by several signaling pathways whose cross talk during development still needs to be elucidated.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Dept. of Pharmacology and Physiology, MSB H621, New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
35
|
Cui XL, Soteropoulos P, Tolias P, Ferraris RP. Fructose-responsive genes in the small intestine of neonatal rats. Physiol Genomics 2004; 18:206-17. [PMID: 15150374 DOI: 10.1152/physiolgenomics.00056.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intestinal brush border fructose transporter GLUT5 (SLC2A5) typically appears in rats after weaning is completed. However, precocious consumption of dietary fructose or in vivo perfusion for 4 h of the small intestine with high fructose (HF) specifically stimulates de novo synthesis of GLUT5 mRNA and protein before weaning is completed. Intermediary signals linking the substrate, fructose, to GLUT5 transcription are not known but should also respond to fructose perfusion. Hence, we used microarray hybridization and RT-PCR to identify genes whose expression levels change during HF relative to high-glucose (HG) perfusion. Expression of GLUT5 and NaPi2b, the intestinal Na+-dependent phosphate transporter, dramatically increased and decreased, respectively, with HF perfusion for 4 h. Expression of >20 genes, including two key gluconeogenic enzymes, glucose-6-phosphatase (G6P) and fructose-1,6-bisphosphatase, also increased markedly, along with fructose-2,6-bisphosphatase, an enzyme unique to fructose metabolism and regulating fructose-1,6-bisphosphatase activity. GLUT5 and G6P mRNA abundance, which increased dramatically with HF relative to HG, α-methylglucose, and normal Ringer perfusion, may be tightly and specifically linked to changes in intestinal luminal fructose but not glucose concentrations. G6P but not GLUT5 mRNA abundance increased after just 20 min of HF perfusion. This cluster of gluconeogenic enzymes and their common metabolic intermediate fructose-6-phosphate may regulate fructose metabolism and GLUT5 expression in the small intestine.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark 07103-2714, USA
| | | | | | | |
Collapse
|
36
|
Cui XL, Jiang L, Ferraris RP. Regulation of rat intestinal GLUT2 mRNA abundance by luminal and systemic factors. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1612:178-85. [PMID: 12787936 DOI: 10.1016/s0005-2736(03)00129-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fructose in the lumen of the small intestine is transported across the brush border membrane by GLUT5, then across the basolateral membrane by GLUT2, which also transports glucose. Diets containing high fructose (HF) specifically enhance intestinal GLUT5 expression in neonatal rats, but there is little information concerning the dietary regulation of GLUT2 expression during early development. In this study, we perfused for 1-4 h 100 mM fructose, glucose (HG), alpha-methylglucose, or mannitol solutions into the jejunum of anaesthetized 20-day-old rat pups. GLUT2 mRNA abundance increased only in HF- and HG-perfused intestines, an effect inhibited by actinomycin D but not by cycloheximide. Bypassed (Thiry-Vella) intestinal loops were constructed, then pups were fed either HF or low-carbohydrate diets for 5 days. GLUT2 mRNA abundance increased significantly in both bypassed and anastomosed intestines of Thiry-Vella pups fed HF. In contrast, GLUT5 mRNA abundance increased only in the anastomosed segment. In sham-operated pups, GLUT2 and GLUT5 mRNA abundance increased in both intestinal regions that corresponded to the bypassed and anastomosed regions of Thiry-Vella pups. SGLT1 mRNA abundance was independent of diet and intestinal region in both Thiry-Vella and sham-operated pups. Unlike GLUT5 expression, which is regulated at the level of transcription only by luminal fructose, GLUT2 mRNA expression is transcriptionally regulated by luminal fructose and glucose as well as by systemic factors released during their absorption.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
37
|
Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Collapse
|
38
|
Abstract
The Na(+)-dependent glucose transporter SGLT1 and the facilitated fructose transporter GLUT5 absorb sugars from the intestinal lumen across the brush-border membrane into the cells. The activity of these transport systems is known to be regulated primarily by diet and development. The cloning of these transporters has led to a surge of studies on cellular mechanisms regulating intestinal sugar transport. However, the small intestine can be a difficult organ to study, because its cells are continuously differentiating along the villus, and because the function of absorptive cells depends on both their state of maturity and their location along the villus axis. In this review, I describe the typical patterns of regulation of transport activity by dietary carbohydrate, Na(+) and fibre, how these patterns are influenced by circadian rhythms, and how they vary in different species and during development. I then describe the molecular mechanisms underlying these regulatory patterns. The expression of these transporters is tightly linked to the villus architecture; hence, I also review the regulatory processes occurring along the crypt-villus axis. Regulation of glucose transport by diet may involve increased transcription of SGLT1 mainly in crypt cells. As cells migrate to the villus, the mRNA is degraded, and transporter proteins are then inserted into the membrane, leading to increases in glucose transport about a day after an increase in carbohydrate levels. In the SGLT1 model, transport activity in villus cells cannot be modulated by diet. In contrast, GLUT5 regulation by the diet seems to involve de novo synthesis of GLUT5 mRNA synthesis and protein in cells lining the villus, leading to increases in fructose transport a few hours after consumption of diets containing fructose. In the GLUT5 model, transport activity can be reprogrammed in mature enterocytes lining the villus column. Innovative experimental approaches are needed to increase our understanding of sugar transport regulation in the small intestine. I close by suggesting specific areas of research that may yield important information about this interesting, but difficult, topic.
Collapse
Affiliation(s)
- R P Ferraris
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07103-2714, USA.
| |
Collapse
|
39
|
Jiang L, Lawsky H, Coloso RM, Dudley MA, Ferraris RP. Intestinal perfusion induces rapid activation of immediate-early genes in weaning rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1274-82. [PMID: 11557636 DOI: 10.1152/ajpregu.2001.281.4.r1274] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-fos and c-jun are immediate-early genes (IEGs) that are rapidly expressed after a variety of stimuli. Products of these genes subsequently bind to DNA regulatory elements of target genes to modulate their transcription. In rat small intestine, IEG mRNA expression increases dramatically after refeeding following a 48-h fast. We used an in vivo intestinal perfusion model to test the hypothesis that metabolism of absorbed nutrients stimulates the expression of IEGs. Compared with those of unperfused intestines, IEG mRNA levels increased up to 11 times after intestinal perfusion for 0.3-4 h with Ringer solutions containing high (100 mM) fructose (HF), glucose (HG), or mannitol (HM). Abundance of mRNA returned to preperfusion levels after 8 h. Levels of c-fos and c-jun mRNA and proteins were modest and evenly distributed among enterocytes lining the villi of unperfused intestines. HF and HM perfusion markedly enhanced IEG mRNA expression along the entire villus axis. The perfusion-induced increase in IEG expression was inhibited by actinomycin-D. Luminal perfusion induces transient but dramatic increases in c-fos and c-jun expression in villus enterocytes. Induction does not require metabolizable or absorbable nutrients but may involve de novo gene transcription in cells along the villus.
Collapse
Affiliation(s)
- L Jiang
- Graduate School of the Biomedical Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | | | | | | | |
Collapse
|
40
|
Jiang L, David ES, Espina N, Ferraris RP. GLUT-5 expression in neonatal rats: crypt-villus location and age-dependent regulation. Am J Physiol Gastrointest Liver Physiol 2001; 281:G666-74. [PMID: 11518678 DOI: 10.1152/ajpgi.2001.281.3.g666] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rat fructose transporter normally appears after completion of weaning but can be precociously induced by early feeding of a high-fructose diet. In this study, the crypt-villus site, the metabolic nature of the signal, and the age dependence of induction were determined. In weaning rats fed high-glucose pellets, GLUT-5 mRNA expression was modest, localized mainly in the upper three-fourths of the villus, and there was little expression in the villus base. When fed high-fructose pellets, GLUT-5 mRNA expression was two to three times greater in all regions except the villus base. Intestinal perfusion in vivo of a nonmetabolizable fructose analog, 3-O-methylfructose, tended to increase fructose uptake rate and moderately increased GLUT-5 mRNA abundance but had no effect on glucose uptake rates and SGLT1 mRNA abundance. Gavage feeding of high-fructose, but not high-glucose, solutions enhanced fructose uptake only in pups > or =14 days, suggesting that GLUT-5 regulation is markedly age dependent. Fructose or its metabolites upregulate GLUT-5 expression in all enterocytes, except those in the crypt and villus base and in pups <14 days old.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn
- Biological Transport/drug effects
- Biological Transport/physiology
- Dietary Carbohydrates/pharmacology
- Fructose/analogs & derivatives
- Fructose/metabolism
- Fructose/pharmacokinetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glucose/metabolism
- Glucose Transporter Type 5
- In Vitro Techniques
- Intestine, Small/cytology
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intubation, Gastrointestinal
- Monosaccharide Transport Proteins/biosynthesis
- Monosaccharide Transport Proteins/genetics
- Perfusion
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- L Jiang
- Graduate School of the Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, New Jersey 07103-2714, USA
| | | | | | | |
Collapse
|