1
|
Su H, Li M, Li N, Zhang Y, He Y, Zhang Z, Zhang Y, Gao Q, Xu Z, Tang J. Endothelin-1 potentiated constriction in preeclampsia placental veins: Role of ETAR/ETBR/CaV1.2/CALD1. Placenta 2024; 158:165-174. [PMID: 39476475 DOI: 10.1016/j.placenta.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Placenta plays a vital role in preeclampsia. The present study investigated the role of endothelin-1 (ET-1) and its receptors in preeclampsia placenta. METHOD Placenta samples were collected from normal and preeclampsia pregnancies, with one single fetus. Placental chorionic plate vessel tone was measured with DMT using vasoactive agents with or without antagonists. Role of L-type voltage-dependent calcium channels (CaV1.2) in single smooth muscle cell was detected using whole-cell patch clamp. PCR, Western blot, and ELISA was used to detect molecule expressions. Placental vessel explants and human umbilical vein smooth muscle cell (HUVSMC) were exposed to ET-1 treatment with or without antagonists. Human umbilical vein endothelial cell (HUVEC) and pregnant sheep was exposed to hypoxic condition, simulating preeclampsia. RESULTS ET-1 and IRL1620 mediated stronger contractions in preeclampsia placental veins, despite unchanged ETAR and decreased ETBR expression. Comparing with control, there was higher ET-1 in umbilical plasma, maternal plasma, and placental vessels from preeclampsia. In utero hypoxia increased plasma ET-1 in fetal lambs and ewes. Hypoxia promoted ET-1 production in HUVEC. Role and expression of CaV1.2 was decreased in preeclampsia placental vessels, while high-molecular-weight caldesmon (CALD1), the marker of contractile phenotype of smooth muscle cells, was significantly increased. ET-1 treatment increased CALD1 in placental explants and in HUVSMC via ETAR/ETBR. CONCLUSION The present study firstly demonstrated ET-1 induced greater contraction in preeclampsia placental chorionic plate veins via ETAR/ETBR, instead of via weaker CaV1.2. In utero hypoxia promoted plasma ET-1 in fetal lambs and ewe, similar to that in preeclampsia. ET-1, binding with ETAR/ETBR increased CALD1, which was associated with stronger contraction in preeclampsia. The data provided important information in preeclampsia onset.
Collapse
Affiliation(s)
- Hongyu Su
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, China
| | - Na Li
- Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Yingying Zhang
- Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Yun He
- Department of Gynecology and Obstetrics, Taixing People's Hospital, China
| | - Ze Zhang
- Department of Gynecology and Obstetrics, Taixing People's Hospital, China
| | - Yumeng Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China; Perinatology Laboratory, Maternity and Child Health Care Hospital of Wuxi, China
| | - Jiaqi Tang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, China.
| |
Collapse
|
2
|
Ran Q, Li A, Tan Y, Zhang Y, Zhang Y, Chen H. Action and therapeutic targets of myosin light chain kinase, an important cardiovascular signaling mechanism. Pharmacol Res 2024; 206:107276. [PMID: 38944220 DOI: 10.1016/j.phrs.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The global incidence of cardiac diseases is increasing, imposing a substantial socioeconomic burden on healthcare systems. The pathogenesis of cardiovascular disease is complex and not fully understood, and the physiological function of the heart is inextricably linked to well-regulated cardiac muscle movement. Myosin light chain kinase (MLCK) is essential for myocardial contraction and diastole, cardiac electrophysiological homeostasis, vasoconstriction of vascular nerves and blood pressure regulation. In this sense, MLCK appears to be an attractive therapeutic target for cardiac diseases. MLCK participates in myocardial cell movement and migration through diverse pathways, including regulation of calcium homeostasis, activation of myosin light chain phosphorylation, and stimulation of vascular smooth muscle cell contraction or relaxation. Recently, phosphorylation of myosin light chains has been shown to be closely associated with the activation of myocardial exercise signaling, and MLCK mediates systolic and diastolic functions of the heart through the interaction of myosin thick filaments and actin thin filaments. It works by upholding the integrity of the cytoskeleton, modifying the conformation of the myosin head, and modulating innervation. MLCK governs vasoconstriction and diastolic function and is associated with the activation of adrenergic and sympathetic nervous systems, extracellular transport, endothelial permeability, and the regulation of nitric oxide and angiotensin II. Additionally, MLCK plays a crucial role in the process of cardiac aging. Multiple natural products/phytochemicals and chemical compounds, such as quercetin, cyclosporin, and ML-7 hydrochloride, have been shown to regulate cardiomyocyte MLCK. The MLCK-modifying capacity of these compounds should be considered in designing novel therapeutic agents. This review summarizes the mechanism of action of MLCK in the cardiovascular system and the therapeutic potential of reported chemical compounds in cardiac diseases by modifying MLCK processes.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100053, China
| | - Yuqing Tan
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Yue Zhang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| | - Yongkang Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| |
Collapse
|
3
|
Jaiswal R, Santosh V, Braud B, Washington A, Escalante CR. Cryo-EM Structure of AAV2 Rep68 bound to integration site AAVS1: Insights into the mechanism of DNA melting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587759. [PMID: 38617369 PMCID: PMC11014581 DOI: 10.1101/2024.04.02.587759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions required for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin and catalyzes the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. Here, we report the Cryo-EM structures of Rep68 bound to double-stranded DNA (dsDNA) containing the sequence of the AAVS1 integration site in different nucleotide-bound states. In the apo state, Rep68 forms a heptameric complex around DNA, with three Origin Binding Domains (OBDs) bound to the Rep Binding Site (RBS) sequence and three other OBDs forming transient dimers with them. The AAA+ domains form an open ring with no interactions between subunits and with DNA. We hypothesize the heptameric quaternary structure is necessary to load onto dsDNA. In the ATPγS-bound state, a subset of three subunits binds the nucleotide, undergoing a large conformational change, inducing the formation of intersubunit interactions interaction and interaction with three consecutive DNA phosphate groups. Moreover, the induced conformational change positions three phenylalanine residues to come in close contact with the DNA backbone, producing a distortion in the DNA. We propose that the phenylalanine residues can potentially act as a hydrophobic wedge in the DNA melting process.
Collapse
Affiliation(s)
- R. Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Department of Biochemistry and Molecular Biology, University of Arkansas for the Medical Sciences, Little Rock AR 72205
| | - V. Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: US Army DEVCOM Chemical Biological Center, Gunpowder MD
| | - B. Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| | - A. Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
- Current address: Mayo Clinic Graduate School of Biomedical Research, Department of Biochemistry and Molecular Biology, Rochester, MN 55905
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond VA, 23298
| |
Collapse
|
4
|
Effects of Microbeam Irradiation on Rodent Esophageal Smooth Muscle Contraction. Cells 2022; 12:cells12010176. [PMID: 36611969 PMCID: PMC9818134 DOI: 10.3390/cells12010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. METHODS We assessed the physiological parameters of the esophageal function in ex vivo preparations of the proximal, middle, and distal segments in the organ bath. High-dose-rate synchrotron irradiation was conducted using both the microbeam irradiation (MBI) technique with peak doses greater than 200 Gy and broadbeam irradiation (BBI) with doses ranging between 3.5-4 Gy. RESULTS Neither MBI nor BBI affected the function of the contractile apparatus. While peak latency and maximal force change were not affected in the BBI group, and no changes were seen in the proximal esophagus segments after MBI, a significant increase in peak latency and a decrease in maximal force change was observed in the middle and distal esophageal segments. CONCLUSION No severe changes in physiological parameters of esophageal contraction were determined after high-dose-rate radiotherapy in our model, but our results indicate a delayed esophageal function. From the clinical perspective, the observed increase in peak latency and decreased maximal force change may indicate delayed esophageal transit.
Collapse
|
5
|
Burn-Induced Impairment of Ileal Muscle Contractility Is Associated with Increased Extracellular Matrix Components. J Gastrointest Surg 2020; 24:188-197. [PMID: 31637625 PMCID: PMC8634548 DOI: 10.1007/s11605-019-04400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Severe burns lead to marked impairment of gastrointestinal motility, such as delayed gastric emptying and small and large intestinal ileus. However, the cellular mechanism of these pathologic changes remains largely unknown. METHODS Male Sprague Dawley rats approximately 3 months old and weighing 300-350 g were randomized to either a 60% total body surface area full-thickness scald burn or sham procedure and were sacrificed 24 h after the procedure. Gastric emptying, gastric antrum contractility ileal smooth muscle contractility, and colonic contractility were measured. Muscularis externa was isolated from the ileal segment to prepare smooth muscle protein extracts for Western blot analysis. RESULTS Compared with sham controls, the baseline rhythmic contractile activities of the antral, ileal, and colonic smooth muscle strips were impaired in the burned rats. Simultaneously, our data showed that ileal muscularis ECM proteins fibronectin and laminin were significantly up-regulated in burned rats compared with sham rats. TGF-β signaling is an important stimulating factor for ECM protein expression. Our results revealed that TGF-β signaling was activated in the ileal muscle of burned rats evidenced by the activation of Smad2/3 expression and phosphorylation. In addition, the total and phosphorylated AKT, which is an important downstream factor of ECM signaling in smooth muscle cells, was also up-regulated in burned rats' ileal muscle. Notably, these changes were not seen in the colonic or gastric tissues. CONCLUSION Deposition of fibrosis-related proteins after severe burn is contributors to decreased small intestinal motility.
Collapse
|
6
|
Benabdallah H, Gharzouli K. Effects of flavone on the contractile activity of the circular smooth muscle of the rabbit middle colon in vitro. Eur J Pharmacol 2015; 760:20-6. [PMID: 25895637 DOI: 10.1016/j.ejphar.2015.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
The circular smooth muscles of the middle colon of the rabbit generate giant contractions of high amplitude and low frequency. Flavone, at various concentrations, reduces the giant contractions and the tonic contraction induced by 10 µM carbachol and 80 mM KCl. The contractions induced by dequalinium and tetraethylammonium are reduced by flavone (30 µM). At 100 µM, flavone decreases the contraction induced by 100 µM methylene blue and 1mM orthovanadate. These results suggest that flavone inhibit the giant contractions by (1) inhibition of voltage-dependent Ca(2+) channels, (2) activation of guanyl cyclase, (3) opening of K(+) channels and (4) inhibition of tyrosines kinases.
Collapse
Affiliation(s)
- Hassiba Benabdallah
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M׳sila, Algeria.
| | - Kamel Gharzouli
- Department of Animal physiology, Faculty of Nature and Life Sciences, University Ferhat Abbes of Setif, Algeria
| |
Collapse
|
7
|
Chaudhury A. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters! Front Med (Lausanne) 2015; 2:42. [PMID: 26151053 PMCID: PMC4471425 DOI: 10.3389/fmed.2015.00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/02/2015] [Indexed: 01/04/2023] Open
Abstract
Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of “sphincter proteome.” Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled “idiopathic” and facilitating practice of precision medicine.
Collapse
|
8
|
Eddinger TJ. Smooth muscle-protein translocation and tissue function. Anat Rec (Hoboken) 2015; 297:1734-46. [PMID: 25125185 DOI: 10.1002/ar.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 01/25/2023]
Abstract
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems.
Collapse
Affiliation(s)
- Thomas J Eddinger
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Noe E, Tabeling C, Doehn JM, Naujoks J, Opitz B, Hippenstiel S, Witzenrath M, Klopfleisch R. Juvenile megaesophagus in PKCα-deficient mice is associated with an increase in the segment of the distal esophagus lined by smooth muscle cells. Ann Anat 2014; 196:365-71. [DOI: 10.1016/j.aanat.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022]
|
10
|
Huang Q, Babu GJ, Periasamy M, Eddinger TJ. SMB myosin heavy chain knockout enhances tonic contraction and reduces the rate of force generation in ileum and stomach antrum. Am J Physiol Cell Physiol 2012; 304:C194-206. [PMID: 23135699 DOI: 10.1152/ajpcell.00280.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of SMA and SMB smooth muscle myosin heavy chain (MHC) isoforms in tonic and phasic contractions was studied in phasic (longitudinal ileum and stomach circular antrum) and tonic (stomach circular fundus) smooth muscle tissues of SMB knockout mice. Knocking out the SMB MHC gene eliminated SMB MHC protein expression and resulted in upregulation of the SMA MHC protein without altering the total MHC protein level. Switching from SMB to SMA MHC protein expression decreased the rate of the force transient and increased the sustained tonic force in SMB((-/-)) ileum and antrum with high potassium (KPSS) but not with carbachol (CCh) stimulation. The increased tonic contraction under the depolarized condition was not through changes in second messenger signaling pathways (PKC/CPI-17 or Rho/ROCK signaling pathway) or LC(20) phosphorylation. Biochemical analyses showed that the expression of contractile regulatory proteins (MLCK, MLCP, PKCδ, and CPI-17) did not change significantly in tissues tested except for PKCα protein expression being significantly decreased in the SMB((-/-)) antrum. However, specifically activating PKCα with phorbol dibutyrate (PDBu) was not significantly different in knockout and wild-type tissues, with total force being a fraction of the force generation with KPSS or CCh stimulation in SMB((-/-)) ileum and antrum. Taken together, these data show removing the SMB MHC protein expression with a compensatory increase in the SMA MHC protein results in enhanced sustained KPSS-induced tonic contraction with a reduced rate of force generation in these phasic tissues.
Collapse
Affiliation(s)
- Qian Huang
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | | | | | | |
Collapse
|
11
|
Brito R, Alamo L, Lundberg U, Guerrero JR, Pinto A, Sulbarán G, Gawinowicz MA, Craig R, Padrón R. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments. J Mol Biol 2011; 414:44-61. [PMID: 21959262 DOI: 10.1016/j.jmb.2011.09.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high-resolution structure is known. In the relaxed state, tarantula RLCs are ~50% non-phosphorylated and 50% mono-phosphorylated, while on activation, mono-phosphorylation increases, and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35, while Ca(2+)-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest that they are the targets for protein kinase C and myosin light chain kinase (MLCK), respectively. The atomic model of the tarantula filament shows that the two myosin heads ("free" and "blocked") are in different environments, with only the free head serines readily accessible to kinases. Thus, protein kinase C Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest that these heads are less strongly bound to the filament backbone and may oscillate occasionally between attached and detached states ("swaying" heads). These heads would be available for immediate actin interaction upon Ca(2)(+) activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked head Ser45 to MLCK. This would release the blocked heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca(2+) on tetanus would recruit new MLCK-activated heads, resulting in force potentiation.
Collapse
Affiliation(s)
- Reicy Brito
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Imhof BA, Zimmerli C, Gliki G, Ducrest-Gay D, Juillard P, Hammel P, Adams R, Aurrand-Lions M. Pulmonary dysfunction and impaired granulocyte homeostasis result in poor survival of Jam-C-deficient mice. J Pathol 2007; 212:198-208. [PMID: 17455169 DOI: 10.1002/path.2163] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Jam-C(-/-) mice exhibit growth retardation and multilobular pneumonia concomitant with poor survival of the mice under conventional housing conditions. The deficient mice present a mega-oesophagus and have altered airway responsiveness. In addition, the number of circulating granulocytes is increased in Jam-C(-/-) mice as compared to control animals. These phenotypes probably reflect the different functions of JAM-C expressed by endothelial and mesenchymal cells. Indeed, the deregulation in the number of circulating granulocytes is caused by the lack of JAM-C expression on endothelial cells since rescuing endothelial expression of the protein in the Jam-C(-/-) mice is sufficient to restore homeostasis. More importantly, the rescue of vascular JAM-C expression is accompanied by better survival of deficient mice, suggesting that endothelial expression of JAM-C is mandatory for animal survival from opportunistic infections and fatal pneumonia.
Collapse
Affiliation(s)
- B A Imhof
- Department of Pathology and Immunology, Centre Médical Universitaire, 1 Rue Michel Servet, 1204, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Phosphorylation of Ser19 on the 20-kDa regulatory light chain of myosin II (MLC20) by Ca2+/calmodulin-dependent myosin light-chain kinase (MLCK) is essential for initiation of smooth muscle contraction. The initial [Ca2+]i transient is rapidly dissipated and MLCK inactivated, whereas MLC20 and muscle contraction are well maintained. Sustained contraction does not reflect Ca2+ sensitization because complete inhibition of MLC phosphatase activity in the absence of Ca2+ induces smooth muscle contraction. This contraction is suppressed by staurosporine, implying participation of a Ca2+-independent MLCK. Thus, sustained contraction, as with agonist-induced contraction at experimentally fixed Ca2+ concentrations, involves (a) G protein activation, (b) regulated inhibition of MLC phosphatase, and (c) MLC20 phosphorylation via a Ca2+-independent MLCK. The pathways that lead to inhibition of MLC phosphatase by G(q/13)-coupled receptors are initiated by sequential activation of Galpha(q)/alpha13, RhoGEF, and RhoA, and involve Rho kinase-mediated phosphorylation of the regulatory subunit of MLC phosphatase (MYPT1) and/or PKC-mediated phosphorylation of CPI-17, an endogenous inhibitor of MLC phosphatase. Sustained MLC20 phosphorylation is probably induced by the Ca2+-independent MLCK, ZIP kinase. The pathways initiated by G(i)-coupled receptors involve sequential activation of Gbetagamma(i), PI 3-kinase, and the Ca2+-independent MLCK, integrin-linked kinase. The last phosphorylates MLC20 directly and inhibits MLC phosphatase by phosphorylating CPI-17. PKA and PKG, which mediate relaxation, act upstream to desensitize the receptors (VPAC2 and NPR-C), inhibit adenylyl and guanylyl cyclase activities, and stimulate cAMP-specific PDE3 and PDE4 and cGMP-specific PDE5 activities. These kinases also act downstream to inhibit (a) initial contraction by inhibiting Ca2+ mobilization and (b) sustained contraction by inhibiting RhoA and targets downstream of RhoA. This increases MLC phosphatase activity and induces MLC20 dephosphorylation and muscle relaxation.
Collapse
Affiliation(s)
- Karnam S Murthy
- Department of Physiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.
| |
Collapse
|
14
|
Mueed I, Zhang L, MacLeod KM. Role of the PKC/CPI-17 pathway in enhanced contractile responses of mesenteric arteries from diabetic rats to alpha-adrenoceptor stimulation. Br J Pharmacol 2006; 146:972-82. [PMID: 16205724 PMCID: PMC1751237 DOI: 10.1038/sj.bjp.0706398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Protein kinase C (PKC) may contribute to enhanced contractile responses of arteries from streptozotocin-diabetic rats to stimulation of G-protein coupled receptors. This was investigated by comparing the effects of PKC inhibitors on contractile responses of mesenteric arteries from diabetic and age-matched control rats to noradrenaline (NA) and endothelin-1 (ET-1). The effects of NA and ET-1 on the distribution of three isoforms of PKC implicated in contraction were also determined. In addition, the effect of NA on phosphorylation of CPI-17, a substrate for PKC, was investigated. Contractile responses of endothelium-denuded arteries from diabetic rats to NA were enhanced, but were normalized by PKC inhibition. In contrast, contractile responses to ET-1 were not significantly different, and were blocked to a similar extent by PKC inhibition, in arteries from control and diabetic rats.NA produced only a small increase in particulate levels of PKCepsilon in control arteries (to 125+/-8% of levels in untreated arteries), but a significant increase in particulate PKCalpha (to 190+/-22%) and a much greater increase in particulate PKCepsilon (to 230+/-19%) in arteries from diabetic rats. ET-1 increased particulate PKCalpha and epsilon to a similar extent in arteries from control and diabetic rats.NA significantly enhanced CPI-17 phosphorylation from a basal level of 22+/-10 to 71+/-7% of total in arteries from diabetic rats, and this was prevented by PKC inhibition. NA had no detectable effect on CPI-17 phosphorylation in arteries from control rats. These data suggest that NA-induced activation of PKC and CPI-17, its downstream target, is selectively enhanced in arteries from diabetic rats, and mediates the enhanced contractile responses to this agonist.
Collapse
Affiliation(s)
- Irem Mueed
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Lili Zhang
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Kathleen M MacLeod
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3
- Author for correspondence: interchange.ubc.ca
| |
Collapse
|
15
|
Patil SB, Bitar KN. RhoA- and PKC-alpha-mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2006; 290:G83-95. [PMID: 16179599 DOI: 10.1152/ajpgi.00178.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Agonist-induced activation of the RhoA/Rho kinase (ROCK) pathway results in inhibition of myosin phosphatase and maintenance of myosin light chain (MLC20) phosphorylation. We have shown that RhoA/ROCKII translocates and associates with heat shock protein (HSP)27 in the particulate fraction. We hypothesize that inhibition of the 130-kDa regulatory myosin-binding subunit (MYPT) requires its association with HSP27 in the particulate fraction. Furthermore, it is not certain whether regulation of MYPT by CPI-17 or by ROCKII is due to cross talk between RhoA and PKC-alpha. Presently, we examined the cross talk between RhoA and PKC-alpha in the regulation of MYPT phosphorylation in rabbit colon smooth muscle cells. Acetylcholine induced 1) sustained phosphorylation of PKC-alpha, CPI-17, and MYPT; 2) an increase in the association of phospho-MYPT with HSP27 in the particulate fraction; 3) a decrease in myosin phosphatase activity (66.21+/-3.52 and 42.19+/-3.85% nM/ml lysate at 30 s and 4 min); and 4) an increase in PKC activity (298.12+/-46.60% and 290.59+/-22.07% at 30 s and 4 min). Inhibition of RhoA/ROCKII by Y-27632 inhibited phosphorylation of MYPT and its association with HSP27. Both Y27632 and a negative dominant construct of RhoA inhibited phosphorylation of MYPT and CPI-17. Inhibition of PKCs or calphostin C or selective inhibition of PKC-alpha by negative dominant constructs inhibited phosphorylation of MYPT and CPI-17. The results suggest that 1) acetylcholine induces activation of both RhoA and/or PKC-alpha pathways, suggesting cross talk between RhoA and PKC-alpha resulting in phosphorylation of MYPT, inhibition of myosin phosphatase activity, and maintenance of MLC phosphorylation; and 2) phosphorylated MYPT is associated with HSP27 and translocated to the particulate fraction, suggesting a scaffolding role for HSP27 in mediating the association of the complex MYPT/RhoA-ROCKII. Thus both pathways (PKC and RhoA) converge on the regulation of myosin phosphatase activities and modulate sustained phosphorylation of MLC20.
Collapse
Affiliation(s)
- Suresh B Patil
- Division of Pediatric Gastroenterology, University of Michigan Medical School, 1150 W. Medical Center Dr., MSRB 1, Rm. A520, Ann Arbor, MI 48109-0656, USA
| | | |
Collapse
|
16
|
Cao W, Harnett KM, Cheng L, Kirber MT, Behar J, Biancani P. H(2)O(2): a mediator of esophagitis-induced damage to calcium-release mechanisms in cat lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1170-8. [PMID: 15662047 DOI: 10.1152/ajpgi.00509.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that induction of acute experimental esophagitis by repeated perfusion of HCl may affect release of intracellular Ca(2+) stores. We therefore measured cytosolic Ca(2+) in response to a maximally effective dose of ACh in fura 2-AM-loaded lower esophageal sphincter (LES) circular muscle cells and examined the contribution of H(2)O(2) to the reduction in Ca(2+) signal. In normal cells, the ACh-induced Ca(2+) increase was the same in normal-Ca(2+) and Ca(2+)-free medium and was abolished by the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C inhibitor U-73122, confirming that the initial ACh-induced contraction depends on Ca(2+) release from intracellular stores through production of inositol trisphosphate. In LES cells, the ACh-induced Ca(2+) increase in normal-Ca(2+) medium was significantly lower in esophagitis than in normal cells and was further reduced ( approximately 70%) when the cells were incubated in Ca(2+)-free medium. This reduction was partially reversed by the H(2)O(2) scavenger catalase. H(2)O(2) measurements in LES circular muscle showed significantly higher levels in esophagitis than in normal cells. When normal LES cells were incubated with H(2)O(2), the ACh-induced Ca(2+) increase was significantly reduced in normal-Ca(2+) and Ca(2+)-free medium and was similar to that observed in animals with esophagitis. The initial ACh-induced contraction was also reduced in normal cells incubated with H(2)O(2). H(2)O(2), when applied to cells at sufficiently high concentration, produced a visible and prolonged Ca(2+) signal in normal cells. H(2)O(2)-induced cell contraction was also sensitive to depletion of stores by thapsigargin (TG); conversely, H(2)O(2) reduced TG-induced contraction, suggesting that TG and H(2)O(2) may operate through similar mechanisms. Ca(2+)-ATPase activity measurement indicates that H(2)O(2) and TG reduced Ca(2+)-ATPase activity, confirming similarity of mechanism of action. We conclude that H(2)O(2) may be at least partly responsible for impairment of Ca(2+) release in acute experimental esophagitis by inhibiting Ca(2+) uptake and refilling Ca(2+) stores.
Collapse
Affiliation(s)
- Weibiao Cao
- Dept. of Medicine, Brown Medical School and Rhode Island Hospital, Gastrointestinal Motor Function Research Laboratory, 55 Claverick St., Rm. 333, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- John F Di Mari
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555-1064, USA.
| | | | | |
Collapse
|
18
|
Harnett KM, Cao W, Biancani P. Signal-transduction pathways that regulate smooth muscle function I. Signal transduction in phasic (esophageal) and tonic (gastroesophageal sphincter) smooth muscles. Am J Physiol Gastrointest Liver Physiol 2005; 288:G407-16. [PMID: 15701619 DOI: 10.1152/ajpgi.00398.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Contraction of esophageal (Eso) and lower esophageal sphincter (LES) circular muscle depends on distinct signal-transduction pathways. ACh-induced contraction of Eso muscle is linked to phosphatidylcholine metabolism, production of diacylglycerol and arachidonic acid (AA), and activation of the Ca(2+)-insensitive PKCepsilon. Although PKCepsilon does not require Ca(2+) for activation, either influx of extracellular Ca(2+) or release of Ca(2+) from stores is needed to activate the phospholipases responsible for hydrolysis of membrane phospholipids and production of second messengers, which activate PKCepsilon. In contrast, the LES uses two distinct intracellular pathways: 1) a PKC-dependent pathway activated by low doses of agonists or during maintenance of spontaneous tone, and 2) a Ca(2+)-calmodulin-myosin light chain kinase (MLCK)-dependent pathway activated in response to maximally effective doses of agonists during the initial phase of contraction. The Ca(2+) levels, released by agonist-induced activity of phospholipase C, determine which contractile pathway is activated in the LES. The Ca(2+)-calmodulin-MLCK-dependent contractile pathway has been well characterized in a variety of smooth muscles. The steps linking activation of PKC to myosin light chain (MLC20) phosphorylation and contraction, however, have not been clearly defined for LES, Eso, or other smooth muscles. In addition, in LES circular muscle, a low-molecular weight pancreatic-like phospholipase A2 (group I PLA2) causes production of AA, which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to heterotrimeric G proteins to induce activation of phospholipases and production of second messengers to maintain contraction of LES circular muscle. We have examined the signal-transduction pathways activated by PGF(2alpha) and by thromboxane analogs during the initial contractile phase and found that these pathways are the same as those activated by other agonists. In response to low doses of agonists or during maintenance of tone, presumably due to low levels of calcium release, a PKC-dependent pathway is activated, whereas at high doses of PGF(2alpha) and thromboxane analogs, in the initial phase of contraction, calmodulin is activated, PKC activity is reduced, and contraction is mediated, in part, through a Ca(2+)-calmodulin-MLCK-dependent pathway. The PKC-dependent signaling pathways activated by PGF(2alpha) and by thromboxanes during sustained LES contraction, however, remain to be examined, but preliminary data indicate that a distinct PKC-dependent pathway may be activated during maintenance of tonic contraction, which is different from the one activated during the initial contractile response. The initial contractile response to low levels of agonists depends on activation of G(q). Sustained contraction in response to PGF(2alpha) may involve activation of the monomeric G protein RhoA, because the contraction is inhibited by the RhoA-kinase antagonist Y27632. This shift in signal-transduction pathways between initial and sustained contraction has been recently reported in intestinal smooth muscle.
Collapse
Affiliation(s)
- Karen M Harnett
- Gastrointestinal Motility Research, Rhode Island Hospital, 55 Claverick Street, Providence, RI 02903, USA
| | | | | |
Collapse
|
19
|
Somara S, Pang H, Bitar KN. Agonist-induced association of tropomyosin with protein kinase Calpha in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2005; 288:G268-76. [PMID: 15486343 DOI: 10.1152/ajpgi.00330.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smooth muscle contraction regulated by myosin light chain phosphorylation is also regulated at the thin-filament level. Tropomyosin, a thin-filament regulatory protein, regulates contraction by modulating actin-myosin interactions. Present investigation shows that acetylcholine induces PKC-mediated and calcium-dependent phosphorylation of tropomyosin in colonic smooth muscle cells. Our data also shows that acetylcholine induces a significant and sustained increase in PKC-mediated association of tropomyosin with PKCalpha in the particulate fraction of colonic smooth muscle cells. Immunoblotting studies revealed that in colonic smooth muscle cells, there is no significant change in the amount of tropomyosin or actin in particulate fraction in response to acetylcholine, indicating that the increased association of tropomyosin with PKCalpha in the particulate fraction may be due to acetylcholine-induced translocation of PKCalpha to the particulate fraction. To investigate whether the association of PKCalpha with tropomyosin was due to a direct interaction, we performed in vitro direct binding assay. Tropomyosin cDNA amplified from colonic smooth muscle mRNA was expressed as GST-tropomyosin fusion protein. In vitro binding experiments using GST-tropomyosin and recombinant PKCalpha indicated direct interaction of tropomyosin with PKCalpha. PKC-mediated phosphorylation of tropomyosin and direct interaction of PKCalpha with tropomyosin suggest that tropomyosin could be a substrate for PKC. Phosphorylation of tropomyosin may aid in holding the slided tropomyosin away from myosin binding sites on actin, resulting in actomyosin interaction and sustained contraction.
Collapse
Affiliation(s)
- Sita Somara
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109-0658, USA
| | | | | |
Collapse
|
20
|
Kim N, Cao W, Song IS, Kim CY, Harnett KM, Cheng L, Walsh MP, Biancani P. Distinct kinases are involved in contraction of cat esophageal and lower esophageal sphincter smooth muscles. Am J Physiol Cell Physiol 2004; 287:C384-94. [PMID: 15128504 DOI: 10.1152/ajpcell.00390.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Contraction of smooth muscle depends on the balance of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. Because MLCK activation depends on the activation of calmodulin, which requires a high Ca2+concentration, phosphatase inhibition has been invoked to explain contraction at low cytosolic Ca2+levels. The link between activation of the Ca2+-independent protein kinase Cε (PKCε) and MLC phosphorylation observed in the esophagus (ESO) (Sohn UD, Cao W, Tang DC, Stull JT, Haeberle JR, Wang CLA, Harnett KM, Behar J, and Biancani P. Am J Physiol Gastrointest Liver Physiol 281: G467–G478, 2001), however, has not been elucidated. We used phosphatase and kinase inhibitors and antibodies to signaling enzymes in combination with intact and saponin-permeabilized isolated smooth muscle cells from ESO and lower esophageal sphincter (LES) to examine PKCε-dependent, Ca2+-independent signaling in ESO. The phosphatase inhibitors okadaic acid and microcystin-LR, as well as an antibody to the catalytic subunit of type 1 protein serine/threonine phosphatase, elicited similar contractions in ESO and LES. MLCK inhibitors (ML-7, ML-9, and SM-1) and antibodies to MLCK inhibited contraction induced by phosphatase inhibition in LES but not in ESO. The PKC inhibitor chelerythrine and antibodies to PKCε, but not antibodies to PKCβII, inhibited contraction of ESO but not of LES. In ESO, okadaic acid triggered translocation of PKCε from cytosolic to particulate fraction and increased activity of integrin-linked kinase (ILK). Antibodies to the mitogen-activated protein (MAP) kinases ERK1/ERK2 and to ILK, and the MAP kinase kinase (MEK) inhibitor PD-98059, inhibited okadaic acid-induced ILK activity and contraction of ESO. We conclude that phosphatase inhibition potentiates the effects of MLCK in LES but not in ESO. Contraction of ESO is mediated by activation of PKCε, MEK, ERK1/2, and ILK.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Medicine, Seoul National University, Bundang Hospital, Seoungnam, Gyeronggi-Do 463-707, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wier WG, Morgan KG. Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 2004; 150:91-139. [PMID: 12884052 DOI: 10.1007/s10254-003-0019-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our goal in this review is to provide a comprehensive, integrated view of the numerous signaling pathways that are activated by alpha(1)-adrenoceptors and control actin-myosin interactions (i.e., crossbridge cycling and force generation) in mammalian arterial smooth muscle. These signaling pathways may be categorized broadly as leading either to thick (myosin) filament regulation or to thin (actin) filament regulation. Thick filament regulation encompasses both "Ca(2+) activation" and "Ca(2+)-sensitization" as it involves both activation of myosin light chain kinase (MLCK) by Ca(2+)-calmodulin and regulation of myosin light chain phosphatase (MLCP) activity. With respect to Ca(2+) activation, adrenergically induced Ca(2+) transients in individual smooth muscle cells of intact arteries are now being shown by high resolution imaging to be sarcoplasmic reticulum-dependent asynchronous propagating Ca(2+) waves. These waves differ from the spatially uniform increases in [Ca(2+)] previously assumed. Similarly, imaging during adrenergic activation has revealed the dynamic translocation, to membranes and other subcellular sites, of protein kinases (e.g., Ca(2+)-activated protein kinases, PKCs) that are involved in regulation of MLCP and thus in "Ca(2+) sensitization" of contraction. Thin filament regulation includes the possible disinhibition of actin-myosin interactions by phosphorylation of CaD, possibly by mitogen-activated protein (MAP) kinases that are also translocated during adrenergic activation. An hypothesis for the mechanisms of adrenergic activation of small arteries is advanced. This involves asynchronous Ca(2+) waves in individual SMC, synchronous Ca(2+) oscillations (at high levels of adrenergic activation), Ca(2+) sparks, "Ca(2+)-sensitization" by PKC and Rho-associated kinase (ROK), and thin filament mechanisms.
Collapse
Affiliation(s)
- W G Wier
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
22
|
Muinuddin A, Neshatian L, Gaisano HY, Diamant NE. Calcium source diversity in feline lower esophageal sphincter circular and sling muscle. Am J Physiol Gastrointest Liver Physiol 2004; 286:G271-7. [PMID: 14563670 DOI: 10.1152/ajpgi.00291.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Within muscular equivalents of cat lower esophageal sphincter (LES), the circular muscle develops greater spontaneous tone, whereas the sling muscle is more responsive to cholinergic stimulation. Smooth muscle contraction involves a combination of calcium release from stores and of calcium entry via several pathways. We hypothesized that there are differences in the sources of Ca(2+) used for contraction in sling and circular muscles and that these differences could contribute to functional asymmetry observed within LES. Contraction of muscle strips from circular and sling regions of LES was assessed in the presence of TTX. In Ca(2+)-free Krebs, tone was inhibited to a greater degree in circular than sling muscle. L-type Ca(2+) channel blockade with nifedipine or verapamil inhibited tone in LES circular but not sling muscle. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA) caused greater increase in tone in sling than in circular muscle. The phospholipase C inhibitor U-73122 and the SR inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor blocker 2-aminoethoxydiphenyl borate (2-APB) inhibited tone in circular and sling muscles, demonstrating that continuous release of Ca(2+) from Ins(1,4,5)P(3)-sensitive stores is important in tone generation in both muscles. In Ca(2+)-free Krebs, ACh-induced contractions (AChC) were inhibited to a greater degree in sling than circular muscles. However, nifedipine and verapamil greatly inhibited AChC in the circular but not sling muscle. Depletion of SR Ca(2+) stores with CPA or inhibition of Ins(1,4,5)P(3)-mediated store release with either U-73122 or 2-APB inhibited AChC in both muscles. We demonstrate that LES circular and sling muscles 1) use intracellular and extracellular Ca(2+) sources to different degrees in the generation of spontaneous tone and AChC and 2) use different Ca(2+) entry pathways. These differences hold the potential for selective modulation of LES tone in health and disease.
Collapse
Affiliation(s)
- Ahmad Muinuddin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
23
|
Tinsley JH, Teasdale NR, Yuan SY. Involvement of PKCdelta and PKD in pulmonary microvascular endothelial cell hyperpermeability. Am J Physiol Cell Physiol 2003; 286:C105-11. [PMID: 13679307 DOI: 10.1152/ajpcell.00340.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional (alpha, betaI, betaII, and gamma), novel [delta, epsilon, eta, and mu (also known as PKD), theta], and atypical (zeta and iota/lambda), in the regulation of endothelial monolayer integrity is well documented. However, isoform activity varies among different cell types. Our goal was to reveal isoform-specific PKC activity in the microvascular endothelium in response to phorbol 12-myristate 13-acetate (PMA) and diacylglycerol (DAG). Isoform activity was demonstrated by cytosol-to-membrane translocation after PMA treatment and phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein after PMA and DAG treatment. Specific isoforms were inhibited by using both antisense oligonucleotides and pharmacological agents. The data showed partial cytosol-to-membrane translocation of isoforms alpha, betaI, and epsilon and complete translocation of PKCdelta and PKD in response to PMA. Furthermore, antisense treatment and pharmacological studies indicated that the novel isoform PKCdelta and PKD are both required for PMA- and DAG-induced MARCKS phosphorylation and hyperpermeability in pulmonary microvascular endothelial cells, whereas isoforms alpha, betaI, and epsilon were dispensable with regard to these same phenomena.
Collapse
Affiliation(s)
- John H Tinsley
- Department of Surgery, Texas A & M University, System Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, USA.
| | | | | |
Collapse
|
24
|
Cao W, Sohn UD, Bitar KN, Behar J, Biancani P, Harnett KM. MAPK mediates PKC-dependent contraction of cat esophageal and lower esophageal sphincter circular smooth muscle. Am J Physiol Gastrointest Liver Physiol 2003; 285:G86-95. [PMID: 12799309 DOI: 10.1152/ajpgi.00156.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Esophageal (ESO) circular muscle contraction and lower esophageal sphincter (LES) tone are PKC dependent. Because MAPKs may be involved in PKC-dependent contraction, we examined ERK1/ERK2 and p38 MAPKs in ESO and LES. In permeabilized LES muscle cells, ERK1/2 antibodies reduced 1,2-dioctanoylglycerol (DG)- and threshold ACh-induced contraction, which are PKC dependent, but not maximal ACh, which is calmodulin dependent. LES tone was reduced by the ERK1/2 kinase inhibitor PD-98059 and by the p38 MAPK inhibitor SB-203580. In permeable ESO cells, ACh contraction was reduced by ERK1/ERK2 and p38 MAPK antibodies and by PD-98059 and SB-203580. ACh increased MAPK activity and phosphorylation of MAPK and of p38 MAPK. The 27-kDa heat shock protein (HSP27) antibodies reduced ACh contraction. HSP27 and p38 MAPK antibodies together caused no greater inhibition than either one alone. p38 MAPK and HSP27 coprecipitated after ACh stimulation, suggesting that HSP27 is linked to p38 MAPK. These data suggest that PKC-dependent contraction in ESO and LES is mediated by the following two distinct MAPK pathways: ERK1/2 and HSP27-linked p38 MAPK.
Collapse
Affiliation(s)
- Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
25
|
An JY, Yun HS, Lee YP, Yang SJ, Shim JO, Jeong JH, Shin CY, Kim JH, Kim DS, Sohn UD. The intracellular pathway of the acetylcholine-induced contraction in cat detrusor muscle cells. Br J Pharmacol 2002; 137:1001-10. [PMID: 12429572 PMCID: PMC1573577 DOI: 10.1038/sj.bjp.0704954] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The present study was aimed to investigate intracellular pathways involved in acetylcholine (ACh)-induced contraction in cat detrusor muscle cells 2. Contraction was expressed as per cent shortening of length of individually isolated smooth muscle cells obtained by enzymatic digestion. Dispersed intact and permeabilized cells were prepared for the treatment of drugs and antibody to enzymes, respectively. Using Western blot, we confirmed the presence of related proteins. 3. The maximal contraction to ACh was generated at 10(-11) M. This response was preferentially antagonized by M3 muscarinic receptor antagonist rho-fluoro-hexahydrosiladifenidol (rhoF-HSD) but not by the M1 antagonist pirenzepine and the M2 muscarinic receptor antagonist methoctramine. We identified G-proteins (Gq/11), (Gs), (G0), (Gi1), (Gi2) and (Gi3) in the bladder detrusor muscle. ACh-induced contraction was selectively inhibited by (Gq/11) antibody but not to other G subunit. 4. The phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitor neomycin reduced ACh-induced contraction. However, the inhibitors of the phospholipase D, the phospholipase A2 and protein kinase C did not attenuate the ACh-induced contraction. ACh-induced contraction was inhibited by antibody to PLC-beta1 but not PLC-beta3 and PLC-gamma. Thapsigargin or strontium, which depletes or blocks intracellular calcium release, inhibited ACh-induced contraction. Inositol 1,4,5-triphosphate IP3 receptor inhibitor heparin reduced ACh-induced contraction. 5. These results suggest that in cat detrusor muscle contraction induced by ACh is mediated via M3 muscarinic receptor-dependent activation of Gq/11 and PLC-beta1 and IP3-dependent Ca(2+) release.
Collapse
Affiliation(s)
- J Y An
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - H S Yun
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - Y P Lee
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - S J Yang
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - J O Shim
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - J H Jeong
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - C Y Shin
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - J H Kim
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - D S Kim
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
| | - U D Sohn
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, 156-756, Republic of Korea
- Author for correspondence:
| |
Collapse
|
26
|
Szymanski PT, Szymanska G, Goyal RK. Differences in calmodulin and calmodulin-binding proteins in phasic and tonic smooth muscles. Am J Physiol Cell Physiol 2002; 282:C94-C104. [PMID: 11742802 DOI: 10.1152/ajpcell.00257.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether densities of calmodulin (CaM) and CaM-binding proteins are related to phasic and tonic behavior of smooth muscles, we quantified these proteins in the opossum esophageal body (EB) and lower esophageal sphincter (LES), which represent phasic and tonic smooth muscles, respectively. Gel electrophoresis, immunoprecipitation, Western blot, and hemagglutinin epitope-tagged CaM (HA-CaM) overlay assay with quantitative scanning densitometry and phosphorylation measurements were used. Total protein content in the two smooth muscles was similar (approximately 30 mg protein/g frozen tissue). Total tissue concentration of CaM was significantly (25%) higher in EB than in LES (P < 0.05). HA-CaM-binding proteins were qualitatively similar in LES and EB extracts. Myosin, myristoylated alanine-rich C kinase substrate protein, Ca(2+)/CaM kinase II, and calponin contents were also similar in the two muscles. However, content and total activity of myosin light chain kinase (MLCK) and content of caldesmon (CaD) were three- to fourfold higher in EB than in LES. Increased CaM and MLCK content may allow for a wide range of contractile force varying from complete relaxation in the basal state to a large-amplitude, high-velocity contraction in EB phasic muscle. Increased content of CaD, which provides a braking mechanism on contraction, may further contribute to the phasic contractile behavior. In contrast, low CaM, MLCK, and CaD content may be responsible for a small range of contractile force seen in tonic muscle of LES.
Collapse
Affiliation(s)
- Pawel T Szymanski
- Center for Swallowing and Motility Disorders, Harvard Medical School, West Roxbury, Massachusetts 02132, USA
| | | | | |
Collapse
|
27
|
Ren B, Zhu HQ, Luo ZF, Zhou Q, Wang Y, Wang YZ. Preliminary research on myosin light chain kinase in rabbit liver. World J Gastroenterol 2001; 7:868-71. [PMID: 11854919 PMCID: PMC4695612 DOI: 10.3748/wjg.v7.i6.868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study preliminarily the properties of myosin light chain kinase (MLCK) in rabbit liver.
METHODS: The expression of MLCK was detected by reverse transcription-polymerase chain reaction (RT-PCR); the MLCK was obtained from rabbit liver, and its activity was analyzed by γ-32 P incorporation technique to detect the phosphorylation of myosin light chain.
RESULTS: MLCK was expressed in rabbit liver, and the activity of the enzyme was similar to rabbit smooth muscle MLCK, and calmodulin- dependent. When the concentration was 0.65 mg •L¯¹, the activity was at the highest level.
CONCLUSION: MLCK expressed in rabbit liver may catalyze the phosphorylation of myosin light chain, which may play important roles in the regulation of hepatic cell functions.
Collapse
Affiliation(s)
- B Ren
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei 230027, Anhui Province, China
| | | | | | | | | | | |
Collapse
|