1
|
Liu Y, Wu L, Li X, Chen Y, Chen R, Lv C, Chen J, Fan X, Duan G, Zhong F, Sun Q, Shi Q, Ni H, Sun L, Xu J, Tang W, Li J. The protective role of PYY in intestinal mucosal defects induced by SATB2 deficiency in inflammatory bowel disease. Cell Death Discov 2025; 11:227. [PMID: 40340969 PMCID: PMC12062304 DOI: 10.1038/s41420-025-02511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Impaired colonic mucosal repair is a critical issue in inflammatory bowel diseases (IBD). SATB2 is essential for maintaining colonic epithelial homeostasis, but its role in mucosal repair is unclear. In this study, flow cytometry was used to assess SATB2's role in colonic epithelial repair in a radiation injury model. SATB2 knockout mice exhibited defective epithelial repair, with a marked reduction in goblet and enteroendocrine cells. Mechanistically, SATB2 directly regulated PPAR-γ transcription, and PYY was observed to translocate into the nucleus and promote the transcription of PPAR-γ target genes. In organoids derived from patients with Crohn's disease, PYY supplementation significantly improved epithelial regeneration, outperforming the PPAR-γ agonist rosiglitazone. In conclusion, SATB2 deficiency impairs colonic epithelial repair, which can be rescued by PYY through activation of PPAR-γ-dependent transcription. These findings suggest that PYY may serve as a promising therapeutic molecule to promote epithelial repair in IBD.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Lanqing Wu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoli Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yongyu Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Ruidong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caiyun Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juan Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xinjuan Fan
- Department of Pathology, The Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Fan Zhong
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qianyun Shi
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hengli Ni
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Wen Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jianming Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Preusse K, Cochran K, Dai Q, Kopan R. Notch dimerization provides robustness against environmental insults and is required for vascular integrity. PLoS One 2025; 20:e0311353. [PMID: 39854367 DOI: 10.1371/journal.pone.0311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 01/26/2025] Open
Abstract
The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding). However, compound heterozygote NDD mice (N1RA/-; N2RA/-) in hypo-allergenic conditions subsequently develop severe hydrocephalus and hemorrhages. Further analysis revealed multiple vascular phenotypes in NDD mice including leakage, malformations of brain vasculature, and vasodilation in kidneys, leading to demise around P21. This mouse model is thus a hypomorphic allele useful to analyze vascular phenotypes and gene-environment interactions. The possibility of a non-canonical Notch signal regulating barrier formation in the gut, skin, and blood systems is discussed.
Collapse
Affiliation(s)
- Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kim Cochran
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
3
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
4
|
Erkert L, Gamez-Belmonte R, Kabisch M, Schödel L, Patankar JV, Gonzalez-Acera M, Mahapatro M, Bao LL, Plattner C, Kühl AA, Shen J, Serneels L, De Strooper B, Neurath MF, Wirtz S, Becker C. Alzheimer's disease-related presenilins are key to intestinal epithelial cell function and gut immune homoeostasis. Gut 2024; 73:1618-1631. [PMID: 38684238 DOI: 10.1136/gutjnl-2023-331622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Li-Li Bao
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute@UCL, University College London, London, UK
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
5
|
Maglakelidze N, Gettle SL, Longenecker AL, Vidimos AT, Billingsley EM, Hobbs RP, Lam C. Surgical Debulking Modifies Notch Signaling and May Improve Vismodegib Effectiveness for Locally Advanced Basal Cell Carcinoma. JID INNOVATIONS 2024; 4:100288. [PMID: 39086988 PMCID: PMC11287000 DOI: 10.1016/j.xjidi.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024] Open
Abstract
Smoothened inhibitors, such as vismodegib, exhibit remarkable success in treating patients with locally advanced basal cell carcinoma (LaBCC). Yet, vismodegib efficacy is hindered by notable side effects, which often lead to treatment discontinuation and subsequent relapse in patients with LaBCC. Prolonged remission was previously reported in patients with LaBCCs who underwent surgical debulking before starting vismodegib. In this study, we enrolled 4 patients with LaBCC who underwent debulking followed by vismodegib therapy to assess their clinical outcomes and analyze the cutaneous molecular changes occurring as a result of surgical intervention. After LaBCC debulking, patients underwent a punch biopsy of residual basal cell carcinoma tissue 1 week later. RT-qPCR analysis of 24 Notch and Wnt signaling-associated genes revealed elevated PTCH1, HEY2, LGR6, FZD2, LEF1, ALCAM, and RUNX1 expressions in follow-up biopsies compared with those in patient-matched debulked tissue. Immunoblot and immunostaining further confirmed elevated Notch signaling in follow-up biopsy tissue compared with that in patient-matched debulked tumor tissue. Patients 1, 3, and 4 displayed a clinical response to debulking followed by vismodegib, whereas patient 2 was lost to follow-up after debulking. These findings suggest that surgical manipulation of LaBCCs is correlated with molecular alterations in signaling pathways associated with cellular reprogramming.
Collapse
Affiliation(s)
- Natella Maglakelidze
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Samantha L. Gettle
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Amy L. Longenecker
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | | | - Ryan P. Hobbs
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Charlene Lam
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
8
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Novak S, Tanigawa H, Singh V, Root SH, Schmidt TA, Hankenson KD, Kalajzic I. Endothelial to mesenchymal Notch signaling regulates skeletal repair. JCI Insight 2024; 9:e181073. [PMID: 38781018 PMCID: PMC11383173 DOI: 10.1172/jci.insight.181073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hitoshi Tanigawa
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Institute for Systems Genomics, Computational Biology Core, UConn, Storrs, Connecticut, USA
| | - Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
10
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
11
|
Naser AN, Xing T, Tatum R, Lu Q, Boyer PJ, Chen YH. Colonic crypt stem cell functions are controlled by tight junction protein claudin-7 through Notch/Hippo signaling. Ann N Y Acad Sci 2024; 1535:92-108. [PMID: 38598500 PMCID: PMC11111361 DOI: 10.1111/nyas.15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The tight junction protein claudin-7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease-like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin-7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin-7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin-7-deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin-7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild-type derived crypts. In this study, we highlight the essential role of claudin-7 in regulating Notch and Hippo signaling-dependent colonic stem cell functions, including survival, self-renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Neural and Behavioral Science Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Philip J. Boyer
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
12
|
Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 2024; 16:2393272. [PMID: 39224006 PMCID: PMC11376419 DOI: 10.1080/19490976.2024.2393272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Jing S, Chen H, Liu E, Zhang M, Zeng F, Shen H, Fang Y, Muhitdinov B, Huang Y. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydr Polym 2023; 316:121025. [PMID: 37321723 DOI: 10.1016/j.carbpol.2023.121025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, life quality-reducing disease with no cures available yet. To develop an effective medication suitable for long-term use is an urgent but unmet need. Quercetin (QT) is a natural dietary flavonoid with good safety and multifaceted pharmacological activities against inflammation. However, orally administrated quercetin yields unproductive outcomes for IBD treatment because of its poor solubility and extensive metabolism in the gastrointestinal tract. In this work, a colon-targeted QT delivery system (termed COS-CaP-QT) was developed, of which the pectin (PEC)/Ca2+ microspheres were prepared and then crosslinked by oligochitosan (COS). The drug release profile of COS-CaP-QT was pH-dependent and colon microenvironment-responsive, and COS-CaP-QT showed preferential distribution in the colon. The mechanism study showed that QT triggered the Notch pathway to regulate the proliferation of T helper 2 (Th2) cells and group 3 innate lymphoid cells (ILC3s) and the inflammatory microenvironment was remodeled. The in vivo therapeutic results revealed that COS-CaP-QT could relieve the colitis symptoms and maintain the colon length and intestinal barrier integrity.
Collapse
Affiliation(s)
- Shisuo Jing
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Huayuan Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Feng Zeng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bahtiyor Muhitdinov
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China; Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Yongzhuo Huang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.
| |
Collapse
|
14
|
Verjan Garcia N, Hong KU, Matoba N. The Unfolded Protein Response and Its Implications for Novel Therapeutic Strategies in Inflammatory Bowel Disease. Biomedicines 2023; 11:2066. [PMID: 37509705 PMCID: PMC10377089 DOI: 10.3390/biomedicines11072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle playing a vital role in maintaining cell homeostasis, and disruptions to its functions can have detrimental effects on cells. Dysregulated ER stress and the unfolded protein response (UPR) have been linked to various human diseases. For example, ER stress and the activation of the UPR signaling pathways in intestinal epithelial cells can either exacerbate or alleviate the severity of inflammatory bowel disease (IBD), contingent on the degree and conditions of activation. Our recent studies have shown that EPICERTIN, a recombinant variant of the cholera toxin B subunit containing an ER retention motif, can induce a protective UPR in colon epithelial cells, subsequently promoting epithelial restitution and mucosal healing in IBD models. These findings support the idea that compounds modulating UPR may be promising pharmaceutical candidates for the treatment of the disease. In this review, we summarize our current understanding of the ER stress and UPR in IBD, focusing on their roles in maintaining cell homeostasis, dysregulation, and disease pathogenesis. Additionally, we discuss therapeutic strategies that promote the cytoprotection of colon epithelial cells and reduce inflammation via pharmacological manipulation of the UPR.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kyung U Hong
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nobuyuki Matoba
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Ahmad Sophien AN, Jusop AS, Tye GJ, Tan YF, Wan Kamarul Zaman WS, Nordin F. Intestinal stem cells and gut microbiota therapeutics: hype or hope? Front Med (Lausanne) 2023; 10:1195374. [PMID: 37547615 PMCID: PMC10400779 DOI: 10.3389/fmed.2023.1195374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
The vital role of the intestines as the main site for the digestion and absorption of nutrients for the body continues subconsciously throughout one's lifetime, but underneath all the complex processes lie the intestinal stem cells and the gut microbiota that work together to maintain the intestinal epithelium. Intestinal stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells originate, and the gut microbiota refers to the abundant collection of various microorganisms that reside in the gastrointestinal tract. Both reside in the intestines and have many mechanisms and pathways in place with the ultimate goal of co-managing human gastrointestinal tract homeostasis. Based on the abundance of research that is focused on either of these two topics, this suggests that there are many methods by which both players affect one another. Therefore, this review aims to address the relationship between ISC and the gut microbiota in the context of regenerative medicine. Understanding the principles behind both aspects is therefore essential in further studies in the field of regenerative medicine by making use of the underlying designed mechanisms.
Collapse
Affiliation(s)
- Ahmad Naqiuddin Ahmad Sophien
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Atanga R, Romero AS, Hernandez AJ, Peralta-Herrera E, Merkley SD, In JG, Castillo EF. Inflammatory macrophages prevent colonic goblet and enteroendocrine cell differentiation through Notch signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547119. [PMID: 37425818 PMCID: PMC10327198 DOI: 10.1101/2023.06.29.547119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Inflammatory macrophages in the intestine are a key pathogenic factor driving inflammatory bowel disease (IBD). Here, we report the role of inflammatory macrophage-mediated notch signaling on secretory lineage differentiation in the intestinal epithelium. Utilizing IL-10-deficient (Il10-/-) mice, a model of spontaneous colitis, we found an increase in Notch activity in the colonic epithelium as well as an increase in intestinal macrophages expressing Notch ligands, which are increased in macrophages upon inflammatory stimuli. Furthermore, a co-culture system of inflammatory macrophages and intestinal stem and proliferative cells during differentiation reduced goblet and enteroendocrine cells. This was recapitulated when utilizing a Notch agonist on human colonic organoids (colonoids). In summary, our findings indicate that inflammatory macrophages upregulate notch ligands that activate notch signaling in ISC via cell-cell interactions, which in turn inhibits secretory lineage differentiation in the gastrointestinal (GI) tract.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Anthony Jimenez Hernandez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | | | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences, Albuquerque, NM
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences, Albuquerque, NM
| |
Collapse
|
17
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Bagias G, Misiakos EP, Charalampopoulos A, Zavras N, Sakellariou S, Schizas D, Sukhotnik I, Giamarelos E, Pikoulis E. The effect of hepatocyte growth factor on intestinal adaption in an experimental model of short bowel syndrome. Pediatr Surg Int 2023; 39:80. [PMID: 36631569 DOI: 10.1007/s00383-022-05341-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE Nowadays, the standard therapy for patients with short bowel syndrome is parenteral nutrition (PN). Various growth factors have been tested to achieve weaning from prolonged PN administration. We evaluated the effect of hepatocyte growth factor (HGF) on structural intestinal adaptation and cell proliferation in a rat model of SBS. METHODS Thirty Sprague-Dawley rats were divided into three groups; group A rats (sham) underwent bowel transection, group B rats underwent a 75% bowel resection, and group C rats underwent the same procedure but were treated postoperatively with HGF. Histopathologic parameters of intestinal adaptation were determined, while microarray and rt-PCR analyses of ileal RNA were also performed. RESULTS Treatment with HGF resulted in significant increase in body weight, while the jejunal and ileal villus height and crypt depth were increased in HGF rats (36%, p < 0.05 and 27%, p < 0.05 respectively). Enterocyte proliferation was also significantly increased in HGF rats (21% p < 0.05). Microarray and quantitative rt-PCR analyses showed that the genes hgfac, rac 1, cdc42, and akt 1 were more than twofold up-regulated after HGF treatment. CONCLUSION HGF emerges as a growth factor that enhances intestinal adaptation. The future use of HGF may potentially reduce the requirement for PN in SBS patients.
Collapse
Affiliation(s)
- George Bagias
- 3rd Department of Surgery, Attikon University Hospital, Athens, Greece.
| | | | | | - Nick Zavras
- 3rd Department of Surgery, Attikon University Hospital, Athens, Greece
| | | | | | - Igor Sukhotnik
- Department of Pediatric Surgery B, Rappaport Faculty of Medicine, Haifa, Israel
| | - Evangelos Giamarelos
- 4th Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | | |
Collapse
|
19
|
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, Lin X, Li B, He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol 2022; 13:1072715. [PMID: 36545307 PMCID: PMC9760693 DOI: 10.3389/fphar.2022.1072715] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory disease that can occur in multiple parts of the human intestine and has become a worldwide problem with a continually increasing incidence. Because of its mild early symptoms, most of them will not attract people's attention and may cause more serious consequences. There is an urgent need for new therapeutics to prevent disease progression. Natural products have a variety of active ingredients, diverse biological activities, and low toxicity or side effects, which are the new options for preventing and treating the intestinal inflammatory diseases. Because of multiple genetic models, less ethical concerns, conserved signaling pathways with mammals, and low maintenance costs, the fruit fly Drosophila melanogaster has become a suitable model for studying mechanism and treatment strategy of IBD. Here, we review the advantages of fly model as screening platform in drug discovery, describe the conserved molecular pathways as therapetic targets for IBD between mammals and flies, dissect the feasibility of Drosophila model in IBD research, and summarize the natural products for IBD treatment using flies. This review comprehensively elaborates that the benefit of flies as a perfact model to evaluate the therapeutic potential of phytochemicals against IBD.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dan Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Botong Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Jianzheng He,
| |
Collapse
|
20
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
21
|
Badr AM, Alkharashi LA, Sherif IO, Alanteet AA, Alotaibi HN, Mahran YF. IL-17/Notch1/STAT3 Pathway Contributes to 5-Fluorouracil-Induced Intestinal Mucositis in Rats: Amelioration by Thymol Treatment. Pharmaceuticals (Basel) 2022; 15:1412. [PMID: 36422542 PMCID: PMC9693479 DOI: 10.3390/ph15111412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
5-Fluorouracil (5-FU) is an anticancer drug with intestinal mucositis (IM) as a deleterious side effect. Thymol is a monoterpene phenol which has been reported to possess an antioxidant and anti-inflammatory activity versus 5-FU-induced IM. The Notch pathway affects multiple cellular activities, such as cellular proliferation, in addition to inflammatory responses modulation. Accordingly, this work was carried out in order to elucidate the role of the Notch pathway in 5-FU-induced IM and to further elucidate the immunomodulatory protective mechanisms of thymol. Experimental rats were divided randomly into four groups: Control, 5-FU, 5-FU+thymol (60 mg/kg/day), and 5-FU+thymol (120 mg/kg/day). 5-FU was injected intraperitoneally at a dose of 150 mg/kg on days 6 and 7, while thymol was orally administered daily for 11 days. By the end of the study, intestinal tissues were collected for the determination of IL-17, CD4, CD8, Notch1, Hes-1, pSTAT3, and STAT-3 protein expressions. The effect of thymol on 5-FU cytotoxicity was also examined using WST1 assay. 5-FU induced a marked increase in IL-17 levels, along with a marked downregulation of CD4 and the upregulation of CD8, Notch1, Hes-1 protein expressions, and activation of STAT3 in the intestinal tissue when compared with the control group. Thymol ameliorated the changes that occurred in these parameters. Additionally, cytotoxicity testing revealed that thymol augmented the antiproliferative action of 5-FU against breast and colorectal human cancer cell lines. This study was the first to show that the IL-17/Notch1/STAT3 pathway is involved in the molecular mechanism of 5-FU-induced IM, as well as the immunomodulatory activity of thymol.
Collapse
Affiliation(s)
- Amira M. Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Layla A. Alkharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia
| | - Iman O. Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Alaa A. Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia
| | - Hind N. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia
| | - Yasmen F. Mahran
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
22
|
Jiang H, Shi GF, Fang YX, Liu YQ, Wang Q, Zheng X, Zhang DJ, Zhang J, Yin ZQ. Aloin A prevents ulcerative colitis in mice by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154403. [PMID: 36075180 DOI: 10.1016/j.phymed.2022.154403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies reported that Aloe vera ameliorated DSS-induced colitis and promoted mucus secretion. However, the effect of Aloin A (AA), a major compound of Aloe vera, on colitis and its exact mechanism remains uncovered. METHODS C57BL/6 mice were successively subjected to 3% DSS solution for 5 days and distilled water for 2 days. Concurrently, AA (25, 50 mg/kg) and 5-aminosalicylic (500 mg/kg) were administrated intragastrically from day 1 to day 7. Colitis was evaluated by disease active index (DAI), colon length, inflammation response, and intestinal barrier function. In vitro LS174T cells challenged with 50 ng/ml of lipopolysaccharides (LPS) were used to validate the modulatory action of AA on the Notch signaling pathway. RESULTS Our results showed that oral administration with AA prominently prevented DSS-induced colitis symptoms in terms of decreased DAI, prevention of colon shortening, and reduced pathological damage. AA mitigated the inflammatory response evidenced by the decreased proinflammatory cytokines (TNF-α, IL-1β, IL-6) and increased anti-inflammatory cytokine (IL-10). Besides, AA inhibited apoptosis and facilitated proliferation in colons. Moreover, AA treatment up-regulated the expression of tight junction (TJ) proteins (ZO-1, Occludin) and promoted the secretion of MUC2 to decrease colon permeability. Mechanistically, AA inhibited the Notch pathway to promote the secretion of MUC2, which was consistent with LPS-challenged LS174 cells. CONCLUSION These results suggested that AA could prevent colitis by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Thus, AA might be a prospective remedy for ulcerative colitis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Gao-Feng Shi
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Yu-Xi Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - You-Qian Liu
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Qi Wang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Xian Zheng
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Dong-Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Jian Zhang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
23
|
DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nat Commun 2022; 13:6266. [PMID: 36271073 PMCID: PMC9587301 DOI: 10.1038/s41467-022-33844-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD.
Collapse
|
24
|
Dou Y, Pizarro T, Zhou L. Organoids as a Model System for Studying Notch Signaling in Intestinal Epithelial Homeostasis and Intestinal Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1347-1357. [PMID: 35752229 PMCID: PMC9552028 DOI: 10.1016/j.ajpath.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Organoid culture is an approach that allows three-dimensional growth for stem cells to self-organize and develop multicellular structures. Intestinal organoids have been widely used to study cellular or molecular processes in stem cell and cancer research. These cultures possess the ability to maintain cellular complexity as well as recapitulate many properties of the human intestinal epithelium, thereby providing an ideal in vitro model to investigate cellular and molecular signaling pathways. These include, but are not limited to, the mechanisms required for maintaining balanced populations of epithelial cells. Notch signaling is one of the major pathways of regulating stem cell functions in the gut, driving proliferation and controlling cell fate determination. Notch also plays an important role in regulating tumor progression and metastasis. Understanding how Notch pathway regulates epithelial regeneration and differentiation by using intestinal organoids is critical for studying both homeostasis and pathogenesis of intestinal stem cells that can lead to discoveries of new targets for drug development to treat intestinal diseases. In addition, use of patient-derived organoids can provide effective personalized medicine. This review summarizes the current literature regarding epithelial Notch pathways regulating intestinal homeostasis and regeneration, highlighting the use of organoid cultures and their potential therapeutic applications.
Collapse
Affiliation(s)
- Yingtong Dou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Theresa Pizarro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
25
|
Tamura A, Ito G, Matsuda H, Nibe-Shirakihara Y, Hiraoka Y, Kitagawa S, Hiraguri Y, Nagata S, Aonuma E, Otsubo K, Nemoto Y, Nagaishi T, Watanabe M, Okamoto R, Oshima S. Zranb1-mutant mice display abnormal colonic mucus production and exacerbation of DSS-induced colitis. Biochem Biophys Res Commun 2022; 628:147-154. [DOI: 10.1016/j.bbrc.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
26
|
Ma N, Chen X, Liu C, Sun Y, Johnston LJ, Ma X. Dietary nutrition regulates intestinal stem cell homeostasis. Crit Rev Food Sci Nutr 2022; 63:11263-11274. [PMID: 35694795 DOI: 10.1080/10408398.2022.2087052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/β-catenin, Wnt/GSK-3β pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Palikuqi B, Rispal J, Klein O. Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040865. [PMID: 34580119 PMCID: PMC9159262 DOI: 10.1101/cshperspect.a040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The intestinal epithelium undergoes continuous cellular turnover, making it an attractive model to study tissue renewal and regeneration. Intestinal stem cells (ISCs) can both self-renew and differentiate along all epithelial cell lineages. Decisions about which fate to pursue are controlled by a balance between high Wnt signaling at the crypt bottom, where Lgr5 + ISCs reside, and increasing bone morphogenetic protein (BMP) levels toward the villus, where differentiated cells are located. Under stress conditions, epithelial cells in the intestine are quite plastic, with dedifferentiation, the reversal of cell fate from a differentiated cell to a more stem-like cell, allowing for most mature epithelial cell types to acquire stem cell-like properties. The ISC niche, mainly made up of mesenchymal, immune, enteric neuronal, and endothelial cells, plays a central role in maintaining the physiological function of the intestine. Additionally, the immune system and the microbiome play an essential role in regulating intestinal renewal. The development of various mouse models, organoid co-cultures and single-cell technologies has led to advances in understanding signals emanating from the mesenchymal niche. Here, we review how intestinal regeneration is driven by stem cell self-renewal and differentiation, with an emphasis on the niche that fine tunes these processes in both homeostasis and injury conditions.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Jérémie Rispal
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Ophir Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences
- Program in Craniofacial Biology and Department of Orofacial Sciences
| |
Collapse
|
28
|
Extending the viability of human precision-cut intestinal slice model for drug metabolism studies. Arch Toxicol 2022; 96:1815-1827. [PMID: 35428896 PMCID: PMC9095520 DOI: 10.1007/s00204-022-03295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
Human Precision-cut intestinal slices (hPCIS) are used to study intestinal physiology, pathophysiology, drug efficacy, toxicology, kinetics, and metabolism. However, the use of this ex vivo model is restricted to approximately a 24 h timeframe because of declining viability of the hPCIS during traditional culture. We hypothesized that we could extend the hPCIS viability by using organoid medium. Therefore, we cultured hPCIS for up to 72 h in organoid media [expansion medium (Emed) and differentiation medium (Dmed)]. After incubation, we assessed culture-induced changes on viability markers, specific cell type markers and we assessed the metabolic activity of enterocytes by measuring midazolam metabolite formation. We show that the adenosine triphosphate (ATP)/protein ratio of Emed-cultured hPCIS and morphology of both Emed- and Dmed-cultured hPCIS was improved compared to WME-cultured hPCIS. Emed-cultured hPCIS showed an increased expression of proliferation and stem cell markers, whereas Dmed-cultured hPCIS showed an increased expression of proliferation and enterocyte markers, along with increased midazolam metabolism. Using the Emed, the viability of hPCIS could be extended for up to 72 h, and proliferating stem cells remained preserved. Using Dmed, hPCS also remained viable for up to 72 h, and specifically rescued the metabolizing enterocytes during culture. In conclusion, by using two different organoid culture media, we could extend the hPCIS viability for up to 72 h of incubation and specifically steer stem cells or enterocytes towards their original function, metabolism, and proliferation, potentially allowing pharmacokinetic and toxicology studies beyond the 24 h timeframe.
Collapse
|
29
|
Bravo Iniguez A, Tian Q, Du M, Zhu MJ. Alpha-Ketoglutarate Promotes Goblet Cell Differentiation and Alters Urea Cycle Metabolites in DSS-Induced Colitis Mice. Nutrients 2022; 14:nu14061148. [PMID: 35334805 PMCID: PMC8951758 DOI: 10.3390/nu14061148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
The metabolite, alpha-ketoglutarate (aKG), shows promise as an approach for ameliorating colitis, but much remains unknown about the full extent of its effects on the metabolome and mucosal barrier. To further elucidate this matter, C57BL/6 male mice received drinking water with or without 1% aKG for three weeks, then were subjected to 2.5% dextran sulfate sodium (DSS) induction for 7 days followed by 7 days of recovery. Cecal content and intestinal tissue samples were analyzed for changes in metabolite profile and signaling pathways. Gas chromatography-mass spectrometry (GC-MS) metabolomics revealed a separation between the metabolome of mice treated with or without aKG; putrescine and glycine were significantly increased; and ornithine and amide products, oleamide and urea were significantly decreased. Based on a pathway analysis, aKG treatment induced metabolite changes and enriched glutathione metabolism and the urea cycle. Additionally, signaling pathways committing epithelial cells to the secretory lineage were elevated in aKG-treated mice. Consistently, aKG supplementation increased goblet cells staining, mRNA expression of mucin 2, and, trefoil factor 3 and Krüppel-like factor 4, markers of goblet cell differentiation. These data suggest the ameliorating the effects of aKG against chemically induced colitis involves a reduction in harmful metabolites and the promotion of goblet cell differentiation, resulting in a more-fortified mucus layer.
Collapse
Affiliation(s)
- Alejandro Bravo Iniguez
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.T.)
| | - Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.T.)
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA;
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA;
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA; (A.B.I.); (Q.T.)
- Correspondence: ; Tel.: +1-509-335-4016
| |
Collapse
|
30
|
Watanabe S, Hibiya S, Katsukura N, Kitagawa S, Sato A, Okamoto R, Watanabe M, Tsuchiya K. Importance of Telomere Shortening in the Pathogenesis of Ulcerative Colitis: A New Treatment From the Aspect of Telomeres in Intestinal Epithelial Cells. J Crohns Colitis 2022; 16:109-121. [PMID: 34180971 DOI: 10.1093/ecco-jcc/jjab115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a chronic inflammatory disease of the colon with frequent relapses. Telomere shortening in intestinal epithelial cells has been reported in severe or longstanding cases. However, its influence on UC pathogenesis remains unelucidated. To this end, we evaluated telomere shortening using a long-term organoid inflammation model that we had originally established. METHODS A UC model using human colon organoids was established to assess telomere changes chronologically. MST-312 was used for the telomerase inhibition assay. The potential of telomerase activators as a novel UC treatment was evaluated with an in vitro model, including microarray analysis, and histological changes were assessed using xenotransplantation into mouse colonic mucosa. RESULTS Our UC model reproduced telomere shortening in vitro, which was induced by the continuous suppression of telomerase activity via P53. MST-312-based analysis revealed that telomere shortening was involved in the pathogenesis of UC. Madecassoside [MD] improved the telomere length of the UC model and UC patient-derived organoids, which further promoted cell proliferation in vitro and improved the graft take-rate of xenotransplantation. Moreover, histological analysis revealed that MD induced normal crypt structure with abundant goblet cells. CONCLUSIONS This study is the first to reveal the mechanism and importance of telomere shortening in the pathogenesis of UC. MD could be a novel candidate for UC treatment beyond endoscopic mucosal healing.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuji Hibiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiro Katsukura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayuki Kitagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
31
|
Nighot M, Ganapathy AS, Saha K, Suchanec E, Castillo EF, Gregory A, Shapiro S, Ma T, Nighot P. Matrix Metalloproteinase MMP-12 Promotes Macrophage Transmigration Across Intestinal Epithelial Tight Junctions and Increases Severity of Experimental Colitis. J Crohns Colitis 2021; 15:1751-1765. [PMID: 33836047 PMCID: PMC8495490 DOI: 10.1093/ecco-jcc/jjab064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Matrix metalloproteinases [MMPs] play an important role in extracellular matrix regulation during cell growth and wound healing. Increased expression of MMP-12 [human macrophage elastase] has been reported in inflammatory bowel disease [IBD] which is characterised by the loss of epithelial tight junction [TJ] barrier function and an excessive inflammatory response. The aim of this study was to investigate the role of MMP-12 in intestinal TJ barrier function and inflammation. METHODS Wild type [WT] and MMP-12-/- mice were subjected to experimental acute or chronic dextran sodium sulphate [DSS] colitis. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon and ex vivo by Ussing chamber studies. RESULTS DSS administration increased colonic permeability through modulation of TJ proteins and also increased MMP-12 expression in the colonic mucosa of WT mice. The acute as well as chronic DSS-induced increase in colonic TJ permeability and the severity of DSS colitis was found to be markedly attenuated in MMP-12-/- mice. The resistance of MMP-12-/- mice to DSS colitis was characterised by reduced macrophage infiltration and transmigration, and reduced basement membrane laminin degradation. Further in vitro and in vivo studies show that macrophage transmigration across the epithelial layer is MMP-12 dependent and the epithelial TJ barrier is compromised during macrophage transmigration. Conclusions: Together, these data demonstrate that MMP-12 mediated degradation of basement membrane laminin, macrophage transmigration, and associated loss of intestinal TJ barrier are key pathogenic factors for intestinal inflammation.
Collapse
Affiliation(s)
- Meghali Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | | | - Kushal Saha
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | - Eric Suchanec
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | - Eliseo F Castillo
- University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Alyssa Gregory
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| | - Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
32
|
Watanabe S, Nishimura R, Shirasaki T, Katsukura N, Hibiya S, Kirimura S, Negi M, Okamoto R, Matsumoto Y, Nakamura T, Watanabe M, Tsuchiya K. Schlafen 11 Is a Novel Target for Mucosal Regeneration in Ulcerative Colitis. J Crohns Colitis 2021; 15:1558-1572. [PMID: 33596306 DOI: 10.1093/ecco-jcc/jjab032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a chronic inflammatory disease of the colon with an intractable course. Although the goal of UC therapy is to achieve mucosal healing, the pathogenesis of mucosal injury caused by chronic inflammation remains unknown. We therefore aim to elucidate molecular mechanisms of mucosal injury by establishing in vitro and in vivo humanised UC-mimicking models. METHODS An in vitro model using human colon organoids was established by 60 weeks of inflammatory stimulation. The key gene for mucosal injury caused by long-term inflammation was identified by microarray analysis. An in vivo model was established by xenotransplantation of organoids into mouse colonic mucosa. RESULTS An in vitro model demonstrated that long-term inflammation induced irrecoverable changes in organoids: inflammatory response and apoptosis with oxidative stress and suppression of cell viability. This model also mimicked organoids derived from patients with UC at the gene expression and phenotype levels. Microarray analysis revealed Schlafen11 [SLFN11] was irreversibly induced by long-term inflammation. Consistently, SLFN11 was highly expressed in UC mucosa but absent in normal mucosa. The knockdown of SLFN11 [SLFN11-KD] suppressed apoptosis of intestinal epithelial cells [IECs] induced by inflammation. Moreover, SLFN11-KD improved the take rates of xenotransplantation and induced the regenerative changes of crypts observed in patients with UC in remission. CONCLUSIONS In vitro and in vivo UC-mimicking models were uniquely established using human colonic organoids. They revealed that SLFN11 is significant for mucosal injury in UC, and demonstrated its potential as a novel target for mucosal regeneration.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryu Nishimura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoaki Shirasaki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuhiro Katsukura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Hibiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mariko Negi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Matsumoto
- Department of Research and Development for Organoids, Juntendo University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Advanced Research Institute, Tokyo Medical and Dental University [TMDU], Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
33
|
Singh SB, Coffman CN, Carroll-Portillo A, Varga MG, Lin HC. Notch Signaling Pathway Is Activated by Sulfate Reducing Bacteria. Front Cell Infect Microbiol 2021; 11:695299. [PMID: 34336718 PMCID: PMC8319767 DOI: 10.3389/fcimb.2021.695299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/05/2022] Open
Abstract
Sulfate Reducing Bacteria (SRB), usually rare residents of the gut, are often found in increased numbers (called a SRB bloom) in inflammatory conditions such as Inflammatory Bowel Disease (IBD), pouchitis, and periodontitis. However, the underlying mechanisms of this association remain largely unknown. Notch signaling, a conserved cell-cell communication pathway, is usually involved in tissue development and differentiation. Dysregulated Notch signaling is observed in inflammatory conditions such as IBD. Lipolysaccharide and pathogens also activate Notch pathway in macrophages. In this study, we tested whether Desulfovibrio, the most dominant SRB genus in the gut, may activate Notch signaling. RAW 264.7 macrophages were infected with Desulfovibrio vulgaris (DSV) and analyzed for the expression of Notch signaling pathway-related proteins. We found that DSV induced protein expression of Notch1 receptor, Notch intracellular domain (NICD) and p21, a downstream Notch target, in a dose-and time-dependent manner. DSV also induced the expression of pro-IL1β, a precursor of IL-1β, and SOCS3, a regulator of cytokine signaling. The gamma secretase inhibitor DAPT or Notch siRNA dampened DSV-induced Notch-related protein expression as well the expression of pro-IL1β and SOCS3. Induction of Notch-related proteins by DSV was not affected by TLR4 -IN -C34(C34), a TLR4 receptor antagonist. Additionally, cell-free supernatant of DSV-infected macrophages induced NICD expression in uninfected macrophages. DSV also activated Notch pathway in the human epithelial cell line HCT116 and in mouse small intestine. Thus, our study uncovers a novel mechanism by which SRB interact with host cells by activating Notch signaling pathway. Our study lays a framework for examining whether the Notch pathway induced by SRB contributes to inflammation in conditions associated with SRB bloom and whether it can be targeted as a therapeutic approach to treat these conditions.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Cristina N Coffman
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Matthew G Varga
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States.,Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, United States
| |
Collapse
|
34
|
High Yap and Mll1 promote a persistent regenerative cell state induced by Notch signaling and loss of p53. Proc Natl Acad Sci U S A 2021; 118:2019699118. [PMID: 34039707 DOI: 10.1073/pnas.2019699118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.
Collapse
|
35
|
Collins M, Michot JM, Bellanger C, Mussini C, Benhadji K, Massard C, Carbonnel F. Notch inhibitors induce diarrhea, hypercrinia and secretory cell metaplasia in the human colon. EXCLI JOURNAL 2021; 20:819-827. [PMID: 34121974 PMCID: PMC8192874 DOI: 10.17179/excli2021-3572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
In humans, inhibition of Notch oncogenic signaling leads to tumor regression. Preclinical studies indicate that Notch signaling contributes to the maintenance of intestinal homeostasis. Here, we sought to describe the intestinal effects of a first-in-human Notch inhibitor in an indication of refractory cancer. Between 2014 and 2017, adult patients treated for refractory cancer with the novel Notch inhibitor LY3039478 and who had grade ≥ 2 diarrhea were referred to the gastroenterology department of a tertiary hospital in the Paris region of France. Eleven patients (median (range) age: 72 (29-83)) were included in the study. All patients had advanced cancer: adenoid cystic carcinoma (n=3, 27 %), sarcoma (n=3, 27 %), and other types (n=5, 46 %). In all cases, digestive tract endoscopy revealed abundant mucus in the intestinal lumen, and digestive tract biopsies showed an abnormally low proportion of enterocytes and marked elevation of the proportion of pseudostratified goblet cells. Microscopic inflammation was seen in colon biopsies from 2 of the 11 patients (18 %). The clinical, endoscopic and histological abnormalities were dependent on the dose of Notch inhibitor. All patients resolved their digestive signs or symptoms after discontinuing the dose and the median (range) time interval between discontinuation of the Notch inhibitor and resolution of all the gastrointestinal signs and symptoms was 7 days (4-24). Likewise, the median time interval between discontinuation and resolution of the histological abnormalities was 7 days (1-10). Blocking Notch signaling induces secretory cell metaplasia of the intestinal epithelium, which in turn leads to transient diarrhea. Our results confirm the role of Notch signaling in intestinal homeostasis in humans.
Collapse
Affiliation(s)
- Michael Collins
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France.,INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France
| | - Jean-Marie Michot
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Christophe Bellanger
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France
| | - Charlotte Mussini
- Department of Pathology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | | | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France.,Paris Sud University, Le Kremlin Bicêtre, France
| |
Collapse
|
36
|
Barnett AM, Mullaney JA, Hendriks C, Le Borgne L, McNabb WC, Roy NC. Porcine colonoids and enteroids keep the memory of their origin during regeneration. Am J Physiol Cell Physiol 2021; 320:C794-C805. [PMID: 33760661 DOI: 10.1152/ajpcell.00420.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell types (stem cells, enterocytes, goblet, and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin and colonoids with enteroids. Colonoids derived from three healthy pigs formed multilobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem cell markers Sox9 and Lgr5 encoding sex-determining region Y-box 9 and leucine-rich repeat-containing G protein-coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1, respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga, and Muc2 encoding atonal homolog 1, chromogranin A, and mucin 2, respectively, were decreased in colonoids, whereas Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A, respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell types with decreased barrier maturation relative to their tissues of origin.
Collapse
Affiliation(s)
- Alicia M Barnett
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Charlotte Hendriks
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lisa Le Borgne
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Nutrition, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Holloway EM, Czerwinski M, Tsai YH, Wu JH, Wu A, Childs CJ, Walton KD, Sweet CW, Yu Q, Glass I, Treutlein B, Camp JG, Spence JR. Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. Cell Stem Cell 2021; 28:568-580.e4. [PMID: 33278341 PMCID: PMC7935765 DOI: 10.1016/j.stem.2020.11.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The human intestinal stem cell niche supports self-renewal and epithelial function, but little is known about its development. We used single-cell mRNA sequencing with in situ validation approaches to interrogate human intestinal development from 7-21 weeks post conception, assigning molecular identities and spatial locations to cells and factors that comprise the niche. Smooth muscle cells of the muscularis mucosa, in close proximity to proliferative crypts, are a source of WNT and RSPONDIN ligands, whereas EGF is expressed far from crypts in the villus epithelium. Instead, an PDGFRAHI/F3HI/DLL1HI mesenchymal population lines the crypt-villus axis and is the source of the epidermal growth factor (EGF) family member NEUREGULIN1 (NRG1). In developing intestine enteroid cultures, NRG1, but not EGF, permitted increased cellular diversity via differentiation of secretory lineages. This work highlights the complexities of intestinal EGF/ERBB signaling and delineates key niche cells and signals of the developing intestine.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael Czerwinski
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caden W Sweet
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Qianhui Yu
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Peyravian N, Nobili S, Pezeshkian Z, Olfatifar M, Moradi A, Baghaei K, Anaraki F, Nazari K, Aghdaei HA, Zali MR, Mini E, Mojarad EN. Increased Expression of VANGL1 is Predictive of Lymph Node Metastasis in Colorectal Cancer: Results from a 20-Gene Expression Signature. J Pers Med 2021; 11:126. [PMID: 33672900 PMCID: PMC7918343 DOI: 10.3390/jpm11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed at building a prognostic signature based on a candidate gene panel whose expression may be associated with lymph node metastasis (LNM), thus potentially able to predict colorectal cancer (CRC) progression and patient survival. The mRNA expression levels of 20 candidate genes were evaluated by RT-qPCR in cancer and normal mucosa formalin-fixed paraffin-embedded (FFPE) tissues of CRC patients. Receiver operating characteristic curves were used to evaluate the prognosis performance of our model by calculating the area under the curve (AUC) values corresponding to stage and metastasis. A total of 100 FFPE primary tumor tissues from stage I-IV CRC patients were collected and analyzed. Among the 20 candidate genes we studied, only the expression levels of VANGL1 significantly varied between patients with and without LNMs (p = 0.02). Additionally, the AUC value of the 20-gene panel was found to have the highest predictive performance (i.e., AUC = 79.84%) for LNMs compared with that of two subpanels including 5 and 10 genes. According to our results, VANGL1 gene expression levels are able to estimate LNMs in different stages of CRC. After a proper validation in a wider case series, the evaluation of VANGL1 gene expression and that of the 20-gene panel signature could help in the future in the prediction of CRC progression.
Collapse
Affiliation(s)
- Noshad Peyravian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran; (N.P.); (Z.P.); (M.O.); (K.B.); (K.N.); (H.A.A.)
| | - Stefania Nobili
- Department of Neurosciences, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Zahra Pezeshkian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran; (N.P.); (Z.P.); (M.O.); (K.B.); (K.N.); (H.A.A.)
| | - Meysam Olfatifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran; (N.P.); (Z.P.); (M.O.); (K.B.); (K.N.); (H.A.A.)
| | - Afshin Moradi
- Department of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran;
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran; (N.P.); (Z.P.); (M.O.); (K.B.); (K.N.); (H.A.A.)
| | - Fakhrosadat Anaraki
- Colorectal Division of Department of Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran;
| | - Kimia Nazari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran; (N.P.); (Z.P.); (M.O.); (K.B.); (K.N.); (H.A.A.)
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19875-17411, Iran; (N.P.); (Z.P.); (M.O.); (K.B.); (K.N.); (H.A.A.)
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, Tehran 19857-17411, Iran;
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, Tehran 19857-17411, Iran;
| |
Collapse
|
39
|
Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. Intestinal Regeneration: Regulation by the Microenvironment. Dev Cell 2021; 54:435-446. [PMID: 32841594 DOI: 10.1016/j.devcel.2020.07.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
Damage to the intestinal stem cell niche can result from mechanical stress, infections, chronic inflammation or cytotoxic therapies. Progenitor cells can compensate for insults to the stem cell population through dedifferentiation. The microenvironment modulates this regenerative response by influencing the activity of signaling pathways, including Wnt, Notch, and YAP/TAZ. For instance, mesenchymal cells and immune cells become more abundant after damage and secrete signaling molecules that promote the regenerative process. Furthermore, regeneration is influenced by the nutritional state, microbiome, and extracellular matrix. Here, we review how all these components cooperate to restore epithelial homeostasis in the intestine after injury.
Collapse
Affiliation(s)
- Joris H Hageman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Maria C Heinz
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Kai Kretzschmar
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Mildred-Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jelte van der Vaart
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Hugo J G Snippert
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
40
|
Kuno R, Ito G, Kawamoto A, Hiraguri Y, Sugihara HY, Takeoka S, Nagata S, Takahashi J, Tsuchiya M, Anzai S, Mizutani T, Shimizu H, Yui S, Oshima S, Tsuchiya K, Watanabe M, Okamoto R. Notch and TNF-α signaling promote cytoplasmic accumulation of OLFM4 in intestinal epithelium cells and exhibit a cell protective role in the inflamed mucosa of IBD patients. Biochem Biophys Rep 2021; 25:100906. [PMID: 33490652 PMCID: PMC7808948 DOI: 10.1016/j.bbrep.2020.100906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD. Notch and TNF-α signaling is important in IECs of patients with IBD. Notch and TNF-α signaling promotes the cytoplasmic accumulation of OLFM4. OLFM4 accumulation may have anti-apoptotic properties. OLFM4 could protect against mucosal inflammation in IBD.
Collapse
Key Words
- CD, Crohn's disease
- ChIP, chromatin immunoprecipitation
- DBZ, intestinal epithelial cells
- Dox, doxycycline
- IBD, inflammatory bowel disease
- IEC, dibenzazepine
- NICD, Notch intracellular domain
- Notch pathway
- OLFM4
- TNF-α, tumour necrosis factor α
- Tumour necrosis factor-α (TNF-α)
- UC, ulcerative colitis
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction analysis
Collapse
Affiliation(s)
- Reiko Kuno
- Department of Gastroenterology and Hepatology, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ami Kawamoto
- Department of Gastroenterology and Hepatology, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Japan
| | | | | | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Japan
| | | | - Mao Tsuchiya
- Department of Gastroenterology and Hepatology, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Japan
| | | | - Hiromichi Shimizu
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
41
|
Xie Z, Wang Y, Yang G, Han J, Zhu L, Li L, Zhang S. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis 2021; 12:79. [PMID: 33436549 PMCID: PMC7804279 DOI: 10.1038/s41419-021-03395-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder that primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Owing to its increasing prevalence in Eastern countries and the intractable challenges faced during IBD treatment, extensive research on IBD has been carried out over the last few years. Although the precise aetiology of IBD is undefined, the currently accepted hypothesis for IBD pathogenesis considers it to be a combination of environment, genetic predisposition, gut microbiota, and abnormal immunity. A recently emerged signalling pathway, the Hippo pathway, acts as a key regulator of cell growth, tissue homoeostasis, organ size, and has been implicated in several human cancers. In the past few years, studies have revealed the importance of the Hippo pathway in gastrointestinal tract physiology and gastrointestinal diseases, such as colorectal cancer and IBD. However, the role of the Hippo pathway and its exact impact in IBD remains to be elucidated. This review summarises the latest scientific literature on the involvement of this pathway in IBD from the following perspectives that account for the IBD pathogenesis: intestinal epithelial cell regeneration, immune regulation, gut microbiota, and angiogenesis. A comprehensive understanding of the specific role of the Hippo pathway in IBD will provide novel insights into future research directions and clinical implications of the Hippo pathway.
Collapse
Affiliation(s)
- Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guang Yang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liguo Zhu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
42
|
Ye Y, Zhang L, Hu T, Yin J, Xu L, Pang Z, Chen W. CircRNA_103765 acts as a proinflammatory factor via sponging miR-30 family in Crohn's disease. Sci Rep 2021; 11:565. [PMID: 33436852 PMCID: PMC7804428 DOI: 10.1038/s41598-020-80663-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests that circular RNAs (circRNAs) play critical roles in various pathophysiological activities. However, the role of circRNAs in inflammatory bowel disease (IBD) remains unclear. Here we report the potential roles of hsa_circRNA_103765 in regulating cell apoptosis induced by TNF-α in Crohn’s disease (CD). We identify that CircRNA_103765 expression was significantly upregulated in peripheral blood mononuclear cells (PBMCs) of patients with active IBD. A positive correlation with TNF-α significantly enhanced circRNA_103765 expression in CD, which was significantly reversed by anti-TNF-α mAb (infliximab) treatment. In vitro experiments showed that TNF-α could induce the expression of circRNA_103765, which was cell apoptosis dependent, while silencing of circRNA_103765 could protect human intestinal epithelial cells (IECs) from TNF-α-induced apoptosis. In addition, circRNA_103765 acted as a molecular sponge to adsorb the miR-30 family and impair the negative regulation of Delta-like ligand 4 (DLL4). Collectively, CircRNA_103765 is a novel important regulator of the pathogenesis of IBD via sponging miR-30 family-mediated DLL4 expression changes. Blockade of circRNA_103765 could serve as a novel approach for the treatment of IBD patients.
Collapse
Affiliation(s)
- Yulan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, China.,Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Liping Zhang
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Tong Hu
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Juan Yin
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Lijuan Xu
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Zhi Pang
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, China.
| |
Collapse
|
43
|
Kurokawa K, Hayakawa Y, Koike K. Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. Int J Mol Sci 2020; 22:ijms22010357. [PMID: 33396437 PMCID: PMC7795504 DOI: 10.3390/ijms22010357] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.
Collapse
Affiliation(s)
| | - Yoku Hayakawa
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-5800-8812
| | | |
Collapse
|
44
|
Li X, Liu W, Geng C, Li T, Li Y, Guo Y, Wang C. Ginsenoside Rg3 Suppresses Epithelial-Mesenchymal Transition via Downregulating Notch-Hes1 Signaling in Colon Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:217-235. [PMID: 33371813 DOI: 10.1142/s0192415x21500129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Invasion and metastasis are the major causes leading to the high mortality of colon cancer. Ginsenoside Rg3 (Rg3), as a bioactive ginseng compound, is suggested to possess antimetastasis effects in colon cancer. However, the underlying molecular mechanisms remain unclear. In this study, we reported that Rg3 could effectively inhibit colon cancer cell invasion and metastasis through in vivo and in vitro studies. In addition, Rg3 suppressed the epithelial-mesenchymal transition (EMT) of HCT15 cells and SW48 cells evidenced by detecting EMT related markers E-cadherin, vimentin, and snail expression. Furthermore, inhibition of Notch signaling by LY411,575 or specific Hes1 siRNA obviously repressed colon cancer cell migration and metastasis, and induced increase in E-cadherin and decrease in vimentin and snail. Meanwhile, the expression of NICD and Hes1 was obviously decreased in the presence of Rg3. However, Rg3 failed to suppress EMT in Hes1 overexpressed colon cancer cells. In particular, Rg3 significantly reversed IL-6-induced EMT promotion and blocked IL-6- induced NICD and Hes1 upregulations. Overall, these findings suggested that Rg3 could inhibit colon cancer migration and metastasis via suppressing Notch-Hes1-EMT signaling.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Wei Liu
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Tingting Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, P. R. China
| |
Collapse
|
45
|
Frick A, Khare V, Jimenez K, Dammann K, Lang M, Krnjic A, Gmainer C, Baumgartner M, Mesteri I, Gasche C. A Novel PAK1-Notch1 Axis Regulates Crypt Homeostasis in Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2020; 11:892-907.e1. [PMID: 33189893 PMCID: PMC7900837 DOI: 10.1016/j.jcmgh.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS p21-activated kinase-1 (PAK1) belongs to a family of serine-threonine kinases and contributes to cellular pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and Wingless-related integration site(Wnt)/β-catenin, all of which are involved in intestinal homeostasis. Overexpression of PAK1 is linked to inflammatory bowel disease as well as colitis-associated cancer (CAC), and similarly was observed in interleukin (IL)10 knockout (KO) mice, a model of colitis and CAC. Here, we tested the effects of PAK1 deletion on intestinal inflammation and carcinogenesis in IL10 KO mice. METHODS IL10/PAK1 double-knockout (DKO) mice were generated and development of colitis and CAC was analyzed. Large intestines were measured and prepared for histology or RNA isolation. Swiss rolls were stained with H&E and periodic acid-Schiff. Co-immunoprecipitation and immunofluorescence were performed using intestinal organoids, SW480, and normal human colon epithelial cells 1CT. RESULTS When compared with IL10 KO mice, DKOs showed longer colons and prolonged crypts, despite having higher inflammation and numbers of dysplasia. Crypt hyperproliferation was associated with Notch1 activation and diminished crypt differentiation, indicated by a reduction of goblet cells. Gene expression analysis indicated up-regulation of the Notch1 target hairy and enhancer of split-1 and the stem cell receptor leucin-rich repeat-containing G-protein-coupled receptor 5 in DKO mice. Interestingly, the stem cell marker olfactomedin-4 was present in colonic tissue. Increased β-catenin messenger RNA and cytoplasmic accumulation indicated aberrant Wnt signaling. Co-localization and direct interaction of Notch1 and PAK1 was found in colon epithelial cells. Notch1 activation abrogated this effect whereas silencing of PAK1 led to Notch1 activation. CONCLUSIONS PAK1 contributes to the regulation of crypt homeostasis under inflammatory conditions by controlling Notch1. This identifies a novel PAK1-Notch1 axis in intestinal pathophysiology of inflammatory bowel disease and CAC.
Collapse
Affiliation(s)
- Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kristine Jimenez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kyle Dammann
- Department of Surgery, Saint Luke's University Hospital Bethlehem, Bethlehem, Pennsylvania
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anita Krnjic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christina Gmainer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Kobia FM, Preusse K, Dai Q, Weaver N, Hass MR, Chaturvedi P, Stein SJ, Pear WS, Yuan Z, Kovall RA, Kuang Y, Eafergen N, Sprinzak D, Gebelein B, Brunskill EW, Kopan R. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol 2020; 18:e3000850. [PMID: 33017398 PMCID: PMC7561103 DOI: 10.1371/journal.pbio.3000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.
Collapse
Affiliation(s)
- Francis M. Kobia
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nicholas Weaver
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew R. Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sarah J. Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Natanel Eafergen
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric W. Brunskill
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
47
|
A Review on Notch Signaling and Colorectal Cancer. Cells 2020; 9:cells9061549. [PMID: 32630477 PMCID: PMC7349609 DOI: 10.3390/cells9061549] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest mortality rates despite the advancement of treatment options. Aggressive CRC remains difficult to treat owing to the activation of oncogenic signaling pathways such as the Notch signaling pathway. The role of Notch receptors varies according to the difference in their structures; in particular, aberrant activation of Notch1 has been attributed to the severity of CRC. Notch1 activation in CRC is inhibited by small molecule inhibitors that target γ-secretase, an enzyme responsible for the third and last cleavage step of Notch receptors. γ-Secretase also produces the intracellular domain that finally carries out cellular functions by activating downstream effectors. However, most inhibitors block γ-secretase non-selectively and cause severe toxicity. Plant-source-derived small molecules, monoclonal antibodies, biological molecules (such as SiRNAs), and compounds targeting the Notch1 receptor itself or the downstream molecules such as HES1 are some of the options that are in advanced stages of clinical trials. The Negative Regulatory Region (NRR), which plays a central role in the transduction of Notch1 signaling in the event of ligand-dependent and ligand-independent Notch1 processing is also being targeted specifically by monoclonal antibodies (mAbs) to prevent aberrant Notch1 activation. In this review, we discuss the role of Notch1 in CRC, particularly its metastatic phenotype, and how mutations in Notch1, specifically in its NRR region, contribute to the aberrant activation of Notch1 signaling, which, in turn, contributes to CRC pathogenesis. We also discuss prevailing and emerging therapies that target the Notch1 receptor and the NRR region, and we highlight the potential of these therapies in abrogating Notch signaling and, thus, CRC development and progression.
Collapse
|
48
|
Okamoto R, Shimizu H, Suzuki K, Kawamoto A, Takahashi J, Kawai M, Nagata S, Hiraguri Y, Takeoka S, Sugihara HY, Yui S, Watanabe M. Organoid-based regenerative medicine for inflammatory bowel disease. Regen Ther 2020; 13:1-6. [PMID: 31970266 PMCID: PMC6961757 DOI: 10.1016/j.reth.2019.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) consists of two major idiopathic gastrointestinal diseases: ulcerative colitis and Crohn's disease. Although a significant advance has been achieved in the treatment of IBD, there remains a particular population of patients that are refractory to the conventional treatments, including the biologic agents. Studies have revealed the importance of "mucosal healing" in improving the prognosis of those difficult-to-treat patients, which indicates the proper and complete regeneration of the damaged intestinal tissue. In this regard, organoid-based regenerative medicine may have the potential to dramatically promote the achievement of mucosal healing in refractory IBD patients, and thereby improve their long-term prognosis as well. So far, studies have shown that hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) may have some beneficial effect on IBD patients through their transplantation or transfusion. Recent advance in stem cell biology has added intestinal stem cells (ISCs) as a new player in this field. It has been shown that ISCs can be grown in vitro as organoids and that those ex-vivo cultured organoids can be employed as donor cells for transplantation studies. Further studies using mice colitis models have shown that ex-vivo cultured organoids can engraft onto the colitic ulcers and reconstruct the crypt-villus structures. Such transplantation of organoids may not only facilitate the regeneration of the refractory ulcers that may persist in IBD patients but may also reduce the risk of developing colitis-associated cancers. Endoscopy-assisted transplantation of organoids may, therefore, become one of the alternative therapies for refractory IBD patients.
Collapse
Affiliation(s)
- Ryuichi Okamoto
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohei Suzuki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ami Kawamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junichi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mao Kawai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayaka Takeoka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mamoru Watanabe
- Institute of Advanced Study, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
49
|
Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 2019; 65:241-249. [PMID: 31857673 DOI: 10.1038/s10038-019-0699-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) had discovered several genetic risk loci for IgA nephropathy (IgAN), where the susceptibility genes of CARD9 and HORMAD2 for IgAN were also implicated in inflammatory bowel disease (IBD), suggesting a shared genetic etiology of these two diseases. The aim of this study is to explore the common susceptibility loci between IgAN and IBD and provide evidences to elucidate the shared pathogenesis between these two autoimmune diseases. Nineteen single-nucleotide polymorphisms (SNPs) associated with IBD in Asian populations were selected through the National Human Genome Research Institute (NHGRI) GWAS Catalog, and 2078 IgAN patients and 2085 healthy individuals of Chinese Han ancestry were included in the two-stage case-control association study. Serum levels of complement factor B (CFB) and complement split product C3a were detected by enzyme-linked immunosorbent assay (ELISA). One significant shared association at rs4151657 (OR = 1.28, 95%CI = 1.13-1.45, P = 1.42 × 10-4) was discovered between these two diseases, which implicated CFB as a susceptibility gene for IgAN. Genotype-phenotype correlation analysis found significant association of the rs4151657-C allele with decreased serum C3 levels. In addition, the rs4151657-C allele was also associated with higher CFB levels and C3a levels, which suggested a certain degree of systemic complement activation in IgAN patients with the rs4151657-CT or CC genotypes. Our study identified one risk locus (CFB) shared by IgAN and IBD, and genetic variants of CFB may affect complement activation and associate with the predisposition to IgAN.
Collapse
|
50
|
The Role of Immune Cells and Cytokines in Intestinal Wound Healing. Int J Mol Sci 2019; 20:ijms20236097. [PMID: 31816903 PMCID: PMC6929186 DOI: 10.3390/ijms20236097] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal wound healing is a complicated process that not only involves epithelial cells but also immune cells. In this brief review, we will focus on discussing the contribution and regulation of four major immune cell types (neutrophils, macrophages, regulatory T cells, and innate lymphoid cells) and four cytokines (interleukin-10, tumor necrosis factor alpha, interleukin-6, and interleukin-22) to the wound repair process in the gut. Better understanding of these immune factors will be important for developing novel targeted therapy.
Collapse
|