1
|
Lin LC, Liu ZY, Tu B, Song K, Sun H, Zhou Y, Sha JM, Zhang Y, Yang JJ, Zhao JY, Tao H. Epigenetic signatures in cardiac fibrosis: Focusing on noncoding RNA regulators as the gatekeepers of cardiac fibroblast identity. Int J Biol Macromol 2024; 254:127593. [PMID: 37898244 DOI: 10.1016/j.ijbiomac.2023.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
Kawasaki NK, Suhara T, Komai K, Shimada BK, Yorichika N, Kobayashi M, Baba Y, Higa JK, Matsui T. The role of ferroptosis in cell-to-cell propagation of cell death initiated from focal injury in cardiomyocytes. Life Sci 2023; 332:122113. [PMID: 37739163 PMCID: PMC10591893 DOI: 10.1016/j.lfs.2023.122113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
AIMS Ferroptosis has grown in importance as a key factor in ischemia-reperfusion (I/R) injury. This study explores the mechanism underlying fibrotic scarring extending along myofibers in cardiac ischemic injury and demonstrates the integral role of ferroptosis in causing a unique cell death pattern linked to I/R injury. MAIN METHODS Cadaveric hearts from individuals who had ischemic injury were examined by histological assays. We created a novel model of inducing cell death in H9c2 cells, and used it to demonstrate ferroptotic cell death extending in a cell-to-cell manner. Ex vivo Langendorff-perfused hearts were used alongside the model to replicate cell death extension along myofibers while also demonstrating protective effects of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). KEY FINDINGS Human hearts from individuals who had I/R injury demonstrated scarring along myofibers that was consistent with mouse models, suggesting that cell death extended from cell-to-cell. Treatment with Ras-selective lethal 3 (RSL3), a ferroptosis inducer, and exposure to excess iron exacerbated cell death propagation in in vitro models, and inhibition of ferroptosis by Fer-1 blunted this effect in both settings. In ex vivo models, Fer-1 was sufficient to reduce cell death along the myofibers caused by external injury. SIGNIFICANCE The unique I/R injury-induced pattern of cell death along myofibers requires novel injury models that mimic this phenomenon, thus we established new methods to replicate it. Ferroptosis is important in propagating injury between cells and better understanding this mechanism may lead to therapeutic responses that limit I/R injury.
Collapse
Affiliation(s)
- Nicholas K Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA; Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kyoko Komai
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Briana K Shimada
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA
| | - Naaiko Yorichika
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA
| | - Motoi Kobayashi
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA; Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Jason K Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, USA.
| |
Collapse
|
4
|
Wingard MC, Dalal S, Shook PL, Ramirez P, Raza MU, Johnson P, Connelly BA, Thewke D, Singh M, Singh K. Deficiency of ataxia-telangiectasia mutated kinase attenuates Western-type diet-induced cardiac dysfunction in female mice. Physiol Rep 2022; 10:e15434. [PMID: 36117462 PMCID: PMC9483716 DOI: 10.14814/phy2.15434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic consumption of Western-type diet (WD) induces cardiac structural and functional abnormalities. Previously, we have shown that WD consumption in male ATM (ataxia-telangiectasia mutated kinase) deficient mice associates with accelerated body weight (BW) gain, cardiac systolic dysfunction with increased preload, and exacerbation of hypertrophy, apoptosis, and inflammation. This study investigated the role of ATM deficiency in WD-induced changes in functional and biochemical parameters of the heart in female mice. Six-week-old wild-type (WT) and ATM heterozygous knockout (hKO) female mice were placed on WD or NC (normal chow) for 14 weeks. BW gain, fat accumulation, and cardiac functional and biochemical parameters were measured 14 weeks post-WD. WD-induced subcutaneous and total fat contents normalized to body weight were higher in WT-WD versus hKO-WD. Heart function measured using echocardiography revealed decreased percent fractional shortening and ejection fraction, and increased LV end systolic diameter and volume in WT-WD versus WT-NC. These functional parameters remained unchanged in hKO-WD versus hKO-NC. Myocardial fibrosis, myocyte hypertrophy, and apoptosis were higher in WT-WD versus WT-NC. However, apoptosis was significantly lower and hypertrophy was significantly higher in hKO-WD versus WT-WD. MMP-9 and Bax expression, and Akt activation were higher in WT-WD versus WT-NC. PARP-1 (full-length) expression and mTOR activation were lower in WT-WD versus hKO-WD. Thus, ATM deficiency in female mice attenuates fat weight gain, preserves heart function, and associates with decreased cardiac cell apoptosis in response to WD.
Collapse
Affiliation(s)
- Mary C. Wingard
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Suman Dalal
- Department of Health SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Center of Excellence in Inflammation, Infectious Disease and ImmunityJohnson CityTennesseeUSA
| | - Paige L. Shook
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Paulina Ramirez
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Muhammad U. Raza
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Patrick Johnson
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Barbara A. Connelly
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
- Research and Development ServiceJames H Quillen Veterans Affairs Medical CenterMountain HomeTennesseeUSA
| | - Douglas P. Thewke
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Mahipal Singh
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Krishna Singh
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
- Center of Excellence in Inflammation, Infectious Disease and ImmunityJohnson CityTennesseeUSA
- Research and Development ServiceJames H Quillen Veterans Affairs Medical CenterMountain HomeTennesseeUSA
| |
Collapse
|
5
|
Exogenous ANP Treatment Ameliorates Myocardial Insulin Resistance and Protects against Ischemia-Reperfusion Injury in Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms23158373. [PMID: 35955507 PMCID: PMC9369294 DOI: 10.3390/ijms23158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence suggests natriuretic peptides (NPs) coordinate interorgan metabolic crosstalk. We recently reported exogenous ANP treatment ameliorated systemic insulin resistance by inducing adipose tissue browning and attenuating hepatic steatosis in diet-induced obesity (DIO). We herein investigated whether ANP treatment also ameliorates myocardial insulin resistance, leading to cardioprotection during ischemia-reperfusion injury (IRI) in DIO. Mice fed a high-fat diet (HFD) or normal-fat diet for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. Left ventricular BNP expression was substantially reduced in HFD hearts. Intraperitoneal-insulin-administration-induced Akt phosphorylation was impaired in HFD hearts, which was restored by ANP treatment, suggesting that ANP treatment ameliorated myocardial insulin resistance. After ischemia-reperfusion using the Langendorff model, HFD impaired cardiac functional recovery with a corresponding increased infarct size. However, ANP treatment improved functional recovery and reduced injury while restoring impaired IRI-induced Akt phosphorylation in HFD hearts. Myocardial ultrastructural analyses showed increased peri-mitochondrial lipid droplets with concomitantly decreased ATGL and HSL phosphorylation levels in ANP-treated HFD, suggesting that ANP protects mitochondria from lipid overload by trapping lipids. Accordingly, ANP treatment attenuated mitochondria cristae disruption after IRI in HFD hearts. In summary, exogenous ANP treatment ameliorates myocardial insulin resistance and protects against IRI associated with mitochondrial ultrastructure modifications in DIO. Replenishing biologically active NPs substantially affects HFD hearts in which endogenous NP production is impaired.
Collapse
|
6
|
Crewe C, Funcke JB, Li S, Joffin N, Gliniak CM, Ghaben AL, An YA, Sadek HA, Gordillo R, Akgul Y, Chen S, Samovski D, Fischer-Posovszky P, Kusminski CM, Klein S, Scherer PE. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 2021; 33:1853-1868.e11. [PMID: 34418352 PMCID: PMC8429176 DOI: 10.1016/j.cmet.2021.08.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Adipocytes undergo intense energetic stress in obesity resulting in loss of mitochondrial mass and function. We have found that adipocytes respond to mitochondrial stress by rapidly and robustly releasing small extracellular vesicles (sEVs). These sEVs contain respiration-competent, but oxidatively damaged mitochondrial particles, which enter circulation and are taken up by cardiomyocytes, where they trigger a burst of ROS. The result is compensatory antioxidant signaling in the heart that protects cardiomyocytes from acute oxidative stress, consistent with a preconditioning paradigm. As such, a single injection of sEVs from energetically stressed adipocytes limits cardiac ischemia/reperfusion injury in mice. This study provides the first description of functional mitochondrial transfer between tissues and the first vertebrate example of "inter-organ mitohormesis." Thus, these seemingly toxic adipocyte sEVs may provide a physiological avenue of potent cardio-protection against the inevitable lipotoxic or ischemic stresses elicited by obesity.
Collapse
Affiliation(s)
- Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shujuan Li
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatric Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A Sadek
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dmitri Samovski
- Center for Human Nutrition and the Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Klein
- Center for Human Nutrition and the Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Li H, Yang W, Wang Z, Wang X, Hao Y, Xi J, Lu H, Du Z, Feng J, Zhang B, Ma D. Computational research of mTORC1 inhibitor on cerebral ischemia-reperfusion injury. Aging (Albany NY) 2021; 13:19598-19613. [PMID: 34343111 PMCID: PMC8386574 DOI: 10.18632/aging.203371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Ischemic stroke contributes to more than 80% of all strokes and has the four characteristics of high prevalence, high disability, high mortality, and high recurrence. Stroke is a preventable and controllable disease. In addition to controlling the primary disease, effective prevention and control measures need to be given to the occurrence and development of stroke. With the development and progress of modern treatment methods for ischemic stroke, the mortality and disability rate have decreased significantly. At present, the main treatment methods for ischemic stroke include thrombolysis, thrombus removal at the ultra-early stage, and treatment of improving collateral circulation in the acute phase. However, the ultra-early and early blood reperfusion involves reperfusion injury, which will cause secondary nerve damage, which is called cerebral ischemia/reperfusion injury (CIRI). Studies have found that autophagy is involved in the entire process of CIRI and can reduce the damage of CIRI. The mammalian target of Rapamycin (mTORC1) is the primary signal pathway regulating autophagy. And the mTORC1 inhibitor, Rapamycin, has been proved to exert neuroprotective effects in the ultra-early and early cerebral ischemia-reperfusion. Therefore, screening and designing mTORC1 inhibitors is very important to control reperfusion injury and reduce neuronal death and apoptosis. In this research, plenty of computer-assisted was applied to virtually screen and select potential mTORC1's inhibitors. We used Libdock to screen the structure and performed toxicity predictions, ADME (absorption, distribution, metabolism, excretion) to predict small molecules' pharmacological and toxicological properties. To assess the binding mechanism and affinity between the mTORC1 dimer and the ligand, molecular docking was performed. Then, the pharmacophore of small molecules in the docking conformation with the protein was supplemented by Schrodinger. Additionally, molecular dynamics simulations were conducted to assess if the ligand-receptor complex was stable in a natural environment. Furthermore, an experiment was performed to verify the inhibitory effect of compound 1 and compound 2 on mTOR protein. All in all, the study provides a hand of candidate drugs as well as pharmacological properties, which can play an essential role in mTORC1 inhibitors.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Zhenhua Wang
- Clinical College, Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianxin Xi
- Clinical College, Jilin University, Changchun, China
| | - Han Lu
- Clinical College, Jilin University, Changchun, China
| | - Zhishan Du
- Clinical College, Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bao Zhang
- Department of Urology Surgery, Aerospace Center Hospital, Beijing, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel) 2021; 10:antiox10050667. [PMID: 33922912 PMCID: PMC8145541 DOI: 10.3390/antiox10050667] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
Collapse
Affiliation(s)
- José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Diego Muñoz-Salamanca
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
- Correspondence:
| |
Collapse
|
9
|
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 2021; 19:162. [PMID: 33882940 PMCID: PMC8058748 DOI: 10.1186/s12967-021-02833-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic Fatigue Syndrome or Myalgic Encephaloymelitis (ME/CFS) is a frequent debilitating disease with an enigmatic etiology. The finding of autoantibodies against ß2-adrenergic receptors (ß2AdR) prompted us to hypothesize that ß2AdR dysfunction is of critical importance in the pathophysiology of ME/CFS. Our hypothesis published previously considers ME/CFS as a disease caused by a dysfunctional autonomic nervous system (ANS) system: sympathetic overactivity in the presence of vascular dysregulation by ß2AdR dysfunction causes predominance of vasoconstrictor influences in brain and skeletal muscles, which in the latter is opposed by the metabolically stimulated release of endogenous vasodilators (functional sympatholysis). An enigmatic bioenergetic disturbance in skeletal muscle strongly contributes to this release. Excessive generation of these vasodilators with algesic properties and spillover into the systemic circulation could explain hypovolemia, suppression of renin (paradoxon) and the enigmatic symptoms. In this hypothesis paper the mechanisms underlying the energetic disturbance in muscles will be explained and merged with the first hypothesis. The key information is that ß2AdR also stimulates the Na+/K+-ATPase in skeletal muscles. Appropriate muscular perfusion as well as function of the Na+/K+-ATPase determine muscle fatigability. We presume that dysfunction of the ß2AdR also leads to an insufficient stimulation of the Na+/K+-ATPase causing sodium overload which reverses the transport direction of the sodium-calcium exchanger (NCX) to import calcium instead of exporting it as is also known from the ischemia-reperfusion paradigm. The ensuing calcium overload affects the mitochondria, cytoplasmatic metabolism and the endothelium which further worsens the energetic situation (vicious circle) to explain postexertional malaise, exercise intolerance and chronification. Reduced Na+/K+-ATPase activity is not the only cause for cellular sodium loading. In poor energetic situations increased proton production raises intracellular sodium via sodium-proton-exchanger subtype-1 (NHE1), the most important proton-extruder in skeletal muscle. Finally, sodium overload is due to diminished sodium outward transport and enhanced cellular sodium loading. As soon as this disturbance would have occurred in a severe manner the threshold for re-induction would be strongly lowered, mainly due to an upregulated NHE1, so that it could repeat at low levels of exercise, even by activities of everyday life, re-inducing mitochondrial, metabolic and vascular dysfunction to perpetuate the disease.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
10
|
Shimada BK, Yorichika N, Higa JK, Baba Y, Kobayashi M, Aoyagi T, Suhara T, Matsui T. mTOR-mediated calcium transients affect cardiac function in ex vivo ischemia-reperfusion injury. Physiol Rep 2021; 9:e14807. [PMID: 33769701 PMCID: PMC7995667 DOI: 10.14814/phy2.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, cell growth, and survival. While previous studies using transgenic mice with cardiac-specific overexpression of mTOR (mTOR-Tg) demonstrated the protective effects of cardiac mTOR against ischemia-reperfusion (I/R) injury in both ex vivo and in vivo models, the mechanisms underlying the role of cardiac mTOR in cardiac function following I/R injury are not well-understood. Torin1, a pharmacological inhibitor of mTOR complex (mTORC) 1 and mTORC2, significantly decreased functional recovery of LV developed pressure in ex vivo I/R models (p < 0.05). To confirm the role of mTOR complexes in I/R injury, we generated cardiac-specific mTOR-knockout (CKO) mice. In contrast to the effects of Torin1, CKO hearts recovered better after I/R injury than control hearts (p < 0.05). Interestingly, the CKO hearts had exhibited irregular contractions during the reperfusion phase. Calcium is a major factor in Excitation-Contraction (EC) coupling via Sarcoplasmic Reticulum (SR) calcium release. Calcium is also key in opening the mitochondrial permeability transition pore (mPTP) and cell death following I/R injury. Caffeine-induced SR calcium release in isolated CMs showed that total SR calcium content was lower in CKO than in control CMs. Western blotting showed that a significant amount of mTOR localizes to the SR/mitochondria and that GSK3-β phosphorylation, a key factor in SR calcium mobilization, was decreased. These findings suggest that cardiac mTOR located to the SR/mitochondria plays a vital role in EC coupling and cell survival in I/R injury.
Collapse
Affiliation(s)
- Briana K. Shimada
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Naaiko Yorichika
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Jason K. Higa
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Yuichi Baba
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
- Department of Cardiology and GeriatricsKochi Medical SchoolKochi UniversityKochiJapan
| | - Motoi Kobayashi
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Toshinori Aoyagi
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
- Department of AnesthesiologyKeio University School of MedicineTokyoJapan
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| |
Collapse
|
11
|
Yepuri G, Schmidt AM, Ramasamy R. Chronic low-dose rapamycin treatment fine tunes cardioprotective signalling in ischaemia-reperfused diabetic hearts. Cardiovasc Res 2020; 116:2038-2039. [PMID: 33079981 DOI: 10.1093/cvr/cvaa304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gautham Yepuri
- Diabetes Research Program, New York University Grossman Medical Center, 430 East 30th Street, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, New York University Grossman Medical Center, 430 East 30th Street, New York, NY, 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, New York University Grossman Medical Center, 430 East 30th Street, New York, NY, 10016, USA
| |
Collapse
|
12
|
Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J Nutr Biochem 2020; 88:108503. [PMID: 32956825 DOI: 10.1016/j.jnutbio.2020.108503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Du Toit EF, Tai WS, Cox A, O’Connor D, Griffith TA, Helman T, Wendt L, Peart JN, Stapelberg NJC, Headrick JP. Synergistic effects of low-level stress and a Western diet on metabolic homeostasis, mood, and myocardial ischemic tolerance. Am J Physiol Regul Integr Comp Physiol 2020; 319:R347-R357. [DOI: 10.1152/ajpregu.00322.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How low-level psychological stress and overnutrition interact in influencing cardiometabolic disease is unclear. Mechanistic overlaps suggest potential synergies; however, findings are contradictory. We test whether low-level stress and Western diet (WD) feeding synergistically influence homeostasis, mood, and myocardial ischemic tolerance. Male C57BL6/J mice were fed a control diet or WD (32%/57%/11% calories from fat/carbohydrates/protein) for 12 wk, with subgroups restrained for 30 min/day over the final 3 wk. Metabolism, behavior, tolerance of perfused hearts to ischemia-reperfusion (I/R), and cardiac “death proteins” were assessed. The WD resulted in insignificant trends toward increased body weight (+5%), glucose (+40%), insulin (+40%), triglycerides (+15%), and cholesterol (+20%) and reduced leptin (−20%) while significantly reducing insulin sensitivity [100% rise in homeostasis model assessment of insulin resistance (HOMA-IR), P < 0.05]. Restraint did not independently influence metabolism while increasing HOMA-IR a further 50% (and resulting in significant elevations in insulin and glucose to 60–90% above control) in WD mice ( P < 0.05), despite blunting weight gain in control and WD mice. Anxiogenesis with restraint or WD was nonadditive, whereas anhedonia (reduced sucrose consumption) only arose with their combination. Neuroinflammation markers (hippocampal TNF-α, Il-1b) were unchanged. Myocardial I/R tolerance was unaltered with stress or WD alone, whereas the combination worsened dysfunction and oncosis [lactate dehydrogenase (LDH) efflux]. Apoptosis (nucleosome accumulation) and death protein expression (BAK, BAX, BCL-2, RIP-1, TNF-α, cleaved caspase-3, and PARP) were unchanged. We conclude that mild, anxiogenic yet cardio-metabolically “benign” stress interacts synergistically with a WD to disrupt homeostasis, promote anhedonia (independently of neuroinflammation), and impair myocardial ischemic tolerance (independently of apoptosis and death protein levels).
Collapse
Affiliation(s)
- Eugene F. Du Toit
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Wei Shan Tai
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Amanda Cox
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Dylan O’Connor
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Tia A. Griffith
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Tessa Helman
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Lauren Wendt
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jason N. Peart
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Nicolas J. C. Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
- Mental Health and Specialist Services, Gold Coast Health, Southport, Queensland, Australia
| | - John P. Headrick
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
14
|
Protective Role of mTOR in Liver Ischemia/Reperfusion Injury: Involvement of Inflammation and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7861290. [PMID: 31827701 PMCID: PMC6885218 DOI: 10.1155/2019/7861290] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/24/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Liver ischemia/reperfusion (IR) injury is a common phenomenon after liver resection and transplantation, which often results in liver graft dysfunction such as delayed graft function and primary nonfunction. The mammalian target of rapamycin (mTOR) is an evolutionarily highly conserved serine/threonine protein kinase, which coordinates cell growth and metabolism through sensing environmental inputs under physiological or pathological conditions, involved in the pathophysiological process of IR injury. In this review, we mainly present current evidence of the beneficial role of mTOR in modulating inflammation and autophagy under liver IR to provide some evidence for the potential therapies for liver IR injury.
Collapse
|
15
|
Yorichika N, Baba Y, Shimada BK, Thakore M, Wong SM, Kobayashi M, Higa JK, Matsui T. The effects of Tel2 on cardiomyocyte survival. Life Sci 2019; 232:116665. [PMID: 31323273 DOI: 10.1016/j.lfs.2019.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022]
Abstract
AIMS Overexpression of the mechanistic target of rapamycin (mTOR), a member of the PIKK (phosphoinositide kinase-related kinase) family, protects cardiomyocytes from cell death induced by pathological stimuli such as ischemia. We previously reported that posttranslational modification of mTOR plays an important role in regulating cardiac mTOR expression. The aim of this study was to see if Tel2 (telomere maintenance 2), a protein that regulates the abundance of PIKKs, confers similar cardioprotective effects as mTOR. Tel2 is not well-characterized in cardiomyocytes, therefore we examined the effects of Tel2 on cardiomyocyte viability under ischemic stress conditions. MATERIALS AND METHODS We overexpressed Tel2 or silenced Tel2 with siRNA in the HL-1 cardiomyocyte cell line to survey the effects of Tel2 overexpression and downregulation on cell survival during hypoxia. Adult mouse cardiomyocytes transfected with Tel2 adenoviruses were used to test whether Tel2 sufficiently prevented cardiomyocyte cell death against hydrogen peroxide (H2O2). KEY FINDINGS Overexpressing Tel2 increased mTOR expression with a concomitant increase in mTOR Complex 1 (mTORC1) and mTORC2 activity in HL-1 cells. Tel2 deletion decreased mTOR expression, and mTORC1 and mTORC2 activity accordingly. In both HL-1 cells and adult mouse cardiomyocytes, Tel2 overexpression protected cardiomyocytes under ischemic stress. These effects were mTOR-dependent, as mTOR inhibitors blunted the effects of Tel2. While gene silencing of Tel2 did not affect cell survival under normoxia, Tel2 silencing made cardiomyocytes more vulnerable to cell death under hypoxia. SIGNIFICANCE Upregulating Tel2 expression increases mTOR-mediated cardiomyocyte survival and targeting Tel2 could be another therapeutic strategy against ischemic heart disease.
Collapse
Affiliation(s)
- Naaiko Yorichika
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America; Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Briana K Shimada
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America
| | - Manoj Thakore
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America
| | - Sharon M Wong
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America
| | - Motoi Kobayashi
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America
| | - Jason K Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa, HI, United States of America.
| |
Collapse
|
16
|
Xu X, Kobayashi S, Timm D, Huang Y, Zhao F, Shou W, Liang Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice. FASEB J 2019; 33:12800-12811. [PMID: 31469601 DOI: 10.1096/fj.201901206r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase mechanistic target of rapamycin (mTOR) performs diverse cellular functions through 2 distinct multiprotein complexes, mTOR complex (mTORC)1 and 2. Numerous studies using rapamycin, an mTORC1 inhibitor, have implicated a role for mTORC1 in several types of heart disease. People with diabetes are more susceptible to heart failure. mTORC1 activity is increased in the diabetic heart, but its functional significance remains controversial. To investigate the role of mTORC1 in the diabetic heart, we crossed OVE26 type 1 diabetic mice with transgenic mice expressing a constitutively active mTOR (mTORca) or kinase-dead mTOR (mTORkd) in the heart. The expression of mTORca or mTORkd affected only mTORC1 but not mTORC2 activities, with corresponding changes in the activities of autophagy, a cellular degradation pathway negatively regulated by mTORC1. Diabetic cardiac damage in OVE26 mice was dramatically reduced by mTORca but exacerbated by mTORkd expression as assessed by changes in cardiac function, oxidative stress, and myocyte apoptosis. These findings demonstrated that the enhanced mTORC1 signaling in the OVE26 diabetic heart was an adaptive response that limited cardiac dysfunction, suggesting that manipulations that enhance mTORC1 activity may reduce diabetic cardiac injury, in sharp contrast to the results previously obtained with rapamycin.-Xu, X., Kobayashi, S., Timm, D., Huang, Y., Zhao, F., Shou, W., Liang, Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice.
Collapse
Affiliation(s)
- Xianmin Xu
- Sanford Research, Sioux Falls, South Dakota, USA
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Derek Timm
- Sanford Research, Sioux Falls, South Dakota, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Fengyi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Weinian Shou
- Department of Pediatrics, Riley Heart Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
17
|
Yoshii A, Nagoshi T, Kashiwagi Y, Kimura H, Tanaka Y, Oi Y, Ito K, Yoshino T, Tanaka TD, Yoshimura M. Cardiac ischemia-reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity. Cardiovasc Diabetol 2019; 18:85. [PMID: 31262297 PMCID: PMC6604374 DOI: 10.1186/s12933-019-0889-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent large-scale clinical trials have shown that SGLT2-inhibitors reduce cardiovascular events in diabetic patients. However, the regulation and functional role of cardiac sodium-glucose cotransporter (SGLT1 is the dominant isoform) compared with those of other glucose transporters (insulin-dependent GLUT4 is the major isoform) remain incompletely understood. Given that glucose is an important preferential substrate for myocardial energy metabolism under conditions of ischemia-reperfusion injury (IRI), we hypothesized that SGLT1 contributes to cardioprotection during the acute phase of IRI via enhanced glucose transport, particularly in insulin-resistant phenotypes. METHODS AND RESULTS The hearts from mice fed a high-fat diet (HFD) for 12 weeks or a normal-fat diet (NFD) were perfused with either the non-selective SGLT-inhibitor phlorizin or selective SGLT2-inhibitors (tofogliflozin, ipragliflozin, canagliflozin) during IRI using Langendorff model. After ischemia-reperfusion, HFD impaired left ventricular developed pressure (LVDP) recovery compared with the findings in NFD. Although phlorizin-perfusion impaired LVDP recovery in NFD, a further impaired LVDP recovery and a dramatically increased infarct size were observed in HFD with phlorizin-perfusion. Meanwhile, none of the SGLT2-inhibitors significantly affected cardiac function or myocardial injury after ischemia-reperfusion under either diet condition. The plasma membrane expression of GLUT4 was significantly increased after IRI in NFD but was substantially attenuated in HFD, the latter of which was associated with a significant reduction in myocardial glucose uptake. In contrast, SGLT1 expression at the plasma membrane remained constant during IRI, regardless of the diet condition, whereas SGLT2 was not detected in the hearts of any mice. Of note, phlorizin considerably reduced myocardial glucose uptake after IRI, particularly in HFD. CONCLUSIONS Cardiac SGLT1 but not SGLT2 plays a compensatory protective role during the acute phase of IRI via enhanced glucose uptake, particularly under insulin-resistant conditions, in which IRI-induced GLUT4 upregulation is compromised.
Collapse
Affiliation(s)
- Akira Yoshii
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Keiichi Ito
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takuya Yoshino
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Toshikazu D Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
18
|
Wu G, Wang Y, Yang Y, Shi Y, Sun J, Xu Y, Luo T, Le G. Dietary Methionine Restriction Upregulates Endogenous H 2 S via miR-328-3p: A Potential Mechanism to Improve Liver Protein Metabolism Efficiency in a Mouse Model of High-fat-diet-induced Obesity. Mol Nutr Food Res 2018; 63:e1800735. [PMID: 30512228 DOI: 10.1002/mnfr.201800735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Indexed: 12/21/2022]
Abstract
SCOPE Dietary methionine restriction (MR) promotes multifaceted health benefits. Moreover, lower rate of protein synthesis by dietary MR is associated with life span extension. The goal of this work is to explore how dietary MR would affect protein metabolism in a mouse model of high-fat-diet-induced obesity (DIO). METHODS AND RESULTS DIO mice (male C57BL/6) are subjected to dietary MR for 22 weeks. High-throughput sequencing technology, qRT-PCR analysis, and the dual luciferase reporter assay are performed to verify that MiR-328-3p directly targets cystathionine γ-lyase (CSE) to modulate endogenous H2 S production. Moreover, indicators of endogenous H2 S, fractional synthesis rate (FSR), fractional growth rate (FGR), fractional degradation rate (FDR), and protein retention efficiency (PRE) are analyzed. MR results in an increase in endogenous H2 S to relieve oxidative stress and ER stress to improve protein homeostasis and metabolic efficiency in DIO mice. CONCLUSION Results show that dietary MR increases endogenous H2 S production via miR-328-3p. Furthermore, these results suggest the potential involvement of endogenous H2 S on the efficiency of protein metabolism in dietary MR.
Collapse
Affiliation(s)
- Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yanan Wang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yunchong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Tingyu Luo
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
19
|
Guedes EC, da Silva IB, Lima VM, Miranda JB, Albuquerque RP, Ferreira JCB, Barreto‐Chaves MLM, Diniz GP. High fat diet reduces the expression of miRNA‐29b in heart and increases susceptibility of myocardium to ischemia/reperfusion injury. J Cell Physiol 2018; 234:9399-9407. [DOI: 10.1002/jcp.27624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Elaine Castilho Guedes
- Department of Anatomy Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| | - Ivson Bezerra da Silva
- Department of Anatomy Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
- Department of Morphology Health Sciences Center, Federal University of Paraiba Joao Pessoa Brazil
| | - Vanessa Morais Lima
- Department of Anatomy Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| | - Juliane B. Miranda
- Department of Anatomy Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| | - Rudá P. Albuquerque
- Department of Anatomy Laboratory of Integrative Systems Biology, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| | - Julio C. B. Ferreira
- Department of Anatomy Laboratory of Integrative Systems Biology, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| | - Maria Luiza M. Barreto‐Chaves
- Department of Anatomy Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| | - Gabriela Placoná Diniz
- Department of Anatomy Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
20
|
Ma L, Ma X, Kong F, Guo J, Shi H, Zhu J, Zou Y, Ge J. Mammalian target of rapamycin inhibition attenuates myocardial ischaemia-reperfusion injury in hypertrophic heart. J Cell Mol Med 2018; 22:1708-1719. [PMID: 29314656 PMCID: PMC5824378 DOI: 10.1111/jcmm.13451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
Pathological cardiac hypertrophy aggravated myocardial infarction and is causally related to autophagy dysfunction and increased oxidative stress. Rapamycin is an inhibitor of serine/threonine kinase mammalian target of rapamycin (mTOR) involved in the regulation of autophagy as well as oxidative/nitrative stress. Here, we demonstrated that rapamycin ameliorates myocardial ischaemia reperfusion injury by rescuing the defective cytoprotective mechanisms in hypertrophic heart. Our results showed that chronic rapamycin treatment markedly reduced the phosphorylated mTOR and ribosomal protein S6 expression, but not Akt in both normal and aortic-banded mice. Moreover, chronic rapamycin treatment significantly mitigated TAC-induced autophagy dysfunction demonstrated by prompted Beclin-1 activation, elevated LC3-II/LC3-I ratio and increased autophagosome abundance. Most importantly, we found that MI/R-induced myocardial injury was markedly reduced by rapamycin treatment manifested by the inhibition of myocardial apoptosis, the reduction of myocardial infarct size and the improvement of cardiac function in hypertrophic heart. Mechanically, rapamycin reduced the MI/R-induced iNOS/gp91phox protein expression and decreased the generation of NO and superoxide, as well as the cytotoxic peroxynitrite. Moreover, rapamycin significantly mitigated MI/R-induced endoplasmic reticulum stress and mitochondrial impairment demonstrated by reduced Caspase-12 activity, inhibited CHOP activation, decreased cytoplasmic Cyto-C release and preserved intact mitochondria. In addition, inhibition of mTOR also enhanced the phosphorylated ERK and eNOS, and inactivated GSK3β, a pivotal downstream target of Akt and ERK signallings. Taken together, these results suggest that mTOR signalling protects against MI/R injury through autophagy induction and ERK-mediated antioxidative and anti-nitrative stress in mice with hypertrophic myocardium.
Collapse
Affiliation(s)
- Lei‐Lei Ma
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
- Department of Critical Care MedicineZhejiang Provincial People's Hospital and People's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xin Ma
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Fei‐Juan Kong
- Department of Endocrinology and MetabolismShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun‐Jie Guo
- Department of CardiologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Hong‐Tao Shi
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Jian‐Bing Zhu
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Yun‐Zeng Zou
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Jun‐Bo Ge
- Shanghai Institute of Cardiovascular DiseasesZhongshan Hospital and Institute of Biomedical ScienceFudan UniversityShanghaiChina
| |
Collapse
|
21
|
Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2018; 314:H659-H668. [PMID: 29127238 PMCID: PMC5899260 DOI: 10.1152/ajpheart.00452.2017] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Clinical studies have suggested that myocardial iron is a risk factor for left ventricular remodeling in patients after myocardial infarction. Ferroptosis has recently been reported as a mechanism of iron-dependent nonapoptotic cell death. However, ferroptosis in the heart is not well understood. Mechanistic target of rapamycin (mTOR) protects the heart against pathological stimuli such as ischemia. To define the role of cardiac mTOR on cell survival in iron-mediated cell death, we examined cardiomyocyte (CM) cell viability under excess iron and ferroptosis conditions. Adult mouse CMs were isolated from cardiac-specific mTOR transgenic mice, cardiac-specific mTOR knockout mice, or control mice. CMs were treated with ferric iron [Fe(III)]-citrate, erastin, a class 1 ferroptosis inducer, or Ras-selective lethal 3 (RSL3), a class 2 ferroptosis inducer. Live/dead cell viability assays revealed that Fe(III)-citrate, erastin, and RSL3 induced cell death. Cotreatment with ferrostatin-1, a ferroptosis inhibitor, inhibited cell death in all conditions. mTOR overexpression suppressed Fe(III)-citrate, erastin, and RSL3-induced cell death, whereas mTOR deletion exaggerated cell death in these conditions. 2',7'-Dichlorodihydrofluorescein diacetate measurement of reactive oxygen species (ROS) production showed that erastin-induced ROS production was significantly lower in mTOR transgenic versus control CMs. These findings suggest that ferroptosis is a significant type of cell death in CMs and that mTOR plays an important role in protecting CMs against excess iron and ferroptosis, at least in part, by regulating ROS production. Understanding the effects of mTOR in preventing iron-mediated cell death will provide a new therapy for patients with myocardial infarction. NEW & NOTEWORTHY Ferroptosis has recently been reported as a new form of iron-dependent nonapoptotic cell death. However, ferroptosis in the heart is not well characterized. Using cultured adult mouse cardiomyocytes, we demonstrated that the mechanistic target of rapamycin plays an important role in protecting cardiomyocytes against excess iron and ferroptosis.
Collapse
Affiliation(s)
- Yuichi Baba
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University , Kochi , Japan
| | - Jason K Higa
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Briana K Shimada
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Kate M Horiuchi
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Tomohiro Suhara
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
- Department of Anesthesiology, Keio University School of Medicine , Tokyo , Japan
| | - Motoi Kobayashi
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Jonathan D Woo
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Hiroko Aoyagi
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Karra S Marh
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| | - Hiroaki Kitaoka
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University , Kochi , Japan
| | - Takashi Matsui
- Center for Cardiovascular Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoa , Honolulu, Hawaii
| |
Collapse
|
22
|
Zheng L, Lin S, Lv C. MiR-26a-5p regulates cardiac fibroblasts collagen expression by targeting ULK1. Sci Rep 2018; 8:2104. [PMID: 29391491 PMCID: PMC5794903 DOI: 10.1038/s41598-018-20561-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/19/2018] [Indexed: 02/02/2023] Open
Abstract
MiRNA is a class of small non-coding RNA which has an important effect on posttranscriptional gene regulation. It can regulate the expression of the target gene at the mRNA level and further influence the protein level of the target gene. We found that ULK1 may be the target gene of miR-26a-5p, and ULK1 (unc-51 like autophagy activating kinase 1) is a key component in autophagy pathway. In this study, we overexpressed miR-26a-5p by transfecting miR-26a-5p mimic into cells and simultaneously inhibited miR-26a-5p by transfecting miR-26a-5p inhibitor into cells. We demonstrated that overexpression of miR-26a-5p can reduce the expression of ULK1 and collagen I, and decrease the activation of LC3-I to LC3-II. In contrast, inhibition of miR-26a-5p can increase the expression of ULK1 and collagen I, and increase the activation of LC3-I to LC3-II. The Dual-luciferase reporter assay showed that miR-26a-5p directly acted on the 3'UTR of ULK1 and thus affected the expression of ULK1. As such, our study demonstrated that miR-26a-5p might regulate the autophagy in cardiac fibroblasts by targeting ULK1, which may have an effect on cardiac fibrosis. To our knowledge, this is the first study that shows miR-26a-5p regulates the autophagic pathway in cardiac fibroblasts.
Collapse
Affiliation(s)
- Liling Zheng
- Department of Cardiovascular Surgery, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China.
| | - Sihuang Lin
- Department of Cardiovascular Surgery, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengyu Lv
- Department of Cardiovascular Surgery, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
23
|
Hypertrophied myocardium is vulnerable to ischemia/reperfusion injury and refractory to rapamycin-induced protection due to increased oxidative/nitrative stress. Clin Sci (Lond) 2018; 132:93-110. [PMID: 29175946 DOI: 10.1042/cs20171471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022]
Abstract
Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO- scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.
Collapse
|
24
|
Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK, Matsui T. Pathological Roles of Iron in Cardiovascular Disease. Curr Drug Targets 2018; 19:1068-1076. [PMID: 29874997 PMCID: PMC6469984 DOI: 10.2174/1389450119666180605112235] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral required for a variety of vital biological functions. Despite being vital for life, iron also has potentially toxic aspects. Iron has been investigated as a risk factor for coronary artery disease (CAD), however, iron's toxicity in CAD patients still remains controversial. One possible mechanism behind the toxicity of iron is "ferroptosis", a newly described form of irondependent cell death. Ferroptosis is an iron-dependent form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in ischemiareperfusion (I/R) injury and several other diseases. Recently, we reported that ferroptosis is a significant form of cell death in cardiomyocytes. Moreover, myocardial hemorrhage, a major event in the pathogenesis of heart failure, could trigger the release of free iron into cardiac muscle and is an independent predictor of adverse left ventricular remodeling after myocardial infarction. Iron deposition in the heart can now be detected with advanced imaging methods, such as T2 star (T2*) cardiac magnetic resonance imaging, which can non-invasively predict iron levels in the myocardium and detect myocardial hemorrhage, thus existing technology could be used to assess myocardial iron. We will discuss the role of iron in cardiovascular diseases and especially with regard to myocardial I/R injury.
Collapse
Affiliation(s)
- Motoi Kobayashi
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nicholas K. Kawasaki
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Jason K. Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, HI
| |
Collapse
|
25
|
Suhara T, Baba Y, Shimada BK, Higa JK, Matsui T. The mTOR Signaling Pathway in Myocardial Dysfunction in Type 2 Diabetes Mellitus. Curr Diab Rep 2017; 17:38. [PMID: 28434143 PMCID: PMC8219468 DOI: 10.1007/s11892-017-0865-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW T2DM (type 2 diabetes mellitus) is a risk factor for heart failure. The mTOR (mechanistic target of rapamycin) is a key mediator of the insulin signaling pathway. We will discuss the role of mTOR in myocardial dysfunction in T2DM. RECENT FINDINGS In T2DM, chronically activated mTOR induces multiple pathological events, including a negative feedback loop that suppresses IRS (insulin receptor substrate)-1. While short-term treatment with rapamycin, an mTOR inhibitor, is a promising strategy for cardiac diseases such as acute myocardial infarction and cardiac hypertrophy in T2DM, there are many concerns about chronic usage of rapamycin. Two mTOR complexes, mTORC1 and mTORC2, affect many molecules and processes via distinct signaling pathways that regulate cardiomyocyte function and survival. Understanding mechanisms underlying mTOR-mediated pathophysiological features in the heart is essential for developing effective therapies for cardiac diseases in the context of T2DM.
Collapse
Affiliation(s)
- Tomohiro Suhara
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Baba
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Briana K Shimada
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
| | - Jason K Higa
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA
| | - Takashi Matsui
- Department of Anatomy, Biochemistry & Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo St., BSB no. 110, Honolulu, HI, 96813, USA.
| |
Collapse
|
26
|
Ghrelin protected neonatal rat cardiomyocyte against hypoxia/reoxygenation injury by inhibiting apoptosis through Akt-mTOR signal. Mol Biol Rep 2017; 44:219-226. [PMID: 28281036 DOI: 10.1007/s11033-017-4098-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/02/2017] [Indexed: 12/17/2022]
Abstract
Reducing reperfusion period myocardial cell damage is efficient to reduce myocardial ischemia-reperfusion injury. Ghrelin can increase myocardial contractility, improve heart failure caused by myocardial infarction. This study aimed to investigate the protective effect of Ghrelin on myocardial hypoxia/reoxygenation (H/R) injury of neonatal rat cardiomyocytes (NRCMs) and to explore the mechanisms. We isolated the NRCMs, established myocardial H/R model, blocked growth hormone secretagogue receptor (GHSR) by siRNA technique, examined cell activity by MTT and LDH assay, detected apoptosis by Hoechst 33258 staining and flow cytometry and determined the expression levels of apoptosis related proteins and signaling pathway proteins by western blot. We found that Ghrelin can significantly improve cell activity and decrease apoptosis after H/R, however this effect was abolished by GHSR-siRNA. In addition, we found that Ghrelin can significantly increase the expression of Bcl-2 but inhibit the level of Bax and caspase-3. Further mechanism study found that the phosphorylation level of signaling pathway protein Akt and mTOR in Ghrelin treated group were significantly higher than that in other groups. In conclusion, Ghrelin can reduce the H/R damage on NRCMs and inhibit the apoptosis by activating Akt-mTOR signaling pathway.
Collapse
|
27
|
Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6437467. [PMID: 28298952 PMCID: PMC5337354 DOI: 10.1155/2017/6437467] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R) injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly found free radicals scavengers, Sirt1 and CTRP9, may serve as promising pharmacological therapeutic targets. In this review, we will focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart disease (IHD).
Collapse
|
28
|
DeWitt ES, Black KJ, Kheir JN. Rodent Working Heart Model for the Study of Myocardial Performance and Oxygen Consumption. J Vis Exp 2016. [PMID: 27584550 PMCID: PMC5091847 DOI: 10.3791/54149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Isolated working heart models have been used to understand the effects of loading conditions, heart rate and medications on myocardial performance in ways that cannot be accomplished in vivo. For example, inotropic medications commonly also affect preload and afterload, precluding load-independent assessments of their myocardial effects in vivo. Additionally, this model allows for sampling of coronary sinus effluent without contamination from systemic venous return, permitting assessment of myocardial oxygen consumption. Further, the advent of miniaturized pressure-volume catheters has allowed for the precise quantification of markers of both systolic and diastolic performance. We describe a model in which the left ventricle can be studied while performing both volume and pressure work under controlled conditions. In this technique, the heart and lungs of a Sprague-Dawley rat (weight 300-500 g) are removed en bloc under general anesthesia. The aorta is dissected free and cannulated for retrograde perfusion with oxygenated Krebs buffer. The pulmonary arteries and veins are ligated and the lungs removed from the preparation. The left atrium is then incised and cannulated using a separate venous cannula, attached to a preload block. Once this is determined to be leak-free, the left heart is loaded and retrograde perfusion stopped, creating the working heart model. The pulmonary artery is incised and cannulated for collection of coronary effluent and determination of myocardial oxygen consumption. A pressure-volume catheter is placed into the left ventricle either retrograde or through apical puncture. If desired, atrial pacing wires can be placed for more precise control of heart rate. This model allows for precise control of preload (using a left atrial pressure block), afterload (using an afterload block), heart rate (using pacing wires) and oxygen tension (using oxygen mixtures within the perfusate).
Collapse
Affiliation(s)
| | | | - John N Kheir
- Department of Cardiology, Boston Children's Hospital;
| |
Collapse
|
29
|
Iosef Husted C, Valencik M. Insulin-like growth factors and their potential role in cardiac epigenetics. J Cell Mol Med 2016; 20:1589-602. [PMID: 27061217 PMCID: PMC4956935 DOI: 10.1111/jcmm.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) constitutes a major public health threat worldwide, accounting for 17.3 million deaths annually. Heart disease and stroke account for the majority of healthcare costs in the developed world. While much has been accomplished in understanding the pathophysiology, molecular biology and genetics underlying the diagnosis and treatment of CVD, we know less about the role of epigenetics and their molecular determinants. The impact of environmental changes and epigenetics in CVD is now emerging as critically important in understanding the origin of disease and the development of new therapeutic approaches to prevention and treatment. This review focuses on the emerging role of epigenetics mediated by insulin like-growth factors-I and -II in major CVDs such as heart failure, cardiac hypertrophy and diabetes.
Collapse
Affiliation(s)
- Cristiana Iosef Husted
- Department of Pharmacology, University of Nevada, Reno School of Medicine (UNSOM), Reno, NV, USA
| | - Maria Valencik
- Department of Pharmacology, University of Nevada, Reno School of Medicine (UNSOM), Reno, NV, USA
| |
Collapse
|
30
|
Petrosino JM, Heiss VJ, Maurya SK, Kalyanasundaram A, Periasamy M, LaFountain RA, Wilson JM, Simonetti OP, Ziouzenkova O. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes. PLoS One 2016; 11:e0148010. [PMID: 26859763 PMCID: PMC4747552 DOI: 10.1371/journal.pone.0148010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- Biomedical Sciences Program, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Valerie J. Heiss
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Santosh K. Maurya
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Muthu Periasamy
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Richard A. LaFountain
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Jacob M. Wilson
- Department of Human Performance, The University of Tampa, Tampa, Florida, United States of America
| | - Orlando P. Simonetti
- Department of Radiology, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
- Department of Cardiovascular Medicine, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1451676. [PMID: 27057269 PMCID: PMC4736315 DOI: 10.1155/2016/1451676] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.
Collapse
|
32
|
Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. Sci Rep 2015; 5:14014. [PMID: 26369619 PMCID: PMC4642696 DOI: 10.1038/srep14014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/30/2015] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with an increasing prevalence of cardiovascular diseases and metabolic syndrome. It is of paramount importance to reduce obesity-associated cardiac dysfunction and impaired energy metabolism. In this study, the activation of the AMP-activated protein kinase (AMPK) pathway by punicalagin (PU), a major ellagitannin in pomegranate was investigated in the heart of a rat obesity model. In male SD rats, eight-week administration of 150 mg/kg pomegranate extract (PE) containing 40% punicalagin sufficiently prevented high-fat diet (HFD)-induced obesity associated accumulation of cardiac triglyceride and cholesterol as well as myocardial damage. Concomitantly, the AMPK pathway was activated, which may account for prevention of mitochondrial loss via upregulating mitochondrial biogenesis and amelioration of oxidative stress via enhancing phase II enzymes in the hearts of HFD rats. Together with the normalized expression of uncoupling proteins and mitochondrial dynamic regulators, PE significantly prevented HFD-induced cardiac ATP loss. Through in vitro cultures, we showed that punicalagin was the predominant component that activated AMPK by quickly decreasing the cellular ATP/ADP ratio specifically in cardiomyocytes. Our findings demonstrated that punicalagin, the major active component in PE, could modulate mitochondria and phase II enzymes through AMPK pathway to prevent HFD-induced cardiac metabolic disorders.
Collapse
|
33
|
DiStasi MR, Mund JA, Bohlen HG, Miller SJ, Ingram DA, Dalsing MC, Unthank JL. Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox. Am J Physiol Heart Circ Physiol 2015; 309:H1207-17. [PMID: 26297224 DOI: 10.1152/ajpheart.00180.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes and hyperlipidemia were used as a preclinical model. Arterial occlusion was induced by distal femoral artery ligation in lean and DIO mice. Proximal collateral arteries were identified as the site of major (∼70%) vascular resistance to calf perfusion by distal arterial pressures, which decreased from ∼80 to ∼30 mmHg with ligation in both lean and DIO mice. Two weeks after ligation, significant vascular compensation occurred in lean but not DIO mice as evidenced by increased perfusion (147 ± 48% vs. 49 ± 29%) and collateral diameter (151 ± 30% vs. 44 ± 17%). Vascular mRNA expression of p22(phox), Nox2, Nox4, and p47(phox) were all increased in DIO mice. Treatment of DIO mice with either apocynin or Nox2ds-tat or with whole body ablation of either Nox2 or p47(phox) ameliorated the impairment in both collateral growth and hindlimb perfusion. Multiparametric flow cytometry analysis demonstrated elevated levels of circulating monocytes in DIO mice without impaired mobilization and demargination after femoral artery ligation. These results establish collateral resistance as the major limitation to calf perfusion in this preclinical model, demonstrate than monocyte mobilization and demarginatin is not suppressed, implicate Nox2-p47(phox) interactions in the impairment of vascular compensation to arterial occlusion in DIO mice, and suggest that selective Nox component suppression/inhibition may be effective as either primary or adjuvant therapy for claudicants.
Collapse
Affiliation(s)
- Matthew R DiStasi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie A Mund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - H Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven J Miller
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Ingram
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael C Dalsing
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph L Unthank
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana;
| |
Collapse
|