1
|
Christensen KB, Ünsal Ş, Ebbesen MF, Hemstra L, Schlosser A, Rosenstand K, Hansen PBL, Jensen BL, Bloksgaard M, Simonsen U, Sorensen GL. MFAP4-Deficiency Aggravates Age-Induced Changes in Resistance Artery Structure, While Ameliorating Hypertension. Hypertension 2024; 81:1308-1319. [PMID: 38563153 DOI: 10.1161/hypertensionaha.123.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Abnormalities of resistance arteries may play essential roles in the pathophysiology of aging and hypertension. Deficiency of the vascular extracellular matrix protein MFAP4 (microfibrillar-associated protein 4) has previously been observed as protective against aberrant arterial remodeling. We hypothesized that MFAP4-deficiency would reduce age- and hypertension-dependent arterial changes in extracellular matrix composition and stiffening. METHODS Mesenteric arteries were isolated from old (20-23 months) littermate Mfap4+/+ and Mfap4-/- mice, and 2-photon excitation microscopy imaging was used to quantify elastin and collagen volumes and dimensions in the vascular wall. Ten-week-old littermate Mfap4+/+ and Mfap4-/- mice were subjected to 20 days of continuous Ang II (angiotensin II) infusion and hypertension was monitored using invasive blood pressure measurements. Arterial stiffness, responses to vascular constrictors, and myogenic tone were monitored using wire- or pressure-myography. Collagen contents were assessed by Western blotting. RESULTS MFAP4-deficiency significantly increased collagen volume and elastin fragmentation in aged mesenteric arteries without affecting arterial stiffness. MFAP4-deficient mice exhibited reduced diastolic pressure in Ang II-induced hypertension. There was no significant effect of MFAP4-deficiency on mesenteric artery structural remodeling or myogenic tone, although collagen content in mesenteric arteries was tendentially increased in hypertensive Mfap4+/+ mice relative to Mfap4-/- mice. Increased efficacy of vasoconstrictors (phenylephrine, thromboxane) and reduced stiffness were observed in Ang II-treated Mfap4-/- mouse mesenteric arteries in ex vivo myography recordings. CONCLUSIONS MFAP4-deficiency reduces the elastin/collagen ratio in the aging resistance artery without affecting arterial stiffness. In contrast, MFAP4-deficiency reduces the stiffness of resistance arteries and ameliorates Ang II-induced hypertension.
Collapse
Affiliation(s)
- Kimmie B Christensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Şeyda Ünsal
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Morten F Ebbesen
- Department of Biochemistry and Molecular Biology (M.F.E.), University of Southern Denmark, Odense
| | - Line Hemstra
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Anders Schlosser
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Kristoffer Rosenstand
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Pernille B L Hansen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Boye L Jensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Maria Bloksgaard
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Ulf Simonsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark (U.S.)
| | - Grith L Sorensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| |
Collapse
|
2
|
Dora KA, Borysova L, Ye X, Powell C, Beleznai TZ, Stanley CP, Bruno VD, Starborg T, Johnson E, Pielach A, Taggart M, Smart N, Ascione R. Human coronary microvascular contractile dysfunction associates with viable synthetic smooth muscle cells. Cardiovasc Res 2022; 118:1978-1992. [PMID: 34173824 PMCID: PMC9239576 DOI: 10.1093/cvr/cvab218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.
Collapse
Affiliation(s)
- Kim A Dora
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lyudmyla Borysova
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Xi Ye
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Chloe Powell
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Timea Z Beleznai
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Christopher P Stanley
- The Vascular Pharmacology Group, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Vito D Bruno
- Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Tobias Starborg
- Division of Cell Matrix Biology and Regenerative Medicine School of Biological Sciences Faculty of Biology, Medical and Health Sciences, University of Manchester, B.3016 Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Anna Pielach
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Michael Taggart
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| |
Collapse
|
3
|
Bell JS, Adio AO, Pitt A, Hayman L, Thorn CE, Shore AC, Whatmore JL, Winlove CP. Microstructural Characterization of Resistance Artery Remodelling in Diabetes Mellitus. J Vasc Res 2021; 59:50-60. [PMID: 34544081 DOI: 10.1159/000517856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Microvascular remodelling is a symptom of cardiovascular disease. Despite the mechanical environment being recognized as a major contributor to the remodelling process, it is currently only understood in a rudimentary way. OBJECTIVE A morphological and mechanical evaluation of the resistance vasculature in health and diabetes mellitus. METHODS The cells and extracellular matrix of human subcutaneous resistance arteries from abdominal fat biopsies were imaged using two-photon fluorescence and second harmonic generation at varying transmural pressure. The results informed a two-layer mechanical model. RESULTS Diabetic resistance arteries reduced in wall area as pressure was increased. This was attributed to the presence of thick, straight collagen fibre bundles that braced the outer wall. The abnormal mechanical environment caused the internal elastic lamina and endothelial and vascular smooth muscle cell arrangements to twist. CONCLUSIONS Our results suggest diabetic microvascular remodelling is likely to be stress-driven, comprising at least 2 stages: (1) Laying down of adventitial bracing fibres that limit outward distension, and (2) Deposition of additional collagen in the media, likely due to the significantly altered mechanical environment. This work represents a step towards elucidating the local stress environment of cells, which is crucial to build accurate models of mechanotransduction in disease.
Collapse
Affiliation(s)
- James S Bell
- Department of Physics, University of Exeter, Exeter, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Aminat O Adio
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Andrew Pitt
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Lindsay Hayman
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Clare E Thorn
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Angela C Shore
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Jacqueline L Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - C Peter Winlove
- Department of Physics, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Grunewald ZI, Cabral-Amador FJ, Yoshida T, Brenner DA, Manrique-Acevedo C, Martinez-Lemus LA, Chandrasekar B, Padilla J. Mutation of the 5'-untranslated region stem-loop mRNA structure reduces type I collagen deposition and arterial stiffness in male obese mice. Am J Physiol Heart Circ Physiol 2021; 321:H435-H445. [PMID: 34242094 PMCID: PMC8526337 DOI: 10.1152/ajpheart.00076.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial stiffening, a characteristic feature of obesity and type 2 diabetes, contributes to the development and progression of cardiovascular diseases (CVD). Currently, no effective prophylaxis or therapeutics is available to prevent or treat arterial stiffening. A better understanding of the molecular mechanisms underlying arterial stiffening is vital to identify newer targets and strategies to reduce CVD burden. A major contributor to arterial stiffening is increased collagen deposition. In the 5'-untranslated regions of mRNAs encoding for type I collagen, an evolutionally conserved stem-loop (SL) structure plays an essential role in its stability and post-transcriptional regulation. Here, we show that feeding a high-fat/high-sucrose (HFHS) diet for 28 wk increases adiposity, insulin resistance, and blood pressure in male wild-type littermates. Moreover, arterial stiffness, assessed in vivo via aortic pulse wave velocity, and ex vivo using atomic force microscopy in aortic explants or pressure myography in isolated femoral and mesenteric arteries, was also increased in those mice. Notably, all these indices of arterial stiffness, along with collagen type I levels in the vasculature, were reduced in HFHS-fed mice harboring a mutation in the 5'SL structure, relative to wild-type littermates. This protective vascular phenotype in 5'SL-mutant mice did not associate with a reduction in insulin resistance or blood pressure. These findings implicate the 5'SL structure as a putative therapeutic target to prevent or reverse arterial stiffening and CVD associated with obesity and type 2 diabetes.NEW & NOTEWORTHY In the 5'-untranslated (UTR) regions of mRNAs encoding for type I collagen, an evolutionally conserved SL structure plays an essential role in its stability and posttranscriptional regulation. We demonstrate that a mutation of the SL mRNA structure in the 5'-UTR decreases collagen type I deposition and arterial stiffness in obese mice. Targeting this evolutionarily conserved SL structure may hold promise in the management of arterial stiffening and CVD associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Zachary I Grunewald
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Tadashi Yoshida
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - David A Brenner
- School of Medicine, University of California-San Diego, La Jolla, California
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
5
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 PMCID: PMC8321813 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Grants
- R01HL139585 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM130459 NIGMS NIH HHS
- R01HL121871 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK115255 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R61 NS115132 NINDS NIH HHS
- K99HL151889 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL151413 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00HL116769 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL091905 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL088554 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139585 NHLBI NIH HHS
- P20GM130459 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL135901 NHLBI NIH HHS
- RF1 NS110044 NINDS NIH HHS
- R01ES014639 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U24 DK076169 NIDDK NIH HHS
- S10OD023438 HHS | NIH | NIH Office of the Director (OD)
- R01HL137112 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135901 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146914 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL116769 NHLBI NIH HHS
- K99 HL151889 NHLBI NIH HHS
- U24 DK115255 NIDDK NIH HHS
- R21 EB026518 NIBIB NIH HHS
- R01 HL149762 NHLBI NIH HHS
- DK076169 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01NS082521 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL146054 NHLBI NIH HHS
- R21EB026518 HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- R01 HL123301 NHLBI NIH HHS
- P01 HL134604 NHLBI NIH HHS
- R00GM118885 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL091905 NHLBI NIH HHS
- RF1NS110044 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL142808 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R61NS115132 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL088105 NHLBI NIH HHS
- SB1 HL121871 NHLBI NIH HHS
- R01 HD037831 NICHD NIH HHS
- R01 HL137852 NHLBI NIH HHS
- R35 HL155008 NHLBI NIH HHS
- R01 HL137112 NHLBI NIH HHS
- R01HL149762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123301 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146914 NHLBI NIH HHS
- R01 HL142808 NHLBI NIH HHS
- R01 HL088554 NHLBI NIH HHS
- R01HD037831 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01HL146054 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146562 NHLBI NIH HHS
- R44 HL121871 NHLBI NIH HHS
- R01HL088105 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES014639 NIEHS NIH HHS
- P01HL134604 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL137852 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- S10 OD023438 NIH HHS
- R01 HL151413 NHLBI NIH HHS
- R41 HL121871 NHLBI NIH HHS
- R00 GM118885 NIGMS NIH HHS
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
6
|
Development of an FEA framework for analysis of subject-specific aortic compliance based on 4D flow MRI. Acta Biomater 2021; 125:154-171. [PMID: 33639309 DOI: 10.1016/j.actbio.2021.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
This paper presents a subject-specific in-silico framework in which we uncover the relationship between the spatially varying constituents of the aorta and the non-linear compliance of the vessel during the cardiac cycle uncovered through our MRI investigations. A microstructurally motivated constitutive model is developed, and simulations reveal that internal vessel contractility, due to pre-stretched elastin and actively generated smooth muscle cell stress, must be incorporated, along with collagen strain stiffening, in order to accurately predict the non-linear pressure-area relationship observed in-vivo. Modelling of elastin and smooth muscle cell contractility allows for the identification of the reference vessel configuration at zero-lumen pressure, in addition to accurately predicting high- and low-compliance regimes under a physiological range of pressures. This modelling approach is also shown to capture the key features of elastin digestion and SMC activation experiments. The volume fractions of the constituent components of the aortic material model were computed so that the in-silico pressure-area curves accurately predict the corresponding MRI data at each location. Simulations reveal that collagen and smooth muscle volume fractions increase distally, while elastin volume fraction decreases distally, consistent with reported histological data. Furthermore, the strain at which collagen transitions from low to high stiffness is lower in the abdominal aorta, again supporting the histological finding that collagen waviness is lower distally. The analyses presented in this paper provide new insights into the heterogeneous structure-function relationship that underlies aortic biomechanics. Furthermore, this subject-specific MRI/FEA methodology provides a foundation for personalised in-silico clinical analysis and tailored aortic device development. STATEMENT OF SIGNIFICANCE: This study provides a significant advance in in-silico medicine by capturing the structure/function relationship of the subject-specific human aorta presented in our previous MRI analyses. A physiologically based aortic constitutive model is developed, and simulations reveal that internal vessel contractility must be incorporated, along with collagen strain stiffening, to accurately predict the in-vivo non-linear pressure-area relationship. Furthermore, this is the first subject-specific model to predict spatial variation in the volume fractions of aortic wall constituents. Previous studies perform phenomenological hyperelastic curve fits to medical imaging data and ignore the prestress contribution of elastin, collagen, and SMCs and the associated zero-pressure reference state of the vessel. This novel MRI/FEA framework can be used as an in-silico diagnostic tool for the early stage detection of aortic pathologies.
Collapse
|
7
|
NOX5-induced uncoupling of endothelial NO synthase is a causal mechanism and theragnostic target of an age-related hypertension endotype. PLoS Biol 2020; 18:e3000885. [PMID: 33170835 PMCID: PMC7654809 DOI: 10.1371/journal.pbio.3000885] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5—but not NOX1, NOX2, or NOX4—with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed—upon aging—severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension. The causes of hypertension are not understood; treatments are symptomatic and prevent only few of the associated risks. This study applies network medicine to identify a subgroup of patients with NADPH oxidase 5-induced uncoupling of nitric oxide synthase as the cause of age-related hypertension, enabling a first-in-class mechanism-based treatment of hypertension.
Collapse
|
8
|
Fang S, Riber SS, Hussein K, Ahlmann AH, Harvald EB, Khan F, Beck HC, Weile LKK, Sørensen JA, Sheikh SP, Riber LP, Andersen DC. Decellularized human umbilical artery: Biocompatibility and in vivo functionality in sheep carotid bypass model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110955. [PMID: 32409090 DOI: 10.1016/j.msec.2020.110955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Sara Schødt Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Kamal Hussein
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
| | - Alexander Høgsted Ahlmann
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Eva Bang Harvald
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Fazal Khan
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Hans Christian Beck
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Centre for Clinical Proteomics, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Louise Katrine Kjær Weile
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Gynaecology and Obstetrics, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Jens Ahm Sørensen
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Plastic Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Søren Paludan Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Lars Peter Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark.
| |
Collapse
|
9
|
Jin Q, Bhatta A, Pagaduan JV, Chen X, West-Foyle H, Liu J, Hou A, Berkowitz D, Kuo SC, Askin FB, Nguyen TD, Gracias DH, Romer LH. Biomimetic human small muscular pulmonary arteries. SCIENCE ADVANCES 2020; 6:eaaz2598. [PMID: 32232160 PMCID: PMC7096158 DOI: 10.1126/sciadv.aaz2598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
Changes in structure and function of small muscular arteries play a major role in the pathophysiology of pulmonary hypertension, a burgeoning public health challenge. Improved anatomically mimetic in vitro models of these microvessels are urgently needed because nonhuman vessels and previous models do not accurately recapitulate the microenvironment and architecture of the human microvascular wall. Here, we describe parallel biofabrication of photopatterned self-rolled biomimetic pulmonary arterial microvessels of tunable size and infrastructure. These microvessels feature anatomically accurate layering and patterning of aligned human smooth muscle cells, extracellular matrix, and endothelial cells and exhibit notable increases in endothelial longevity and nitric oxide production. Computational image processing yielded high-resolution 3D perspectives of cells and proteins. Our studies provide a new paradigm for engineering multicellular tissues with precise 3D spatial positioning of multiple constituents in planar moieties, providing a biomimetic platform for investigation of microvascular pathobiology in human disease.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anil Bhatta
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jayson V. Pagaduan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xing Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hoku West-Foyle
- Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiayu Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Annie Hou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot C. Kuo
- Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederic B. Askin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Corresponding author. (D.H.G.); (L.H.R.)
| | - Lewis H. Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. (D.H.G.); (L.H.R.)
| |
Collapse
|
10
|
Reesink KD, Spronck B. Constitutive interpretation of arterial stiffness in clinical studies: a methodological review. Am J Physiol Heart Circ Physiol 2019; 316:H693-H709. [DOI: 10.1152/ajpheart.00388.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clinical assessment of arterial stiffness relies on noninvasive measurements of regional pulse wave velocity or local distensibility. However, arterial stiffness measures do not discriminate underlying changes in arterial wall constituent properties (e.g., in collagen, elastin, or smooth muscle), which is highly relevant for development and monitoring of treatment. In arterial stiffness in recent clinical-epidemiological studies, we systematically review clinical-epidemiological studies (2012–) that interpreted arterial stiffness changes in terms of changes in arterial wall constituent properties (63 studies included of 514 studies found). Most studies that did so were association studies (52 of 63 studies) providing limited causal evidence. Intervention studies (11 of 63 studies) addressed changes in arterial stiffness through the modulation of extracellular matrix integrity (5 of 11 studies) or smooth muscle tone (6 of 11 studies). A handful of studies (3 of 63 studies) used mathematical modeling to discriminate between extracellular matrix components. Overall, there exists a notable gap in the mechanistic interpretation of stiffness findings. In constitutive model-based interpretation, we first introduce constitutive-based modeling and use it to illustrate the relationship between constituent properties and stiffness measurements (“forward” approach). We then review all literature on modeling approaches for the constitutive interpretation of clinical arterial stiffness data (“inverse” approach), which are aimed at estimation of constitutive properties from arterial stiffness measurements to benefit treatment development and monitoring. Importantly, any modeling approach requires a tradeoff between model complexity and measurable data. Therefore, the feasibility of changing in vivo the biaxial mechanics and/or vascular smooth muscle tone should be explored. The effectiveness of modeling approaches should be confirmed using uncertainty quantification and sensitivity analysis. Taken together, constitutive modeling can significantly improve clinical interpretation of arterial stiffness findings.
Collapse
Affiliation(s)
- Koen D. Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| |
Collapse
|
11
|
Akintunde A, Robison KM, Capone D, Desrosiers L, Knoepp LR, Miller KS. Effects of elastase digestion on the murine vaginal wall biaxial mechanical response. J Biomech Eng 2018; 141:2716276. [PMID: 30453317 DOI: 10.1115/1.4042014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 11/08/2022]
Abstract
Although the underlying mechanisms of pelvic organ prolapse (POP) remain unknown, disruption of elastic fiber metabolism within the vaginal wall extracellular matrix has been highly implicated. It has been hypothesized that elastic fiber fragmentation correlates to decreased structural integrity and increased risk of prolapse; however, the mechanisms by which elastic fiber damage may contribute to prolapse are poorly understood. Further, the role of elastic fibers in normal vaginal wall mechanics has not been fully ascertained. Therefore, the objective of this study is to investigate the contribution of elastic fibers to murine vaginal wall mechanics. Vaginal tissue from C57BL/6 female mice were mechanically tested using biaxial extension-inflation protocols before and after intraluminal exposure to elastase. Elastase digestion induced marked changes in the vaginal geometry, and biaxial mechanical properties, suggesting that elastic fibers may play an important role in vaginal wall mechanical function. Additionally, a constitutive model that considered two diagonal families of collagen fibers with a slight preference towards the circumferential direction described the data reasonably well before and after digestion. The present findings may be important to determine the underlying structural and mechanical mechanisms of POP, and aid in the development of growth and remodeling models for improved assessment and prediction of changes in structure-function relationships with prolapse development. Keywords: vaginal wall, women's health, mechanical testing, pelvic floor disorders, elastic fibers Disclosures: none.
Collapse
Affiliation(s)
- Akinjide Akintunde
- Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| | - Kathryn M Robison
- ASME Member, Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| | - Daniel Capone
- Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine & Reconstructive Surgery, UQ Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Leise R Knoepp
- Department of Female Pelvic Medicine & Reconstructive Surgery, UQ Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Kristin S Miller
- ASME Member, Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| |
Collapse
|
12
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
13
|
Bloksgaard M, Thorsted B, Brewer JR, De Mey JGR. Assessing Collagen and Elastin Pressure-dependent Microarchitectures in Live, Human Resistance Arteries by Label-free Fluorescence Microscopy. J Vis Exp 2018. [PMID: 29683445 DOI: 10.3791/57451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenic contribution of resistance artery remodeling is documented in essential hypertension, diabetes and the metabolic syndrome. Investigations and development of microstructurally motivated mathematical models for understanding the mechanical properties of human resistance arteries in health and disease have the potential to aid understanding how disease and medical treatments affect the human microcirculation. To develop these mathematical models, it is essential to decipher the relationship between the mechanical and microarchitectural properties of the microvascular wall. In this work, we describe an ex vivo method for passive mechanical testing and simultaneous label-free three-dimensional imaging of the microarchitecture of elastin and collagen in the arterial wall of isolated human resistance arteries. The imaging protocol can be applied to resistance arteries of any species of interest. Image analyses are described for quantifying i) pressure-induced changes in internal elastic lamina branching angles and adventitial collagen straightness using Fiji and ii) collagen and elastin volume densities determined using Ilastik software. Preferably all mechanical and imaging measurements are performed on live, perfused arteries, however, an alternative approach using standard video-microscopy pressure myography in combination with post-fixation imaging of re-pressurized vessels is discussed. This alternative method provides users with different options for analysis approaches. The inclusion of the mechanical and imaging data in mathematical models of the arterial wall mechanics is discussed, and future development and additions to the protocol are proposed.
Collapse
Affiliation(s)
- Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark;
| | - Bjarne Thorsted
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Jo G R De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital
| |
Collapse
|