1
|
Kek HP, Su YT, Lin KJ, Yang MC, Chang LC, Yang YN, Tsai CC. Investigating the Mechanisms Underlying U46619-Induced Contraction on Porcine Lower Esophageal Sphincter. J Pharmacol Exp Ther 2024; 390:188-195. [PMID: 38135510 DOI: 10.1124/jpet.123.001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) is associated with an incompetent lower esophageal sphincter (LES), resulting in the reflux of gastric contents into the esophagus. U46619, a thromboxane A2 (TXA2) receptor agonist, induces contractions in various smooth muscles. Therefore, this study aimed to investigate the effects and mechanisms of action of U46619 on the porcine LES. To achieve this, contractions of the clasp and sling strips of the porcine LES, induced by U46619, were measured using isometric transducers. Furthermore, the contractile mechanism of U46619 in the porcine LES was investigated by pretreating the strips with atropine (a muscarinic receptor antagonist), tetrodotoxin (a neuronal sodium channel blocker), nifedipine (a calcium channel blocker), and Ca2+-free Krebs-Henseleit solution. Additionally, reverse transcription polymerase chain reaction (PCR) and immunohistochemistry (IHC) were performed to determine the presence of the TXA2 receptor in porcine LES. The results of this study demonstrated that U46619 caused marked concentration-dependent contractions in both porcine sling and clasp strips. The mechanism of U46619-induced contraction of the porcine LES was found to be related to calcium channels. Furthermore, the reverse transcription PCR analysis and IHC revealed that the TXA2 receptor was expressed in the clasp and sling fibers of porcine LES. Consequently, this study suggests that U46619 mediates the contraction of porcine LES through calcium channels and has potential as a therapeutic approach for treating GERD. SIGNIFICANCE STATEMENT: This study establishes that U46619 induces concentration-dependent contractions in porcine LES, primarily mediated by calcium channels. The presence of the TXA2 receptor in LES clasp and sling fibers is confirmed. These findings highlight U46619's potential as a GERD therapeutic by targeting calcium channels for LES contraction modulation.
Collapse
Affiliation(s)
- Ho-Poh Kek
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Yu-Tsun Su
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Kai-Jen Lin
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Ming-Chun Yang
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Li-Ching Chang
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Yung-Ning Yang
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Ching-Chung Tsai
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| |
Collapse
|
2
|
Liu B, Zhou Y. Endothelium-dependent contraction: The non-classical action of endothelial prostacyclin, its underlying mechanisms, and implications. FASEB J 2021; 35:e21877. [PMID: 34449098 DOI: 10.1096/fj.202101077r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Although commonly thought to produce prostacyclin (prostaglandin I2 ; PGI2 ) that evokes vasodilatation and protects vessels from the development of diseases, the endothelial cyclooxygenase (COX)-mediated metabolism has also been found to release substance(s) called endothelium-derived contracting factor(s) (EDCF) that causes endothelium-dependent contraction and implicates in endothelial dysfunction of disease conditions. Various mechanisms have been proposed for the process; however, the major endothelial COX metabolite PGI2 , which has been classically considered to activate the I prostanoid receptor (IP) that mediates vasodilatation and opposes the effects of thromboxane (Tx) A2 produced by COX in platelets, emerges as a major EDCF in health and disease conditions. Our recent studies from genetically altered mice further suggest that vasomotor reactions to PGI2 are collectively modulated by IP, the vasoconstrictor Tx-prostanoid receptor (TP; the prototype receptor of TxA2 ) and E prostanoid receptor-3 (EP3; a vasoconstrictor receptor of PGE2 ) although with differences in potency and efficacy; a contraction to PGI2 reflects activities of TP and/or EP3 outweighing that of the concurrently activated IP. Here, we discuss the history of endothelium-dependent contraction, evidences that support the above hypothesis, proposed mechanisms for the varied reactions to endothelial PGI2 synthesis as well as the relation of its dilator activity to the effect of another NO-independent vasodilator mechanism, the endothelium-derived hyperpolarizing factor. Also, we address the possible pathological and therapeutic implications as well as questions remaining to be resolved or limitations of our above findings obtained from genetically altered mouse models.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Zhang Y, Luo W, Li H, Yu G, Luo H, Leng J, Ge J, Zeng R, Guo T, Yin Y, Zhou Y, Liu B. Larger endothelium-dependent contractions in iliac arteries of adult SHRs are attributed to differential downregulation of TP and EP3 receptors in the vessels of WKYs and SHRs during the transition from adolescence to adulthood. Eur J Pharmacol 2021; 893:173828. [PMID: 33347824 DOI: 10.1016/j.ejphar.2020.173828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
This study was to determine how endothelium-dependent contractions (EDCs) change in iliac arteries of Wistar-Kyoto (WKYs) and spontaneously hypertensive rats (SHRs) during the transition from adolescence to adulthood and the underlying mechanism(s). We also aimed to elucidate effects of L-798106, an EP3 receptor antagonist, on EDCs and the blood pressure increase in adolescent SHRs. Blood vessels were isolated for functional and biochemical analyses. EDCs were comparable in adolescent iliac arteries of both strains, and contractions to ACh, prostacyclin (PGI2), the EP3 receptor agonist sulprostone and the TP receptor agonist U46619 in adult vessels were less prominent compared with those in the adolescents, while the attenuation of vasoconstrictions to ACh, PGI2 or U46619 with age was to a lesser extent in SHRs. PGI2 production was decreased to a similar level in adult arteries. TP and EP3 expressions were downregulated in adult vessels, whereas the extent of TP downregulation was less in SHRs. L-798106 partially suppressed the vasoconstrictions to U46619 and attenuated EDCs to a greater extent than SQ29548, and administration of L-798106 blunted the blood pressure increase with age in prehypertensive SHRs. These results demonstrate the comparable EDCs in iliac arteries of the adolescents are decreased in the adults, but relatively larger EDCs in adult SHRs can be a reflection of differential downregulation of TP and EP3 receptors during the transition from adolescence to adulthood. Also, our data suggest that blockade of both TP and EP3 receptors starting from the prehypertensive stage suppresses EDCs and the development of hypertension in SHRs.
Collapse
MESH Headings
- Age Factors
- Animals
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Disease Models, Animal
- Down-Regulation
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/prevention & control
- Iliac Artery/metabolism
- Iliac Artery/physiopathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/genetics
- Receptors, Thromboxane/metabolism
- Signal Transduction
- Vasoconstriction/drug effects
- Rats
Collapse
Affiliation(s)
- Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China
| | - Hui Li
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hongjun Luo
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ruhui Zeng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yehu Yin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Liu B, Zeng R, Guo T, Zhang Y, Leng J, Ge J, Yu G, Xu Y, Zhou Y. Differential properties of E prostanoid receptor-3 and thromboxane prostanoid receptor in activation by prostacyclin to evoke vasoconstrictor response in the mouse renal vasculature. FASEB J 2020; 34:16105-16116. [PMID: 33047360 DOI: 10.1096/fj.202000845rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
Vasomotor reactions of prostacyclin (prostaglandin I2 ; PGI2 ) can be collectively modulated by thromboxane prostanoid receptor (TP), E-prostanoid receptor-3 (EP3), and the vasodilator I prostanoid receptor (IP). This study aimed to determine the direct effect of PGI2 on renal arteries and/or the whole renal vasculature and how each of these receptors is involved. Experiments were performed on vessels or perfused kidneys of wild-type mice and/or mice with deficiency in TP (TP-/- ) and/or EP3. Here we show that PGI2 did not evoke relaxation, but instead resulted in contraction of main renal arteries (from ~0.001-0.01 µM) or reduction of flow in perfused kidneys (from ~1 µM); either of them was reversed into a dilator response in TP-/- /EP3-/- counterparts. Also, we found that in renal arteries although it has a lesser effect than TP-/- on the maximal contraction to PGI2 (10 µM), EP3-/- but not TP-/- resulted in relaxation to the prostanoid at 0.01-1 µM. Meanwhile, TP-/- only significantly reduced the contractile activity evoked by PGI2 at ≥0.1 µM. These results demonstrate that PGI2 may evoke an overall vasoconstrictor response in the mouse renal vasculature, reflecting activities of TP and EP3 outweighing that of the vasodilator IP. Also, our results suggest that EP3, on which PGI2 can have a potency similar to that on IP, plays a major role in the vasoconstrictor effect of the prostanoid of low concentrations (≤1 µM), while TP, on which PGI2 has a lower potency but higher efficacy, accounts for a larger part of its maximal contractile activity.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ruhui Zeng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H 2O 2 Production. Cardiovasc Toxicol 2020; 20:197-210. [PMID: 31338744 DOI: 10.1007/s12012-019-09545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mercury is a heavy metal associated with cardiovascular diseases. Studies have reported increased vascular reactivity without changes in systolic blood pressure (SBP) after chronic mercury chloride (HgCl2) exposure, an inorganic form of the metal, in normotensive rats. However, we do not know whether individuals in the prehypertensive phase, such as young spontaneously hypertensive rats (SHRs), are susceptible to increased arterial blood pressure. We investigated whether chronic HgCl2 exposure in young SHRs accelerates hypertension development by studying the vascular function of mesenteric resistance arteries (MRAs) and SBP in young SHRs during the prehypertensive phase. Four-week-old male SHRs were divided into two groups: the SHR control group (vehicle) and the SHR HgCl2 group (4 weeks of exposure). The results showed that HgCl2 treatment accelerated the development of hypertension; reduced vascular reactivity to phenylephrine in MRAs; increased nitric oxide (NO) generation; promoted vascular dysfunction by increasing the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2); increased Gp91Phox protein levels and in situ levels of superoxide anion (O2·-); and reduced vasoconstrictor prostanoid production compared to vehicle treatment. Although HgCl2 accelerated the development of hypertension, the HgCl2-exposed animals also exhibited a vasoprotective mechanism to counterbalance the rapid increase in SBP by decreasing vascular reactivity through H2O2 and NO overproduction. Our results suggest that HgCl2 exposure potentiates this vasoprotective mechanism against the early establishment of hypertension. Therefore, we are concluding that chronic exposure to HgCl2 in prehypertensive animals could enhance the risk for cardiovascular diseases.
Collapse
|
6
|
Cai J, Liu B, Guo T, Zhang Y, Wu X, Leng J, Zhu N, Guo J, Zhou Y. Effects of thromboxane prostanoid receptor deficiency on diabetic nephropathy induced by high fat diet and streptozotocin in mice. Eur J Pharmacol 2020; 882:173254. [PMID: 32553735 DOI: 10.1016/j.ejphar.2020.173254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN), one of the main causes of end-stage renal disease, still remains as a challenge of clinical management. This study aimed to determine whether deficiency of the thromboxane (TX) prostanoid receptor (TP), which mediates the contractile activities of all prostanoids, alleviates the development of DN and if so, to examine the underlying mechanism(s). Diabetes was induced by high fat diet and streptozotocin injection in wild-type (WT) mice and those with TP deficiency (TP-/-). Here we show that WT and TP-/- mice developed diabetes with a similar blood glucose level; however, signs of renal functional impairments and pathologies occurred to a lesser extent in TP-/- than in WT mice. Also, the extent of an increase in the expression level of transforming growth factor-β1 (TGF-β1), a common pathological mediator of DN, in diabetic renal cortexes of TP-/- mice was lower than that of WT counterparts. Moreover, we noted that expression levels of cyclooxygenase (COX)-2 and calcium-dependent phospholipase A2 (cPLA2) as well as levels of prostaglandin E2 and TXA2 in diabetic renal cortexes were increased as compared to those of non-diabetic conditions. These results thus demonstrate that possibly due to up-regulated cPLA2 and COX-2 that lead to increased prostanoid syntheses in diabetic renal cortexes, TP-/- alleviates DN development. In addition, our results suggest that such an effect of TP-/- might be related to the suppression of TGF-β1 up-regulation that is commonly associated with the disease condition.
Collapse
Affiliation(s)
- Juyu Cai
- Department of Medicine, Medical College of Jiaying University, Meizhou, China; Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ningxia Zhu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Simões RP, Fardin PBA, Simões MR, Vassallo DV, Padilha AS. Long-term Mercury Exposure Accelerates the Development of Hypertension in Prehypertensive Spontaneously Hypertensive Rats Inducing Endothelial Dysfunction: the Role of Oxidative Stress and Cyclooxygenase-2. Biol Trace Elem Res 2020; 196:565-578. [PMID: 31745719 DOI: 10.1007/s12011-019-01952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Mercury is a metal widely dispersed in nature that when in contact with human organism, it damages the cardiovascular system. Long-term mercury exposure for 30 days induces endothelial dysfunction without blood pressure changes in normotensive adult rats. However, it is not known whether exposure to mercury can exacerbate endothelial dysfunction and hypertension development in predisposed animals. Thus, we aimed to investigate the effects of long-term mercury exposure on the blood pressure (BP) and in the isolated aortas of young normotensive and prehypertensive spontaneously hypertensive rats (SHRs). Four-week-old male Wistar rats and SHRs were treated daily with mercury chloride (HgCl2) (1st dose, 4.6 μg/kg; subsequent dose, 0.07 μg/kg/day, im, 30 days) or vehicle. BP was assessed weekly and the vascular reactivity to phenylephrine was evaluated in isolated aorta from rats exposed or not to mercury. Mercury exposure did not affect BP in young Wistar rats but accelerated the development of hypertension in young SHRs. Vascular reactivity to phenylephrine increased only in the aorta from mercury-exposed SHRs. While HgCl2 exposure in SHRs did not alter nitric oxide production, we observed increased superoxide anion production and decreased superoxide dismutase-1 protein expression, and enhanced cyclooxygenase-2 (COX-2) participation with increased prostaglandin (PGE2) production and decreased prostacyclin. In the Wistar group, mercury exposure did not alter superoxide anion production or the COX-2 pathway. Mercury exposure accelerated the natural course of hypertension in young SHRs and increased oxidative stress associated with reduced participation of antioxidant enzymes, an activated COX-2 pathway, thereby producing endothelial dysfunction, which is a risk factor in prehypertensive individuals.
Collapse
Affiliation(s)
- Rakel Passos Simões
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
| | - Paloma Batista Almeida Fardin
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
| | - Maylla Ronacher Simões
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
- School of Sciences of Santa Casa de Misericórdia de Vitoria- EMESCAM, Vitória, ES, Brazil
| | - Alessandra Simão Padilha
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil.
| |
Collapse
|
8
|
Ayres JC, Porto HKP, de Andrade DML, Junior JB, Ribeiro MTL, Rocha ML. Paracetamol-induced metabolic and cardiovascular changes are prevented by exercise training. Basic Clin Pharmacol Toxicol 2020; 127:516-524. [PMID: 32573044 DOI: 10.1111/bcpt.13460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Paracetamol (PAR) is the most frequently consumed non-prescription drug, yet it is well known to induce toxicity. Here, we have evaluated the effects of exercise training on vascular dysfunction induced by PAR. Rats were distributed among four groups: (a) Sedentary; (b) Exercise; (c) Sedentary+PAR; and (d) Exercise+PAR. The exercise comprised swimming 50 min/d, 5 d/wk for 6 weeks (+PAR in the last 2 weeks, at 400 mg/kg/d/p.o.). After killing, the rats' blood and aortas were collected for biochemical analysis of hepatic transaminases, TBARs reaction, glutathione, glutathione reductase, SOD, and catalase. In vitro vascular relaxation was measured using acetylcholine and sodium nitroprusside in the presence or absence of tiron (an antioxidant). Vascular protein expression (eNOS and sGC) also were analysed. Increased transaminases after PAR treatment were found to be reduced by exercise. Vasodilation was impaired by PAR only in the sedentary group. Exercise prevented alterations in lipoperoxidation and glutathione levels after PAR exposure. Glutaathione reductase and SOD also were increased by PAR but were normalized in the exercised group. Catalase activity and protein expressions did not change in any group. PAR treatment caused impairment in both vasodilation and redox balance; however, exercise training prevented the vascular and redox system dysfunction induced by PAR treatment.
Collapse
Affiliation(s)
- Júlio Cesar Ayres
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| | | | | | - José Britto Junior
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| | | | - Matheus Lavorenti Rocha
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|
9
|
Chen M, Xiang L, Wu G, Liao Y, Cai Y. Puerarin Inhibits Endothelium-Dependent Contractions in Mouse Carotid Arteries. Med Sci Monit 2020; 26:e923163. [PMID: 32555127 PMCID: PMC7325555 DOI: 10.12659/msm.923163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Many bioactive ingredients of medicinal plants are known to produce vaso-protective benefits. Puerarin is one of the major isoflavone glucosides found in the root of kudzu vine and it exerts an anti-inflammatory effect and many other pharmacological actions. However, the mechanism underlying the vascular effect of puerarin is incompletely understood. Therefore, the present study aims to examine how puerarin reduces endothelium-dependent contractions (EDCs) in mouse arteries. Material/Methods EDCs were evoked by acetylcholine (ACh) in isolated mouse carotid arteries with intact endothelium pretreated with Nω-NO2-L-Arg-OMe (L-NAME). The arteries were pretreated with puerarin and other pharmacological inhibitors before the addition of cumulative concentrations of ACh. The concentration of several prostaglandins (PGs) was measured by high performance liquid chromatography-coupled spectrometry (HPLC-MS). Results EDCs induced by ACh only presented in endothelium-intact arteries pretreated by L-NAME and EDCs were prevented by the treatment with cyclooxygenase (COX) inhibitor indomethacin (3 μmol/L) or thromboxane prostanoid receptor (TP receptor) antagonist S18886 (30 nmol/L). Acute 40-minute treatment with puerarin reduced EDCs in a concentration-dependent manner without affecting U46619-induced contraction. However, treatment with puerarin did not inhibit ACh-induced production of prostaglandins (PGs) in endothelium-intact arteries. Conclusions The present results show that puerarin is able to suppress EDCs in mouse carotid arteries, independent of inhibition of TP receptor or COX2-derived PGs.
Collapse
Affiliation(s)
- Mei Chen
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Li Xiang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Guangliang Wu
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yingdi Liao
- Department of Neurology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Yefeng Cai
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China (mainland).,School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
10
|
Matsumoto T, Takayanagi K, Kojima M, Katome T, Taguchi K, Kobayashi T. Direct Impairment of the Endothelial Function by Acute Indoxyl Sulfate through Declined Nitric Oxide and Not Endothelium-Derived Hyperpolarizing Factor or Vasodilator Prostaglandins in the Rat Superior Mesenteric Artery. Biol Pharm Bull 2019; 42:1236-1242. [PMID: 31257300 DOI: 10.1248/bpb.b19-00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Upon stimulation, endothelial cells release various factors to regulate the vascular tone. In particular, vasorelaxing factors, called endothelium-derived relaxing factors (EDRFs), are altered in the production and/or release, as well as their signaling every vessel and under pathophysiological states, including cardiovascular, kidney, and metabolic diseases. Although indoxyl sulfate is known as a protein-bound uremic toxin and circulating levels are elevated in the impaired kidney functions, direct impact on the vascular function, especially EDRF's signaling, remains unclear. In this study, we hypothesize that acute exposure to indoxyl sulfate could alter vascular relaxation in the rat superior mesenteric artery. Accordingly, we measured acetylcholine (ACh)-induced endothelium-dependent relaxation in the absence and presence of several inhibitors to divide into each EDRF, including nitric oxide (NO), vasodilator prostaglandins (PGs), and endothelium-derived hyperpolarizing factor (EDHF). Indoxyl sulfate reduced the sensitivity to ACh but not sodium nitroprusside. Under cyclooxygenase (COX) inhibition or inhibitions of COX plus source of EDHF, such as small (SKCa)- and intermediate (IKCa)-conductance calcium-activated K+ channels, the decreased sensitivity to ACh in indoxyl sulfate exposed vessel was still preserved. However, under inhibition of NO synthase (NOS) or inhibitions of NOS and COX, the difference of sensitivity to ACh between vehicle and indoxyl sulfate was eliminated. These findings indicated that acute exposure of indoxyl sulfate in the rat superior mesenteric artery specifically explicitly impaired NO signaling but not EDHF or vasodilator PGs.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tomoki Katome
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
11
|
Liu B, Li J, Yan H, Tian D, Li H, Zhang Y, Guo T, Wu X, Luo W, Zhou Y. TP and/or EP3 receptors mediate the vasoconstrictor and pressor responses of prostaglandin F 2α in mice and/or humans. FASEB J 2019; 33:2451-2459. [PMID: 30277822 DOI: 10.1096/fj.201801064rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The vasoconstrictor and/or pressor effects of prostaglandin (PG)F2α participate in the development of vascular pathologies and limit the clinical use of the agent. This study aimed to determine the receptor types responsible for the vasoconstrictor activity of PGF2α and whether they mediate the pressor response evoked by the prostanoid under in vivo conditions. Experiments were performed on genetically altered mice and/or on vessels from these mice or humans. Here we show that deletion of the thromboxane-prostanoid receptor (TP-/-) abolished or drastically diminished the contraction to PGF2α in isolated mouse vessels (some of which were resistance arteries) and reduced the elevation in blood pressure evoked by the prostanoid under in vivo conditions. In accordance, TP antagonism abolished the contraction in small arteries of human omentum. Further deletion of E prostanoid receptor type 3 (EP3-/-) removed the PGF2α-evoked contraction that remained in some TP-/- arteries and added to the effect of TP-/- on the elevation in blood pressure evoked by the prostanoid under in vivo conditions. In contrast, the uterine contraction to PGF2α mediated via the F prostanoid receptor (FP) was unaltered in TP-/-/EP3-/- mice. These results demonstrate that the non-FP receptors TP and/or EP3 mediate the vasoconstrictor and pressor effects of PGF2α, which are still of concern under clinical conditions.-Liu, B., Li, J., Yan, H., Tian, D., Li, H., Zhang, Y., Guo, T., Wu, X., Luo, W., Zhou, Y. TP and/or EP3 receptors mediate the vasoconstrictor and pressor responses of prostaglandin F2α in mice and/or humans.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiarong Li
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hongfei Yan
- Department of Pathology, the Affiliated Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Dongping Tian
- Department of Pathology, Shantou University Medical College, Shantou, China; and
| | - Hui Li
- The Central Laboratory, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- The Central Laboratory, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
12
|
Hu C, Liu B, Xu Y, Wu X, Guo T, Zhang Y, Leng J, Ge J, Yu G, Guo J, Zhou Y. EP3 Blockade Adds to the Effect of TP Deficiency in Alleviating Endothelial Dysfunction in Atherosclerotic Mouse Aortas. Front Physiol 2019; 10:1247. [PMID: 31611817 PMCID: PMC6775864 DOI: 10.3389/fphys.2019.01247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
Endothelial dysfunction, which leads to ischemic events under atherosclerotic conditions, can be attenuated by antagonizing the thromboxane-prostanoid receptor (TP) that mediates the vasoconstrictor effect of prostanoids including prostacyclin (PGI2). This study aimed to determine whether antagonizing the E prostanoid receptor-3 (EP3; which can also be activated by PGI2) adds to the above effect of TP deficiency (TP-/-) under atherosclerotic conditions and if so, the underlying mechanism(s). Atherosclerosis was induced in ApoE-/- mice and those with ApoE-/- and TP-/-. Here, we show that in phenylephrine pre-contracted abdominal aortic rings with atherosclerotic lesions of ApoE-/-/TP-/- mice, although an increase of force (which was larger than that of non-atherosclerotic controls) evoked by the endothelial muscarinic agonist acetylcholine to blunt the concurrently activated relaxation in ApoE-/- counterparts was largely removed, the relaxation evoked by the agonist was still smaller than that of non-atherosclerotic TP-/- mice. EP3 antagonism not only increased the above relaxation, but also reversed the contractile response evoked by acetylcholine in NO synthase-inhibited atherosclerotic ApoE-/-/TP-/- rings into a relaxation sensitive to I prostanoid receptor antagonism. In ApoE-/- atherosclerotic vessels the expression of endothelial NO synthase was decreased, yet the production of PGI2 (which evokes contraction via both TP and EP3) evoked by acetylcholine was unaltered compared to non-atherosclerotic conditions. These results demonstrate that EP3 blockade adds to the effect of TP-/- in uncovering the dilator action of natively produced PGI2 to alleviate endothelial dysfunction in atherosclerotic conditions.
Collapse
Affiliation(s)
- Chuangjia Hu
- Department of Cardiology, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Bin Liu,
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
- Yingbi Zhou,
| |
Collapse
|
13
|
Simeone P, Boccatonda A, Liani R, Santilli F. Significance of urinary 11-dehydro-thromboxane B 2 in age-related diseases: Focus on atherothrombosis. Ageing Res Rev 2018; 48:51-78. [PMID: 30273676 DOI: 10.1016/j.arr.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
Platelet activation plays a key role in atherogenesis and atherothrombosis. Biochemical evidence of increased platelet activation in vivo can be reliably obtained through non-invasive measurement of thromboxane metabolite (TXM) excretion. Persistent biosynthesis of TXA2 has been associated with several ageing-related diseases, including acute and chronic cardio-cerebrovascular diseases and cardiovascular risk factors, such as cigarette smoking, type 1 and type 2 diabetes mellitus, obesity, hypercholesterolemia, hyperhomocysteinemia, hypertension, chronic kidney disease, chronic inflammatory diseases. Given the systemic nature of TX excretion, involving predominantly platelet but also extraplatelet sources, urinary TXM may reflect either platelet cyclooxygenase-1 (COX-1)-dependent TX generation or COX-2-dependent biosynthesis by inflammatory cells and/or platelets, or a combination of the two, especially in clinical settings characterized by low-grade inflammation or enhanced platelet turnover. Although urinary 11-dehydro-TXB2 levels are largely suppressed with low-dose aspirin, incomplete TXM suppression by aspirin predicts the future risk of vascular events and death in high-risk patients and may identify individuals who might benefit from treatments that more effectively block in vivo TX production or activity. Several disease-modifying agents, including lifestyle intervention, antidiabetic drugs and antiplatelet agents besides aspirin have been shown to reduce TX biosynthesis. Taken together, these aspects may contribute to the development of promising mechanism-based therapeutic strategies to reduce the progression of atherothrombosis. We intended to critically review current knowledge on both the pathophysiological significance of urinary TXM excretion in clinical settings related to ageing and atherothrombosis, as well as its prognostic value as a biomarker of vascular events.
Collapse
Affiliation(s)
- Paola Simeone
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy
| | - Andrea Boccatonda
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging, and Center of Aging Science and Translational Medicine (CESI-Met), Via Luigi Polacchi, Chieti, Italy.
| |
Collapse
|
14
|
Liu B, Zhan M, Zhang Y, Li H, Wu X, Zhuang F, Luo W, Zhou Y. Increased role of E prostanoid receptor-3 in prostacyclin-evoked contractile activity of spontaneously hypertensive rat mesenteric resistance arteries. Sci Rep 2017; 7:8927. [PMID: 28827689 PMCID: PMC5566542 DOI: 10.1038/s41598-017-09288-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine whether E prostanoid receptor-3 (EP3) is involved in prostacyclin (PGI2)-evoked vasoconstrictor activity of resistance arteries and if so, how it changes under hypertensive conditions. Mesenteric resistance arteries from Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were isolated for functional and biochemical studies. Here we show that in vessels from WKYs, PGI2 or the endothelial muscarinic agonist ACh (which stimulates in vitro PGI2 synthesis) evoked vasoconstrictor activity, which increased in SHRs. The thromboxane-prostanoid receptor (TP) antagonist SQ29548 partially removed the vasoconstrictor activity, and an increased contractile activity of PGI2 resistant to SQ29548 was observed in SHRs. Interestingly, L798106, an antagonist of EP3 (whose expression was higher in SHRs than in WKYs), not only added to the effect of SQ29548 but also caused relaxation to PGI2 more than that obtained with SQ29548. In accordance, EP3 deletion, which reduced PGI2-evoked contraction, together with SQ29548 resulted in relaxation evoked by the agonist in mouse aortas. These results thus demonstrate an explicit involvement of EP3 in PGI2-evoked vasoconstrictor activity in rat mesenteric resistance arteries and suggest that up-regulation of the receptor contributes significantly to the increased contractile activity evoked by PGI2 under hypertensive conditions.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Mengyi Zhan
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | | | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
15
|
Li Z, Zhang Y, Liu B, Luo W, Li H, Zhou Y. Role of E-type prostaglandin receptor EP3 in the vasoconstrictor activity evoked by prostacyclin in thromboxane-prostanoid receptor deficient mice. Sci Rep 2017; 7:42167. [PMID: 28165064 PMCID: PMC5292700 DOI: 10.1038/srep42167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023] Open
Abstract
Prostacyclin, also termed as prostaglandin I2 (PGI2), evokes contraction in vessels with limited expression of the prostacyclin receptor. Although the thromboxane-prostanoid receptor (TP) is proposed to mediate such a response of PGI2, other unknown receptor(s) might also be involved. TP knockout (TP-/-) mice were thus designed and used to test the hypothesis. Vessels, which normally show contraction to PGI2, were isolated for functional and biochemical analyses. Here, we showed that the contractile response evoked by PGI2 was indeed only partially abolished in the abdominal aorta of TP-/- mice. Interestingly, further antagonizing the E-type prostaglandin receptor EP3 removed the remaining contractile activity, resulting in relaxation evoked by PGI2 in such vessels of TP-/- mice. These results suggest that EP3 along with TP contributes to vasoconstrictor responses evoked by PGI2, and hence imply a novel mechanism for endothelial cyclooxygenase metabolites (which consist mainly of PGI2) in regulating vascular functions.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Base Sequence
- Blood Pressure/drug effects
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Epoprostenol/metabolism
- Epoprostenol/pharmacology
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/deficiency
- Receptors, Thromboxane/genetics
- Renal Artery/drug effects
- Renal Artery/metabolism
- Signal Transduction
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Zhenhua Li
- Dept of Pathology, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Endothelial dysfunction is intimately related to the development of various cardiovascular diseases, including hypertension, and is often used as a target for pharmacological treatment. The scope of this review is to assess effects of aspirin on endothelial function and their clinical implication in arterial hypertension. RECENT FINDINGS Emerging data indicate the role of platelets in the development of vascular inflammation due to the release of proinflammatory mediators, for example, triggered largely by thromboxane. Vascular inflammation further promotes oxidative stress, diminished synthesis of vasodilators, proaggregatory and procoagulant state. These changes translate into vasoconstriction, impaired circulation and thrombotic complications. Aspirin inhibits thromboxane synthesis, abolishes platelets activation and acetylates enzymes switching them to the synthesis of anti-inflammatory substances. Aspirin pleiotropic effects have not been fully elucidated yet. In secondary prevention studies, the decrease in cardiovascular events with aspirin outweighs bleeding risks, but this is not the case in primary prevention settings. Ongoing trials will provide more evidence on whether to expand the use of aspirin or stay within current recommendations.
Collapse
Affiliation(s)
- Mikhail S Dzeshka
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Dudley Road, Birmingham, B18 7QH, UK
- Grodno State Medical University, Grodno, Belarus
| | - Alena Shantsila
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Dudley Road, Birmingham, B18 7QH, UK
| | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Dudley Road, Birmingham, B18 7QH, UK.
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
17
|
Luo W, Liu B, Zhou Y. The endothelial cyclooxygenase pathway: Insights from mouse arteries. Eur J Pharmacol 2016; 780:148-58. [PMID: 27020548 DOI: 10.1016/j.ejphar.2016.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 02/05/2023]
Abstract
To date, cyclooxygenase-2 (COX-2) is commonly believed to be the major mediator of endothelial prostacyclin (prostaglandin I2; PGI2) synthesis that balances the effect of thromboxane (Tx) A2 synthesis mediated by the other COX isoform, COX-1 in platelets. Accordingly, selective inhibition of COX-2 is considered to cause vasoconstriction, platelet aggregation, and hence increase the incidence of cardiovascular events. This idea has been claimed to be substantiated by experiments on mouse models, some of which are deficient in one of the two COX isoforms. However, results from our studies and those of others using similar mouse models suggest that COX-1 is the major functional isoform in vascular endothelium. Also, although PGI2 is recognized as a potent vasodilator, in some arteries endothelial COX activation causes vasoconstrictor response. This has again been recognized by studies, especially those performed on mouse arteries, to result largely from endothelial PGI2 synthesis. Therefore, evidence that supports a role for COX-1 as the major mediator of PGI2 synthesis in mouse vascular endothelium, reasons for the inconsistency, and results that elucidate underlying mechanisms for divergent vasomotor reactions to endothelial COX activation will be discussed in this review. In addition, we address the possible pathological implications and limitations of findings obtained from studies performed on mouse arteries.
Collapse
Affiliation(s)
- Wenhong Luo
- Central Lab, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
18
|
Li S, Liu B, Luo W, Zhang Y, Li H, Huang D, Zhou Y. Role of cyclooxygenase-1 and -2 in endothelium-dependent contraction of atherosclerotic mouse abdominal aortas. Clin Exp Pharmacol Physiol 2016; 43:67-74. [PMID: 26444418 DOI: 10.1111/1440-1681.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023]
Abstract
The objective of this study was to determine the role of cyclooxygenase (COX)-1 or -2 in endothelium-dependent contraction under atherosclerotic conditions. Atherosclerosis was induced in apoE knockout (apoE(-/-)) mice and those with COX-1(-/-) (apoE(-/-)-COX-1(-/-)) by feeding with high fat and cholesterol food. Aortas (abdominal or the whole section) were isolated for functional and/or biochemical analyses. As in non-atherosclerotic conditions, the muscarinic receptor agonist acetylcholine (ACh) evoked an endothelium-dependent, COX-mediated contraction following NO synthase (NOS) inhibition in abdominal aortic rings from atherosclerotic apoE(-/-) mice. Interestingly, COX-1 inhibition not only abolished such a contraction in rings showing normal appearance, but also diminished that in rings with plaques. Accordingly, only a minor contraction (<30% that of apoE(-/-) counterparts) was evoked by ACh (following NOS inhibition) in abdominal aortic rings of atherosclerotic apoE(-/-)-COX-1(-/-) mice with plaques, and none was evoked in those showing normal appearance. Also, the contraction evoked by ACh in apoE(-/-)-COX-1(-/-) abdominal aortic rings with plaques was abolished by non-selective COX inhibition, thromboxane-prostanoid (TP) receptor antagonism, or endothelial denudation. Moreover, it was noted that ACh evoked a predominant production of the prostacyclin (PGI2, which mediates abdominal aortic contraction via TP receptors in mice) metabolite 6-keto-PGF1α, which was again sensitive to COX-1 inhibition or COX-1(-/-). Therefore, in atherosclerotic mouse abdominal aortas, COX-1 can still be the major isoform mediating endothelium-dependent contraction, which probably results largely from PGI2 synthesis as in non-atherosclerotic conditions. In contrast, COX-2 may have only a minor role in such response limited to areas of plaques under the same pathological condition.
Collapse
Affiliation(s)
- Shasha Li
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Molecular and Cell Biology, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|