1
|
Slone S, Anthony SR, Green LC, Parkins S, Acharya P, Kasprovic DA, Reynolds K, Jaggers RM, Nieman ML, Alam P, Wu X, Roy S, Aubé J, Xu L, Li Z, Lorenz JN, Owens AP, Kanisicak O, Tranter M. HuR inhibition reduces post-ischemic cardiac remodeling by dampening myocyte-dependent inflammatory gene expression and the innate immune response. FASEB J 2025; 39:e70433. [PMID: 40085190 PMCID: PMC11908633 DOI: 10.1096/fj.202400532rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
The RNA-binding protein human antigen R (HuR) has been shown to reduce cardiac remodeling following both myocardial infarction and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium has yet to be elucidated. Wild-type mice were subjected to 30 min of cardiac ischemia (via LAD occlusion) and treated with a novel small molecule inhibitor of HuR at the time of reperfusion, followed by direct in vivo assessment of cardiac structure and function. Direct assessment of HuR-dependent mechanisms was done in vitro using neonatal rat ventricular myocytes (NRVMs) and bone marrow-derived macrophages (BMDMs). HuR activity is increased within 2 h after ischemia/reperfusion (I/R) and is necessary for early post-I/R inflammatory gene expression in the myocardium. Despite an early reduction in inflammatory gene expression, HuR inhibition has no effect on initial infarct size at 24 h post-I/R. However, pathological remodeling is reduced with preserved cardiac function at 2 weeks post-I/R upon HuR inhibition. RNA sequencing analysis of gene expression in NRVMs treated with LPS to model damage-associated molecular pattern (DAMP)-mediated activation of toll-like receptors (TLRs) demonstrates a HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. Importantly, we show that conditioned media transfer from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression and M1-like polarization in bone marrow-derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition reduces macrophage infiltration to the post-ischemic myocardium in vivo. Additionally, we show that LPS-treated NRVMs induce the migration of peripheral blood monocytes in a HuR-dependent endocrine manner. These studies demonstrate that HuR is necessary for early pro-inflammatory gene expression in cardiomyocytes following I/R injury that subsequently mediates monocyte recruitment and macrophage activation in the post-ischemic myocardium.
Collapse
Grants
- HL166326 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20POST35200267 American Heart Association Postdoctoral Fellowship
- PRE35210795 American Heart Association (AHA)
- HL125204 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL132111 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1029875 American Heart Association (AHA)
- R01 HL166326 NHLBI NIH HHS
- CA252158 HHS | NIH | National Cancer Institute (NCI)
- HL148598 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA34110117 American Heart Association (AHA)
- CA243445 HHS | NIH | National Cancer Institute (NCI)
- R01 HL132111 NHLBI NIH HHS
- R01 CA243445 NCI NIH HHS
- CA191785 HHS | NIH | National Cancer Institute (NCI)
- 23CDA1052132 American Heart Association Career Development Grant
- F31-HL170636 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- PRE35230020 American Heart Association (AHA)
- R33 CA252158 NCI NIH HHS
- HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHS | NIH | National Cancer Institute (NCI)
- American Heart Association (AHA)
Collapse
Affiliation(s)
- Samuel Slone
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Sarah R. Anthony
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Lisa C. Green
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Sharon Parkins
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Pooja Acharya
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Daniel A. Kasprovic
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kelsi Reynolds
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Robert M. Jaggers
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Division of Basic and Translational Science, Department of Emergency MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Michelle L. Nieman
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Perwez Alam
- Department of Biomedical Sciences, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Xiaoqing Wu
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Liang Xu
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - Zihai Li
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - John N. Lorenz
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - A. Phillip Owens
- Division of Cardiovascular Health and DiseaseUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Onur Kanisicak
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Division of Basic and Translational Science, Department of Emergency MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Michael Tranter
- Department of Molecular Medicine and TherapeuticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
2
|
Morgado LAL, Rodrigues LMZ, Silva DCF, da Silva BD, Irigoyen MCC, Takano APC. NF-κB-Specific Suppression in Cardiomyocytes Unveils Aging-Associated Responses in Cardiac Tissue. Biomedicines 2025; 13:224. [PMID: 39857807 PMCID: PMC11762954 DOI: 10.3390/biomedicines13010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Aging is associated with structural and functional changes in the heart, including hypertrophy, fibrosis, and impaired contractility. Cellular mechanisms such as senescence, telomere shortening, and DNA damage contribute to these processes. Nuclear factor kappa B (NF-κB) has been implicated in mediating cellular responses in aging tissues, and increased NF-κB expression has been observed in the hearts of aging rodents. Therefore, NF-κB is suspected to play an important regulatory role in the cellular and molecular processes occurring in the heart during aging. This study investigates the in vivo role of NF-κB in aging-related cardiac alterations, focusing on senescence and associated cellular events. Methods: Young and old wild-type (WT) and transgenic male mice with cardiomyocyte-specific NF-κB suppression (3M) were used to assess cardiac function, morphology, senescence markers, lipofuscin deposition, DNA damage, and apoptosis. Results: Kaplan-Meier analysis revealed reduced survival in 3M mice compared to WT. Echocardiography showed evidence of eccentric hypertrophy, and both diastolic and systolic dysfunction in 3M mice. Both aged WT and 3M mice exhibited cardiac hypertrophy, with more pronounced hypertrophic changes in cardiomyocytes from 3M mice. Additionally, cardiac fibrosis, senescence-associated β-galactosidase activity, p21 protein expression, and DNA damage (marked by phosphorylated H2A.X) were elevated in aged WT and both young and aged 3M mice. Conclusions: The suppression of NF-κB in cardiomyocytes leads to pronounced cardiac remodeling, dysfunction, and cellular damage associated with the aging process. These findings suggest that NF-κB plays a critical regulatory role in cardiac aging, influencing both cellular senescence and molecular damage pathways. This has important implications for the development of therapeutic strategies aimed at mitigating age-related cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Durante da Silva
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-000, Brazil
| | - Maria Claudia Costa Irigoyen
- Unidade de Hipertensao, Instituto do Coracao, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (InCor-HCFMUSP), Sao Paulo 05403-000, Brazil
| | - Ana Paula Cremasco Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
4
|
Slone S, Anthony SR, Green LC, Nieman ML, Alam P, Wu X, Roy S, Aube J, Xu L, Lorenz JN, Owens AP, Kanisicak O, Tranter M. HuR inhibition reduces post-ischemic cardiac remodeling by dampening acute inflammatory gene expression and the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524420. [PMID: 36711986 PMCID: PMC9882229 DOI: 10.1101/2023.01.17.524420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.
Collapse
|
5
|
Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Post-translational Modifications of IκBα: The State of the Art. Front Cell Dev Biol 2020; 8:574706. [PMID: 33224945 PMCID: PMC7674170 DOI: 10.3389/fcell.2020.574706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) signaling pathway regulates a variety of biological functions in the body, and its abnormal activation contributes to the pathogenesis of many diseases, such as cardiovascular and respiratory diseases and cancers. Therefore, to ensure physiological homeostasis of body systems, this pathway is strictly regulated by IκBα transcription, IκBα synthesis, and the IκBα-dependent nuclear transport of NF-κB. Particularly, the post-translational modifications of IκBα including phosphorylation, ubiquitination, SUMOylation, glutathionylation and hydroxylation are crucial in the abovementioned regulatory process. Because of the importance of the NF-κB pathway in maintaining body homeostasis, understanding the post-translational modifications of IκBα can not only provide deeper insights into the regulation of NF-κB pathway but also contribute to the development of new drug targets and biomarkers for the diseases.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Guo X, Hong S, He H, Zeng Y, Chen Y, Mo X, Li J, Li L, Steinmetz R, Liu Q. NFκB promotes oxidative stress-induced necrosis and ischemia/reperfusion injury by inhibiting Nrf2-ARE pathway. Free Radic Biol Med 2020; 159:125-135. [PMID: 32745764 PMCID: PMC7530060 DOI: 10.1016/j.freeradbiomed.2020.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/06/2023]
Abstract
In this study, we identified an unexpected pro-cell death role for NFκB in mediating oxidative stress-induced necrosis, and provide new mechanistic evidence that NFκB, in cooperation with HDAC3, negatively regulates Nrf2-ARE anti-oxidative signaling through transcriptional silencing. We showed that genetic inactivation of NFκB-p65 inhibited, whereas activation of NFκB promoted, oxidative stress-induced cell death and HMGB1 release, a biomarker of necrosis. Moreover, NFκB-luciferase activity was elevated in cardiomyocytes after simulated ischemia/reperfusion (sI/R) or doxorubicin (DOX) treatment, and inhibition of NFκB with Ad-p65-shRNA or Ad-IκBαM diminished sI/R- and DOX-induced cell death and HMGB1 release. Importantly, NFκB negatively regulated Nrf2-ARE activity and the expression of antioxidant proteins. Mechanistically, co-immunoprecipitation revealed that p65 was required for Nrf2-HDAC3 interaction and transcriptional silencing of Nrf2-ARE activity. Further, the ability of HDAC3 to repress Nrf2-ARE activity was lost in p65 deficient cells. Pharmacologic inhibition of HADCs or NFκB with trichostatin A (TSA) or BMS-345541, respectively, increased Nrf2-ARE activity and promoted cell survival after sI/R. In vivo, NFκB transcriptional activity in the mouse heart was significantly elevated after ischemia/reperfusion (I/R) injury, which was abolished by cardiomyocyte-specific deletion of p65 using p65fl/flNkx2.5-Cre mice. Moreover, genetic ablation of p65 in the mouse heart attenuated myocardial infarct size after acute I/R injury and improved cardiac remodeling and functional recovery after chronic myocardial infarction. Thus, our results identified NFκB as a key regulator of oxidative stress-induced necrosis by suppressing the Nrf2-ARE antioxidant pathway through an HDAC3-dependent mechanism. This study also revealed a new pathogenic role of NFκB in cardiac ischemic injury and pathological remodeling.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Siqi Hong
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Hui He
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yachang Zeng
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yi Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoliang Mo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Lei Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Rachel Steinmetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Yi JS, Perla S, Enyenihi L, Bennett AM. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 2020; 5:137753. [PMID: 32584792 PMCID: PMC7455087 DOI: 10.1172/jci.insight.137753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023] Open
Abstract
Noonan syndrome with multiple lentigines (NSML) is a rare autosomal dominant disorder that presents with cardio-cutaneous-craniofacial defects. Hypertrophic cardiomyopathy (HCM) represents the major life-threatening presentation in NSML. Mutations in the PTPN11 gene that encodes for the protein tyrosine phosphatase (PTP), SHP2, represents the predominant cause of HCM in NSML. NSML-associated PTPN11 mutations render SHP2 catalytically inactive with an "open" conformation. NSML-associated PTPN11 mutations cause hypertyrosyl phosphorylation of the transmembrane glycoprotein, protein zero-related (PZR), resulting in increased SHP2 binding. Here we show that NSML mice harboring a tyrosyl phosphorylation-defective mutant of PZR (NSML/PZRY242F) that is defective for SHP2 binding fail to develop HCM. Enhanced AKT/S6 kinase signaling in heart lysates of NSML mice was reversed in NSML/PZRY242F mice, demonstrating that PZR/SHP2 interactions promote aberrant AKT/S6 kinase activity in NSML. Enhanced PZR tyrosyl phosphorylation in the hearts of NSML mice was found to drive myocardial fibrosis by engaging an Src/NF-κB pathway, resulting in increased activation of IL-6. Increased expression of IL-6 in the hearts of NSML mice was reversed in NSML/PZRY242F mice, and PZRY242F mutant fibroblasts were defective for IL-6 secretion and STAT3-mediated fibrogenesis. These results demonstrate that NSML-associated PTPN11 mutations that induce PZR hypertyrosyl phosphorylation trigger pathophysiological signaling that promotes HCM and cardiac fibrosis.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sravan Perla
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Liz Enyenihi
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Anton M. Bennett
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
MiR-181c-5p Promotes Inflammatory Response during Hypoxia/Reoxygenation Injury by Downregulating Protein Tyrosine Phosphatase Nonreceptor Type 4 in H9C2 Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7913418. [PMID: 32774684 PMCID: PMC7399766 DOI: 10.1155/2020/7913418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022]
Abstract
Background Constitutive nuclear factor kappa B (NFκB) activation has been shown to exacerbate during myocardial ischemia/reperfusion (I/R) injury. We recently showed that miR-181c-5p exacerbated cardiomyocytes injury and apoptosis by directly targeting the 3′-untranslated region of protein tyrosine phosphatase nonreceptor type 4 (PTPN4). However, whether miR-181c-5p mediates cardiac I/R injury through NFκB-mediated inflammation is unknown. Thus, the present study aimed to investigate the role of miR-181c-5p during myocardial I/R injury and explore its mechanism in relation to inflammation in H9C2 cardiomyocytes. Methods and Results In hypoxia/reoxygenation (H/R, 6 h hypoxia followed by 6 h reoxygenation)-stimulated H9C2 cardiomyocytes or postischemic myocardium of rat, the expression of miR-181c-5p was significantly upregulated, which was concomitant increased NFκB activity when compared to the nonhypoxic or nonischemic control groups. This is indicative that miR-181c-5p may be involved in NFκB-mediated inflammation during myocardial I/R injury. To investigate the potential role of miR-181c-5p in H/R-induced cell inflammation and injury, H9C2 cardiomyocytes were transfected with the miR-181c-5p agomir. Overexpression of miR-181c-5p significantly aggravated H/R-induced cell injury (increased lactate dehydrogenase (LDH) level) and exacerbated NFκB-mediated inflammation (greater phosphorylation and degradation of IκBα, phosphorylation of p65, and increased levels of proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin (IL)-6, and IL-1β). In contrast, inhibition of miR-181c-5p by its antagomir transfection in vitro had the opposite effect. Furthermore, overexpression of miR-181c-5p significantly enhanced lipopolysaccharide-induced NFκB signalling. Additionally, knockdown of PTPN4, the direct target of miR-181c-5p, significantly aggravated H/R-induced phosphorylation and degradation of IκBα, phosphorylation of p65, and the levels of proinflammatory cytokines. PTPN4 knockdown also cancelled miR-181c-5p antagomir mediated anti-inflammatory effects in H9C2 cardiomyocytes during H/R injury. Conclusions It is concluded that miR-181c-5p may exacerbate myocardial I/R injury and NFκB-mediated inflammation via PTPN4, and that targeting miR-181c-5p/PTPN4/NFκB signalling may represent a novel strategy to combat myocardial I/R injury.
Collapse
|
9
|
Chen YH, Lin H, Wang Q, Hou JW, Mao ZJ, Li YG. Protective role of silibinin against myocardial ischemia/reperfusion injury-induced cardiac dysfunction. Int J Biol Sci 2020; 16:1972-1988. [PMID: 32398964 PMCID: PMC7211181 DOI: 10.7150/ijbs.39259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Silibinin is a traditional medicine and utilized for liver protection with antioxidant, anti-inflammation and anti-apoptosis properties. However, its role in myocardial I/R injury and the mechanism involved is currently unknown. In the present study, Silibinin treatment improves cardiac function and limits infarct size, and subsequently inhibits fibrotic remodeling in mice with myocardial I/R injury. Mechanistically, silibinin reduces cardiomyocytes apoptosis, attenuates mitochondrial impairment and endoplasmic reticulum (ER) stress, alleviates ROS generation, neutrophil infiltration and cytokines release. Consistently, silibinin prevents H9C2 cells from hypoxia/reperfusion-induced cell death, oxidative stress and inflammation in vitro. Furthermore, H9C2 cells treated with silibinin blocks NF-κB signaling activation by inhibiting IKKα phosphorylation, IκBα degradation and p65 NF-κB nuclear translocation during hypoxia/ reperfusion. In addition, silibinin plus BAY 11-7082 (a selected NF-κB inhibitor) do not provide incremental benefits in improving myocytes apoptosis, oxidative stress and inflammation in comparison with NF-κB signaling inhibition only. Thus, silibinin-mediated cardioprotection in myocardial I/R injury is associated with decreased apoptosis, oxidative stress and inflammatory response through deactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Yi-He Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Nanbaixiang, Wenzhou, Zhejiang, China
| | - Hui Lin
- Department of Respiratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Qian Wang
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Jian-Wen Hou
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| | - Zhi-Jie Mao
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, 325000, Nanbaixiang, Wenzhou, Zhejiang, China
| | - Yi-Gang Li
- Department of Cardiology, Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Hu J, Huang CX, Rao PP, Cao GQ, Zhang Y, Zhou JP, Zhu LY, Liu MX, Zhang GG. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur J Pharmacol 2019; 857:172449. [PMID: 31207208 DOI: 10.1016/j.ejphar.2019.172449] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/05/2023]
Abstract
Endoplasmic reticulum stress (ERS)-induced cardiomyocyte apoptosis plays an important role in the pathological process following myocardial infarction (MI). Macrophages that express microRNA-155 (miR-155) mediate cardiac inflammation, fibrosis, and hypertrophy. Therefore, we investigated if miR-155 regulates ERS-induced cardiomyocyte apoptosis after MI using a mouse model, lipopolysaccharide (LPS)-induced rat bone marrow derived macrophages (BMDMs)and hypoxia-induced neonatal rat cardiomyocytes (NRCMs). In vivo, miR-155 levelswere significantly higher in the MI group compared to the sham group. MI increasedmacrophage infiltration, nuclear factor-κB (NF-κB) activation, ERS induced-apoptosis, and SOCS1 expression, all of which were attenuated by the miR-155 antagomir, with the exception of SOCS1 expression. Additionally, post-MI cardiac dysfunction was significantly improved by miR-155 inhibition. In vitro, LPS upregulated miR-155 expression in BMDMs, and the miR-155 antagomir decreased LPS-induced macrophage inflammation and NF-κB pathway activation, but increased expression of SOCS1. Hypoxia increased NF-κB pathway activation, ERS marker expression, and apoptosis in NRCMs. Interestingly, conditioned medium from LPS-induced macrophages in combination with the miR-155 antagomir decreased, while the miR-155 agomir increased, the hypoxia-induced effects in NRCM's. The miR-155 agomir effects were reversed by inhibiting the NF-κB pathway in cardiomyocytes. Moreover, SOCS1 knockdown in LPS-induced macrophages promoted NF-κB pathway activation and ERS-induced cardiomyocyte apoptosis in the hypoxia-induced NRCMs, but the SOCS1-siRNA-induced effects were markedly decreased by miR-155 antagomir treatment. These data suggest that miR-155 inhibition attenuates ERS-induced cardiomyocyte apoptosis after MI via reducing macrophage inflammation through the SOCS1/NF-κB pathway.
Collapse
Affiliation(s)
- Juan Hu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Institute of Hypertension, Central South University, Changsha, Hunan, China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Pan-Pan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Gui-Qiu Cao
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yin Zhang
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Ji-Peng Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Institute of Hypertension, Central South University, Changsha, Hunan, China
| | - Ling-Yan Zhu
- Department of Endocrinology, The First Affiliated Hospital of NanChang University, Nanchang, 330006, China
| | - Ming-Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, PR China
| | - Guo-Gang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; Institute of Hypertension, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
12
|
Farghaly HSM, Ashry IESM, Hareedy MS. High doses of digoxin increase the myocardial nuclear factor-kB and CaV1.2 channels in healthy mice. A possible mechanism of digitalis toxicity. Biomed Pharmacother 2018; 105:533-539. [PMID: 29885637 DOI: 10.1016/j.biopha.2018.05.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Toxic effects of digoxin may occur with normal therapeutic serum level. However, the underlying mechanisms are not fully understood. Nuclear factor kappa-B (NF-kB) is an important transcription factor in most organ systems and is often implicated in the harmful effects of cardiac injury. NF-kB promotes inflammatory responses, mediates adverse cardiac remodeling and has a function correlation with calcium. The voltage-gated L-type calcium channel CaV1.2 mediates the influx of Ca+2 into the cell in response to membrane depolarization. Our aim was to characterize the role of NF-kB during digoxin toxicity and to assess its correlation with Cav 1.2 in healthy mice in vivo. METHODS To address these questions, digoxin was administered in doses of 0.1, 1 or 5 mg/kg orally daily for seven days to the animals. Serum digoxin, serum calcium, atrial and ventricular calcium levels were measured. We, also, looked for NF-kB and CaV1.2 channel expression in cardiac muscle of mice. RESULTS Digoxin at a dose of 0.1 mg/kg did not enhance serum, atrial, and ventricular Ca+2 levels, but were increased when digoxin dose of 1 and 5 mg/kg were administered. Histologically, myocardial necrosis and cellular infiltration on day 7 were significantly more severe in the 5 mg/kg/day digoxin group. Immunohistochemical studies showed more expression of both NF-kB and CaV1.2 in 1 and 5 mg/kg/day digoxin groups. CONCLUSIONS These data suggest that NF-kB may be responsible for digoxin toxicity, at least partially via modulation of CaV1.2 and intracellular calcium homeostasis in the myocardium.
Collapse
|
13
|
Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 2018; 119:125-137. [DOI: 10.1016/j.yjmcc.2018.04.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/02/2018] [Accepted: 04/21/2018] [Indexed: 12/22/2022]
|
14
|
Zhang Y, Huang Z, Li H. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovasc Res 2017; 113:1538-1550. [PMID: 29088374 DOI: 10.1093/cvr/cvx130] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 01/03/2025] Open
Abstract
Canonical innate immune signalling involves complex cascades: multiple germline-encoded pattern recognition receptors rapidly recognize pathogen-associated or damage-associated molecular patterns to induce the production of cytokines, which bind to their corresponding receptors to orchestrate subsequent host defense phases. Inflammation is a healthy response to pathogenic signals, which are typically rapid and specific, and they terminate once the threat has passed. However, excessive activation or suppression of innate immune or inflammatory responses can lead to considerable human suffering, such as cardiac remodelling. Interestingly, recent studies have revealed that innate immune molecules in the parenchymal cells of the heart influence cardiac homeostasis not only by directly regulating innate immune responses but also through reprogrammed signalling pathways, which are independent of conventional innate immune signalling. Elucidating 'innate immune signalling reprogramming' events will help us better understand the functions of innate immune molecules and, moreover, the pathogenesis of cardiac diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| | - Zan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuchang District, Wuhan 430060, People's Republic of China
- Institute of Model Animal of Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Donghu Road 115, Wuchang District, Wuhan 430071, People's Republic of China
| |
Collapse
|
15
|
Falik-Zaccai TC, Barsheshet Y, Mandel H, Segev M, Lorber A, Gelberg S, Kalfon L, Ben Haroush S, Shalata A, Gelernter-Yaniv L, Chaim S, Raviv Shay D, Khayat M, Werbner M, Levi I, Shoval Y, Tal G, Shalev S, Reuveni E, Avitan-Hersh E, Vlodavsky E, Appl-Sarid L, Goldsher D, Bergman R, Segal Z, Bitterman-Deutsch O, Avni O. Sequence variation in PPP1R13L results in a novel form of cardio-cutaneous syndrome. EMBO Mol Med 2017; 9:319-336. [PMID: 28069640 PMCID: PMC5331242 DOI: 10.15252/emmm.201606523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening disorder whose genetic basis is heterogeneous and mostly unknown. Five Arab Christian infants, aged 4-30 months from four families, were diagnosed with DCM associated with mild skin, teeth, and hair abnormalities. All passed away before age 3. A homozygous sequence variation creating a premature stop codon at PPP1R13L encoding the iASPP protein was identified in three infants and in the mother of the other two. Patients' fibroblasts and PPP1R13L-knocked down human fibroblasts presented higher expression levels of pro-inflammatory cytokine genes in response to lipopolysaccharide, as well as Ppp1r13l-knocked down murine cardiomyocytes and hearts of Ppp1r13l-deficient mice. The hypersensitivity to lipopolysaccharide was NF-κB-dependent, and its inducible binding activity to promoters of pro-inflammatory cytokine genes was elevated in patients' fibroblasts. RNA sequencing of Ppp1r13l-knocked down murine cardiomyocytes and of hearts derived from different stages of DCM development in Ppp1r13l-deficient mice revealed the crucial role of iASPP in dampening cardiac inflammatory response. Our results determined PPP1R13L as the gene underlying a novel autosomal-recessive cardio-cutaneous syndrome in humans and strongly suggest that the fatal DCM during infancy is a consequence of failure to regulate transcriptional pathways necessary for tuning cardiac threshold response to common inflammatory stressors.
Collapse
Affiliation(s)
- Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yiftah Barsheshet
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hanna Mandel
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Meital Segev
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avraham Lorber
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Shachaf Gelberg
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben Haroush
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Adel Shalata
- The Winter Genetic Institute, Bnei Zion Medical Center, Haifa, Israel
| | | | - Sarah Chaim
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Dorith Raviv Shay
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Morad Khayat
- The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Michal Werbner
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Inbar Levi
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Galit Tal
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stavit Shalev
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | - Eugene Vlodavsky
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Liat Appl-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dorit Goldsher
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Diagnostic Imaging, Rambam Health Care Campus, Haifa, Israel
| | - Reuven Bergman
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Zvi Segal
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Orly Avni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
16
|
Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 2017; 119:91-112. [PMID: 27340270 DOI: 10.1161/circresaha.116.303577] [Citation(s) in RCA: 1507] [Impact Index Per Article: 188.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
In adult mammals, massive sudden loss of cardiomyocytes after infarction overwhelms the limited regenerative capacity of the myocardium, resulting in the formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of proinflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand 2 [CCL2]). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response after myocardial infarction. Dysregulation of immune pathways, impaired suppression of postinfarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.
Collapse
Affiliation(s)
- Sumanth D Prabhu
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.)
| | - Nikolaos G Frangogiannis
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.).
| |
Collapse
|
17
|
Takano APC, Munhoz CD, Moriscot AS, Gupta S, Barreto-Chaves MLM. S100A8/MYD88/NF-қB: a novel pathway involved in cardiomyocyte hypertrophy driven by thyroid hormone. J Mol Med (Berl) 2017; 95:671-682. [DOI: 10.1007/s00109-017-1511-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023]
|
18
|
Gao JM, Meng XW, Zhang J, Chen WR, Xia F, Peng K, Ji FH. Dexmedetomidine Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Suppressing TLR4-MyD88-NF- κB Signaling. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1674613. [PMID: 29359143 PMCID: PMC5735617 DOI: 10.1155/2017/1674613] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/30/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE We previously reported that dexmedetomidine (DEX) offers cardioprotection against ischemia/reperfusion injury in rats. Here, we evaluated the role of toll-like receptors 4- (TLR4-) myeloid differentiation primary response 88- (MyD88-) nuclear factor-kappa B (NF-κB) signaling in DEX-mediated protection of cardiomyocytes using in vitro models of hypoxia/reoxygenation (H/R). METHODS The experiments were carried out in H9C2 cells and in primary neonatal rat cardiomyocytes. Cells pretreated with vehicle or DEX were exposed to hypoxia for 1 h followed by reoxygenation for 12 h. We analyzed cell viability and lactate dehydrogenase (LDH) activity and measured tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β mRNA levels, TLR4, MyD88, and nuclear NF-κB p65 protein expression and NF-κB p65 nuclear localization. TLR4 knock-down by TLR4 siRNA transfection and overexpression by TLR4 DNA transfection were used to further confirm our findings. RESULTS DEX protected against H/R-induced cell damage and inflammation, as evidenced by increased cell survival rates, decreased LDH activity, and decreased TNF-α, IL-6, and IL-1β mRNA levels, as well as TLR4 and NF-κB protein expression. TLR4 knock-down partially prevented cell damage following H/R injury, while overexpression of TLR4 abolished the DEX-mediated protective effects. CONCLUSIONS DEX pretreatment protects rat cardiomyocytes against H/R injury. This effect is partly mediated by TLR4 suppression via TLR4-MyD88-NF-κB signaling.
Collapse
Affiliation(s)
- Jin-meng Gao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xiao-wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei-rong Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fan Xia
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fu-hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
19
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
20
|
Kraut B, Maier HJ, Kókai E, Fiedler K, Boettger T, Illing A, Kostin S, Walther P, Braun T, Wirth T. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS One 2015; 10:e0141591. [PMID: 26539991 PMCID: PMC4634958 DOI: 10.1371/journal.pone.0141591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022] Open
Abstract
The transcription factor NF-κB has been associated with a range of pathological conditions of the heart, mainly based on its function as a master regulator of inflammation and pro-survival factor. Here, we addressed the question what effects activation of NF-κB can have during murine heart development. We expressed a constitutively active (CA) mutant of IKK2, the kinase activating canonical NF-κB signaling, specifically in cardiomyocytes under the control of the α-myosin heavy chain promoter. Expression of IKK2-CA resulted in embryonic lethality around E13. Embryos showed defects in compact zone formation and the contractile apparatus, and overall were characterized by widespread inflammation with infiltration of myeloid cells. Gene expression analysis suggested an interferon type I signature, with increased expression of interferon regulatory factors. While apoptosis of cardiomyocytes was only increased at later stages, their proliferation was decreased early on, providing an explanation for the disturbed compact zone formation. Mechanistically, this could be explained by activation of the JAK/STAT axis and increased expression of the cell cycle inhibitor p21. A rescue experiment with an IκBα superrepressor demonstrated that the phenotype was dependent on NF-κB. We conclude that activation of NF-κB is detrimental during normal heart development due to excessive activation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Bärbel Kraut
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Harald J. Maier
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Enikö Kókai
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Katja Fiedler
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Thomas Boettger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Annett Illing
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Sawa Kostin
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paul Walther
- Core Facility Electron Microscopy, University of Ulm, Ulm, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
21
|
Song Y, Ye YJ, Li PW, Zhao YL, Miao Q, Hou DY, Ren XP. The Cardioprotective Effects of Late-Phase Remote Preconditioning of Trauma Depends on Neurogenic Pathways and the Activation of PKC and NF-κB (But Not iNOS) in Mice. J Cardiovasc Pharmacol Ther 2015; 21:310-9. [PMID: 26450997 DOI: 10.1177/1074248415609435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/24/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND A superficial abdominal surgical incision elicits cardioprotection against cardiac ischemia-reperfusion (I/R) injury in mice. This process, called remote preconditioning of trauma (RPCT), has both an early and a late phase. Previous investigations have demonstrated that early RPCT reduces cardiac infarct size by 80% to 85%. We evaluated the cardioprotective and molecular mechanisms of late-phase RPCT in a murine I/R injury model. METHODS Wild-type mice, bradykinin (BK) 2 receptor knockout mice, 3M transgenic mice (nuclear factor κB [NF-κb] repressor inhibitor of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha [IκBα((S32A, S36A, Y42F))]), and inducible nitric oxide synthase (iNOS) knockout mice were analyzed using a previously established I/R injury model. A noninvasive abdominal surgical incision was made 24 hours prior to I/R injury and the infarct size was determined at 24 hours post-I/R injury. RESULTS The results indicated that a strong cardioprotective effect occurred during late-phase RPCT (58.42% ± 1.89% sham vs 29.41% ± 4.00% late RPCT, mean area of the infarct divided by the mean area of the risk region; P ≤ .05; n = 10). Furthermore, pharmacological intervention revealed the involvement of neurogenic signaling in the beneficial effects of late RPCT via sensory and sympathetic thoracic nerves. Pharmacological experiments in transgenic mice-implicated BK receptors, β-adrenergic receptors, protein kinase C, and NF-κB but not iNOS signaling in the cardioprotective effects of late RPCT. CONCLUSION Late RPCT significantly decreased myocardial infarct size via neurogenic transmission and various other signaling pathways. This protective mechanism differentiates late and early RPCT. This study describes a new cardiac I/R injury prevention method and refines the concept of RPCT.
Collapse
Affiliation(s)
- Y Song
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y J Ye
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - P W Li
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y L Zhao
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Q Miao
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - D Y Hou
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X P Ren
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine in Loyola University, Chicago, IL, USA
| |
Collapse
|
22
|
Tumor necrosis factor-α confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med 2015; 21:1076-84. [PMID: 26280121 DOI: 10.1038/nm.3925] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/15/2015] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor-α (TNF-α), one of the major stress-induced proinflammatory cytokines, is upregulated in the heart after tissue injury, and its sustained expression can contribute to the development of heart failure. Whether TNF-α also exerts cytoprotective effects in heart failure is not known. Here we provide evidence for a cardioprotective function of TNF-α in a genetic heart failure model, desmin-deficient mice. The cardioprotective effects of TNF-α are a consequence of nuclear factor-κB (NF-κB)-mediated ectopic expression in cardiomyocytes of keratin 8 (K8) and keratin 18 (K18), two epithelial-specific intermediate filament proteins. In cardiomyocytes, K8 and K18 (K8/K18) formed an alternative cytoskeletal network that localized mainly at intercalated discs (IDs) and conferred cardioprotection by maintaining normal ID structure and mitochondrial integrity and function. Ectopic induction of K8/K18 expression in cardiomyocytes also occurred in other genetic and experimental models of heart failure. Loss of the K8/K18 network resulted in a maladaptive cardiac phenotype following transverse aortic constriction. In human failing myocardium, where TNF-α expression is upregulated, K8/K18 were also ectopically expressed and localized primarily at IDs, which did not contain detectable amounts of desmin. Thus, TNF-α- and NF-κB-mediated formation of an alternative, stress-induced intermediate filament cytoskeleton has cardioprotective function in mice and potentially in humans.
Collapse
|
23
|
Testosterone protects cardiac myocytes from superoxide injury via NF-κB signalling pathways. Life Sci 2015; 133:45-52. [PMID: 26032259 DOI: 10.1016/j.lfs.2015.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
AIMS Cellular and molecular mechanisms underlying the effects of androgenic hormone testosterone on the heart remain unclear. This study examined the impact of testosterone on viability of cardiac myocytes and the role of NF-κB signalling pathways. MATERIALS AND METHODS Rat H9c2 myocytes were cultured in steroid-free media and incubated with hydrogen peroxide (H2O2, 200 μM, 6h). NF-κB expression was knocked down by RelA (p65) siRNA interference. Testosterone (5-100 nM, 24-48 h) was provided into the media and androgen receptor (AR) blocked by flutamide (100 nM). Cell apoptotic/necrotic death was determined by morphological examination and flow-cytometric analysis. Gene expression was examined by Western blotting analysis. KEY FINDINGS Testosterone supplements reduced the superoxide-induced apoptotic/necrotic death, stimulated NF-κB (RelA) expression, activated Akt activity, and inhibited Caspase-3 expression in the cardiac myocytes. The hormonal effects were abolished by either AR blocker flutamide or NF-κB-knockdown. Testosterone also induced ERK1/2 activation, which was not affected by flutamide or NF-κB knockdown, and blocking the ERK activity did not affect the protective effect of the hormone on the cells. SIGNIFICANCE This study demonstrates that exogenous testosterone supplementation protects cardiac myocytes from superoxide injury via AR mediation and dependent on normally functional canonical NF-κB (RelA/p50) signalling pathways. The NF-κB signalling may be an important key molecular basis for myocardial benefits of hormone (testosterone) therapy.
Collapse
|
24
|
Lu M, Tang F, Zhang J, Luan A, Mei M, Xu C, Zhang S, Wang H, Maslov LN. Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-κB signaling pathway. Phytother Res 2015; 29:599-606. [PMID: 25604645 DOI: 10.1002/ptr.5297] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury, in which inflammatory response and cell apoptosis play a vital role, is frequently encountered in clinical practice. Astragaloside IV (AsIV), a small molecular saponin of Astragalus membranaceus, has been shown to confer protective effects against many cardiovascular diseases. The present study was aimed to investigate the antiinflammatory and antiapoptotic effects and the possible mechanism of AsIV on MI/R injury in rats. Rats were randomly divided into sham operation group, MI/R group and groups with combinations of MI/R and different doses of AsIV. The results showed that the expressions of myocardial toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were significantly increased, and apoptosis of cardiomyocytes was induced in MI/R group compared with that in sham operation group. Administration of AsIV attenuated MI/R injury, downregulated the expressions of TLR4 and NF-κB and inhibited cell apoptosis as evidenced by decreased terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells, B-cell lymphoma-2 associated X protein and caspase-3 expressions and increased B-cell lymphoma-2 expression compared with that in MI/R group. In addition, AsIV treatment reduced levels of inflammatory cytokines induced by MI/R injury. In conclusion, our results demonstrated that AsIV downregulates TLR4/NF-κB signaling pathway and inhibits cell apoptosis, subsequently attenuating MI/R injury in rats.
Collapse
Affiliation(s)
- Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou, 121001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yu L, Zhao Y, Xu S, Jin C, Wang M, Fu G. Leptin confers protection against TNF-α-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun 2014; 455:126-32. [DOI: 10.1016/j.bbrc.2014.10.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
|
26
|
Haar L, Ren X, Liu Y, Koch SE, Goines J, Tranter M, Engevik MA, Nieman M, Rubinstein J, Jones WK. Acute consumption of a high-fat diet prior to ischemia-reperfusion results in cardioprotection through NF-κB-dependent regulation of autophagic pathways. Am J Physiol Heart Circ Physiol 2014; 307:H1705-13. [PMID: 25239807 DOI: 10.1152/ajpheart.00271.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have demonstrated improvement of cardiac function occurs with acute consumption of a high-fat diet (HFD) after myocardial infarction (MI). However, no data exist addressing the effects of acute HFD upon the extent of injury after MI. This study investigates the hypothesis that short-term HFD, prior to infarction, protects the heart against ischemia-reperfusion (I/R) injury through NF-κB-dependent regulation of cell death pathways in the heart. Data show that an acute HFD initiates cardioprotection against MI (>50% reduction in infarct size normalized to risk region) after 24 h to 2 wk of HFD, but protection is completely absent after 6 wk of HFD, when mice are reported to develop pathophysiology related to the diet. Furthermore, cardioprotection after 24 h of HFD persists after an additional 24 h of normal chow feeding and was found to be dependent upon NF-κB activation in cardiomyocytes. This study also indicates that short-term HFD activates autophagic processes (beclin-1, LC-3) preischemia, as seen in other protective stimuli. Increases in beclin-1 and LC-3 were found to be NF-κB-dependent, and administration of chloroquine, an inhibitor of autophagy, abrogated cardioprotection. Our results support that acute high-fat feeding mediates cardioprotection against I/R injury associated with a NF-κB-dependent increase in autophagy and reduced apoptosis, as has been found for ischemic preconditioning.
Collapse
Affiliation(s)
- Lauren Haar
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Xiaoping Ren
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Yong Liu
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Jillian Goines
- Department of Molecular Pharmacology and Therapeutics Loyola University Chicago, Maywood, Illinois; and Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Melinda A Engevik
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Michelle Nieman
- Department of Systems Biology and Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - W Keith Jones
- Department of Molecular Pharmacology and Therapeutics Loyola University Chicago, Maywood, Illinois; and Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
27
|
Thomas CM, Yong QC, Rosa RM, Seqqat R, Gopal S, Casarini DE, Jones WK, Gupta S, Baker KM, Kumar R. Cardiac-specific suppression of NF-κB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol 2014; 307:H1036-45. [PMID: 25085967 DOI: 10.1152/ajpheart.00340.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of NF-κB signaling in the heart may be protective or deleterious depending on the pathological context. In diabetes, the role of NF-κB in cardiac dysfunction has been investigated using pharmacological approaches that have a limitation of being nonspecific. Furthermore, the specific cellular pathways by which NF-κB modulates heart function in diabetes have not been identified. To address these questions, we used a transgenic mouse line expressing mutated IκB-α in the heart (3M mice), which prevented activation of canonical NF-κB signaling. Diabetes was developed by streptozotocin injections in wild-type (WT) and 3M mice. Diabetic WT mice developed systolic and diastolic cardiac dysfunction by the 12th week, as measured by echocardiography. In contrast, cardiac function was preserved in 3M mice up to 24 wk of diabetes. Diabetes induced an elevation in cardiac oxidative stress in diabetic WT mice but not 3M mice compared with nondiabetic control mice. In diabetic WT mice, an increase in the phospholamban/sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 ratio and decrease in ryanodine receptor expression were observed, whereas diabetic 3M mice showed an opposite effect on these parameters of Ca(2+) handling. Significantly, renin-angiotensin system activity was suppressed in diabetic 3M mice compared with an increase in WT animals. In conclusion, these results demonstrate that inhibition of NF-κB signaling in the heart prevents diabetes-induced cardiac dysfunction through preserved Ca(2+) handling and inhibition of the cardiac renin-angiotensin system.
Collapse
Affiliation(s)
- Candice M Thomas
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Qian Chen Yong
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Rodolfo M Rosa
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - Rachid Seqqat
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Shanthi Gopal
- Central Texas Veterans Health Care System, Temple, Texas
| | - Dulce E Casarini
- Nephrology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - W Keith Jones
- Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois
| | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Kenneth M Baker
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas
| | - Rajesh Kumar
- Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Baylor Scott & White Health, Temple, Texas; Central Texas Veterans Health Care System, Temple, Texas;
| |
Collapse
|
28
|
Liu Y, Li G, Lu H, Li W, Li X, Liu H, Li X, Li T, Yu B. Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury. Gene 2014; 543:15-21. [PMID: 24726549 DOI: 10.1016/j.gene.2014.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/22/2014] [Accepted: 04/07/2014] [Indexed: 02/03/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in cellular physiology. The contributions of lncRNAs to ischemic heart disease remain largely unknown. The aim of this study was to investigate the profile of myocardial lncRNAs and their potential roles at early stage of reperfusion. lncRNAs and mRNAs were profiled by microarray and the expression of some highly-dysregulated lncRNAs was further validated using polymerase chain reaction. Our results revealed that 64 lncRNAs were up-regulated and 87 down-regulated, while 50 mRNAs were up-regulated and 60 down-regulated in infarct region at all reperfusion sampled. Gene ontology analysis indicated that dysregulated transcripts were associated with immune response, spermine catabolic process, taxis, chemotaxis, polyamine catabolic process, spermine metabolic process, chemokine activity and chemokine receptor binding. Target gene-related pathway analysis showed significant changes in cytokine-cytokine receptor interaction, the chemokine signaling pathway and nucleotide oligomerization domain (NOD)-like receptor signaling pathway which have a close relationship with myocardial ischemia/reperfusion injury (MI/RI). Besides, a gene co-expression network was constructed to identify correlated targets of 10 highly-dysregulated lncRNAs. These lncRNAs may play their roles by this network in post-ischemic heart. Such results provide a foundation for understanding the roles and mechanisms of myocardial lncRNAs at early stage of reperfusion.
Collapse
Affiliation(s)
- Youbin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Guangnan Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Wei Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xianglu Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Huimin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xingda Li
- Department of Pharmacology, Harbin Medical University, Harbin, PR China
| | - Tianyu Li
- Department of Pharmacology, Harbin Medical University, Harbin, PR China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
29
|
Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. NF-κB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 2013; 228:1433-42. [PMID: 23254997 DOI: 10.1002/jcp.24296] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/27/2012] [Indexed: 02/03/2023]
Abstract
Micro-RNAs (miRNAs) are a class of small non-coding RNAs, recently emerged as a post-transcriptional regulator having a key role in various cardiac pathologies. Among them, cardiac fibrosis that occurs as a result from an imbalance of extracellular matrix proteins turnover and is a highly debilitating process that eventually lead to organ dysfunction. An emerging theme on is that miRNAs participate in feedback loop with transcription factors that regulate their transcription. NF-κB, a key transcription factor regulator controls a series of gene program in various cardiac diseases through positive and negative feedback mechanism. But, NF-κB mediated miRNA regulation in cardiac fibrosis remains obscure. Bioinformatics analysis revealed that miR-26a has targets collagen I and CTGF and possesses putative NF-κB binding element in its promoter region. Here, we show that inhibition of NF-κB in cardiac fibroblast restores miR-26a expression, attenuating collagen I, and CTGF gene expression in the presence of Ang II, conferring a feedback regulatory mechanism in cardiac fibrosis. The target genes for miR-26a were confirmed using 3'-UTR luciferase reporter assays for collagen I and CTGF genes. Using NF-κB reporter assays, we determine that miR-26a overexpression inhibits NF-κB activity. Finally, we show that miR-26a expression is restored along with the attenuation of collagen I and CTGF genes in cardiac specific IkBa triple mutant transgenic mice (preventing NF-κB activation) subjected to 4 weeks transverse aortic banding (TAC), compared to wild type (WT) mice. The data indicate a potential role of miR-26a in cardiac fibrosis and, offer novel therapeutic intervention.
Collapse
Affiliation(s)
- Chuanyu Wei
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Scott & White, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ling H, Gray CBB, Zambon AC, Grimm M, Gu Y, Dalton N, Purcell NH, Peterson K, Brown JH. Ca2+/Calmodulin-dependent protein kinase II δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB. Circ Res 2013; 112:935-44. [PMID: 23388157 DOI: 10.1161/circresaha.112.276915] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated as a maladaptive mediator of cardiac ischemic injury. We hypothesized that the inflammatory response associated with in vivo ischemia/reperfusion (I/R) is initiated through CaMKII signaling. OBJECTIVE To assess the contribution of CaMKIIδ to the development of inflammation, infarct, and ventricular dysfunction after in vivo I/R and define early cardiomyocyte-autonomous events regulated by CaMKIIδ using cardiac-specific knockout mice. METHODS AND RESULTS Wild-type and CaMKIIδ knockout mice were subjected to in vivo I/R by occlusion of the left anterior descending artery for 1 hour followed by reperfusion for various times. CaMKIIδ deletion protected the heart against I/R damage as evidenced by decreased infarct size, attenuated apoptosis, and improved functional recovery. CaMKIIδ deletion also attenuated I/R-induced inflammation and upregulation of nuclear factor-κB (NF-κB) target genes. Further studies demonstrated that I/R rapidly increases CaMKII activity, leading to NF-κB activation within minutes of reperfusion. Experiments using cyclosporine A and cardiac-specific CaMKIIδ knockout mice indicate that NF-κB activation is initiated independent of necrosis and within cardiomyocytes. Expression of activated CaMKII in cardiomyocytes leads to IκB kinase phosphorylation and concomitant increases in nuclear p65. Experiments using an IκB kinase inhibitor support the conclusion that this is a proximal site of CaMKII-mediated NF-κB activation. CONCLUSIONS This is the first study demonstrating that CaMKIIδ mediates NF-κB activation in cardiomyocytes after in vivo I/R and suggests that CaMKIIδ serves to trigger, as well as to sustain subsequent changes in inflammatory gene expression that contribute to myocardial I/R damage.
Collapse
Affiliation(s)
- Haiyun Ling
- Department of Pharmacology, University of California-San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0636, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cardiomyocyte-specific IκB kinase (IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2012; 109:11794-9. [PMID: 22753500 DOI: 10.1073/pnas.1116584109] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a major factor in heart disease. IκB kinase (IKK) and its downstream target NF-κB are regulators of inflammation and are activated in cardiac disorders, but their precise contributions and targets are unclear. We analyzed IKK/NF-κB function in the heart by a gain-of-function approach, generating an inducible transgenic mouse model with cardiomyocyte-specific expression of constitutively active IKK2. In adult animals, IKK2 activation led to inflammatory dilated cardiomyopathy and heart failure. Transgenic hearts showed infiltration with CD11b(+) cells, fibrosis, fetal reprogramming, and atrophy of myocytes with strong constitutively active IKK2 expression. Upon transgene inactivation, the disease was reversible even at an advanced stage. IKK-induced cardiomyopathy was dependent on NF-κB activation, as in vivo expression of IκBα superrepressor, an inhibitor of NF-κB, prevented the development of disease. Gene expression and proteomic analyses revealed enhanced expression of inflammatory cytokines, and an IFN type I signature with activation of the IFN-stimulated gene 15 (ISG15) pathway. In that respect, IKK-induced cardiomyopathy resembled Coxsackievirus-induced myocarditis, during which the NF-κB and ISG15 pathways were also activated. Vice versa, in cardiomyocytes lacking the regulatory subunit of IKK (IKKγ/NEMO), the induction of ISG15 was attenuated. We conclude that IKK/NF-κB activation in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure by inducing an excessive inflammatory response and myocyte atrophy.
Collapse
|
32
|
Kumar S, Wei C, Thomas CM, Kim IK, Seqqat R, Kumar R, Baker KM, Jones WK, Gupta S. Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline. Am J Physiol Heart Circ Physiol 2012; 302:H1655-66. [DOI: 10.1152/ajpheart.00756.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uncontrolled pulmonary arterial hypertension (PAH) results in right ventricular (RV) hypertrophy (RVH), progressive RV failure, and low cardiac output leading to increased morbidity and mortality (McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J. J Am Coll Cardiol 53: 1573–1619, 2009). Although the exact figures of its prevalence are difficult to obtain because of the diversity of identifiable causes, it is estimated that the incidence of pulmonary hypertension is seven to nine cases per million persons in the general population and is most prevalent in the age group of 20–40, occurring more commonly in women than in men (ratio: 1.7 to 1; Rubin LJ. N Engl J Med 336: 111–117, 1997). PAH is characterized by dyspnea, chest pain, and syncope. Unfortunately, there is no cure for this disease and medical regimens are limited (Simon MA. Curr Opin Crit Care 16: 237–243, 2010). PAH leads to adverse remodeling that results in RVH, progressive right heart failure, low cardiac output, and ultimately death if left untreated (Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. J Am Coll Cardiol 43: 13S-24S, 2004; Humbert M, Sitbon O, Simonneau G. N Engl J Med 351: 1425–1436, 2004. LaRaia AV, Waxman AB. South Med J 100: 393–399, 2007). As there are no direct tools to assess the onset and progression of PAH and RVH, the disease is often detected in later stages marked by full-blown RVH, with the outcome predominantly determined by the level of increased afterload (D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Ann Intern Med 115: 343–349, 1991; Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Validation of a prognostic equation Circulation 89: 1733–1744, 1994). Various studies have been performed to assess the genetic, biochemical, and morphological components that contribute to PAH. Despite major advances in the understanding of the pathogenesis of PAH, the molecular mechanism(s) by which PAH promotes RVH and cardiac failure still remains elusive. Of all the mechanisms involved in the pathogenesis, inflammation and oxidative stress remain the core of the etiology of PAH that leads to development of RVH (Dorfmüller P, Perros F, Balabanian K, Humbert M. Eur Respir J 22: 358–363, 2003).
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - Chuanyu Wei
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - Candice M. Thomas
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - Il-Kwon Kim
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - Rachid Seqqat
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - Rajesh Kumar
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - Kenneth M. Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| | - W. Keith Jones
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center; Scott & White Hospital; Central Texas Veterans Health Care System, Temple, Texas; and
| |
Collapse
|
33
|
Zhao B, Sun G, Feng G, Duan W, Zhu X, Chen S, Hou L, Jin Z, Yi D. Carboxy terminus of heat shock protein (HSP) 70-interacting protein (CHIP) inhibits HSP70 in the heart. J Physiol Biochem 2012; 68:485-91. [PMID: 22456997 DOI: 10.1007/s13105-012-0161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/13/2012] [Indexed: 12/17/2022]
Abstract
Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in naïve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.
Collapse
Affiliation(s)
- Bijun Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, 127 Changle West RD, Xi'an, 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Andersen NM, Tang R, Li L, Javan H, Zhang XQ, Selzman CH. Inhibitory kappa-B kinase-β inhibition prevents adaptive left ventricular hypertrophy. J Surg Res 2012; 178:105-9. [PMID: 22464396 DOI: 10.1016/j.jss.2012.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Most cardiovascular studies have implicated the central transcription factor nuclear factor kappa-B (NF-κB) as contributing to the detrimental effects of cardiac injury. This ostensibly negative view of NF-κB competes with its important role in the normal host inflammatory and immune response. Pressure overload, left ventricular hypertrophy (LVH), and heart failure represent a spectrum of disease that has both adaptive and maladaptive components. In contrast to its known effects related to myocardial ischemia-reperfusion, we hypothesized that NF-κB is necessary for the compensatory phase of cardiac remodeling. METHODS C57BL6 mice underwent minimally invasive transverse aortic constriction with or without inhibition of the proximal NF-κB kinase, inhibitory kappa-B kinase-β. Isolated cardiomyocytes were cultured. Transthoracic echocardiography was performed on all mice. RESULTS Inhibitory kappa-B kinase-β inhibition successfully decreased cardiomyocyte expression of phosphorylated p65 NF-κB and decreased expression of hypertrophic markers with stimulation in vitro. Three weeks after transverse aortic constriction, the mice treated with inhibitory kappa-B kinase-β inhibition more aggressively developed LVH, as measured by heart weight/body weight ratio, left ventricular mass, and wall thickness. These mice also demonstrated a functional decline, as measured by decreased fractional shortening and ejection fraction. These findings were associated with decreased protein expression of p65 NF-κB. CONCLUSIONS Although short-term pressure-overload results in compensatory LVH with normal cardiac function, NF-κB inhibition resulted in increased LVH that was associated with functional deterioration. These observations suggest that NF-κB is an important part of the adaptive phase of LVH, and its inhibition detrimentally affects cardiac remodeling.
Collapse
Affiliation(s)
- Nancy M Andersen
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cheng Z, DiMichele LA, Hakim ZS, Rojas M, Mack CP, Taylor JM. Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2012; 32:924-33. [PMID: 22383703 DOI: 10.1161/atvbaha.112.245134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We previously reported that cardiac-restricted deletion of focal adhesion kinase (FAK) exacerbated myocyte death following ischemia/reperfusion (I/R). Here, we interrogated whether targeted elevation of myocardial FAK activity could protect the heart from I/R injury. METHODS AND RESULTS Transgenic mice were generated with myocyte-specific expression of a FAK variant (termed SuperFAK) that conferred elevated allosteric activation. FAK activity in unstressed transgenic hearts was modestly elevated, but this had no discernable effect on anabolic heart growth or cardiac function. Importantly, SuperFAK hearts exhibited a dramatic increase in FAK activity and a reduction in myocyte apoptosis and infarct size 24 to 72 hours following I/R. Moreover, serial echocardiography revealed that the transgenic mice were protected from cardiac decompensation for up to 8 weeks following surgery. Mechanistic studies revealed that elevated FAK activity protected cardiomyocytes from I/R-induced apoptosis by enhancing nuclear factor-κB (NF-κB)-dependent survival signaling during the early period of reperfusion (30 and 60 minutes). Moreover, adenoviral-mediated expression of SuperFAK in cultured cardiomyocytes attenuated H(2)O(2) or hypoxia/reoxygenation-induced apoptosis, whereas blockade of the NF-κB pathway using a pharmacological inhibitor or small interfering RNAs completely abolished the beneficial effect of SuperFAK. CONCLUSIONS Enhancing cardiac FAK activity attenuates I/R-induced myocyte apoptosis through activation of the prosurvival NF-κB pathway and may represent a novel therapeutic strategy for ischemic heart diseases.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | | | |
Collapse
|
36
|
In vivo delivery of nucleic acids via glycopolymer vehicles affords therapeutic infarct size reduction in vivo. Mol Ther 2011; 20:601-8. [PMID: 22186793 DOI: 10.1038/mt.2011.267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using a new class of nontoxic and degradable glycopolymer-based vehicles termed poly(glycoamidoamine)s, we demonstrate virus-like delivery efficacy of oligodeoxynucleotide (ODN) decoys to cardiomyoblasts (H9c2), primary cardiomyocytes, and the mouse heart. These glycopolymers bind and compact ODN decoys into nanoparticle complexes that are internalized by the cell membrane and mediate nuclear uptake of DNA in 90+% of cultured primary cardiomyocytes and 87% of the mouse myocardium. Experimental results reveal that decoys delivered via these glycopolymers block the activation of the transcription factor NF-κB, a major contributor to ischemia/reperfusion injury. Decoy complexes formed with glycopolymer T4 significantly blocked downstream gene expression of Cox-2 and limited myocardial infarction in vivo, phenocopying a transgenic mouse model. These promising delivery vehicles may facilitate high-throughput genetic approaches in animal models. Additionally, the low toxicity, biodegradation, and outstanding delivery efficacy suggest that these nanomedicines may be clinically applicable for gene regulatory therapy.
Collapse
|
37
|
Kuster DWD, Merkus D, Jorna HJJ, Dekkers DHW, Duncker DJ, Verhoeven AJM. Nuclear protein extraction from frozen porcine myocardium. J Physiol Biochem 2011; 67:165-73. [PMID: 21061196 DOI: 10.1007/s13105-010-0059-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/15/2010] [Indexed: 01/04/2023]
Abstract
Protocols for the extraction of nuclear proteins have been developed for cultured cells and fresh tissue, but sometimes only frozen tissue is available. We have optimized the homogenization procedure and subsequent fractionation protocol for the preparation of nuclear protein extracts from frozen porcine left ventricular (LV) tissue. This method gave a highly reproducible protein yield (6.5±0.7% of total protein; mean±SE, n=9) and a 6-fold enrichment of the nuclear marker protein B23. The nuclear protein extracts were essentially devoid of cytosolic, myofilament, and histone proteins. Compared to nuclear extracts from fresh LV tissue, some loss of nuclear proteins to the cytosolic fraction was observed. Using this method, we studied the distribution of tyrosine phosphorylated signal transducer and activator of transcription 3 (PY-STAT3) in LV tissue of animals treated with the β-agonist dobutamine. Upon treatment, PY-STAT3 increased 30.2±8.5-fold in total homogenates, but only 6.9±2.1-fold (n=4, P=0.03) in nuclear protein extracts. Of all PY-STAT3 formed, only a minor fraction appeared in the nuclear fraction. This simple and reproducible protocol yielded nuclear protein extracts that were highly enriched in nuclear proteins with almost complete removal of cytosolic and myofilament proteins. This nuclear protein extraction protocol is therefore well-suited for nuclear proteome analysis of frozen heart tissue collected in biobanks.
Collapse
Affiliation(s)
- Diederik W D Kuster
- Department of Biochemistry, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Tranter M, Helsley RN, Paulding WR, McGuinness M, Brokamp C, Haar L, Liu Y, Ren X, Jones WK. Coordinated post-transcriptional regulation of Hsp70.3 gene expression by microRNA and alternative polyadenylation. J Biol Chem 2011; 286:29828-37. [PMID: 21757701 DOI: 10.1074/jbc.m111.221796] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is well documented to possess general cytoprotective properties in protecting the cell against stressful and noxious stimuli. We have recently shown that expression of the stress-inducible Hsp70.3 gene in the myocardium in response to ischemic preconditioning is NF-κB-dependent and necessary for the resulting late phase cardioprotection against a subsequent ischemia/reperfusion injury. Here we show that the Hsp70.3 gene product is subject to post-transcriptional regulation through parallel regulatory processes involving microRNAs and alternative polyadenylation of the mRNA transcript. First, we show that cardiac ischemic preconditioning of the in vivo mouse heart results in decreased levels of two Hsp70.3-targeting microRNAs: miR-378* and miR-711. Furthermore, an ischemic or heat shock stimulus induces alternative polyadenylation of the expressed Hsp70.3 transcript that results in the accumulation of transcripts with a shortened 3'-UTR. This shortening of the 3'-UTR results in the loss of the binding site for the suppressive miR-378* and thus renders the alternatively polyadenylated transcript insusceptible to miR-378*-mediated suppression. Results also suggest that the alternative polyadenylation-mediated shortening of the Hsp70.3 3'-UTR relieves translational suppression observed in the long 3'-UTR variant, allowing for a more robust increase in protein expression. These results demonstrate alternative polyadenylation of Hsp70.3 in parallel with ischemic or heat shock-induced up-regulation of mRNA levels and implicate the importance of this process in post-transcriptional control of Hsp70.3 expression.
Collapse
Affiliation(s)
- Michael Tranter
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang J, Zhang XD, Yang J, Ding JW, Liu ZQ, Li SG, Yang R. The cardioprotective effect of fluvastatin on ischemic injury via down-regulation of toll-like receptor 4. Mol Biol Rep 2011; 38:3037-3044. [PMID: 20127518 DOI: 10.1007/s11033-010-9970-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Accepted: 01/19/2010] [Indexed: 01/04/2023]
Abstract
To determine whether the cardioprotection effect of fluvastatin mediates by toll-like receptor 4 (TLR4) signaling pathway, fifty Sprague-Dawley rats were randomly divided into five groups: sham operation group, ischemia/reperfusion (I/R) group, fluvastatin groups (high-dosage, medium-dosage, low-dosage, n = 10 in each group). Except sham operation group, the rest four groups of rats were artificially afflicted with coronary occlusion for 30 min, then reperfusion 2 h. Light microscope and transmission electronic microscope were used to observe structural changes of myocardium. RT-PCR was used to measure TLR4 mRNA expression level, TLR4 protein expression was detected by immunohistochemistry. Western blot was used to measure myocardial NF-κB protein level; ELISA was used to measure the level of TNF-α in myocardium. The results demonstrated that fluvastatin treatment markedly decreased ischemic injury caused by ischemia/reperfusion, and inhibited the expression levels of TLR4, TNF-α and NF-κB, all of which up-regulated by ischemia/reperfusion. Taken together, our results suggest that proper dosage of fluvastatin may have protective effect on the ischemic injury mediated by ischemia/reperfusion in the hearts, which might be associated with inhibition of TLR4 signaling pathway and inflammatory response during ischemia/reperfusion.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, 443000 Yichang, Hubei Province, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Wilhide ME, Tranter M, Ren X, Chen J, Sartor MA, Medvedovic M, Jones WK. Identification of a NF-κB cardioprotective gene program: NF-κB regulation of Hsp70.1 contributes to cardioprotection after permanent coronary occlusion. J Mol Cell Cardiol 2011; 51:82-9. [PMID: 21439970 DOI: 10.1016/j.yjmcc.2011.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/30/2023]
Abstract
The transcription factor Nuclear Factor Kappa B (NF-κB) has been shown to be cardioprotective after permanent coronary occlusion (PO) and late ischemic preconditioning (IPC), and yet it is cell injurious after ischemia/reperfusion (I/R) in the heart. There is limited information regarding NF-κB-dependent cardioprotection, and the NF-κB-dependent genes that contribute to the cardioprotection after PO are completely unknown. The objective of the study was to identify NF-κB-dependent genes that contribute to cardioprotection after PO. Microarray analysis was used to delineate genes that potentially contribute to the NF-κB-dependent cardioprotection by determining the overlap between the set of PO regulated genes and genes regulated by NF-κB, using mice with genetic abrogation of NF-κB activation in the heart. This analysis identified 16 genes as candidates for NF-κB-dependent effects after PO. This set of genes overlaps with, but is significantly different from the set of genes we previously identified as regulated by NF-κB after IPC. The genes encoding heat shock protein 70.3 (hspa1a) and heat shock protein 70.1 (hspa1b) were the most significantly regulated genes after PO and were up-regulated by NF-κB. Results using knockout mice show that Hsp70.1 contributes to NF-κB-dependent cardioprotection after PO and likely underlies, at least in part, the NF-κΒ-dependent cardioprotective effect. Our previous results show that Hsp70.1 is injurious after I/R injury. This demonstrates that, like NF-κB itself, Hsp70.1 has antithetical effects on myocardial survival and suggests that this may underlie the similar antithetical effects of NF-κB after different ischemic stimuli. The significance of the research is that understanding the gene network regulated by NF-κB after ischemic insult may lead to identification of therapeutic targets more appropriate for clinical development.
Collapse
Affiliation(s)
- Michael E Wilhide
- Department of Pharmacology & Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hofmann U, Ertl G, Frantz S. Toll-like receptors as potential therapeutic targets in cardiac dysfunction. Expert Opin Ther Targets 2011; 15:753-65. [PMID: 21385118 DOI: 10.1517/14728222.2011.566560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The innate immune system can detect the highly conserved, relatively invariant structural motifs of pathogens. The most important innate immune receptors, Toll-like receptors (TLRs), represent a first line of defense against infectious pathogens, and play a pivotal role in initiating and shaping innate and adaptive immune responses. TLRs are not only expressed in immune cells, but also in cardiovascular cells. In addition to their role in response to microbial infections, evidence suggests that TLRs can also recognize endogenous ligands and may play a role in mediating cardiomyocyte cell death and survival after non-infectious injury. AREAS COVERED TLRs could be a link between cardiovascular diseases and the immune system. Experimentally, there is good evidence that TLR activation contributes to development and progression of both acute cardiac injury and chronic heart failure. The role of TLRs in myocardial ischemia-reperfusion, remodeling, septic cardiomyoparthy, autoimmune- and viral myocarditis, anthracycline-induced cardiomyopathy and cardiac hypertrophy, in basic as well as clinical science are discussed. EXPERT OPINION Evidence, mainly from animal experiments, indicates that TLRs contribute to all of the myocardial disease states reviewed in this paper. However, the relevance of TLRs as therapeutic targets remains to be defined as clinical data is sparse.
Collapse
Affiliation(s)
- Ulrich Hofmann
- University Hospital Würzburg, Department of Internal Medicine I, Oberdürrbacherstraße 6, 97080 Würzburg, Germany
| | | | | |
Collapse
|
42
|
Kumar S, Seqqat R, Chigurupati S, Kumar R, Baker KM, Young D, Sen S, Gupta S. Inhibition of nuclear factor κB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules. Free Radic Biol Med 2011; 50:206-15. [PMID: 21047552 DOI: 10.1016/j.freeradbiomed.2010.10.711] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Myocardial remodeling denotes a chronic pathological condition of dysfunctional myocardium that occurs in cardiac hypertrophy (CH) and heart failure (HF). Reactive oxygen species (ROS) are major initiators of excessive collagen and fibronectin deposition in cardiac fibrosis. Increased production of ROS and nuclear factor κB (NF-κB) activation provide a strong link between oxidative stress and extracellular matrix (ECM) remodeling in cardiac hypertrophy. The protective inhibitory actions of pyrrolidine dithiocarbamate (PDTC), a pharmacological inhibitor of NF-κB and a potent antioxidant, make this a good agent to evaluate the role of inhibition of NF-κB and prevention of excessive ECM deposition in maladaptive cardiac remodeling during HF. In this report, we used a transgenic mouse model (Myo-Tg) that has cardiac-specific overexpression of myotrophin. This overexpression of myotrophin in the Myo-Tg model directs ECM deposition and increased NF-κB activity, which result in CH and ultimately HF. Using the Myo-Tg model, our data showed upregulation of profibrotic genes (including collagen types I and III, connective tissue growth factor, and fibronectin) in Myo-Tg mice, compared to wild-type mice, during the progression of CH. Pharmacological inhibition of NF-κB by PDTC in the Myo-Tg mice resulted in a significant reduction in cardiac mass, NF-κB activity, and profibrotic gene expression and improved cardiac function. To the best of our knowledge, this is the first report of ECM regulation by inhibition of NF-κB activation by PDTC. The study highlights the importance of the NF-κB signaling pathway and therapeutic benefits of PDTC treatment in cardiac remodeling.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77840, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sorriento D, Iaccarino G, Trimarco B. The Role of the Transcription Factor Nuclear Factor Kappa B in the Regulation of Cardiac Hypertrophy. High Blood Press Cardiovasc Prev 2010. [DOI: 10.2165/11311970-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
44
|
Tranter M, Ren X, Forde T, Wilhide ME, Chen J, Sartor MA, Medvedovic M, Jones WK. NF-kappaB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning. J Mol Cell Cardiol 2010; 49:664-72. [PMID: 20643136 DOI: 10.1016/j.yjmcc.2010.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 12/14/2022]
Abstract
It has been shown that the transcription factor NF-kappaB is necessary for late phase cardioprotection after ischemic preconditioning (IPC) in the heart, and yet is injurious after ischemia/reperfusion (I/R). However the downstream gene expression programs that underlie the contribution of NF-kappaB to cardioprotection after late IPC are incompletely understood. The objective of this study was to delineate the specific genes that are regulated by NF-kappaB immediately after a late IPC stimulus and validate the methodology for the identification of NF-kappaB-dependent genes that contribute to cardioprotection. A directed microarray analysis identified 238 genes as up or downregulated in an NF-kappaB-dependent manner 3.5h after late IPC. Among these are several genes previously implicated in late IPC. Gene ontological analysis showed that the most significant group of NF-kappaB-dependent genes are heat shock response genes, including the genes encoding Hsp70.1 and Hsp70.3. Though an Hsp70.1/70.3 double knockout failed to exhibit cardioprotection, late IPC was intact in the Hsp70.1 single knockout. After I/R, the Hsp70.1/70.3 double knockout and the Hsp70.1 single knockout had significantly increased and reduced infarct size, respectively. These results delineate the immediate NF-kappaB-dependent transcriptome after late IPC. One of the major categories of NF-kappaB-dependent genes induced by late IPC is the heat shock response. The results of infarct studies confirm that Hsp70.3 is protective after IPC. However, though Hsp70.1 and Hsp70.3 are coordinately regulated, their functions are opposing after I/R injury.
Collapse
Affiliation(s)
- Michael Tranter
- Department of Pharmacology & Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Santos DGB, Resende MF, Mill JG, Mansur AJ, Krieger JE, Pereira AC. Nuclear Factor (NF) kappaB polymorphism is associated with heart function in patients with heart failure. BMC MEDICAL GENETICS 2010; 11:89. [PMID: 20534156 PMCID: PMC2897791 DOI: 10.1186/1471-2350-11-89] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/09/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cardiac remodeling is generally an adverse sign and is associated with heart failure (HF) progression. NFkB, an important transcription factor involved in many cell survival pathways, has been implicated in the remodeling process, but its role in the heart is still controversial. Recently, a promoter polymorphism associated with a lesser activation of the NFKB1 gene was also associated with Dilated Cardiomyopathy. The purpose of this study was to evaluate the association of this polymorphism with clinical and functional characteristics of heart failure patients of different etiologies. METHODS A total of 493 patients with HF and 916 individuals from a cohort of individuals from the general population were investigated. The NFKB1 -94 insertion/deletion ATTG polymorphism was genotyped by High Resolution Melt discrimination. Allele and genotype frequencies were compared between groups. In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotype groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the polymorphism were compared regarding disease onset and mortality incidence in HF patients. RESULTS We did not find differences in genotype and allelic frequencies between cases and controls. Interestingly, we found an association between the ATTG1/ATTG1 genotype with right ventricle diameter (P = 0.001), left ventricle diastolic diameter (P = 0.04), and ejection fraction (EF) (P = 0.016), being the genotype ATTG1/ATTG1 more frequent in patients with EF lower than 50% (P = 0.01). Finally, we observed a significantly earlier disease onset in ATTG1/ATTG1 carriers. CONCLUSION There is no genotype or allelic association between the studied polymorphism and the occurrence of HF in the tested population. However, our data suggest that a diminished activation of NFKB1, previously associated with the ATTG1/ATTG1 genotype, may act modulating on the onset of disease and, once the individual has HF, the genotype may modulate disease severity by increasing cardiac remodeling and function deterioration.
Collapse
Affiliation(s)
- Diogo G B Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute InCor, Sao Paulo University Medical School, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Understanding radiation-induced vascular disease. J Am Coll Cardiol 2010; 55:1237-1239. [PMID: 20298931 DOI: 10.1016/j.jacc.2009.11.053] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 01/09/2023]
|
47
|
Adenosine postconditioning protects against myocardial ischemia–reperfusion injury though modulate production of TNF-α and prevents activation of transcription factor NF-kappaB. Mol Biol Rep 2010; 38:531-8. [DOI: 10.1007/s11033-010-0137-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/23/2010] [Indexed: 12/18/2022]
|
48
|
|
49
|
Tramadol reduces myocardial infarct size and expression and activation of nuclear factor kappa B in acute myocardial infarction in rats. Eur J Anaesthesiol 2009; 26:1048-55. [DOI: 10.1097/eja.0b013e32832c785d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Burchfield JS, Dong JW, Sakata Y, Gao F, Tzeng HP, Topkara VK, Entman ML, Sivasubramanian N, Mann DL. The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor-associated factor 2 in the heart. Circ Heart Fail 2009; 3:157-64. [PMID: 19880804 DOI: 10.1161/circheartfailure.109.899732] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Activation of both type 1 and type 2 tumor necrosis factor (TNF) receptors (TNFR1 and TNFR2) confers cytoprotection in cardiac myocytes. Noting that the scaffolding protein TNF receptor-associated factor 2 (TRAF2) is common to both TNF receptors, we hypothesized that the cytoprotective responses of TNF were mediated through TRAF2. METHODS AND RESULTS Mice with cardiac-restricted overexpression of low levels of TNF (MHCsTNF(3)) and TRAF2 (MHC-TRAF2(LC)) and mice lacking TNFR1, TNFR2, and TNFR1/TNFR2 were subjected to ischemia (30 minutes) reperfusion (30 minutes) injury ex vivo using a Langendorff apparatus. MHCsTNF(3) mice were protected against ischemia-reperfusion injury as shown by a significant approximately 30% greater left ventricular developed pressure, approximately 80% lower creatine kinase release, and Evans blue dye uptake compared with littermates. The extent of ischemia-reperfusion induced injury was similar in wild-type, TNFR1, and TNFR2 deficient mice; however, mice lacking TNFR1/TNFR2 had a significant approximately 40% lower left ventricular developed pressure, a approximately 65% greater creatine kinase release, and approximately 40% greater Evans blue dye uptake compared with littermates. Interestingly, MHC-TRAF2(LC) mice had a significant approximately 50% lower left ventricular developed pressure, a approximately 70% lower creatine kinase release, and approximately 80% lower Evans blue dye uptake compared with littermate controls after ischemia-reperfusion injury. Biochemical analysis of the MHC-TRAF2(LC) hearts showed that there was activation of nuclear factor-kappaB but not c-Jun N-terminal kinase activation. CONCLUSIONS Taken together, these results suggest that TNF confers cytoprotection in the heart through TRAF2-mediated activation of nuclear factor-kappaB.
Collapse
Affiliation(s)
- Jana S Burchfield
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|