1
|
de Souza IIA, da Silva Barenco T, Pavarino MEMF, Couto MT, de Resende GO, de Oliveira DF, Ponte CG, Nascimento JHM, Maciel L. A potent and selective activator of large-conductance Ca 2+-activated K + channels induces preservation of mitochondrial function after hypoxia and reoxygenation by handling of calcium and transmembrane potential. Acta Physiol (Oxf) 2024; 240:e14151. [PMID: 38676357 DOI: 10.1111/apha.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
AIMS Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.
Collapse
Affiliation(s)
- Itanna Isis Araujo de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Thais da Silva Barenco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Marcos Tadeu Couto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | | - José Hamilton Matheus Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Universidade Federal do Rio de Janeiro, Duque de Caxias, Brasil
| |
Collapse
|
2
|
Mau T, Barnes HN, Blackwell TL, Kramer PA, Bauer SR, Marcinek DJ, Ramos SV, Forman DE, Toledo FGS, Hepple RT, Kritchevsky SB, Cummings SR, Newman AB, Coen PM, Cawthon PM. Lower muscle mitochondrial energetics is associated with greater phenotypic frailty in older women and men: the Study of Muscle, Mobility and Aging. GeroScience 2024; 46:2409-2424. [PMID: 37987886 PMCID: PMC10828481 DOI: 10.1007/s11357-023-01002-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Phenotypic frailty syndrome identifies older adults at greater risk for adverse health outcomes. Despite the critical role of mitochondria in maintaining cellular function, including energy production, the associations between muscle mitochondrial energetics and frailty have not been widely explored in a large, well-phenotyped, older population. METHODS The Study of Muscle, Mobility and Aging (SOMMA) assessed muscle energetics in older adults (N = 879, mean age = 76.3 years, 59.2% women). 31Phosporous magnetic resonance spectroscopy measured maximal production of adenosine triphosphate (ATPmax) in vivo, while ex vivo high-resolution respirometry of permeabilized muscle fibers from the vastus lateralis measured maximal oxygen consumption supported by fatty acids and complex I- and II-linked carbohydrates (e.g., Max OXPHOSCI+CII). Five frailty criteria, shrinking, weakness, exhaustion, slowness, and low activity, were used to classify participants as robust (0, N = 397), intermediate (1-2, N = 410), or frail (≥ 3, N = 66). We estimated the proportional odds ratio (POR) for greater frailty, adjusted for multiple potential confounders. RESULTS One-SD decrements of most respirometry measures (e.g., Max OXPHOSCI+CII, adjusted POR = 1.5, 95%CI [1.2,1.8], p = 0.0001) were significantly associated with greater frailty classification. The associations of ATPmax with frailty were weaker than those between Max OXPHOSCI+CII and frailty. Muscle energetics was most strongly associated with slowness and low physical activity components. CONCLUSIONS Our data suggest that deficits in muscle mitochondrial energetics may be a biological driver of frailty in older adults. On the other hand, we did observe differential relationships between measures of muscle mitochondrial energetics and the individual components of frailty.
Collapse
Affiliation(s)
- Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Haley N Barnes
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Terri L Blackwell
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Scott R Bauer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Medicine and Urology, University of California, San Francisco, CA, USA
- Division of General Internal Medicine, San Francisco VA Healthcare System, San Francisco, CA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sofhia V Ramos
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | - Daniel E Forman
- Department of Medicine-Division of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatrics Research, Education, and Clinical Care (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Frederico G S Toledo
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Russell T Hepple
- Department of Physical Therapy, Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul M Coen
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Naima J, Ohta Y. Potassium Ions Decrease Mitochondrial Matrix pH: Implications for ATP Production and Reactive Oxygen Species Generation. Int J Mol Sci 2024; 25:1233. [PMID: 38279231 PMCID: PMC10815940 DOI: 10.3390/ijms25021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Potassium (K+) is the most abundant cation in the cytosol and is maintained at high concentrations within the mitochondrial matrix through potassium channels. However, many effects of K+ at such high concentrations on mitochondria and the underlying mechanisms remain unclear. This study aims to elucidate these effects and mechanisms by employing fluorescence imaging techniques to distinguish and precisely measure signals inside and outside the mitochondria. We stained the mitochondrial matrix with fluorescent dyes sensitive to K+, pH, reactive oxygen species (ROS), and membrane potential in plasma membrane-permeabilized C6 cells and isolated mitochondria from C6 cells. Fluorescence microscopy facilitated the accurate measurement of fluorescence intensity inside and outside the matrix. Increasing extramitochondrial K+ concentration from 2 mM to 127 mM led to a reduction in matrix pH and a decrease in the generation of highly reactive ROS. In addition, elevated K+ levels electrically polarized the inner membrane of the mitochondria and promoted efficient ATP synthesis via FoF1-ATPase. Introducing protons (H+) into the matrix through phosphate addition led to further mitochondrial polarization, and this effect was more pronounced in the presence of K+. K+ at high concentrations, reaching sub-hundred millimolar levels, increased H+ concentration within the matrix, suppressing ROS generation and boosting ATP synthesis. Although this study does not elucidate the role of specific types of potassium channels in mitochondria, it does suggest that mitochondrial K+ plays a beneficial role in maintaining cellular health.
Collapse
Affiliation(s)
| | - Yoshihiro Ohta
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan;
| |
Collapse
|
4
|
Kulawiak B, Żochowska M, Bednarczyk P, Galuba A, Stroud DA, Szewczyk A. Loss of the large conductance calcium-activated potassium channel causes an increase in mitochondrial reactive oxygen species in glioblastoma cells. Pflugers Arch 2023; 475:1045-1060. [PMID: 37401985 PMCID: PMC10409681 DOI: 10.1007/s00424-023-02833-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Mitochondrial potassium (mitoK) channels play an important role in cellular physiology. These channels are expressed in healthy tissues and cancer cells. Activation of mitoK channels can protect neurons and cardiac tissue against injury induced by ischemia-reperfusion. In cancer cells, inhibition of mitoK channels leads to an increase in mitochondrial reactive oxygen species, which leads to cell death. In glioma cell activity of the mitochondrial, large conductance calcium-activated potassium (mitoBKCa) channel is regulated by the mitochondrial respiratory chain. In our project, we used CRISPR/Cas9 technology in human glioblastoma U-87 MG cells to generate knockout cell lines lacking the α-subunit of the BKCa channel encoded by the KCNMA1 gene, which also encodes cardiac mitoBKCa. Mitochondrial patch-clamp experiments showed the absence of an active mitoBKCa channel in knockout cells. Additionally, the absence of this channel resulted in increased levels of mitochondrial reactive oxygen species. However, analysis of the mitochondrial respiration rate did not show significant changes in oxygen consumption in the cell lines lacking BKCa channels compared to the wild-type U-87 MG cell line. These observations were reflected in the expression levels of selected mitochondrial genes, organization of the respiratory chain, and mitochondrial morphology, which did not show significant differences between the analyzed cell lines. In conclusion, we show that in U-87 MG cells, the pore-forming subunit of the mitoBKCa channel is encoded by the KCNMA1 gene. Additionally, the presence of this channel is important for the regulation of reactive oxygen species levels in mitochondria.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland.
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Andrzej Galuba
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093, Warsaw, Poland
| |
Collapse
|
5
|
Spinelli S, Guida L, Passalacqua M, Magnone M, Cossu V, Sambuceti G, Marini C, Sturla L, Zocchi E. Abscisic Acid and Its Receptors LANCL1 and LANCL2 Control Cardiomyocyte Mitochondrial Function, Expression of Contractile, Cytoskeletal and Ion Channel Proteins and Cell Proliferation via ERRα. Antioxidants (Basel) 2023; 12:1692. [PMID: 37759995 PMCID: PMC10526111 DOI: 10.3390/antiox12091692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cross-kingdom stress hormone abscisic acid (ABA) and its mammalian receptors LANCL1 and LANCL2 regulate the response of cardiomyocytes to hypoxia by activating NO generation. The overexpression of LANCL1/2 increases transcription, phosphorylation and the activity of eNOS and improves cell vitality after hypoxia/reoxygenation via the AMPK/PGC-1α axis. Here, we investigated whether the ABA/LANCL system also affects the mitochondrial oxidative metabolism and structural proteins. Mitochondrial function, cell cycle and the expression of cytoskeletal, contractile and ion channel proteins were studied in H9c2 rat cardiomyoblasts overexpressing or silenced by LANCL1 and LANCL2, with or without ABA. Overexpression of LANCL1/2 significantly increased, while silencing conversely reduced the mitochondrial number, OXPHOS complex I, proton gradient, glucose and palmitate-dependent respiration, transcription of uncoupling proteins, expression of proteins involved in cytoskeletal, contractile and electrical functions. These effects, and LANCL1/2-dependent NO generation, are mediated by transcription factor ERRα, upstream of the AMPK/PGC1-α axis and transcriptionally controlled by the LANCL1/2-ABA system. The ABA-LANCL1/2 hormone-receptor system controls fundamental aspects of cardiomyocyte physiology via an ERRα/AMPK/PGC-1α signaling axis and ABA-mediated targeting of this axis could improve cardiac function and resilience to hypoxic and dysmetabolic conditions.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Vanessa Cossu
- Section Human Anatomy, Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy;
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
| | - Gianmario Sambuceti
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy
| | - Cecilia Marini
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20100 Milan, Italy
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| |
Collapse
|
6
|
Dubinin MV, Starinets VS, Chelyadnikova YA, Belosludtseva NV, Mikheeva IB, Penkina DK, Igoshkina AD, Talanov EY, Kireev II, Zorov DB, Belosludtsev KN. Effect of Large-Conductance Calcium-Dependent K + Channel Activator NS1619 on Function of Mitochondria in the Heart of Dystrophin-Deficient Mice. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:189-201. [PMID: 37072326 DOI: 10.1134/s0006297923020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 03/12/2023]
Abstract
Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.
Collapse
Affiliation(s)
| | - Vlada S Starinets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | - Eugeny Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin N Belosludtsev
- Mari State University, Yoshkar-Ola, 424001, Mari El, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
7
|
Malas KM, Lambert DS, Heisner JS, Camara AKS, Stowe DF. Time and charge/pH-dependent activation of K + channel-mediated K + influx and K +/H + exchange in guinea pig heart isolated mitochondria; role in bioenergetic stability. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148908. [PMID: 35961396 DOI: 10.1016/j.bbabio.2022.148908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria play an important role not only in producing energy for the cell but also for regulating mitochondrial and cell function depending on the cell's needs and environment. Uptake of cations, anions, and substrates requires a stable, polarized transmembrane charge potential (ΔΨm). Chemiosmosis requires ion exchangers to remove Na+, K+, Ca2+, PO43-, and other charged species that enter mitochondria. Knowledge of the kinetics of mitochondrial (m) cation channels and exchangers is important in understanding their roles in regulating mitochondrial chemiosmosis and bioenergetics. The influx/efflux of K+, the most abundant mitochondrial cation, alters mitochondrial volume and shape by bringing in anions and H2O by osmosis. The effects of K+ uptake through ligand-specific mK+ channels stimulated/inhibited by agonists/antagonists on mitochondrial volume (swelling/contraction) are well known. However, a more important role for K+ influx is likely its effects on H+ cycling and bioenergetics facilitated by mitochondrial (m) K+/H+ exchange (mKHE), though the kinetics and consequences of K+ efflux by KHE are not well described. We hypothesized that a major role of K+ influx/efflux is stimulation of respiration via the influx of H+ by KHE. We proposed to modulate KHE activity by energizing guinea pig heart isolated mitochondria and by altering the mK+ cycle to capture changes in mitochondrial volume, pHm, ΔΨm, and respiration that would reflect a role for H+ influx via KHE to regulate bioenergetics. To test this, mitochondria were suspended in a 150 mM K+ buffer at pH 6.9, or in a 140 mM Cs+ buffer at pH 7.6 or 6.9 with added 10 mM K+, minimal Ca2+ and free of Na+. O2 content was measured by a Clark electrode, and pHm, ΔΨm, and volume, were measured by fluorescence spectrophotometry and light-scattering. Adding pyruvic acid (PA) alone caused increases in volume and respiration and a rapid decrease in the transmembrane pH gradient (ΔpHm = pHin-pHext) at pHext 6.9> > 7.6, so that ΔΨm was charged and maintained. BKCa agonist NS1619 and antagonist paxilline modified these effects, and KHE inhibitor quinine and K+ ionophore valinomycin depolarized ΔΨm. We postulate that K+ efflux-induced H+ influx via KHE causes an inward H+ leak that stimulates respiration, but at buffer pH 6.9 also utilizes the energy of ΔpHm, the smaller component of the overall proton motive force, ΔμH+. Thus ΔpHm establishes and maintains the ΔΨm required for utilization of substrates, entry of all cations, and for oxidative phosphorylation. Thus, K+ influx/efflux appears to play a pivotal role in regulating energetics while maintaining mitochondrial ionic balance and volume homeostasis.
Collapse
Affiliation(s)
- Kareem M Malas
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David S Lambert
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Heisner
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Department of Anesthesiology, Research Division, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Departments of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Administration, Research Service, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Walewska A, Szewczyk A, Krajewska M, Koprowski P. Targeting Mitochondrial Large-Conductance Calcium-Activated Potassium Channel by Hydrogen Sulfide via Heme-Binding Site. J Pharmacol Exp Ther 2022; 381:137-150. [PMID: 35184043 DOI: 10.1124/jpet.121.001017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/10/2022] [Indexed: 03/08/2025] Open
Abstract
Reperfusion together with the preceding ischemic period results in serious damage to brain and heart tissues. Activation of potassium channels from the inner mitochondrial membrane leads to cytoprotection during such events. The mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) is one of these cytoprotective channels. It was previously shown that BKCa channels are blocked by hemin, which is present in excess during hemorrhage. In the experiments described in this work, we checked whether NaHS, known as a donor of gasotransmitter hydrogen sulfide (H2S), which can play an important role in cytoprotection, interacts with mitoBKCa channels. Indeed, using the biotin-switch method, it was found that mitoBKCa channels undergo S-sulfhydration in the presence of NaHS. Although patch-clamp experiments showed that NaHS has negligible effects on the activity of mitoBKCa channels, NaHS has been shown to almost fully activate hemin-inhibited mitoBKCa channels. The effects of NaHS were mimicked by imidazole, suggesting a common mechanism of activation of mitoBKCa channels inhibited by heme/hemin by molecules able to coordinate the iron ion of porphyrin. A set of absorption spectroscopy experiments with the 23 amino acid model peptides containing the heme-binding motif CXXCH suggested previously unrecognized roles of cysteines in heme binding. SIGNIFICANCE STATEMENT: The activity of mitochondrial channels including mitoBKCa seems to play a significant role in cytoprotection during ischemia/reperfusion. Hemin, which is present in excess during hemorrhage, can potentially bind to and inhibit mitoBKCa activity. We found that hydrogen sulfide does not affect mitoBKCa activity unless it is blocked by hemin. In this case, hydrogen sulfide activates hemin-inhibited mitoBKCa by binding to hemin iron. The hydrogen sulfide effect could be mimicked in patch-clamp experiments by imidazole probably acting by a similar mechanism.
Collapse
Affiliation(s)
- Agnieszka Walewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Gururaja Rao S, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury. Cell Death Dis 2022; 8:175. [PMID: 35393410 PMCID: PMC8989942 DOI: 10.1038/s41420-022-00980-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
BKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes, which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL-positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
Affiliation(s)
- Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Kalina Szteyn
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Divya Sridharan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander Lam
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ankur Chaudhury
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew R Kohut
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.,Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shubha Gururaja Rao
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Mahmood Khan
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Yoval-Sánchez B, Ansari F, James J, Niatsetskaya Z, Sosunov S, Filipenko P, Tikhonova IG, Ten V, Wittig I, Rafikov R, Galkin A. Redox-dependent loss of flavin by mitochondria complex I is different in brain and heart. Redox Biol 2022; 51:102258. [PMID: 35189550 PMCID: PMC8861397 DOI: 10.1016/j.redox.2022.102258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Pathologies associated with tissue ischemia/reperfusion (I/R) in highly metabolizing organs such as the brain and heart are leading causes of death and disability in humans. Molecular mechanisms underlying mitochondrial dysfunction during acute injury in I/R are tissue-specific, but their details are not completely understood. A metabolic shift and accumulation of substrates of reverse electron transfer (RET) such as succinate are observed in tissue ischemia, making mitochondrial complex I of the respiratory chain (NADH:ubiquinone oxidoreductase) the most vulnerable enzyme to the following reperfusion. It has been shown that brain complex I is predisposed to losing its flavin mononucleotide (FMN) cofactor when maintained in the reduced state in conditions of RET both in vitro and in vivo. Here we investigated the process of redox-dependent dissociation of FMN from mitochondrial complex I in brain and heart mitochondria. In contrast to the brain enzyme, cardiac complex I does not lose FMN when reduced in RET conditions. We proposed that the different kinetics of FMN loss during RET is due to the presence of brain-specific long 50 kDa isoform of the NDUFV3 subunit of complex I, which is absent in the heart where only the canonical 10 kDa short isoform is found. Our simulation studies suggest that the long NDUFV3 isoform can reach toward the FMN binding pocket and affect the nucleotide affinity to the apoenzyme. For the first time, we demonstrated a potential functional role of tissue-specific isoforms of complex I, providing the distinct molecular mechanism of I/R-induced mitochondrial impairment in cardiac and cerebral tissues. By combining functional studies of intact complex I and molecular structure simulations, we defined the critical difference between the brain and heart enzyme and suggested insights into the redox-dependent inactivation mechanisms of complex I during I/R injury in both tissues.
Collapse
Affiliation(s)
- Belem Yoval-Sánchez
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Joel James
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zoya Niatsetskaya
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sergey Sosunov
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Peter Filipenko
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, 10021, USA
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology, Centre, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Vadim Ten
- Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ilka Wittig
- Functional Proteomics, Cardiovascular Physiology, Goethe University, 60590, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA,Corresponding author.
| |
Collapse
|
11
|
González-Sanabria N, Echeverría F, Segura I, Alvarado-Sánchez R, Latorre R. BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Front Physiol 2021; 12:761474. [PMID: 34764886 PMCID: PMC8577798 DOI: 10.3389/fphys.2021.761474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for “Big K” due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope’s outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.
Collapse
Affiliation(s)
- Naileth González-Sanabria
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Echeverría
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Segura
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sánchez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Sanghvi S, Szteyn K, Ponnalagu D, Sridharan D, Lam A, Hansra I, Chaudhury A, Majumdar U, Kohut AR, Rao SG, Khan M, Garg V, Singh H. Inhibition of BK Ca channels protects neonatal hearts against myocardial ischemia and reperfusion injury.. [DOI: 10.1101/2021.11.02.466585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractBKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel’s activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.
Collapse
|
13
|
Guntur D, Olschewski H, Enyedi P, Csáki R, Olschewski A, Nagaraj C. Revisiting the Large-Conductance Calcium-Activated Potassium (BKCa) Channels in the Pulmonary Circulation. Biomolecules 2021; 11:1629. [PMID: 34827626 PMCID: PMC8615660 DOI: 10.3390/biom11111629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 01/13/2023] Open
Abstract
Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell's membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.
Collapse
Affiliation(s)
- Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria;
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (P.E.); (R.C.)
| | - Réka Csáki
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary; (P.E.); (R.C.)
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| |
Collapse
|
14
|
Krylova IB, Selina EN, Bulion VV, Rodionova OM, Evdokimova NR, Belosludtseva NV, Shigaeva MI, Mironova GD. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci Rep 2021; 11:16999. [PMID: 34417540 PMCID: PMC8379228 DOI: 10.1038/s41598-021-96562-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The effect of uridine on the myocardial ischemic and reperfusion injury was investigated. A possible mechanism of its cardioprotective action was established. Two rat models were used: (1) acute myocardial ischemia induced by occlusion of the left coronary artery for 60 min; and (2) myocardial ischemia/reperfusion with 30-min ischemia and 120-min reperfusion. In both models, treatment with uridine (30 mg/kg) prevented a decrease in cell energy supply and in the activity of the antioxidant system, as well as an increase in the level of lipid hydroperoxides and diene conjugates. This led to a reduction of the necrosis zone in the myocardium and disturbances in the heart rhythm. The blocker of the mitochondrial ATP-dependent potassium (mitoKATP) channel 5-hydroxydecanoate limited the positive effects of uridine. The data indicate that the cardioprotective action of uridine may be related to the activation of the mitoKATP channel. Intravenously injected uridine was more rapidly eliminated from the blood in hypoxia than in normoxia, and the level of the mitoKATP channel activator UDP in the myocardium after uridine administration increased. The results suggest that the use of uridine can be a potentially effective approach to the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Irina B Krylova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376.
| | - Elena N Selina
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Valentina V Bulion
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Olga M Rodionova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia R Evdokimova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia V Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Maria I Shigaeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Galina D Mironova
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
15
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
16
|
Gałecka S, Kulawiak B, Bednarczyk P, Singh H, Szewczyk A. Single channel properties of mitochondrial large conductance potassium channel formed by BK-VEDEC splice variant. Sci Rep 2021; 11:10925. [PMID: 34035423 PMCID: PMC8149700 DOI: 10.1038/s41598-021-90465-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
The activation of mitochondrial large conductance calcium-activated potassium (mitoBKCa) channels increases cell survival during ischemia/reperfusion injury of cardiac cells. The basic biophysical and pharmacological properties of mitoBKCa correspond to the properties of the BKCa channels from the plasma membrane. It has been suggested that the VEDEC splice variant of the KCNMA1 gene product encoding plasma membrane BKCa is targeted toward mitochondria. However there has been no direct evidence that this protein forms a functional channel in mitochondria. In our study, we used HEK293T cells to express the VEDEC splice variant and observed channel activity in mitochondria using the mitoplast patch-clamp technique. For the first time, we found that transient expression with the VEDEC isoform resulted in channel activity with the conductance of 290 ± 3 pS. The channel was voltage-dependent and activated by calcium ions. Moreover, the activity of the channel was stimulated by the potassium channel opener NS11021 and inhibited by hemin and paxilline, which are known BKCa channel blockers. Immunofluorescence experiments confirmed the partial colocalization of the channel within the mitochondria. From these results, we conclude that the VEDEC isoform of the BKCa channel forms a functional channel in the inner mitochondrial membrane. Additionally, our data show that HEK293T cells are a promising experimental model for expression and electrophysiological studies of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
17
|
Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021; 320:H2080-H2100. [PMID: 33834868 PMCID: PMC8163660 DOI: 10.1152/ajpheart.00917.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) affects one in three adults and remains the leading cause of death in America. Advancing age is a major risk factor for CVD. Recent plateaus in CVD-related mortality rates in high-income countries after decades of decline highlight a critical need to identify novel therapeutic targets and strategies to mitigate and manage the risk of CVD development and progression. Vascular dysfunction, characterized by endothelial dysfunction and large elastic artery stiffening, is independently associated with an increased CVD risk and incidence and is therefore an attractive target for CVD prevention and management. Vascular mitochondria have emerged as an important player in maintaining vascular homeostasis. As such, age- and disease-related impairments in mitochondrial function contribute to vascular dysfunction and consequent increases in CVD risk. This review outlines the role of mitochondria in vascular function and discusses the ramifications of mitochondrial dysfunction on vascular health in the setting of age and disease. The adverse vascular consequences of increased mitochondrial-derived reactive oxygen species, impaired mitochondrial quality control, and defective mitochondrial calcium cycling are emphasized, in particular. Current evidence for both lifestyle and pharmaceutical mitochondrial-targeted strategies to improve vascular function is also presented.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
18
|
Iseki Y, Ono Y, Hibi C, Tanaka S, Takeshita S, Maejima Y, Kurokawa J, Murakawa M, Shimomura K, Sakamoto K. Opening of Intermediate Conductance Ca 2+-Activated K + Channels in C2C12 Skeletal Muscle Cells Increases the Myotube Diameter via the Akt/Mammalian Target of Rapamycin Pathway. J Pharmacol Exp Ther 2021; 376:454-462. [PMID: 33376149 DOI: 10.1124/jpet.120.000290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022] Open
Abstract
The activation of potassium channels and the ensuing hyperpolarization in skeletal myoblasts are essential for myogenic differentiation. However, the effects of K+ channel opening in myoblasts on skeletal muscle mass are unclear. Our previous study revealed that pharmacological activation of intermediate conductance Ca2+-activated K+ channels (IKCa channels) increases myotube formation. In this study, we investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a Ca2+-activated K+ channel opener, on the mass of skeletal muscle. Application of DCEBIO to C2C12 cells during myogenesis increased the diameter of C2C12 myotubes in a concentration-dependent manner. This DCEBIO-induced hypertrophy was abolished by gene silencing of IKCa channels. However, it was resistant to 1 µM but sensitive to 10 µM TRAM-34, a specific IKCa channel blocker. Furthermore, DCEBIO reduced the mitochondrial membrane potential by opening IKCa channels. Therefore, DCEBIO should increase myotube mass by opening of IKCa channels distributed in mitochondria. Pharmacological studies revealed that mitochondrial reactive oxygen species (mitoROS), Akt, and mammalian target of rapamycin (mTOR) are involved in DCEBIO-induced myotube hypertrophy. An additional study demonstrated that DCEBIO-induced muscle hypertrophic effects are only observed when applied in the early stage of myogenic differentiation. In an in vitro myotube inflammatory atrophy experiment, DCEBIO attenuated the reduction of myotube diameter induced by endotoxin. Thus, we concluded that DCEBIO increases muscle mass by activating the IKCa channel/mitoROS/Akt/mTOR pathway. Our study suggests the potential of DCEBIO in the treatment of muscle wasting diseases. SIGNIFICANCE STATEMENT: Our study shows that 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a small molecule opener of Ca2+-activated K+ channel, increased muscle diameter via the mitochondrial reactive oxygen species/Akt/mammalian target of rapamycin pathway. And DCEBIO overwhelms C2C12 myotube atrophy induced by endotoxin challenge. Our report should inform novel role of K+ channel in muscle development and novel usage of K+ channel opener such as for the treatment of muscle wasting diseases.
Collapse
Affiliation(s)
- Yuzo Iseki
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Yuko Ono
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Chihiro Hibi
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Shoko Tanaka
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Shunya Takeshita
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Yuko Maejima
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Junko Kurokawa
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Masahiro Murakawa
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Kenju Shimomura
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| | - Kazuho Sakamoto
- Departments of Bioregulation and Pharmacological Medicine (Y.I., Y.O., S.T., Y.M., K.Sh., K.Sa.) and Anesthesiology (Y.I., M.M.), Fukushima Medical University, School of Medicine, Fukushima, Japan; Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan (Y.O.); and Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan (C.H., S.T., J.K., K.Sa.)
| |
Collapse
|
19
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
20
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|
21
|
Belyaeva EA, Sokolova TV. Mitigating effect of paxilline against injury produced by Cd 2+ in rat pheochromocytoma PC12 and ascites hepatoma AS-30D cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110519. [PMID: 32244116 DOI: 10.1016/j.ecoenv.2020.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
On two rat cell lines, pheochromocytoma PC12 and ascites hepatoma AS-30D, and on rat liver mitochondria we studied action of paxilline (lipophilic mycotoxin from fungus Penicillium paxilli which is blocker of large-conductance potassium channels) against harmful effects of Cd(II) - one of the most dangerous toxic metals and environmental pollutants. We investigated an influence of paxilline on cell viability and mitochondrial function in the presence and in the absence of Cd2+. As found, paxilline protected partially from the Cd2+-induced cytotoxicity, namely taken in concentration of 1 μM it decreased the Cd2+-induced cell necrosis in average by 10-14 or 13-23% for AS-30D and PC12 cells, respectively. Nevertheless, paxilline did not affect the Cd2+-induced apoptosis of AS-30D cells. The alleviating concentration of paxilline reduced an intracellular production of reactive oxygen species (ROS) in PC12 cells intoxicated by Cd2+ and enhanced the ROS production in control AS-30D cells; however, it weakly affected mitochondrial membrane potential of the cells in the absence and in the presence of Cd2+. The ameliorative concentration of paxilline decreased the maximal respiration rates of control cells of both types after short-term (3-5 h) treatment with it while the rates reached their control levels after long-term (24-48 h) incubation with the drug. Paxilline was not protective against the Cd2+-induced membrane permeability and respiration rate changes in isolated rat liver mitochondria. As result, the mitochondrial electron transport chain was concluded to contribute in the mitigating effect of paxilline against the Cd2+-produced cell injury.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez Pr. 44, 194223, St.-Petersburg, Russia.
| | - Tatyana V Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez Pr. 44, 194223, St.-Petersburg, Russia
| |
Collapse
|
22
|
Specific BK Channel Activator NS11021 Protects Rat Renal Proximal Tubular Cells from Cold Storage-Induced Mitochondrial Injury In Vitro. Biomolecules 2019; 9:biom9120825. [PMID: 31817165 PMCID: PMC6995623 DOI: 10.3390/biom9120825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Kidneys from deceased donors used for transplantation are placed in cold storage (CS) solution during the search for a matched recipient. However, CS causes mitochondrial injury, which may exacerbate renal graft dysfunction. Here, we explored whether adding NS11021, an activator of the mitochondrial big-conductance calcium-activated K+ (mitoBK) channel, to CS solution can mitigate CS-induced mitochondrial injury. We used normal rat kidney proximal tubular epithelial (NRK) cells as an in vitro model of renal cold storage (18 h) and rewarming (2 h) (CS + RW). Western blots detected the pore-forming α subunit of the BK channel in mitochondrial fractions from NRK cells. The fluorescent K+-binding probe, PBFI-AM, revealed that isolated mitochondria from NRK cells exhibited mitoBK-mediated K+ uptake, which was impaired ~70% in NRK cells subjected to CS + RW compared to control NRK cells maintained at 37 °C. Importantly, the addition of 1 μM NS11021 to CS solution prevented CS + RW-induced impairment of mitoBK-mediated K+ uptake. The NS11021–treated NRK cells also exhibited less cell death and mitochondrial injury after CS + RW, including mitigated mitochondrial respiratory dysfunction, depolarization, and superoxide production. In summary, these new data show for the first time that mitoBK channels may represent a therapeutic target to prevent renal CS-induced injury.
Collapse
|
23
|
Wang J, Sun J, Qiao S, Li H, Che T, Wang C, An J. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels. Mol Med Rep 2019; 20:4383-4390. [PMID: 31545457 DOI: 10.3892/mmr.2019.10658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/12/2019] [Indexed: 11/05/2022] Open
Abstract
Volatile anesthetics may protect the heart against ischemia‑reperfusion injury via the direct action on mitochondrial complexes and by regulating the production of reactive oxygen species (ROS). Recently, we reported that isoflurane induced the attenuation of mitochondrial respiration caused by complex I substrates. This process was not associated with endogenous production of mitochondrial nitric oxide (NO). In the present study, we investigated the effects of isoflurane on mitochondrial respiration and ROS production using complex II substrates. The detailed mechanism of these effects was explored with regards to NO production and the expression of mitochondrial ATP‑dependent K+ (mKATP) channels. Mitochondria were isolated from the heart of Sprague‑Dawley rats. The respiratory rates of mitochondria (0.5 mg/ml) were measured via polarography at 28˚C with computer‑controlled Clark‑type O2 electrodes. The complex II substrate succinate (5 mM) was used; 0.25 mM of isoflurane was administered prior to ADP‑initiated state 3 respiration. The mitochondrial membrane potential (ΔΨm) was measured under treatment with the substrate succinate, or succinate in the presence of the complex I inhibitor rotenone. The detection was achieved in a cuvette‑based spectrophotometer operating at wavelengths of 503 nm (excitation) 527 nm (emission) in the presence of 50 nM of the fluorescent dye rhodamine 123. The H2O2 release rates in the mitochondria were measured spectrophotometrically with succinate, or succinate and rotenone using the fluorescent dye Amplex red (12.5‑25 µM). The results indicated that isoflurane increased the state 3 and 4 respiration rates caused by succinate, which were higher than those noted in the control group in the presence of succinate alone. The NOS inhibitor L‑NIO or the NO‑sensitive guanylyl cyclase 1H‑[1,2,4]oxadiazolo[4,3‑a]quinoxalin‑1‑one did not inhibit the increase in the respiration rate (state 3) induced by isoflurane. The ROS scavengers SPBN and manganese (III) tetrakis (4‑benzoic acid) porphyrin chloride inhibited the increase in the respiration rate (state 3 and 4) induced by isoflurane. This effect was not noted for the putative KATP channel blockers 5‑hydroxydecanoic acid and glibenclamide. Isoflurane caused a greater decrease in the concentration of H2O2 during ADP‑initiated state 3 respiration, and L‑N5‑(1‑Iminoethyl)‑ornithine did not inhibit this effect. In conclusion, isoflurane was determined to modulate mitochondrial respiration and ROS production caused by the complex II substrate succinate. These effects were independent of endogenous mitochondrial NO generation and mitochondrial KATP channel opening.
Collapse
Affiliation(s)
- Junan Wang
- Department of Anesthesiology, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201299, P.R. China
| | - Jie Sun
- Department of Gastroenterology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Hua Li
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
24
|
Raupach A, Reinle J, Stroethoff M, Mathes A, Heinen A, Hollmann MW, Huhn R, Bunte S. Milrinone-Induced Pharmacological Preconditioning in Cardioprotection: Hints for a Role of Mitochondrial Mechanisms. J Clin Med 2019; 8:jcm8040507. [PMID: 31013843 PMCID: PMC6517902 DOI: 10.3390/jcm8040507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The activation of mitochondrial calcium-sensitive potassium (mBKCa) channels is crucially involved in cardioprotection induced by preconditioning. For milrinone (Mil)-induced preconditioning, the involvement of mBKCa-channels and further mitochondrial signaling is unknown. We hypothesize that (1) Mil-induced preconditioning is concentration-dependent and (2) that the activation of mBKCa-channels, release of reactive oxygen species (ROS), and the mitochondrial permeability transition pore (mPTP) could be involved. Isolated hearts of male Wistar rats were perfused with Krebs-Henseleit buffer and underwent 33 min of ischemia followed by 60 min of reperfusion. For determination of a concentration-dependent effect of Mil, hearts were perfused with different concentrations of Mil (0.3–10 µM) over 10 min before ischemia. In a second set of experiments, in addition to controls, hearts were pretreated with the lowest protective concentration of 1 µM Mil either alone or combined with the mBKCa-channel blocker paxilline (Pax + Mil), or paxilline alone (Pax). In additional groups, Mil was administered with and without the ROS scavenger N-2-mercaptopropionylglycine (MPG + Mil, MPG) or the mPTP inhibitor cyclosporine A (MPG + Mil + CsA, CsA + Mil), respectively. Infarct sizes were determined by triphenyltetrazolium chloride (TTC) staining. The lowest and most cardioprotective concentration was 1 µM Mil (Mil 1: 32 ± 6%; p < 0.05 vs. Con: 63 ± 8% and Mil 0.3: 49 ± 6%). Pax and MPG blocked the infarct size reduction of Mil (Pax + Mil: 53 ± 6%, MPG + Mil: 59 ± 7%; p < 0.05 vs. Mil: 34 ± 6%) without having an effect on infarct size when administered alone (Pax: 53 ± 7%, MPG: 58 ± 5%; ns vs. Con). The combined administration of CsA completely restored the MPG-inhibited cardioprotection of Mil (MPG + Mil + CsA: 35 ± 7%, p < 0.05 vs. MPG + Mil). Milrinone concentration-dependently induces preconditioning. Cardioprotection is mediated by the activation of mBKCa-channels, release of ROS and mPTP inhibition.
Collapse
Affiliation(s)
- Annika Raupach
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Julia Reinle
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Martin Stroethoff
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Alexander Mathes
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meiberdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Sebastian Bunte
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
25
|
Goswami SK, Ponnalagu D, Hussain AT, Shah K, Karekar P, Gururaja Rao S, Meredith AL, Khan M, Singh H. Expression and Activation of BK Ca Channels in Mice Protects Against Ischemia-Reperfusion Injury of Isolated Hearts by Modulating Mitochondrial Function. Front Cardiovasc Med 2019; 5:194. [PMID: 30746365 PMCID: PMC6360169 DOI: 10.3389/fcvm.2018.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Activation and expression of large conductance calcium and voltage-activated potassium channel (BKCa) by pharmacological agents have been implicated in cardioprotection from ischemia-reperfusion (IR) injury possibly by regulating mitochondrial function. Given the non-specific effects of pharmacological agents, it is not clear whether activation of BKCa is critical to cardioprotection. In this study, we aimed to decipher the mechanistic role of BKCa in cardioprotection from IR injury by genetically activating BKCa channels. Methods and Results: Hearts from adult (3 months old) wild-type mice (C57/BL6) and mice expressing genetically activated BKCa (Tg-BKCa R207Q, referred as Tg-BKCa) along with wild-type BKCa were subjected to 20 min of ischemia and 30 min of reperfusion with or without ischemic preconditioning (IPC, 2 times for 2.5 min interval each). Left ventricular developed pressure (LVDP) was recorded using Millar's Mikrotip® catheter connected to ADInstrument data acquisition system. Myocardial infarction was quantified by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Our results demonstrated that Tg-BKCa mice are protected from IR injury, and BKCa also contributes to IPC-mediated cardioprotection. Cardiac function parameters were also measured by echocardiography and no differences were observed in left ventricular ejection fraction, fractional shortening and aortic velocities. Amplex Red® was used to assess reactive oxygen species (ROS) production in isolated mitochondria by spectrofluorometry. We found that genetic activation of BKCa reduces ROS after IR stress. Adult cardiomyocytes and mitochondria from Tg-BKCa mice were isolated and labeled with Anti-BKCa antibodies. Images acquired via confocal microscopy revealed localization of cardiac BKCa in the mitochondria. Conclusions: Activation of BKCa is essential for recovery of cardiac function after IR injury and is likely a factor in IPC mediated cardioprotection. Genetic activation of BKCa reduces ROS produced by complex I and complex II/III in Tg-BKCa mice after IR, and IPC further decreases it. These results implicate BKCa-mediated cardioprotection, in part, by reducing mitochondrial ROS production. Localization of Tg-BKCa in adult cardiomyocytes of transgenic mice was similar to BKCa in wild-type mice.
Collapse
Affiliation(s)
- Sumanta Kumar Goswami
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Ahmed T Hussain
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kajol Shah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Priyanka Karekar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Andrea L Meredith
- Department of Physiology, University of Maryland, Baltimore, MD, United States
| | - Mahmood Khan
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.,Department of Emergency Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Patel NH, Johannesen J, Shah K, Goswami SK, Patel NJ, Ponnalagu D, Kohut AR, Singh H. Inhibition of BK Ca negatively alters cardiovascular function. Physiol Rep 2018; 6:e13748. [PMID: 29932499 PMCID: PMC6014461 DOI: 10.14814/phy2.13748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
Large conductance calcium and voltage-activated potassium channels (BKCa ) are transmembrane proteins, ubiquitously expressed in the majority of organs, and play an active role in regulating cellular physiology. In the heart, BKCa channels are known to play a role in regulating the heart rate and protect it from ischemia-reperfusion injury. In vascular smooth muscle cells, the opening of BKCa channels results in membrane hyperpolarization which eventually results in vasodilation mediated by a reduction in Ca2+ influx due to the closure of voltage-dependent Ca2+ channels. Ex vivo studies have shown that BKCa channels play an active role in the regulation of the function of the majority of blood vessels. However, in vivo role of BKCa channels in cardiovascular function is not completely deciphered. Here, we have evaluated the rapid in vivo role of BKCa channels in regulating the cardiovascular function by using two well-established, rapid-acting, potent blockers, paxilline and iberiotoxin. Our results show that BKCa channels are actively involved in regulating the heart rate, the function of the left and right heart as well as major vessels. We also found that the effect on BKCa channels by blockers is completely reversible, and hence, BKCa channels can be exploited as potential targets for clinical applications for modulating heart rate and cardiac contractility.
Collapse
Affiliation(s)
- Nishi H. Patel
- Department of Internal MedicineDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Justin Johannesen
- Department of Internal MedicineDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Kajol Shah
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Sumanta K. Goswami
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Neel J. Patel
- Department of Internal MedicineDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| | - Andrew R. Kohut
- Penn Heart and Vascular CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Harpreet Singh
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvania
- Division of CardiologyDrexel University College of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
27
|
Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties. Int J Mol Sci 2018; 19:ijms19020353. [PMID: 29370072 PMCID: PMC5855575 DOI: 10.3390/ijms19020353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023] Open
Abstract
Potassium channel openers (KCOs) have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa) channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases). The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.
Collapse
|
28
|
Stowe DF, Yang M, Heisner JS, Camara AK. Endogenous and Agonist-induced Opening of Mitochondrial Big Versus Small Ca2+-sensitive K+ Channels on Cardiac Cell and Mitochondrial Protection. J Cardiovasc Pharmacol 2017; 70:314-328. [PMID: 28777255 PMCID: PMC5726766 DOI: 10.1097/fjc.0000000000000524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both big (BKCa) and small (SKCa) conductance Ca-sensitive K channels are present in mammalian cardiac cell mitochondria (m). We used pharmacological agonists and antagonists of BKCa and SKCa channels to examine the importance of endogenous opening of these channels and the relative contribution of either or both of these channels to protect against contractile dysfunction and reduce infarct size after ischemia reperfusion (IR) injury through a mitochondrial protective mechanism. After global cardiac IR injury of ex vivo perfused Guinea pig hearts, we found the following: both agonists NS1619 (for BKCa) and DCEB (for SKCa) improved contractility; BKCa antagonist paxilline (PAX) alone or with SKCa antagonist NS8593 worsened contractility and enhanced infarct size; both antagonists PAX and NS8593 obliterated protection by their respective agonists; BKCa and SKCa antagonists did not block protection afforded by SKCa and BKCa agonists, respectively; and all protective effects by the agonists were blocked by scavenging superoxide anions (O2) with Mn(III) tetrakis (4-benzoic acid) porphyrin (TBAP). Contractile function was inversely associated with global infarct size. In in vivo rats, infusion of NS8593, PAX, or both antagonists enhanced regional infarct size while infusion of either NS1619 or DCEB reduced infarct size. In cardiac mitochondria isolated from ex vivo hearts after IR, combined SKCa and BKCa agonists improved respiratory control index and Ca retention capacity compared with IR alone, whereas the combined antagonists did not alter respiratory control index but worsened Ca retention capacity. Although the differential protective bioenergetics effects of endogenous or exogenous BKCa and SKCa channel opening remain unclear, each channel likely responds to different sensing Ca concentrations and voltage gradients over time during oxidative stress-induced injury to individually or together protect cardiac mitochondria and myocytes.
Collapse
Affiliation(s)
- David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, The Medical College of Wisconsin, Milwaukee, WI, USA
- Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S. Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
29
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
30
|
Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca 2+-activated K + channels and their role in cell life and death pathways. Cell Calcium 2017; 69:101-111. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Birgit Honrath
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
31
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
32
|
Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2017; 118:1593-611. [PMID: 27174952 DOI: 10.1161/circresaha.116.307505] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Qun Chen
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- From the Division of Cardiology, Department of Medicine, Pauley Heart Center (E.J.L, Q.C.), Departments of Biochemistry and Molecular Biology and Physiology and Biophsyics (E.J.L.), Virginia Commonwealth University, Richmond, VA (E.J.L., Q.C.); Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA (E.J.L.); and Departments of Pharmacology (C.L.H.) and Medicine (E.J.L., C.L.H.), Center for Mitochondrial Disease (C.L.H.), Case Western Reserve University, School of Medicine, Cleveland, OH.
| |
Collapse
|
33
|
Peruzzo R, Biasutto L, Szabò I, Leanza L. Impact of intracellular ion channels on cancer development and progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2016; 45:685-707. [PMID: 27289382 PMCID: PMC5045486 DOI: 10.1007/s00249-016-1143-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Cancer research is nowadays focused on the identification of possible new targets in order to try to develop new drugs for curing untreatable tumors. Ion channels have emerged as "oncogenic" proteins, since they have an aberrant expression in cancers compared to normal tissues and contribute to several hallmarks of cancer, such as metabolic re-programming, limitless proliferative potential, apoptosis-resistance, stimulation of neo-angiogenesis as well as cell migration and invasiveness. In recent years, not only the plasma membrane but also intracellular channels and transporters have arisen as oncological targets and were proposed to be associated with tumorigenesis. Therefore, the research is currently focusing on understanding the possible role of intracellular ion channels in cancer development and progression on one hand and, on the other, on developing new possible drugs able to modulate the expression and/or activity of these channels. In a few cases, the efficacy of channel-targeting drugs in reducing tumors has already been demonstrated in vivo in preclinical mouse models.
Collapse
Affiliation(s)
| | - Lucia Biasutto
- CNR Institute of Neuroscience, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
34
|
Korge P, Calmettes G, Weiss JN. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Free Radic Biol Med 2016; 96:22-33. [PMID: 27068062 PMCID: PMC4912463 DOI: 10.1016/j.freeradbiomed.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST.
Collapse
Affiliation(s)
- Paavo Korge
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Guillaume Calmettes
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Łukasiak A, Skup A, Chlopicki S, Łomnicka M, Kaczara P, Proniewski B, Szewczyk A, Wrzosek A. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur J Pharmacol 2016; 786:137-147. [PMID: 27262382 DOI: 10.1016/j.ejphar.2016.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
A large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.hy926, guinea pig hearts and submitochondrial particles isolated from the heart were used. In the isolated guinea pig hearts, which were perfused using the Langendorff technique, NS1619 caused a dose-dependent increase in coronary flow that was inhibited by L-NAME. In EA.hy926 cells, NS1619 also caused a dose-dependent increase in the intracellular calcium ion concentration [Ca(2+)]i, as measured using the FURA-2 fluorescent probe. Moreover, NS1619 decreased the oxygen consumption rate in EA.hy926 cells, as assessed using a Clark-type oxygen electrode. However, when NS1619 was applied in the presence of oligomycin, the oxygen consumption increased. NS1619 also decreased the mitochondrial membrane potential, as measured using a JC-1 fluorescent probe in the presence and absence of oligomycin. Additionally, the application of NS1619 to submitochondrial particles inhibited ATP synthase. In summary, NS1619 has pleiotropic actions on EA.hy926 cells and acts not only as an opener of the BKCa channel in EA.hy926 cells but also as an inhibitor of the respiratory chain component, sarcoplasmic reticulum ATPase, which leads to the release of Ca(2+) from the endoplasmic reticulum. Furthermore, NS1619 has the oligomycin-like property of inhibiting mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Agnieszka Łukasiak
- Department of Biophysics, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Agata Skup
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Magdalena Łomnicka
- Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
36
|
Li B, Gao TM. Functional Role of Mitochondrial and Nuclear BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:163-91. [PMID: 27238264 DOI: 10.1016/bs.irn.2016.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BK channels are important for the regulation of many cell functions. The significance of plasma membrane BK channels in the control of action potentials, resting membrane potential, and neurotransmitter release is well established; however, the composition and functions of mitochondrial and nuclear BK (nBK) channels are largely unknown. In this chapter, we summarize the recent findings on the subcellular localization, biophysical, and pharmacological properties of mitochondrial and nBK channels and discuss their molecular identity and physiological functions.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - T-M Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Goharbari MH, Shadboores A, Abdollahi M. Inhibitory Effects of Thyroid Hormones on Mitochondrial
Oxidative Stress: A Systematic Review. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.249.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Hermann A, Sitdikova GF, Weiger TM. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels. Biomolecules 2015; 5:1870-911. [PMID: 26287261 PMCID: PMC4598779 DOI: 10.3390/biom5031870] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/13/2023] Open
Abstract
All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.
Collapse
Affiliation(s)
- Anton Hermann
- Department of Cell Biology, Division of Cellular and Molecular Neurobiology, University of Salzburg, Salzburg 5020, Austria.
| | - Guzel F Sitdikova
- Department of Physiology of Man and Animals, Kazan Federal University, Kazan 420008, Russia.
| | - Thomas M Weiger
- Department of Cell Biology, Division of Cellular and Molecular Neurobiology, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
39
|
Belyaeva EA. The effect of modulators of large-conductance Ca2+-modulated K+ channels on rat AS-30D ascites hepatoma cells and isolated liver mitochondria treated with Cd2+. J EVOL BIOCHEM PHYS+ 2015; 51:259-270. [DOI: 10.1134/s0022093015040018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015; 21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.
Collapse
|
41
|
Closure of mitochondrial potassium channels favors opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Bioenerg Biomembr 2015; 47:243-54. [DOI: 10.1007/s10863-015-9611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
|
42
|
Antonenkov VD, Isomursu A, Mennerich D, Vapola MH, Weiher H, Kietzmann T, Hiltunen JK. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J Biol Chem 2015; 290:13840-61. [PMID: 25861990 DOI: 10.1074/jbc.m114.608083] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Indexed: 12/17/2022] Open
Abstract
The human MPV17-related mitochondrial DNA depletion syndrome is an inherited autosomal recessive disease caused by mutations in the inner mitochondrial membrane protein MPV17. Although more than 30 MPV17 gene mutations were shown to be associated with mitochondrial DNA depletion syndrome, the function of MPV17 is still unknown. Mice deficient in Mpv17 show signs of premature aging. In the present study, we used electrophysiological measurements with recombinant MPV17 to reveal that this protein forms a non-selective channel with a pore diameter of 1.8 nm and located the channel's selectivity filter. The channel was weakly cation-selective and showed several subconductance states. Voltage-dependent gating of the channel was regulated by redox conditions and pH and was affected also in mutants mimicking a phosphorylated state. Likewise, the mitochondrial membrane potential (Δψm) and the cellular production of reactive oxygen species were higher in embryonic fibroblasts from Mpv17(-/-) mice. However, despite the elevated Δψm, the Mpv17-deficient mitochondria showed signs of accelerated fission. Together, these observations uncover the role of MPV17 as a Δψm-modulating channel that apparently contributes to mitochondrial homeostasis under different conditions.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Antti Isomursu
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Daniela Mennerich
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Miia H Vapola
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - Hans Weiher
- the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Thomas Kietzmann
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| | - J Kalervo Hiltunen
- From the Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland and
| |
Collapse
|
43
|
Balderas E, Zhang J, Stefani E, Toro L. Mitochondrial BKCa channel. Front Physiol 2015; 6:104. [PMID: 25873902 PMCID: PMC4379900 DOI: 10.3389/fphys.2015.00104] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022] Open
Abstract
Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa) has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS), voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain open. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.
Collapse
Affiliation(s)
- Enrique Balderas
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Jin Zhang
- Deparment of Molecular and Medical Pharmacology, University of California, Los Angeles Los Angeles, CA, USA
| | - Enrico Stefani
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA ; Department of Physiology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Cardiovascular Research Laboratory, University of California, Los Angeles Los Angeles, CA, USA
| | - Ligia Toro
- Department of Anesthesiology, University of California, Los Angeles Los Angeles, CA, USA ; Deparment of Molecular and Medical Pharmacology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Cardiovascular Research Laboratory, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
44
|
Clements RT, Terentyev D, Sellke FW. Ca 2+-Activated K + Channels as Therapeutic Targets for Myocardial and Vascular Protection. Circ J 2015; 79:455-62. [DOI: 10.1253/circj.cj-15-0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard T. Clements
- Department of Surgery, Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University
| | - Dmitry Terentyev
- Department of Medicine, Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University
| | - Frank W. Sellke
- Department of Surgery, Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University
| |
Collapse
|
45
|
Yang M, Stowe DF, Udoh KB, Heisner JS, Camara AKS. Reversible blockade of complex I or inhibition of PKCβ reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia. PLoS One 2014; 9:e113534. [PMID: 25436907 PMCID: PMC4250075 DOI: 10.1371/journal.pone.0113534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023] Open
Abstract
Aim Excess mitochondrial reactive oxygen species (mROS) play a vital role in cardiac ischemia reperfusion (IR) injury. P66Shc, a splice variant of the ShcA adaptor protein family, enhances mROS production by oxidizing reduced cytochrome c to yield H2O2. Ablation of p66Shc protects against IR injury, but it is unknown if and when p66Shc is activated during cardiac ischemia and/or reperfusion and if attenuating complex I electron transfer or deactivating PKCβ alters p66Shc activation during IR is associated with cardioprotection. Methods Isolated guinea pig hearts were perfused and subjected to increasing periods of ischemia and reperfusion with or without amobarbital, a complex I blocker, or hispidin, a PKCβ inhibitor. Phosphorylation of p66Shc at serine 36 and levels of p66Shc in mitochondria and cytosol were measured. Cardiac functional variables and redox states were monitored online before, during and after ischemia. Infarct size was assessed in some hearts after 120 min reperfusion. Results Phosphorylation of p66Shc and its translocation into mitochondria increased during reperfusion after 20 and 30 min ischemia, but not during ischemia only, or during 5 or 10 min ischemia followed by 20 min reperfusion. Correspondingly, cytosolic p66Shc levels decreased during these ischemia and reperfusion periods. Amobarbital or hispidin reduced phosphorylation of p66Shc and its mitochondrial translocation induced by 30 min ischemia and 20 min reperfusion. Decreased phosphorylation of p66Shc by amobarbital or hispidin led to better functional recovery and less infarction during reperfusion. Conclusion Our results show that IR activates p66Shc and that reversible blockade of electron transfer from complex I, or inhibition of PKCβ activation, decreases p66Shc activation and translocation and reduces IR damage. These observations support a novel potential therapeutic intervention against cardiac IR injury.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Research Service, Zablocki VA Medical Center, Milwaukee, WI, United States of America; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States of America
| | - Kenechukwu B Udoh
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
46
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
47
|
Plotnikov EY, Silachev DN, Jankauskas SS, Rokitskaya TI, Chupyrkina AA, Pevzner IB, Zorova LD, Isaev NK, Antonenko YN, Skulachev VP, Zorov DB. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. BIOCHEMISTRY (MOSCOW) 2014; 77:1029-37. [PMID: 23157263 DOI: 10.1134/s0006297912090106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.
Collapse
Affiliation(s)
- E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Augustynek B, Kudin AP, Bednarczyk P, Szewczyk A, Kunz WS. Hemin inhibits the large conductance potassium channel in brain mitochondria: A putative novel mechanism of neurodegeneration. Exp Neurol 2014; 257:70-5. [DOI: 10.1016/j.expneurol.2014.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
|
49
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
50
|
Heinen A, Ströthoff M, Schmidt A, Stracke N, Behmenburg F, Bauer I, Hollmann MW, Huhn R. Pharmacological options to protect the aged heart from ischemia and reperfusion injury by targeting the PKA-BK(Ca) signaling pathway. Exp Gerontol 2014; 56:99-105. [PMID: 24727217 DOI: 10.1016/j.exger.2014.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
Abstract
The beneficial effects of many cardioprotective strategies including ischemic or pharmacological conditioning are reduced in the aged heart. The underlying reason(s) for the age-dependent loss of cardioprotection is unclear. Recently, we demonstrated that protein kinase A (PKA) dependent cardioprotection is lost in the aged heart. However, activation of large-conductance Ca(2+)-sensitive K(+) (BK(Ca)) channels, a putative PKA downstream target, initiated cardioprotection also in the aged heart. Therefore, we aimed to investigate whether 1) BK(Ca) channels are critically involved in PKA activation induced cardioprotection and 2) the age-dependent loss of cardioprotection is caused by differences in PKA regulation. Using an in vivo rat model with regional myocardial ischemia, we treated young (2-4 months) and aged (22-24 months) Wistar rats with PKA activator forskolin, BK(Ca) channel activator NS1619 and/or BK(Ca) channel blocker iberiotoxin. Forskolin induced infarct size reduction was 1) age-dependent and 2) prevented by iberiotoxin. The effect of forskolin on myocardial PKA activity was comparable in young and aged animals. In addition, NS1619 initiated cardioprotection also in the aged heart both when administered before ischemia and during early reperfusion phase. Activation of BK(Ca) channels is critically involved in forskolin induced cardioprotection. The age-dependency of forskolin induced cardioprotection is not caused by age-dependent differences in PKA activation. Pharmacological targeting of BK(Ca) channels before or after myocardial ischemia is a promising therapeutic strategy to protect the aged heart from ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Andre Heinen
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Martin Ströthoff
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Anika Schmidt
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Nadine Stracke
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Friederike Behmenburg
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|