1
|
Rodrigues AF, Domenig O, Poglitsch M, Bader M, Danser AJ. Angiotensin-(1-12): Does It Exist? A Critical Evaluation in Humans, Rats, and Mice. Hypertension 2024; 81:1776-1784. [PMID: 38716648 PMCID: PMC11251504 DOI: 10.1161/hypertensionaha.124.22856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Angiotensin-(1-12), measured by a self-developed, polyclonal antibody-based radioimmunoassay, has been suggested to act as an alternative precursor of angiotensin II. A more reliable detection method would be liquid chromatography-tandem mass spectrometry. METHODS We set up the quantification of human and murine angiotensin-(1-12) by liquid chromatography-tandem mass spectrometry and then used this method to measure angiotensin-(1-12) in human, rat, and mouse blood samples, as well as in mouse brain, mouse kidney, and rat heart. We also verified ex vivo angiotensin-(1-12) generation and metabolism in human blood samples incubated at 37 °C. RESULTS Stabilization of blood in guanidine hydrochloride was chosen for sample collection since this allowed full recovery of spiked angiotensin-(1-12). Angiotensin-(1-12) was undetectable in human blood samples when incubating nonstabilized plasma at 37 °C, while angiotensin-(1-12) added to nonstabilized human plasma disappeared within 10 minutes. Stabilized human blood samples contained angiotensin II, while angiotensin-(1-12) was undetectable. Blood, hearts, and kidneys, but not brains, of wild-type mice and rats contained detectable levels of angiotensin II, while angiotensin-(1-12) was undetectable. In renin knockout mice, all angiotensins, including angiotensin-(1-12), were undetectable at all sites, despite a 50% rise in angiotensinogen. Angiotensin-(1-12) metabolism in human blood plasma was not affected by renin inhibition. Yet, blockade of angiotensin-converting enzyme and aminopeptidase A, but not of chymase, neutral endopeptidase, or prolyl oligopeptidase, prolonged the half-life of angiotensin-(1-12), and angiotensin-converting enzyme inhibition prevented the formation of angiotensin II. CONCLUSIONS We were unable to detect intact angiotensin-(1-12) in humans, rats, and mice, either in blood or tissue, suggesting that this metabolite is an unlikely source of endogenous angiotensins.
Collapse
Affiliation(s)
- André F. Rodrigues
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.F.R., M.B.)
- German Center for Cardiovascular Research, Berlin, Germany (A.F.R., M.B.)
| | | | | | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (A.F.R., M.B.)
- German Center for Cardiovascular Research, Berlin, Germany (A.F.R., M.B.)
- Charité Universitätsmedizin Berlin, Germany (M.B.)
- Institute for Biology, University of Lübeck, Germany (M.B.)
| | - A.H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands (A.H.J.D.)
| |
Collapse
|
2
|
Mohaissen T, Kij A, Bar A, Marczyk B, Wojnar-Lason K, Buczek E, Karas A, Garcia-Redondo AB, Briones AM, Chlopicki S. Chymase-independent vascular Ang-(1-12)/Ang II pathway and TXA 2 generation are involved in endothelial dysfunction in the murine model of heart failure. Eur J Pharmacol 2024; 966:176296. [PMID: 38158114 DOI: 10.1016/j.ejphar.2023.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The angiotensin (Ang)-(1-12)/Ang II pathway contributes to cardiac pathology. However, its involvement in the development of peripheral endothelial dysfunction associated with heart failure (HF) remains unknown. Therefore, this study aimed to characterise the effect of exogenous Ang-(1-12) and its conversion to Ang II on endothelial function using the murine model of HF (Tgαq*44 mice), focusing on the role of chymase and vascular-derived thromboxane A2 (TXA2). Ex vivo myographic assessments of isolated aorta showed impaired endothelium-dependent vasodilation in late-stage HF in 12-month-old Tgαq*44 mice. However, endothelium-dependent vasodilation was fully preserved in the early stage of HF in 4-month-old Tgαq*44 mice and 4- and 12-month-old FVB control mice. Ang-(1-12) impaired endothelium-dependent vasodilation in 4- and 12-month-old Tgαq*44 mice, that was associated with increased Ang II production. The chymase inhibitor chymostatin did not inhibit this response. Interestingly, TXA2 production reflected by TXB2 measurement was upregulated in response to Ang-(1-12) and Ang II in aortic rings isolated from 12-month-old Tgαq*44 mice but not from 4-month-old Tgαq*44 mice or age-matched FVB mice. Furthermore, in vivo magnetic resonance imaging showed that Ang-(1-12) impaired endothelium-dependent vasodilation in the aorta of Tgαq*44 mice and FVB mice. However, this response was inhibited by angiotensin I converting enzyme (ACE) inhibitor; perindopril, angiotensin II receptor type 1 (AT1) antagonist; losartan and TXA2 receptor (TP) antagonist-picotamide in 12-month-old-Tgαq*44 mice only. In conclusion, the chymase-independent vascular Ang-(1-12)/Ang II pathway and subsequent TXA2 overactivity contribute to systemic endothelial dysfunction in the late stage of HF in Tgαq*44 mice. Therefore, the vascular TXA2 receptor represents a pharmacotherapeutic target to improve peripheral endothelial dysfunction in chronic HF.
Collapse
Affiliation(s)
- Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Elzbieta Buczek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Karas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Ana B Garcia-Redondo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Ana M Briones
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
3
|
Ferrario CM, Ahmad S, Speth R, Dell’Italia LJ. Is chymase 1 a therapeutic target in cardiovascular disease? Expert Opin Ther Targets 2023; 27:645-656. [PMID: 37565266 PMCID: PMC10529260 DOI: 10.1080/14728222.2023.2247561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Non-angiotensin converting enzyme mechanisms of angiotensin II production remain underappreciated in part due to the success of current therapies to ameliorate the impact of primary hypertension and atherosclerotic diseases of the heart and the blood vessels. This review scrutinize the current literature to highlight chymase role as a critical participant in the pathogenesis of cardiovascular disease and heart failure. AREAS COVERED We review the contemporaneous understanding of circulating and tissue biotransformation mechanisms of the angiotensins focusing on the role of chymase as an alternate tissue generating pathway for angiotensin II pathological mechanisms of action. EXPERT OPINION While robust literature documents the singularity of chymase as an angiotensin II-forming enzyme, particularly when angiotensin converting enzyme is inhibited, this knowledge has not been fully recognized to clinical medicine. This review discusses the limitations of clinical trials' that explored the benefits of chymase inhibition in accounting for the failure to duplicate in humans what has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Robert Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida 33314
| | - Louis J Dell’Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB), Birmingham AL 35294
- Birmingham Department of Veterans Affairs Health Care System, Birmingham AL 35233
| |
Collapse
|
4
|
Nakagawasai O, Takahashi K, Koyama T, Yamagata R, Nemoto W, Tan-No K. Activation of angiotensin-converting enzyme 2 produces an antidepressant-like effect via MAS receptors in mice. Mol Brain 2023; 16:52. [PMID: 37312182 DOI: 10.1186/s13041-023-01040-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Angiotensin (Ang)-converting-enzyme (ACE) 2 converts Ang II into Ang (1-7), which in turn acts on MAS receptors (ACE2/Ang (1-7)/MAS receptors pathway). This pathway has neuroprotective properties, making it a potential therapeutic target for psychiatric disorders such as depression. Thus, we examined the effects of diminazene aceturate (DIZE), an ACE2 activator, on depressive-like behavior using behavioral, pharmacological, and biochemical assays. To determine whether DIZE or Ang (1-7) produce antidepressant-like effects, we measured the duration of immobility of mice in the tail suspension test following their intracerebroventricular administration. Next, we measured the levels of ACE2 activation in the cerebral cortex, prefrontal cortex, hippocampus, and amygdala after DIZE injection, and examined which cell types, including neurons, microglia, and astrocytes, express ACE2 in the hippocampus using immunofluorescence. Administration of DIZE or Ang (1-7) significantly shortened the duration of immobility time in the tail suspension test, while this effect was inhibited by the co-administration of the MAS receptor antagonist A779. DIZE activated ACE2 in the hippocampus. ACE2 was localized to neurons, astrocytes, and microglia in the hippocampus. In conclusion, these results suggest that DIZE may act on ACE2-positive cells in the hippocampus where it increases the activity of ACE2, thereby enhancing signaling of the ACE2/Ang (1-7)/MAS receptor pathway and resulting in antidepressant-like effects.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Tochigi, Japan
| | - Taisei Koyama
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| |
Collapse
|
5
|
Ahmad S, Wright KN, VonCannon JL, Ferrario CM, Ola MS, Choudhary M, Malek G, Gustafson JR, Sappington RM. Internalization of Angiotensin-(1-12) in Adult Retinal Pigment Epithelial-19 Cells. J Ocul Pharmacol Ther 2023; 39:290-299. [PMID: 36944130 PMCID: PMC10178934 DOI: 10.1089/jop.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
Purpose: Angiotensin-(1-12) [Ang-(1-12)] serves as a primary substrate to generate angiotensin II (Ang II) by angiotensin-converting enzyme and/or chymase suggests it may be an unrecognized source of Ang II-mediated microvascular complication in hypertension-mediated retinopathy. We investigated Ang-(1-12) expression and internalization in adult retinal pigment epithelial-19 (ARPE-19) cultured cells. We performed the internalization of Ang-(1-12) in ARPE-19 cells in the presence of a highly specific monoclonal antibody (mAb) developed against the C-terminal end of the Ang-(1-12) sequence. Methods: All experiments were performed in confluent ARPE-19 cells (passage 28-35). We employed high-performance liquid chromatography to purify radiolabeled, 125I-Ang-(1-12) and immuno-neutralization with Ang-(1-12) mAb to demonstrate Ang-(1-12)'s internalization in ARPE-19 cells. Internalization was also demonstrated by immunofluorescence (IF) method. Results: These procedures revealed internalization of an intact 125I-Ang-(1-12) in ARPE-19 cells. A significant reduction (∼53%, P < 0.0001) in 125I-Ang-(1-12) internalization was detected in APRE-19 cells in the presence of the mAb. IF staining experiments further confirms internalization of Ang-(1-12) into the cells from the extracellular culture medium. No endogenous expression was detected in the ARPE-19 cells. An increased intensity of IF staining was detected in cells exposed to 1.0 μM Ang-(1-12) compared with 0.1 μM. Furthermore, we found hydrolysis of Ang-(1-12) into Ang II by ARPE-19 cells' plasma membranes. Conclusions: Intact Ang-(1-12) peptide is internalized from the extracellular spaces in ARPE-19 cells and metabolized into Ang II. The finding that a selective mAb blocks cellular internalization of Ang-(1-12) suggests alternate therapeutic approaches to prevent/reduce the RPE cells Ang II burden.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kendra N. Wright
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jessica L. VonCannon
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohammad S. Ola
- Department of Biochemistry, King Saud University, Riyadh, Saudi Arabia
| | - Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenna R. Gustafson
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rebecca M. Sappington
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Ferrario CM, Saha A, VonCannon JL, Meredith WJ, Ahmad S. Does the Naked Emperor Parable Apply to Current Perceptions of the Contribution of Renin Angiotensin System Inhibition in Hypertension? Curr Hypertens Rep 2022; 24:709-721. [PMID: 36272015 DOI: 10.1007/s11906-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-based shortcomings from randomized clinical trials are fundamental in accelerating future progress. RECENT FINDINGS Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and researchers hold low awareness of these drugs' limitations in preventing or reducing the risk of cardiovascular events. Biases in interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bioprocessing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology alone or possibly in combination with other antihypertensive drugs. A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with increased capacity to reach the intracellular compartments at which Ang II can be generated.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA.
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Jessica L VonCannon
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Wayne J Meredith
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| |
Collapse
|
7
|
Ferrario CM, Groban L, Wang H, Sun X, VonCannon JL, Wright KN, Ahmad S. The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl (2011) 2022; 12:36-47. [DOI: 10.1016/j.kisu.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
|
8
|
Ferrario CM, VonCannon JL, Zhang J, Figueroa JP, Wright KN, Groban L, Saha A, Meredith JW, Ahmad S. Immunoneutralization of human angiotensin-(1-12) with a monoclonal antibody in a humanized model of hypertension. Peptides 2022; 149:170714. [PMID: 34933010 PMCID: PMC8985523 DOI: 10.1016/j.peptides.2021.170714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/02/2023]
Abstract
We engineered a monoclonal antibody (mAb) against the human C-terminus of angiotensin-(1-12) [h-Ang-(1-12)] and performed a biochemical characterization in concert with direct in vivo and ex vivo (carotid artery strips) assessments of h-Ang-(1-12) vasoconstrictor activity in 78 (36 females) transgenic rats expressing the human angiotensinogen gene [TGR(hAGT)L1623] and 26 (10 female) Sprague Dawley (SD) controls. The mAb shows high specificity in neutralizing angiotensin II formation from h-Ang-(1-12) and did not cross-react with human and rat angiotensins. Changes in arterial pressure and heart rate in Inactin® hydrate anesthetized rats were measured before and after h-Ang-(1-12) injections [dose range: 75-300 pmol/kg i.v.] prior to and 30-60 minutes after administration of the h-Ang-(1-12) mAb. Neutralization of circulating Ang-(1-12) inhibited the pressor action of h-Ang-(1-12), prevented Ang-(1-12) constrictor responses in carotid artery rings in both SD and TGR(hAGT)L1623 rats, and caused a fall in the arterial pressure of male and female transgenic rats. The Ang-(1-12) mAb did not affect the response of comparable dose-related pressor responses to Ang II, pre-immune IgG, or the rat sequence of Ang-(1-12). This h-Ang-(1-12) mAb can effectively suppress the pressor actions of the substrate in the circulation of hypertensive rats or in carotid artery strips from both SD and transgenic rats. The demonstration that this Ang-(1-12) mAb by itself, induced a fall in arterial pressure in transgenic hypertensive rats supports further exploring the potential abilities of Ang-(1-12) mAb in the treatment of hypertension.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States.
| | - Jessica L VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Jorge P Figueroa
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - J Wayne Meredith
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, 27157, United States
| |
Collapse
|
9
|
Zhao Y, Shu Y, Zhao N, Zhou Z, Jia X, Jian C, Jin S. Insulin resistance induced by long-term sleep deprivation in rhesus macaques can be attenuated by Bifidobacterium. Am J Physiol Endocrinol Metab 2022; 322:E165-E172. [PMID: 34843659 DOI: 10.1152/ajpendo.00329.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term sleep deprivation (SD) is a bad lifestyle habit, especially among specific occupational practitioners, characterized by circadian rhythm misalignment and abnormal sleep/wake cycles. SD is closely associated with an increased risk of metabolic disturbance, particularly obesity and insulin resistance. The incretin hormone, glucagon-like peptide-1 (GLP-1), is a critical insulin release determinant secreted by the intestinal L-cell upon food intake. Besides, the gut microbiota participates in metabolic homeostasis and regulates GLP-1 release in a circadian rhythm manner. As a commonly recognized intestinal probiotic, Bifidobacterium has various clinical indications regarding its curative effect. However, few studies have investigated the effect of Bifidobacterium supplementation on sleep disorders. In the present study, we explored the impact of long-term SD on the endocrine metabolism of rhesus monkeys and determined the effect of Bifidobacterium supplementation on the SD-induced metabolic status. Lipid concentrations, body weight, fast blood glucose, and insulin levels increased after SD. Furthermore, after 2 mo of long-term SD, the intravenous glucose tolerance test showed that the glucose metabolism was impaired and the insulin sensitivity decreased. Moreover, 1 mo of Bifidobacterium oral administration significantly reduced blood glucose and attenuated insulin resistance in rhesus macaques. Overall, our results suggested that Bifidobacterium might be used to alleviate SD-induced aberrant glucose metabolism and improve insulin resistance. Also, it might help in better understanding the mechanisms governing the beneficial effects of Bifidobacterium.NEW & NOTEWORTHY Our findings demonstrated that long-term sleep deprivation is closely associated with metabolic syndromes. Bifidobacterium administration showed a superior effect on insulin resistance caused by sleep deprivation. Overall, we provide prevention and treatment methods for long-term sleep deprivation, a bad lifestyle habit among specific occupational practitioners, such as irregular shift workers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ning Zhao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chenxing Jian
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
11
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
12
|
Ferrario CM, R Iyer S, Burnett JC, Ahmad S, Wright KN, VonCannon JL, Saha A, Groban L. Angiotensin (1-12) in Humans With Normal Blood Pressure and Primary Hypertension. Hypertension 2021; 77:882-890. [PMID: 33461312 PMCID: PMC7878412 DOI: 10.1161/hypertensionaha.120.16514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022]
Abstract
The importance of canonical versus noncanonical mechanisms for the generation of angiotensins remains a major challenge that, in part, is heavily swayed by the relative efficacy of therapies designed to inhibit renin, ACE (angiotensin-converting enzyme), or the Ang II (Angiotensin II) receptor. Ang (1-12) (angiotensin [1-12]) is an Ang II forming substrate serving as a source for Ang II-mediated tissue actions. This study identifies for the first time the presence of Ang (1-12) in the blood of 52 normal (22 women) and 19 (13 women) patients with hypertension not receiving antihypertensive medication at the time of the study. Normal subjects of comparable ages and body habitus had similar circulating plasma Ang (1-12) concentrations (women: 2.02±0.62 [SD] ng/mL; men 2.05±0.55 [SD] ng/mL, P>0.05). The higher values of plasma Ang (1-12) concentrations in hypertensive men (2.51±0.49 ng/mL, n=6) and women (2.33±0.63 [SD] ng/mL, n=13) were statistically significant (P<0.02) and correlated with elevated plasma renin activity, systolic and pulse pressure, and plasma concentrations of NT-proBNP (N-terminal prohormone BNP). The increased plasma Ang (1-12) in patients with hypertension was not mirrored by similar changes in plasma angiotensinogen and Ang II concentrations. The first identification of an age-independent presence of Ang (1-12) in the blood of normotensive subjects and patients with hypertension, irrespective of sex, implicates this non-renin dependent substrate as a source for Ang II production in the blood and its potential contribution to the hypertensive process.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Seethalakshmi R Iyer
- Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, Minnesota 55905
| | - John C Burnett
- Division of Circulatory Failure, Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, Minnesota 55905
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Jessica L VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| |
Collapse
|
13
|
Wang H, Varagic J, Nagata S, Kon ND, Ahmad S, VonCannon JL, Wright KN, Sun X, Deal D, Groban L, Ferrario CM. Differential Expression of the Angiotensin-(1-12)/Chymase Axis in Human Atrial Tissue. J Surg Res 2020; 253:173-184. [PMID: 32361612 PMCID: PMC7384956 DOI: 10.1016/j.jss.2020.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Heart chymase rather than angiotensin (Ang)-converting enzyme has higher specificity for Ang I conversion into Ang II in humans. A new pathway for direct cardiac Ang II generation has been revealed through the demonstration that Ang-(1-12) is cleaved by chymase to generate Ang II directly. Herein, we address whether Ang-(1-12), chymase messenger RNA (mRNA), and activity levels can be differentiated in human atrial tissue from normal and diseased hearts and if these measures associate with various pathologic heart conditions. MATERIALS AND METHODS Atrial appendages were collected from 11 nonfailing donor hearts and 111 patients undergoing heart surgery for the correction of valvular heart disease, resistant atrial fibrillation, or ischemic heart disease. Chymase mRNA was analyzed by real-time polymerase chain reaction and enzymatic activity by high-performance liquid chromatography using Ang-(1-12) as the substrate. Ang-(1-12) levels were determined by immunohistochemical staining. RESULTS Chymase gene transcripts, chymase activity, and immunoreactive Ang-(1-12) expression levels were higher in left atrial tissue compared with right atrial tissue, irrespective of cardiac disease. In addition, left atrial chymase mRNA expression was significantly higher in stroke versus nonstroke patients and in cardiac surgery patients who had a history of postoperative atrial fibrillation versus nonatrial fibrillation. Correlation analysis showed that left atrial chymase mRNA was positively related to left atrial enlargement, as determined by echocardiography. CONCLUSIONS As Ang-(1-12) expression and chymase gene transcripts and enzymatic activity levels were positively linked to left atrial size in patients with left ventricular heart disease, an important alternate Ang II forming pathway, via Ang-(1-12) and chymase, in maladaptive atrial and ventricular remodeling in humans is uncovered.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sayaka Nagata
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Neal D Kon
- Department of Cardiothoracic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jessica L VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dwight Deal
- Department of Cardiothoracic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
14
|
Ferrario CM, VonCannon J, Ahmad S, Wright KN, Roberts DJ, Wang H, Yamashita T, Groban L, Cheng CP, Collawn JF, Dell'Italia LJ, Varagic J. Activation of the Human Angiotensin-(1-12)-Chymase Pathway in Rats With Human Angiotensinogen Gene Transcripts. Front Cardiovasc Med 2019; 6:163. [PMID: 31803758 PMCID: PMC6872498 DOI: 10.3389/fcvm.2019.00163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-(1-12) [Ang-(1-12)], an alternate substrate for tissue angiotensin II (Ang II) formation, underscores the importance of alternative renin-independent pathway(s) for the generation of angiotensins. Since renin enzymatic activity is species-specific, a transgenic model of hypertension due to insertion of the human angiotensinogen (AGT) gene in Sprague Dawley rats allowed for characterizing the contribution of a non-renin dependent mechanism for Ang II actions in their blood and heart tissue. With this in mind, we investigated whether TGR(hAGT)L1623 transgenic rats express the human sequence of Ang-(1-12) before and following a 2-week oral therapy with the type I Ang II receptor (AT1-R) antagonist valsartan. Plasma and cardiac expression of angiotensins, plasma renin activity, cardiac angiotensinogen, and chymase protein and the enzymatic activities of chymase, angiotensin converting enzyme (ACE) and ACE2 were determined in TGR(hAGT)L1623 rats given vehicle or valsartan. The antihypertensive effect of valsartan after 14-day treatment was associated with reduced left ventricular wall thickness and augmented plasma concentrations of angiotensin I (Ang I) and Ang II; rat and human concentrations of angiotensinogen or Ang-(1-12) did not change. On the other hand, AT1-R blockade produced a 55% rise in left ventricular content of human Ang-(1-12) concentration and no changes in rat cardiac Ang-(1-12) levels. Mass-Spectroscopy analysis of left ventricular Ang II content confirmed a >4-fold increase in cardiac Ang II content in transgenic rats given vehicle; a tendency for decreased cardiac Ang II content following valsartan treatment did not achieve statistical significance. Cardiac chymase and ACE2 activities, significantly higher than ACE activity in TGR(hAGT)L1623 rats, were not altered by blockade of AT1-R. We conclude that this humanized model of angiotensinogen-dependent hypertension expresses the human sequence of Ang-(1-12) in plasma and cardiac tissue and responds to blockade of AT1-R with further increases in the human form of cardiac Ang-(1-12). Since rat renin has no hydrolytic activity on human angiotensinogen, the study confirms and expands knowledge of the importance of renin-independent mechanisms as a source for Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Social Science and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Drew J Roberts
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hao Wang
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Tomohisa Yamashita
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leanne Groban
- Department of Anesthesia, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Che Ping Cheng
- Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Section on Cardiovascular Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Li T, Zhang Z, Zhang X, Chen Z, Cheng HJ, Ahmad S, Ferrario CM, Cheng CP. Reversal of angiotensin-(1-12)-caused positive modulation on left ventricular contractile performance in heart failure: Assessment by pressure-volume analysis. Int J Cardiol 2019; 301:135-141. [PMID: 31521437 DOI: 10.1016/j.ijcard.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Angiotensin-(1-12) [Ang-(1-12)] is a renin-independent precursor for direct angiotensin-II production by chymase. Substantial evidence suggests that heart failure (HF) may alter cardiac Ang-(1-12) expression and activity; this novel Ang-(1-12)/chymase axis may be the main source for angiotensin-II deleterious actions in HF. We hypothesized that HF alters cardiac response to Ang-(1-12). Its stimulation may produce cardiac negative modulation and exacerbate left ventricle (LV) systolic and diastolic dysfunction. METHODS AND RESULTS We assessed the effects of Ang-(1-12) (2 nmol/kg/min, iv, 10 min) on LV contractility, LV diastolic filling, and LV-arterial coupling (AVC) in 16 SD male rats with HF-induced by isoproterenol (3 mo after 170 mg/kg sq. for 2 consecutive days) and 10 age-matched male controls. In normal controls, versus baseline, Ang-(1-12) increased LV end-systolic pressure, without altering heart rate, arterial elastance (EA), LV end-diastolic pressure (PED), the time constant of LV relaxation (τ) and ejection fraction (EF). Ang-(1-12) significantly increased the slopes (EES) of LV end-systolic pressure (P)-volume (V) relations and the slopes (MSW) of LV stroke wok-end-diastolic V relations, indicating increased LV contractility. AVC (quantified as EES/EA) improved. In contrast, in HF, versus HF baseline, Ang-(1-12) produced a similar increase in PES, but significantly increased τ, EA, and PED. The early diastolic portion of LV PV loop was shifted upward with reduced in EF. Moreover, Ang-(1-12) significantly decreased EES and MSW, demonstrating decreased LV contractility. AVC was decreased by 43%. CONCLUSIONS In both normal and HF rats, Ang-(1-12) causes similar vasoconstriction. In normal, Ang-(1-12) increases LV contractile function. In HF, Ang-(1-12) has adverse effects and depresses LV systolic and diastolic functional performance.
Collapse
Affiliation(s)
- Tiankai Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Zhi Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, China
| | - Xiaowei Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Chen
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Heng-Jie Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Che Ping Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America.
| |
Collapse
|
16
|
Imran I, Syahrul S, Sofia S, Farida F, Musadir N, Fajar JK. Association of angiotensin-converting enzyme G2350A gene polymorphisms with hypertension among patients with intracerebral haemorrhage. J Taibah Univ Med Sci 2019; 14:300-305. [PMID: 31435421 PMCID: PMC6694934 DOI: 10.1016/j.jtumed.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To evaluate the correlation of angiotensin-converting enzyme (ACE) G2350A gene polymorphisms with hypertension, brain hematoma volume (BHV), level of consciousness, and disease outcome among intracerebral haemorrhage (ICH) patients. METHODS A cross-sectional study was conducted in Zainoel Abidin General Hospital from May 2016 to June 2017. Polymerase chain reaction was used to genotype ACE G2350A gene polymorphisms. BHV was assessed using the ABC/2 volume estimation formula. Level of consciousness was assessed by Glasgow coma scale (GCS). Disease outcome was assessed using Glasgow outcome scale (GOS). Association tests for ACE G2350A genotype in the context of hypertension status, BHV, GCS score, and GOS score in subjects with ICH was analysed by multiple logistic regression. RESULTS A total of 75 ICH patients were included in the study. Of those, 59 patients exhibited hypertension, 24 patients had BHV ≥60 cm3, 16 patients possessed GCS scores ≤8, and 72 patients had GOS scores of 1-3. Our analysis determined that the A allele of the ACE G2350A gene polymorphism was significantly associated with a 3.6-fold increase in hypertension; however, this polymorphism was not associated with BHV, level of consciousness, and disease outcome among ICH patients. CONCLUSION The A allele of the ACE G2350A gene polymorphisms is associated with hypertension among ICH patients.
Collapse
Affiliation(s)
- Imran Imran
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Syahrul Syahrul
- Department of Neurology, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Sofia Sofia
- Department of Biochemistry, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Farida Farida
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Nasrul Musadir
- Department of Neurology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Jonny K. Fajar
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
17
|
Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens 2017; 40:344-352. [PMID: 29190205 DOI: 10.1080/10641963.2017.1377218] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Renin angiotensin system (RAS) is an endogenous hormone system involved in the control of blood pressure and fluid volume. Dysregulation of RAS has a pathological role in causing cardiovascular diseases through hypertension. Among several key components of RAS, angiotensin peptides, varying in amino acid length and biological function, have important roles in preventing or promoting hypertension, cardiovascular diseases, stroke, vascular remodeling etc. These peptides are generated by the metabolism of inactive angiotensinogen or its derived peptides by hydrolyzing action of certain enzymes. Angiotensin II, angiotensin (1-12), angiotensin A and angiotensin III bind primarily to angiotensin II type 1 receptor and cause vasoconstriction, accumulation of inflammatory markers to sub-endothelial region of blood vessels and activate smooth muscle cell proliferation. Moreover, when bound to angiotensin II type 2 receptor, angiotensin II works as cardio-protective peptide and halt pathological cell signals. Other peptides like angiotensin (1-9), angiotensin (1-7), alamandine and angiotensin IV also help in protecting from cardiovascular diseases by binding to their respective receptors.
Collapse
Affiliation(s)
- Misbah Hussain
- a Diabetes and Cardio-Metabolic disorders Lab, Health Biotechnology Division , National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan.,b Pakistan Institute of Engineering and Applied Sciences (PIEAS) , Nilore , Islamabad , Pakistan
| | - Fazli Rabbi Awan
- a Diabetes and Cardio-Metabolic disorders Lab, Health Biotechnology Division , National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan.,b Pakistan Institute of Engineering and Applied Sciences (PIEAS) , Nilore , Islamabad , Pakistan
| |
Collapse
|
18
|
Correlation of angiotensin I-converting enzyme gene insertion/deletion polymorphism with rheumatic heart disease: a meta-analysis. Biosci Rep 2016; 36:BSR20160151. [PMID: 27758878 PMCID: PMC5293560 DOI: 10.1042/bsr20160151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023] Open
Abstract
Rheumatic heart disease (RHD) is a serious cardiovascular disorder worldwide. Several articles have reported the effect of angiotensin I-converting enzyme gene insertion/deletion (ACE I/D) polymorphism in RHD risk. However, the results still remain inconsistent. The objective of the present study was to assess more precise estimations of the relationship between ACE I/D variant and RHD susceptibility. Relevant case–control studies published between January 2000 and 2016 were searched in the electronic databases. The odds ratio (OR) with its 95% confidence interval (CI) was employed to calculate the strength of the effect. A total of nine articles were retrieved, including 1333 RHD patients and 1212 healthy controls. Overall, our result did not detect a significant association between ACE I/D polymorphism and RHD risk under each genetic model (P > 0.05). Subgroup analysis by ethnicity showed no positive relationship in Asians as well (P > 0.05). With respect to the severity of RHD, our result found that the frequency differences between mitral valve lesion (MVL), combined valve lesion (CVL) and healthy controls were not significantly different. Furthermore, no significant association was found between female, male RHD patients and the controls regarding to the ACE I/D polymorphism. In conclusion, our result indicated that ACE I/D polymorphism might not be a risk factor for RHD progression based on the existing research results. Additional well-designed studies with larger samples are still needed to confirm these findings.
Collapse
|
19
|
Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, Collawn JF, Dell Italia LJ. Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 2016; 311:H404-14. [PMID: 27233763 PMCID: PMC5008653 DOI: 10.1152/ajpheart.00219.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1-12) [Ang-(1-12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1-12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina;
| | - Sarfaraz Ahmad
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Che Ping Cheng
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Hao Wang
- Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - James F Collawn
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and
| | - Louis J Dell Italia
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
20
|
Ahmad S, Varagic J, VonCannon JL, Groban L, Collawn JF, Dell'Italia LJ, Ferrario CM. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochem Biophys Res Commun 2016; 478:559-64. [PMID: 27465904 DOI: 10.1016/j.bbrc.2016.07.100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023]
Abstract
We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled (125)I-Ang-(1-12) or (125)I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of (125)I-Ang II formation from (125)I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to (125)I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of (125)I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0-250 μM). The rate of (125)I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower Km (64 ± 6.3 μM vs 142 ± 17 μM), higher Vmax (13.2 ± 1.3 μM/min/mg vs 1.9 ± 0.2 μM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of Vmax/Km) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of (125)I-Ang-(1-12) and (125)I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in (125)I-Ang II formation by ACE was detected using either substrate, (125)I-Ang-(1-12) or (125)I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower. Overall our findings suggest that Ang-(1-12), not Ang I, is the better substrate for Ang II formation by chymase in adult rats. In addition, this confirms our previous observation that chymase (rather than ACE) is the main hydrolyzing enzyme responsible for Ang II generation from Ang-(1-12) in the adult rat heart.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Jasmina Varagic
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jessica L VonCannon
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Internal Medicine/Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Carlos M Ferrario
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Internal Medicine/Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Internal Medicine/Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
21
|
Ferrario CM, VonCannon J, Jiao Y, Ahmad S, Bader M, Dell'Italia LJ, Groban L, Varagic J. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am J Physiol Heart Circ Physiol 2016; 310:H995-1002. [PMID: 26873967 DOI: 10.1152/ajpheart.00833.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Departments of Medicine-Nephrology and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Yan Jiao
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sarfaraz Ahmad
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; and
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina; Departments of Medicine-Nephrology and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
22
|
Nagata S, Varagic J, Kon ND, Wang H, Groban L, Simington SW, Ahmad S, Dell'Italia LJ, VonCannon JL, Deal D, Ferrario CM. Differential expression of the angiotensin-(1-12)/chymase axis in human atrial tissue. Ther Adv Cardiovasc Dis 2015; 9:168-80. [PMID: 26082339 PMCID: PMC5823505 DOI: 10.1177/1753944715589717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Heart chymase rather than angiotensin converting enzyme has higher specificity for angiotensin (Ang) I conversion into Ang II in humans. A new pathway for direct cardiac Ang II generation has been revealed through the demonstration that Ang-(1-12) is cleaved by chymase to generate Ang II directly. We address here whether Ang-(1-12) and chymase gene expression and activity are detected in the atrial appendages of 44 patients (10 females) undergoing heart surgery for the correction of valvular heart disease, resistant atrial fibrillation or ischemic heart disease. METHODS AND RESULTS Immunoreactive Ang-(1-12) expression was 54% higher in left atrial compared with right atrial appendages. This was associated with higher abundance of left atrial appendage chymase gene transcripts and chymase activity, but no differences in angiotensinogen mRNA. Atrial chymase enzymatic activity was highly correlated with left atrial but not right atrial enlargement as determined by echocardiography, while both tyrosine hydroxylase and neuropeptide Y atrial appendage mRNAs correlated with atrial angiotensinogen mRNAs. CONCLUSIONS Higher Ang-(1-12) expression and upregulation of chymase gene transcripts and enzymatic activity from the atrial appendages connected to the enlarged left versus right atrial chambers of subjects with left heart disease defines a role of this alternate Ang II forming pathway in the processes accompanying adverse atrial and ventricular remodeling.
Collapse
Affiliation(s)
- Sayaka Nagata
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jasmina Varagic
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Physiology/Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Neal D Kon
- Cardiothoracic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Wang
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC, USA Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen W Simington
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarfaraz Ahmad
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Louis J Dell'Italia
- Birmingham Veterans Affair Medical Center, University of Alabama Medical Center, Birmingham, AL, USA Division of Cardiovascular Disease, Department of Medicine, University of Alabama Medical Center, Birmingham, AL, USA
| | - Jessica L VonCannon
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dwight Deal
- Cardiothoracic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carlos M Ferrario
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
23
|
Roszkowska-Chojecka MM, Walkowska A, Gawryś O, Baranowska I, Kalisz M, Litwiniuk A, Martyńska L, Kompanowska-Jezierska E. Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp Physiol 2015; 100:1093-105. [PMID: 26011164 DOI: 10.1113/ep085325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We examined, in hypertensive rats, whether the angiotensin-converting enzyme-independent enzymes generating angiotensin II in the tissues modulate blood pressure, peripheral circulation and renal function. What is the main finding and its importance? The results suggest that chymostatin-sensitive enzymes diminish vascular tone in renal and extrarenal vascular beds. Chymase or similar chymostatin-sensitive enzymes have a significant role in the synthesis of angiotensin II in different tissues but do not control blood pressure in the short term, similarly in salt-dependent or Goldblatt-type rat hypertension. In salt-dependent hypertension, chymase blockade protected renal outer medullary perfusion, probably by reducing the angiotensin II content in the kidney. Chymase is presumed to be a crucial enzyme of the non-angiotensin-converting enzyme pathway of angiotensin II (Ang II) generation in tissues, a process involved in vascular remodelling and development of hypertension. We examined the role of chymase in hypertension induced by exposure of uninephrectomized rats to high dietary salt intake (UNX HS) and in the Goldblatt renal artery stenosis (two-kidney, one-clip) model. In acute experiments with anaesthetized rats of either model, chymostatin at 2 mg kg(-1) h(-1) or 0.05% DMSO solvent was infused i.v. Mean arterial blood pressure, heart rate, iliac blood flow (a measure of hindlimb perfusion), total renal blood flow and intrarenal regional perfusion (laser-Doppler technique) were measured continuously, along with the glomerular filtration rate and renal excretion. In both models, chymase blockade distinctly decreased plasma and tissue Ang II without lowering mean blood pressure or consistently altering the other functional parameters measured. Unexpectedly, in Goldblatt hypertensive rats the blockade increased the renal and hindlimb vascular resistances by 51 and 33%, respectively (P < 0.05). In UNX HS hypertensive rats, chymase blockade abolished the solvent-induced decrease in outer medullary blood flow. We conclude that chymase or similar chymostatin-sensitive enzyme(s) has a significant role in the synthesis of Ang II in different tissues but does not participate in short-term control of blood pressure in salt-dependent or Goldblatt-type rat hypertension. In the Goldblatt model, chymase appeared to reduce the renal and hindlimb vascular resistances by an unknown mechanism. In salt-dependent hypertension, chymase blockade protected renal outer medullary perfusion, probably by reducing Ang II content in the kidney.
Collapse
Affiliation(s)
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Gawryś
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Kalisz
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Litwiniuk
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Lidia Martyńska
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
24
|
Ahmad S, Varagic J, Groban L, Dell'Italia LJ, Nagata S, Kon ND, Ferrario CM. Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 2014; 16:429. [PMID: 24633843 DOI: 10.1007/s11906-014-0429-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The classical view of biochemical pathways for the formation of biologically active angiotensins continues to undergo significant revision as new data uncovers the existence of important species differences between humans and rodents. The discovery of two novel substrates that, cleaved from angiotensinogen, can lead to direct tissue angiotensin II formation has the potential of radically altering our understanding of how tissues source angiotensin II production and explain the relative lack of efficacy that characterizes the use of angiotensin converting enzyme inhibitors in cardiovascular disease. This review addresses the discovery of angiotensin-(1-12) as an endogenous substrate for the production of biologically active angiotensin peptides by a non-renin dependent mechanism and the revealing role of cardiac chymase as the angiotensin II convertase in the human heart. This new information provides a renewed argument for exploring the role of chymase inhibitors in the correction of cardiac arrhythmias and left ventricular systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Division of Surgical Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell'italia LJ. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 2014; 126:461-9. [PMID: 24329563 PMCID: PMC4280795 DOI: 10.1042/cs20130400] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lessons learned from the characterization of the biological roles of Ang-(1-7) [angiotensin-(1-7)] in opposing the vasoconstrictor, proliferative and prothrombotic actions of AngII (angiotensin II) created an underpinning for a more comprehensive exploration of the multiple pathways by which the RAS (renin-angiotensin system) of blood and tissues regulates homoeostasis and its altered state in disease processes. The present review summarizes the progress that has been made in the novel exploration of intermediate shorter forms of angiotensinogen through the characterization of the expression and functions of the dodecapeptide Ang-(1-12) [angiotensin-(1-12)] in the cardiac production of AngII. The studies reveal significant differences in humans compared with rodents regarding the enzymatic pathway by which Ang-(1-12) undergoes metabolism. Highlights of the research include the demonstration of chymase-directed formation of AngII from Ang-(1-12) in human left atrial myocytes and left ventricular tissue, the presence of robust expression of Ang-(1-12) and chymase in the atrial appendage of subjects with resistant atrial fibrillation, and the preliminary observation of significantly higher Ang-(1-12) expression in human left atrial appendages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Louis Joseph Dell'italia
- §Birmingham Veterans Affair Medical Center, University of Alabama Medical Center, Alabama, AL 35294, U.S.A
| |
Collapse
|
26
|
Affiliation(s)
- Robert M. Carey
- From the Department of Medicine, University of Virginia Health System, Charlottesville
| |
Collapse
|