1
|
Konecny F, Kamar L, Zimmerman I, Whitehead SN, Goldman D, Frisbee JC. Early elevations in arterial pressure: a contributor to rapid depressive symptom emergence in female Zucker rats with metabolic disease? J Appl Physiol (1985) 2024; 137:1324-1340. [PMID: 39359187 PMCID: PMC11573269 DOI: 10.1152/japplphysiol.00586.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
One of the growing challenges to public health and clinical outcomes is the emergence of cognitive impairments, particularly depressive symptom severity, because of chronic elevations in metabolic disease and cerebrovascular disease risk. To more clearly delineate these relationships and to assess the potential for sexual dimorphism, we used lean (LZR) and obese Zucker rats (OZR) of increasing age to determine relationships between internal carotid artery (ICA) hemodynamics, cerebral vasculopathies, and the emergence of depressive symptoms. Male OZR exhibited progressive elevations in perfusion pressure within the ICA, which were paralleled by endothelial dysfunction, increased cerebral arterial myogenic activation, and reduced cerebral cortex microvessel density. In contrast, female OZR exhibited a greater degree of ICA hypertension than male OZR but maintained normal endothelial function, myogenic activation, and microvessel density to an older age range than did males. Although both male and female OZR exhibited significant and progressive elevations in depressive symptom severity, these were significantly worse in females. Finally, plasma cortisol concentration was elevated higher and at a younger age in female OZR as compared with males, and this difference was maintained to final animal usage at ∼17 wk of age. These results suggest that an increased severity of blood pressure waves may penetrate the cerebral circulation more deeply in female OZR than in males, which may predispose the females to a more severe emergence of depressive symptoms with chronic metabolic disease, whereas males may be more predisposed to more direct cerebral vasculopathies (e.g., stroke, transient ischemic attack).NEW & NOTEWORTHY We provide novel insight that the superior maintenance of cerebrovascular endothelial function in female versus male rats with chronic metabolic disease buffers myogenic activation of cerebral resistance arteries/arterioles despite worsening hypertension. As hypertension development is earlier and more severe in females, potentially due to an elevated stress response, the blunted myogenic activation allows greater arterial pressure wave penetrance into the cerebral microcirculation and is associated with accelerated emergence/severity of depressive symptoms in obese female rats.
Collapse
Affiliation(s)
- Filip Konecny
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Lujaina Kamar
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Isabel Zimmerman
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Foote CA, Ramirez-Perez FI, Smith JA, Ghiarone T, Morales-Quinones M, McMillan NJ, Augenreich MA, Power G, Burr K, Aroor AR, Bender SB, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Neuraminidase inhibition improves endothelial function in diabetic mice. Am J Physiol Heart Circ Physiol 2023; 325:H1337-H1353. [PMID: 37801046 PMCID: PMC10908409 DOI: 10.1152/ajpheart.00337.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Thaysa Ghiarone
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Marc A Augenreich
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
3
|
Mauricio D, Gratacòs M, Franch-Nadal J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc Diabetol 2023; 22:314. [PMID: 37968679 PMCID: PMC10652502 DOI: 10.1186/s12933-023-02056-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ's specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels' structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Collapse
Affiliation(s)
- Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR Sant Pau, Barcelona, Spain.
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| | - Mònica Gratacòs
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
4
|
Fan L, Sun Y, Choy JS, Kassab GS, Lee LC. Mechanism of exercise intolerance in heart diseases predicted by a computer model of myocardial demand-supply feedback system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107188. [PMID: 36334525 PMCID: PMC11462431 DOI: 10.1016/j.cmpb.2022.107188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE The myocardial demand-supply feedback system plays an important role in augmenting blood supply in response to exercise-induced increased myocardial demand. During this feedback process, the myocardium and coronary blood flow interact bidirectionally at many different levels. METHODS To investigate these interactions, a novel computational framework that considers the closed myocardial demand-supply feedback system was developed. In the framework coupling the systemic circulation of the left ventricle and coronary perfusion with regulation, myocardial work affects coronary perfusion via flow regulation mechanisms (e.g., metabolic regulation) and myocardial-vessel interactions, whereas coronary perfusion affects myocardial contractility in a closed feedback system. The framework was calibrated based on the measurements from healthy subjects under graded exercise conditions, and then was applied to simulate the effects of graded exercise on myocardial demand-supply under different physiological and pathological conditions. RESULTS We found that the framework can recapitulate key features found during exercise in clinical and animal studies. We showed that myocardial blood flow is increased but maximum hyperemia is reduced during exercise, which led to a reduction in coronary flow reserve. For coronary stenosis and myocardial inefficiency, the model predicts that an increase in heart rate is necessary to maintain the baseline cardiac output. Correspondingly, the resting coronary flow reserve is exhausted and the range of heart rate before exhaustion of coronary flow reserve is reduced. In the presence of metabolic regulation dysfunction, the model predicts that the metabolic vasodilator signal is higher at rest, saturates faster during exercise, and as a result, causes quicker exhaustion of coronary flow reserve. CONCLUSIONS Model predictions showed that the coronary flow reserve deteriorates faster during graded exercise, which in turn, suggests a decrease in exercise tolerance for patients with stenosis, myocardial inefficiency and metabolic flow regulation dysfunction. The findings in this study may have clinical implications in diagnosing cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Yuexing Sun
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Jenny S Choy
- California Medical Innovations Institute, San Diego, CA, USA
| | | | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Mechanism of the switch from NO to H 2O 2 in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol 2022; 117:2. [PMID: 35024970 PMCID: PMC8886611 DOI: 10.1007/s00395-022-00910-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.
Collapse
|
6
|
Sørensen MH, Bojer AS, Broadbent DA, Plein S, Madsen PL, Gæde P. Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications. Eur Heart J Cardiovasc Imaging 2021; 21:887-895. [PMID: 31642902 DOI: 10.1093/ehjci/jez266] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/08/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS Coronary microvascular disease (CMD) is a known complication in type 2 diabetes mellitus (T2DM). We examined the relationship between diabetic complications, left ventricular (LV) function and structure and myocardial perfusion reserve (MPR) as indicators of CMD in patients with T2DM and control subjects. METHODS AND RESULTS This was a cross-sectional study of 193 patients with T2DM and 25 controls subjects. Patients were grouped as uncomplicated diabetes (n = 71) and diabetes with complications (albuminuria, retinopathy, and autonomic neuropathy). LV structure, function, adenosine stress, and rest myocardial perfusion were evaluated by cardiovascular magnetic resonance. Echocardiography was used to evaluate diastolic function. Patients with uncomplicated T2DM did not have significantly different LV mass and E/e* but decreased MPR (3.8 ± 1.0 vs. 5.1 ± 1.5, P < 0.05) compared with controls. T2DM patients with albuminuria and retinopathy had decreased MPR (albuminuria: 2.4 ± 0.9 and retinopathy 2.6 ± 0.7 vs. 3.8 ± 1.0, P < 0.05 for both) compared with uncomplicated T2DM patients, along with significantly higher LV mass (149 ± 39 and 147 ± 40 vs. 126 ± 33 g, P < 0.05) and E/e* (8.3 ± 2.8 and 8.1 ± 2.2 vs. 7.0 ± 2.5, P < 0.05). When entered in a multiple regression model, reduced MPR was associated with increasing E/e* and albuminuria and retinopathy were associated with reduced MPR. CONCLUSIONS Patients with uncomplicated T2DM have reduced MPR compared with control subjects, despite equivalent LV mass and E/e*. T2DM patients with albuminuria or retinopathy have reduced MPR and increased LV mass and E/e* compared with patients with uncomplicated T2DM. E/e* and MPR are significantly associated after adjustment for age, hypertension, and LV mass, suggesting a link between CMD and cardiac diastolic function. CLINICAL TRIAL REGISTRATION https://www.clinicaltrials.org. Unique identifier: NCT02684331.
Collapse
Affiliation(s)
- Martin Heyn Sørensen
- Department of Cardiology and Endocrinology, Slagelse Hospital, Ingemannsvej 32, 4200 Slagelse, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Annemie Stege Bojer
- Department of Cardiology and Endocrinology, Slagelse Hospital, Ingemannsvej 32, 4200 Slagelse, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - David Andrew Broadbent
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Great George St, LS1 3EX, Leeds, UK.,Biomedical Imaging Science Department, University of Leeds, LS2 9JT, Leeds, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, LS2 9JT, Leeds, UK
| | - Per Lav Madsen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Capital Region of Denmark, Borgmester Ib Juels Vej 1, 2730 Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Peter Gæde
- Department of Cardiology and Endocrinology, Slagelse Hospital, Ingemannsvej 32, 4200 Slagelse, Denmark.,Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
7
|
Merkus D, Muller-Delp J, Heaps CL. Coronary microvascular adaptations distal to epicardial artery stenosis. Am J Physiol Heart Circ Physiol 2021; 320:H2351-H2370. [PMID: 33961506 DOI: 10.1152/ajpheart.00992.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.
Collapse
Affiliation(s)
- Daphne Merkus
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine (WBex), University Clinic, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Munich, Germany.,Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Judy Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
8
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Beck L, Pinilla E, Arcanjo DDR, Hernanz R, Prat-Duran J, Petersen AG, Köhler R, Sheykhzade M, Comerma-Steffensen S, Simonsen U. Pirfenidone Is a Vasodilator: Involvement of K V7 Channels in the Effect on Endothelium-Dependent Vasodilatation in Type-2 Diabetic Mice. Front Pharmacol 2021; 11:619152. [PMID: 33643042 PMCID: PMC7906977 DOI: 10.3389/fphar.2020.619152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Endothelial cell dysfunction and fibrosis are associated with worsening of the prognosis in patients with cardiovascular disease. Pirfenidone has a direct antifibrotic effect, but vasodilatation may also contribute to the effects of pirfenidone. Therefore, in a first study we investigated the mechanisms involved in the relaxant effect of pirfenidone in rat intrapulmonary arteries and coronary arteries from normal mice. Then in a second study, we investigated whether pirfenidone restores endothelial function in the aorta and mesenteric arteries from diabetic animals. From 16–18-week old normal male C57BL/6 mice and normoglycemic (db/db+), and type 2 diabetic (db/db) male and female mice, arteries were mounted in microvascular isometric myographs for functional studies, and immunoblotting was performed. In rat pulmonary arteries and mouse coronary arteries, pirfenidone induced relaxations, which were inhibited in preparations without endothelium. In mouse coronary arteries, pirfenidone relaxation was inhibited in the presence of a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine (L-NOARG), a blocker of large-conductance calcium-activated potassium channels (BKCa), iberiotoxin, and a blocker of KV7 channels, XE991. Patch clamp studies in vascular smooth muscle revealed pirfenidone increased iberiotoxin-sensitive current. In the aorta and mesenteric small arteries from diabetic db/db mice relaxations induced by the endothelium-dependent vasodilator, acetylcholine, were markedly reduced compared to db/db + mice. Pirfenidone enhanced the relaxations induced by acetylcholine in the aorta from diabetic male and female db/db mice. An opener of KV7 channels, flupirtine, had the same effect as pirfenidone. XE991 reduced the effect of pirfenidone and flupirtine and further reduced acetylcholine relaxations in the aorta. In the presence of iberiotoxin, pirfenidone still increased acetylcholine relaxation in aorta from db/db mice. Immunoblotting for KV7.4, KV7.5, and BKCa channel subunits were unaltered in aorta from db/db mice. Pirfenidone failed to improve acetylcholine relaxation in mesenteric arteries, and neither changed acetylcholine-induced transient decreases in blood pressure in db/db+ and db/db mice. In conclusion, pirfenidone vasodilates pulmonary and coronary arteries. In coronary arteries from normal mice, pirfenidone induces NO-dependent vasodilatation involving BKCa and KV7 channels. Pirfenidone improves endothelium-dependent vasodilatation in aorta from diabetic animals by a mechanism involving voltage-gated KV7 channels, a mechanism that may contribute to the antifibrotic effect of pirfenidone.
Collapse
Affiliation(s)
- Lilliana Beck
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Physiology, Faculty of Pharmacy, Universidad Complutense, Madrid, Spain
| | - Daniel Dias Rufino Arcanjo
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Biophysics and Physiology, Laboratory of Functional and Molecular Studies in Physiopharmacology, Federal University of Piauí, Teresina, Brazil
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Asbjørn Graver Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Ralf Köhler
- Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences/Animal Physiology, Faculty of Veterinary, Central University of Venezuela, Maracay, Venezuela
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Climent B, Santiago E, Sánchez A, Muñoz-Picos M, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Metabolic syndrome inhibits store-operated Ca 2+ entry and calcium-induced calcium-release mechanism in coronary artery smooth muscle. Biochem Pharmacol 2020; 182:114222. [PMID: 32949582 DOI: 10.1016/j.bcp.2020.114222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Metabolic syndrome causes adverse effects on the coronary circulation including altered vascular responsiveness and the progression of coronary artery disease (CAD). However the underlying mechanisms linking obesity with CAD are intricated. Augmented vasoconstriction, mainly due to impaired Ca2+ homeostasis in coronary vascular smooth muscle (VSM), is a critical factor for CAD. Increased calcium-induced calcium release (CICR) mechanism has been associated to pathophysiological conditions presenting persistent vasoconstriction while increased store operated calcium (SOC) entry appears to activate proliferation and migration in coronary vascular smooth muscle (VSM). We analyze here whether metabolic syndrome might alter SOC entry as well as CICR mechanism in coronary arteries, contributing thus to a defective Ca2+ handling and therefore accelerating the progression of CAD. EXPERIMENTAL APPROACH Measurements of intracellular Ca2+ ([Ca2+]i) and tension and of Ca2+ channels protein expression were performed in coronary arteries (CA) from lean Zucker rats (LZR) and obese Zucker rats (OZR). KEY RESULTS SOC entry stimulated by emptying sarcoplasmic reticulum (SR) Ca2+ store with cyclopiazonic acid (CPA) was decreased and associated to decreased STIM-1 and Orai1 protein expression in OZR CA. Further, CICR mechanism was blunted in these arteries but Ca2+ entry through voltage-dependent L-type channels was preserved contributing to maintain depolarization-induced increases in [Ca2+]i and vasoconstriction in OZR CA. These results were associated to increased expression of voltage-operated L-type Ca2+ channel alpha 1C subunit (CaV1.2) but unaltered ryanodine receptor (RyR) and sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump protein content in OZR CA. CONCLUSION AND IMPLICATIONS The present manuscript provides evidence of impaired Ca2+ handling mechanisms in coronary arteries in metabolic syndrome where a decrease in both SOC entry and CICR mechanism but preserved vasoconstriction are reported in coronary arteries from obese Zucker rats. Remarkably, OZR CA VSM at this state of metabolic syndrome seemed to have developed a compensation mechanism for impaired CICR by overexpressing CaV1.2 channels.
Collapse
Affiliation(s)
- Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz-Picos
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
12
|
Sallam NA, Laher I. Redox Signaling and Regional Heterogeneity of Endothelial Dysfunction in db/db Mice. Int J Mol Sci 2020; 21:ijms21176147. [PMID: 32858910 PMCID: PMC7504187 DOI: 10.3390/ijms21176147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The variable nature of vascular dysfunction in diabetes is not well understood. We explored the functional adaptation of different arteries in db/db mice in relation to increased severity and duration of diabetes. We compared endothelium-dependent and -independent vasodilation in the aortae, as well as the carotid and femoral arteries, of db/db mice at three ages in parallel with increased body weight, oxidative stress, and deterioration of glycemic control. Vascular responses to in vitro generation of reactive oxygen species (ROS) and expression of superoxide dismutase (SOD) isoforms were assessed. There was a progressive impairment of endothelium-dependent and -independent vasorelaxation in the aortae of db/db mice. The carotid artery was resistant to the effects of in vivo and in vitro induced oxidative stress, and it maintained unaltered vasodilatory responses, likely because the carotid artery relaxed in response to ROS. The femoral artery was more reliant on dilation mediated by endothelium-dependent hyperpolarizing factor(s), which was reduced in db/db mice at the earliest age examined and did not deteriorate with age. Substantial heterogeneity exists between the three arteries in signaling pathways and protein expression of SODs under physiological and diabetic conditions. A better understanding of vascular heterogeneity will help develop novel therapeutic approaches for targeted vascular treatments, including blood vessel replacement.
Collapse
Affiliation(s)
- Nada A. Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo 11562, Egypt;
| | - Ismail Laher
- Department of Anesthesiology, Faculty of Medicine, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: ; Tel.: +1-604-822-5882
| |
Collapse
|
13
|
Beck L, Su J, Comerma-Steffensen S, Pinilla E, Carlsson R, Hernanz R, Sheykhzade M, Danielsen CC, Simonsen U. Endothelial Dysfunction and Passive Changes in the Aorta and Coronary Arteries of Diabetic db/db Mice. Front Physiol 2020; 11:667. [PMID: 32655412 PMCID: PMC7324802 DOI: 10.3389/fphys.2020.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell dysfunction and vessel stiffening are associated with a worsened prognosis in diabetic patients with cardiovascular diseases. The present study hypothesized that sex impacts endothelial dysfunction and structural changes in arteries from diabetic mice. In diabetic (db/db) and normoglycaemic (db/db+) mice, the mechanical properties were investigated in pressurized isolated left anterior descending coronary arteries and aorta segments that were subjected to tensile testing. Functional studies were performed on wire-mounted vascular segments. The male and female db/db mice were hyperglycaemic and had markedly increased body weight. In isolated aorta segments without the contribution of smooth muscle cells, load to rupture, viscoelasticity, and collagen content were decreased suggesting larger distensibility of the arterial wall in both male and female db/db mice. In male db/db aorta segments with smooth muscle cell contribution, lumen diameter was smaller and the passive stretch-tension curve was leftward-shifted, while they were unaltered in female db/db aorta segments versus control db/db+ mice. In contrast to female db/db mice, coronary arteries from male db/db mice had altered stress-strain relationships and increased distensibility. Transthoracic echocardiography revealed a dilated left ventricle with unaltered cardiac output, while aortic flow velocity was decreased in male db/db mice. Impairment of acetylcholine relaxation was aggravated in aorta from female db/db compared to control and male db/db mice, while impairment of sodium nitroprusside relaxations was only observed in aorta from male db/db mice. The remodeling in the coronary arteries and aorta suggests an adaptation of the arterial wall to the reduced flow velocity with sex-specific differences in the passive properties of aorta and coronary arteries. The findings of less distensible arteries and more pronounced endothelial dysfunction in female compared to male diabetic mice may have implications for the observed higher incidence of macrovascular complications in diabetic women.
Collapse
Affiliation(s)
- Lilliana Beck
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Junjing Su
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences/Animal Physiology, Veterinary Faculty, Central University of Venezuela, Maracay, Venezuela
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Rune Carlsson
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Raquel Hernanz
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl Christian Danielsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Tran V, De Silva TM, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front Pharmacol 2020; 11:148. [PMID: 32194403 PMCID: PMC7064630 DOI: 10.3389/fphar.2020.00148] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
16
|
Steven S, Dib M, Hausding M, Kashani F, Oelze M, Kröller-Schön S, Hanf A, Daub S, Roohani S, Gramlich Y, Lutgens E, Schulz E, Becker C, Lackner KJ, Kleinert H, Knosalla C, Niesler B, Wild PS, Münzel T, Daiber A. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res 2019; 114:312-323. [PMID: 29036612 DOI: 10.1093/cvr/cvx197] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023] Open
Abstract
Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L-/- mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery. Conclusion CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mobin Dib
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Hausding
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Fatemeh Kashani
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Alina Hanf
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Daub
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Siyer Roohani
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yves Gramlich
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany
| | - Eberhard Schulz
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Christian Becker
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Philipp S Wild
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
17
|
Keszler A, Lindemer B, Hogg N, Lohr NL. Ascorbate attenuates red light mediated vasodilation: Potential role of S-nitrosothiols. Redox Biol 2019; 20:13-18. [PMID: 30261342 PMCID: PMC6156744 DOI: 10.1016/j.redox.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
Abstract
There is significant therapeutic advantage of nitric oxide synthase (NOS) independent nitric oxide (NO) production in maladies where endothelium, and thereby NOS, is dysfunctional. Electromagnetic radiation in the red and near infrared region has been shown to stimulate NOS-independent but NO-dependent vasodilation, and thereby has significant therapeutic potential. We have recently shown that red light induces acute vasodilatation in the pre-constricted murine facial artery via the release of an endothelium derived substance. In this study we have investigated the mechanism of vasodilatation and conclude that 670 nm light stimulates vasodilator release from an endothelial store, and that this vasodilator has the characteristics of an S-nitrosothiol (RSNO). This study shows that 670 nm irradiation can be used as a targeted and non-invasive means to release biologically relevant amounts of vasodilator from endothelial stores. This raises the possibility that these stores can be pharmacologically built-up in pathological situations to improve the efficacy of red light treatment. This strategy may overcome eNOS dysfunction in peripheral vascular pathologies for the improvement of vascular health.
Collapse
Key Words
- enos, endothelial nitric oxide synthase
- rsno, s-nitrosothiols
- r/nir, red and near infrared light
- gsno, s-nitrosoglutathione
- dnic, dinitrosyl iron complex
- gsh-dnic, glutathione dinitrosyl iron complexes
- proli/no, 1-(hydroxy-nno-azoxy)-l-proline
- cl, ozone-chemiluminescence signal
- dha, dehydroascorbate
- dtpa, diethylenetriamine pentaacetic acid
- nem, n-ethylmaleimide
- se, standard error
Collapse
Affiliation(s)
- Agnes Keszler
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian Lindemer
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Nicole L Lohr
- Department of Medicine-Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Clement J Zablocki VA Medical Center, 5000 W National Ave., Milwaukee, WI 53295, USA.
| |
Collapse
|
18
|
Bubb KJ, Ritchie RH, Figtree GA. Modified redox signaling in vasculature after chronic infusion of the insulin receptor antagonist, S961. Microcirculation 2018; 26:e12501. [PMID: 30178465 DOI: 10.1111/micc.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Type 2 diabetes and associated vascular complications cause substantial morbidity and mortality. It is important to investigate mechanisms and test therapies in relevant physiological models, yet few animal models adequately recapitulate all aspects of the human condition. OBJECTIVE We sought to determine the potential of using an insulin receptor antagonist, S961, in mice for investigating vascular pathophysiology. METHODS S961 was infused into mice for 4 weeks. Blood glucose was monitored, and insulin was measured at the end of the protocol. Blood pressure and pressor responses to vasodilators were measured in cannulated mice, and vascular reactive oxygen and nitrogen species were measured in isolated tissue. RESULTS S961 infusion-induced hyperglycemia and hyperinsulinemia. There was evidence of increased vascular reactive oxygen and nitrogen species and modification of NO-mediated signaling. Pressor responses to a NO donor were attenuated, but responses to bradykinin were preserved. CONCLUSIONS Infusion of S961, an insulin receptor antagonist, results in the production of a mouse model of type 2 diabetes that may be useful for investigating redox signaling in the vasculature of insulin-resistant mice over the short term. It is limited by both the transient nature of the hyperglycemia and incomplete functional analogy to the human condition.
Collapse
Affiliation(s)
- Kristen J Bubb
- Cardiovascular and Thoracic Health, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gemma A Figtree
- Cardiovascular and Thoracic Health, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Dunn SM, Hilgers R, Das KC. Decreased EDHF-mediated relaxation is a major mechanism in endothelial dysfunction in resistance arteries in aged mice on prolonged high-fat sucrose diet. Physiol Rep 2018; 5:5/23/e13502. [PMID: 29212858 PMCID: PMC5727270 DOI: 10.14814/phy2.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
High‐fat sucrose (HFS) diet in aged individuals causes severe weight gain (obesity) with much higher risk of cardiovascular diseases such as hypertension or atherosclerosis. Endothelial dysfunction is a major contributor for these vascular disorders. We hypothesize that prolonged ingestion of HFS diet by aged mice would accentuate endothelial dysfunction in the small resistance arteries. Male C57BL/6J mice at 12 weeks of age were divided into four groups and fed either normal chow (NC) or high‐fat sucrose diet (HFS). Young group received NC for 4 months, and high‐fat diet (HFD) for 3 months and 1 month HFS + 10% Sucrose (HFS diet). Aged mice received NC for 12 months. Aged HFS group received HFD for 4 months + 1 month HFD + 10% sucrose + 8 months HFD. Total body weight, plasma blood glucose levels, and glucose tolerance were determined in all groups. Isolated mesenteric arteries were assessed for arterial remodeling, myogenic tone, and vasomotor responses using pressure and wire myography. Both young and aged HFS mice showed impaired glucose tolerance (Y‐NC, 137 ± 8.5 vs. Y‐NC HFS, 228 ± 11.71; A‐NC, 148 ± 6.42 vs. A‐HFS, 225 ± 10.99), as well as hypercholesterolemia (Y‐NC 99.50 ± 6.35 vs. Y‐HFS 220.40 ± 16.34 mg/dL; A‐NC 108.6 ± vs. A‐HFS 279 ± 21.64) and significant weight gain (Y‐NC 32.13 ± 0.8 g vs. Y‐HFS 47.87 ± 2.18 g; A‐NC 33.72 vs. A‐HFS 56.28 ± 3.47 g) compared to both groups of mice on NC. The mesenteric artery from mice with prolonged HFS diet resulted in outward hypertrophic remodeling, increased stiffness, reduced myogenic tone, impaired vasodilation, increased contractility and blunted nitric oxide (NO) and EDH‐mediated relaxations. Ebselen, a peroxinitrite scavenger rescued the endothelium derived relaxing factor (EDHF)‐mediated relaxations. Our findings suggest that prolonged diet‐induced obesity of aged mice can worsen small resistance artery endothelial dysfunction due to decrease in NO and EDHF‐mediated relaxation, but, EDHF‐mediated relaxation is a major contributor to overall endothelial dysfunction.
Collapse
Affiliation(s)
- Shannon M Dunn
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | - Kumuda C Das
- The Department of Translational & Vascular Biology, University of Texas Health Sciences Center at Tyler, Tyler, Texas
| |
Collapse
|
20
|
Bagi Z. Too much TRAFfic at the crossroads of diabetes and endothelial dysfunction. Am J Physiol Heart Circ Physiol 2018; 314:H65-H67. [PMID: 29101184 DOI: 10.1152/ajpheart.00614.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zsolt Bagi
- Vascular Biology Center and Department of Medicine, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
21
|
Keszler A, Lindemer B, Weihrauch D, Jones D, Hogg N, Lohr NL. Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radic Biol Med 2017; 113:157-164. [PMID: 28935419 PMCID: PMC5699925 DOI: 10.1016/j.freeradbiomed.2017.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Peripheral artery disease (PAD) is a morbid condition whereby ischemic peripheral muscle causes pain and tissue breakdown. Interestingly, PAD risk factors, e.g. diabetes mellitus, cause endothelial dysfunction secondary to decreased nitric oxide (NO) levels, which could explain treatment failures. Previously, we demonstrated 670nm light (R/NIR) increased NO from nitrosyl-heme stores, therefore we hypothesized R/NIR can stimulate vasodilation in healthy and diabetic blood vessels. Vasodilation was tested by ex vivo pressure myography in wild type C57Bl/6, endothelial nitric oxide synthase (eNOS) knockout, and db/db mice (10mW/cm2 for 5min with 10min dark period). NOS inhibition with N-Nitroarginine methyl ester (L-NAME) or the NO scavenger Carboxy-PTIO (c-PTIO) tested the specificity of NO production. 4,5-Diaminofluorescein diacetate (DAF-2) measured NO in human dermal microvascular endothelial cells (HMVEC-d). R/NIR significantly increased vasodilation in wild type and NOS inhibited groups, however R/NIR dilation was totally abolished with c-PTIO and blood vessel denudation. Interestingly, the bath solution from intact R/NIR stimulated vessels could dilate light naïve vessels in a NO dependent manner. Characterization of the bath identified a NO generating substance suggestive of S-nitrosothiols or non heme iron nitrosyl complexes. Consistent with the finding of an endothelial source of NO, intracellular NO increased with R/NIR in HMVEC-d treated with and without L-NAME (1mM), yet c-PTIO (100µm) reduced NO production. R/NIR significantly dilated db/db blood vessels. In conclusion, R/NIR stimulates vasodilation by release of NO bound substances from the endothelium. In a diabetes model of endothelial dysfunction, R/NIR restores vasodilation, which lends the potential for new treatments for diabetic vascular disease.
Collapse
Affiliation(s)
- Agnes Keszler
- Departments of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, United States; Departments of Anesthesiology, Medical College of Wisconsin, United States
| | - Brian Lindemer
- Departments of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, United States
| | - Dorothee Weihrauch
- Departments of Anesthesiology, Medical College of Wisconsin, United States
| | - Deron Jones
- Departments of Pediatric Surgery, Medical College of Wisconsin, United States
| | - Neil Hogg
- Departments of Biophysics, Medical College of Wisconsin, United States
| | - Nicole L Lohr
- Departments of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, United States; Departments of Cardiovascular Center, Medical College of Wisconsin, United States; Departments of Clement J Zablocki VA Medical Center, United States.
| |
Collapse
|
22
|
Tsai SH, Lu G, Xu X, Ren Y, Hein TW, Kuo L. Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc Res 2017; 113:1329-1337. [PMID: 28575410 PMCID: PMC5852513 DOI: 10.1093/cvr/cvx103] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/07/2017] [Accepted: 05/25/2017] [Indexed: 01/19/2023] Open
Abstract
AIMS Hypertensive cardiac hypertrophy is associated with reduced coronary flow reserve, but its impact on coronary flow regulation and vasomotor function remains incompletely understood and requires further investigation. METHODS AND RESULTS Left ventricular hypertrophy was induced in mice by transverse aortic coarctation (TAC) for 4 weeks. The left coronary artery blood velocity (LCABV) and myocardium lactate level were measured following the metabolic activation by isoproterenol. Septal coronary arterioles were isolated and pressurized for functional studies. In TAC mice, the heart-to-body weight ratio was increased by 45%, and cardiac fractional shortening and LCABV were decreased by 51 and 14%, respectively. The resting myocardial lactate level was 43% higher in TAC mice. Isoproterenol (5 µg/g, i.p.) increased heart rate by 20% in both groups of animals, but the corresponding increase in LCABV was not observed in TAC mice. The ventricular hypertrophy was associated with elevation of myocardial endothelin-1 (ET-1), increased vascular expression of rho-kinases (ROCKs), and increased superoxide production in the myocardium and vasculature. In coronary arterioles from TAC mice, the endothelial nitric oxide (NO)-mediated dilation to acetylcholine (ACh) was reversed to vasoconstriction and the vasoconstriction to ET-1 was augmented. Inhibition of ROCK by H-1152 alleviated oxidative stress and abolished enhanced vasoconstriction to ET-1. Both H-1152 and superoxide scavenger Tempol abolished coronary arteriolar constriction to ACh in a manner sensitive to NO synthase blocker NG-nitro-L-arginine methyl ester. CONCLUSIONS Myocardial hypertrophy induced by pressure overload leads to cardiac and coronary microvascular dysfunction and ischaemia possibly due to oxidative stress, enhanced vasoconstriction to ET-1 and compromised endothelial NO function via elevated ROCK signalling.
Collapse
Affiliation(s)
- Shu-Huai Tsai
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA
| | - Guangrong Lu
- Department of Surgery, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, TX, USA
| | - Xin Xu
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA
| | - Yi Ren
- Department of Surgery, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, TX, USA
| | - Travis W. Hein
- Department of Surgery, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, TX, USA
| | - Lih Kuo
- Department of Medical Physiology, Texas A&M University Health Science Center, Temple, TX, USA
- Department of Surgery, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|
23
|
Labazi H, Trask AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacol Res 2017; 123:114-121. [PMID: 28700893 DOI: 10.1016/j.phrs.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome (MetS) is a group of cardio-metabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia; these are also a combination of independent coronary artery disease (CAD) risk factors. Alarmingly, the prevalence of MetS risk factors are increasing and a leading cause for mortality. In the vasculature, complications from MetS and type 2 diabetes (T2D) can be divided into microvascular (retinopathy and nephropathy) and macrovascular (cardiovascular diseases and erectile dysfunction). In addition to vascular and endothelial dysfunction, vascular remodeling and stiffness are also hallmarks of cardiovascular disease (CVD), and well-characterized vascular changes that are observed in the early stages of hypertension, T2D, and obesity [1-3]. In the heart, the link between obstructive atherosclerosis of coronary macrovessels and myocardial ischemia (MI) is well established. However, recent studies show that abnormalities in the coronary microcirculation are associated with functional and structural changes in coronary microvessels (classically defined as being ≤150-200μm internal diameter), which may cause or contribute to MI even in the absence of obstractive CAD. This suggests a prognostic value of an abnormal coronary microcirculation as an early sub-clinical culprit in the pathogenesis and progression of heart disease in T2D and MetS. The aim of this review is to summarize recent studies investigating the coronary microvascular remodeling in an early pre-atherosclerotic phase of MetS and T2D, and to explore potential mechanisms associated with the timing of coronary microvascular remodeling relative to that of the macrovasculature.
Collapse
Affiliation(s)
- Hicham Labazi
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States
| | - Aaron J Trask
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States; Department of Pediatrics, The Ohio State University Columbus, OH, United States.
| |
Collapse
|
24
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
25
|
Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, Liu A, Wijesurendra RS, Dass S, Sabharwal N, Robson MD, Holloway CJ, Rider OJ, Clarke K, Karamitsos TD, Neubauer S. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 2016; 37:3461-3469. [PMID: 26392437 PMCID: PMC5201143 DOI: 10.1093/eurheartj/ehv442] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/27/2015] [Accepted: 08/12/2015] [Indexed: 12/12/2022] Open
Abstract
AIMS Patients with type 2 diabetes mellitus (T2DM) are known to have impaired resting myocardial energetics and impaired myocardial perfusion reserve, even in the absence of obstructive epicardial coronary artery disease (CAD). Whether or not the pre-existing energetic deficit is exacerbated by exercise, and whether the impaired myocardial perfusion causes deoxygenation and further energetic derangement during exercise stress, is uncertain. METHODS AND RESULTS Thirty-one T2DM patients, on oral antidiabetic therapies with a mean HBA1c of 7.4 ± 1.3%, and 17 matched controls underwent adenosine stress cardiovascular magnetic resonance for assessment of perfusion [myocardial perfusion reserve index (MPRI)] and oxygenation [blood-oxygen level-dependent (BOLD) signal intensity change (SIΔ)]. Cardiac phosphorus-MR spectroscopy was performed at rest and during leg exercise. Significant CAD (>50% coronary stenosis) was excluded in all patients by coronary computed tomographic angiography. Resting phosphocreatine to ATP (PCr/ATP) was reduced by 17% in patients (1.74 ± 0.26, P = 0.001), compared with controls (2.07 ± 0.35); during exercise, there was a further 12% reduction in PCr/ATP (P = 0.005) in T2DM patients, but no change in controls. Myocardial perfusion and oxygenation were decreased in T2DM (MPRI 1.61 ± 0.43 vs. 2.11 ± 0.68 in controls, P = 0.002; BOLD SIΔ 7.3 ± 7.8 vs. 17.1 ± 7.2% in controls, P < 0.001). Exercise PCr/ATP correlated with MPRI (r = 0.50, P = 0.001) and BOLD SIΔ (r = 0.32, P = 0.025), but there were no correlations between rest PCr/ATP and MPRI or BOLD SIΔ. CONCLUSION The pre-existing energetic deficit in diabetic cardiomyopathy is exacerbated by exercise; stress PCr/ATP correlates with impaired perfusion and oxygenation. Our findings suggest that, in diabetes, coronary microvascular dysfunction exacerbates derangement of cardiac energetics under conditions of increased workload.
Collapse
Affiliation(s)
- Eylem Levelt
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Christopher T Rodgers
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - William T Clarke
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Rina Ariga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Jane M Francis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Alexander Liu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Rohan S Wijesurendra
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Saira Dass
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | | | - Matthew D Robson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Cameron J Holloway
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- St. Vincent's Hospital, Sydney, Australia
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Theodoros D Karamitsos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- 1st Department of Cardiology, AHEPA Hospital, Aristotle University, Thessaloniki, Greece
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
26
|
Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels. BMC Cardiovasc Disord 2016; 16:193. [PMID: 27724862 PMCID: PMC5057502 DOI: 10.1186/s12872-016-0372-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Background Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. Methods Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 μM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. Results Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P < 0.05); inhibition of RhoA or ROCK partially reversed the effects of HG. Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P < 0.05). This HG-induced upregulation was attenuated by inhibition of RhoA or ROCK (P < 0.05). HG increased RhoA, ROCK1, and ROCK2 activity (P < 0.05). Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 μM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K+ channels 1.2 and 1.5. Conclusions Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.
Collapse
Affiliation(s)
- Zhijun Sun
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xing Wu
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Weiping Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Hui Peng
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xuhua Shen
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lu Ma
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Huirong Liu
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Hongwei Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
27
|
Farooq A, Tosheva L, Azzawi M, Whitehead D. Real-time observation of aortic vessel dilation through delivery of sodium nitroprusside via slow release mesoporous nanoparticles. J Colloid Interface Sci 2016; 478:127-35. [DOI: 10.1016/j.jcis.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022]
|
28
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
29
|
Simperova A, Al-Nakkash L, Faust JJ, Sweazea KL. Genistein supplementation prevents weight gain but promotes oxidative stress and inflammation in the vasculature of female obese ob/ob mice. Nutr Res 2016; 36:789-97. [PMID: 27440533 DOI: 10.1016/j.nutres.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/16/2022]
Abstract
Obesity, a state of chronic low-grade inflammation, is strongly associated with the development of hypertension and diabetes. Superoxide, a free radical elevated in obese individuals, promotes hypertension through scavenging the endogenous vasodilator nitric oxide. The hypothesis was a genistein-enriched diet would promote weight loss and reduce oxidative stress and inflammation in the vasculature of intact female ob/ob mice. Aortas and mesenteric arteries were isolated from female ob/ob mice fed genistein-free (0mg genistein/kg diet; n=6), standard chow (200-300mg genistein/kg diet; n=11) or genistein-enriched (600mg genistein/kg diet; n=9) diets for 4weeks. Sections of isolated vessels were labeled with the superoxide indicator dihydroethidium and fluorescence was measured by confocal microscopy. Protein expression of the inflammatory marker inducible nitric oxide synthase (iNOS) was measured in the perivascular adipose tissue (PVAT) surrounding each vessel and plasma concentrations of superoxide dismutase (SOD) were quantified. Genistein-enriched diet promoted less weight gain compared to animals fed standard chow (P=.008). Standard chow promoted increased superoxide in the aorta (P=.030) and mesenteric arteries (P=.024) compared to a diet devoid of genistein. At all tested concentrations, genistein significantly increased iNOS expression in mesenteric artery PVAT (vs. standard chow, P<.001; vs. genistein-enriched, P=.002) and tended to increase iNOS within the aortic PVAT (standard chow, P=.075) compared to the genistein-free group. Plasma SOD activity was significantly downregulated in genistein-enriched animals as compared to those fed a genistein-free diet (P=.028). In summary, although genistein prevents weight gain, it promotes vascular oxidative stress and inflammation in obese ovarian-intact female mice.
Collapse
Affiliation(s)
- Anna Simperova
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ
| | - James J Faust
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Karen L Sweazea
- School of Life Sciences, Arizona State University, Tempe, AZ; School of Nutrition and Health Promotion, Arizona State University, Tempe, AZ.
| |
Collapse
|
30
|
Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice. PLoS One 2015; 10:e0138609. [PMID: 26381906 PMCID: PMC4575160 DOI: 10.1371/journal.pone.0138609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.
Collapse
Affiliation(s)
- Ana María Gamez-Mendez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional, México, D.F. México
| | - Hilda Vargas-Robles
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional, México, D.F. México
| | | | | |
Collapse
|
31
|
Bender SB, Castorena-Gonzalez JA, Garro M, Reyes-Aldasoro CC, Sowers JR, DeMarco VG, Martinez-Lemus LA. Regional variation in arterial stiffening and dysfunction in Western diet-induced obesity. Am J Physiol Heart Circ Physiol 2015; 309:H574-82. [PMID: 26092984 DOI: 10.1152/ajpheart.00155.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Increased central vascular stiffening, assessed in vivo by determination of pulse wave velocity (PWV), is an independent predictor of cardiovascular event risk. Recent evidence demonstrates that accelerated aortic stiffening occurs in obesity; however, little is known regarding stiffening of other disease-relevant arteries or whether regional variation in arterial stiffening occurs in this setting. We addressed this gap in knowledge by assessing femoral PWV in vivo in conjunction with ex vivo analyses of femoral and coronary structure and function in a mouse model of Western diet (WD; high-fat/high-sugar)-induced obesity and insulin resistance. WD feeding resulted in increased femoral PWV in vivo. Ex vivo analysis of femoral arteries revealed a leftward shift in the strain-stress relationship, increased modulus of elasticity, and decreased compliance indicative of increased stiffness following WD feeding. Confocal and multiphoton fluorescence microscopy revealed increased femoral stiffness involving decreased elastin/collagen ratio in conjunction with increased femoral transforming growth factor-β (TGF-β) content in WD-fed mice. Further analysis of the femoral internal elastic lamina (IEL) revealed a significant reduction in the number and size of fenestrae with WD feeding. Coronary artery stiffness and structure was unchanged by WD feeding. Functionally, femoral, but not coronary, arteries exhibited endothelial dysfunction, whereas coronary arteries exhibited increased vasoconstrictor responsiveness not present in femoral arteries. Taken together, our data highlight important regional variations in the development of arterial stiffness and dysfunction associated with WD feeding. Furthermore, our results suggest TGF-β signaling and IEL fenestrae remodeling as potential contributors to femoral artery stiffening in obesity.
Collapse
Affiliation(s)
- Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri; Department of Biological Engineering, University of Missouri, Columbia, Missouri
| | - Mona Garro
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Medicine-Endocrinology, Diabetes and Metabolism University of Missouri School of Medicine, Columbia, Missouri
| | | | - James R Sowers
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri; Department of Medicine-Endocrinology, Diabetes and Metabolism University of Missouri School of Medicine, Columbia, Missouri, Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri; Department of Medicine-Endocrinology, Diabetes and Metabolism University of Missouri School of Medicine, Columbia, Missouri, Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri; Department of Biological Engineering, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| |
Collapse
|
32
|
Bagi Z. Impaired coronary collateral growth: miR-shaken neutrophils caught in the act. Am J Physiol Heart Circ Physiol 2015; 308:H1321-2. [PMID: 25910807 DOI: 10.1152/ajpheart.00274.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
33
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
34
|
|
35
|
Guarini G, Huqi A, Morrone D, Capozza P, Todiere G, Marzilli M. Pharmacological approaches to coronary microvascular dysfunction. Pharmacol Ther 2014; 144:283-302. [DOI: 10.1016/j.pharmthera.2014.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
|
36
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
37
|
Cassuto J, Dou H, Czikora I, Szabo A, Patel VS, Kamath V, Belin de Chantemele E, Feher A, Romero MJ, Bagi Z. Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes 2014; 63:1381-93. [PMID: 24353182 PMCID: PMC3964507 DOI: 10.2337/db13-0577] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
Abstract
Peroxynitrite (ONOO(-)) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO(-) interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO(-) scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO(-) reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO(-)-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose-exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO(-) reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO(-) selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients.
Collapse
Affiliation(s)
- James Cassuto
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Huijuan Dou
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Andras Szabo
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Vijay S. Patel
- Department of Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Vinayak Kamath
- Department of Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | | | - Attila Feher
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| |
Collapse
|
38
|
Henriksen EJ. A radical concept on caveolae and endothelial dysfunction in coronary microvascular disease in diabetes. Diabetes 2014; 63:1200-2. [PMID: 24651806 DOI: 10.2337/db14-0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Erik J Henriksen
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ
| |
Collapse
|
39
|
Golub AS, Pittman RN. Bang-bang model for regulation of local blood flow. Microcirculation 2014; 20:455-83. [PMID: 23441827 DOI: 10.1111/micc.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 11/27/2022]
Abstract
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2 (-) ) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the "bang-bang" or "on/off" regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2 (-) into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis, and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
40
|
Romero MJ, Yao L, Sridhar S, Bhatta A, Dou H, Ramesh G, Brands MW, Pollock DM, Caldwell RB, Cederbaum SD, Head CA, Bagi Z, Lucas R, Caldwell RW. l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice. Front Immunol 2013; 4:480. [PMID: 24400007 PMCID: PMC3871963 DOI: 10.3389/fimmu.2013.00480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Diabetic nephropathy (DN) is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of l-arginine (l-arg), the substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular function. l-Citrulline (l-cit) supplementation not only increases l-arg synthesis, but also inhibits cytosolic arginase I, a competitor of eNOS for the use of l-arg, in the vasculature. AIMS To investigate whether l-cit treatment reduces DN in streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function, the main renal isoform. METHODS STZ-C57BL6 mice received l-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and l-cit-treated STZ-rats were evaluated. RESULTS l-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, l-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic WT animals. l-Cit also restored nitric oxide/reactive oxygen species balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, l-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70) generation in the human proximal tubular cells. CONCLUSION l-Citrulline supplementation established an anti-inflammatory profile and significantly preserved the nephron function during T1D.
Collapse
Affiliation(s)
- Maritza J Romero
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Department of Anesthesiology and Perioperative Medicine, Georgia Regents University , Augusta, GA , USA ; Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA
| | - Supriya Sridhar
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA
| | - Huijuan Dou
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Ganesan Ramesh
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA ; Department of Medicine, Georgia Regents University , Augusta, GA , USA
| | - Michael W Brands
- Department of Physiology, Georgia Regents University , Augusta, GA , USA
| | - David M Pollock
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Department of Medicine, Georgia Regents University , Augusta, GA , USA
| | - Ruth B Caldwell
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA ; Department of Cell Biology and Anatomy, Georgia Regents University , Augusta, GA , USA ; Department of Ophthalmology, Georgia Regents University , Augusta, GA , USA ; VA Medical Center, Georgia Regents University , Augusta, GA , USA
| | - Stephen D Cederbaum
- Intellectual and Developmental Disabilities Research Center/Neuropsychiatric Institute (IDDRC/NPI), University of California Los Angeles School of Medicine , Los Angeles, CA , USA
| | - C Alvin Head
- Department of Anesthesiology and Perioperative Medicine, Georgia Regents University , Augusta, GA , USA
| | - Zsolt Bagi
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Vascular Biology Center, Georgia Regents University , Augusta, GA , USA ; Division of Pulmonary Medicine, Georgia Regents University , Augusta, GA , USA
| | - Robert W Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Department of Physiology, Georgia Regents University , Augusta, GA , USA
| |
Collapse
|
41
|
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
42
|
Bagi Z, Feher A, Dou H, Broskova Z. Selective up-regulation of arginase-1 in coronary arteries of diabetic patients. Front Immunol 2013; 4:293. [PMID: 24133491 PMCID: PMC3783852 DOI: 10.3389/fimmu.2013.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023] Open
Abstract
Coronary artery disease (CAD) remains the leading cause of death in the Western societies. Diabetes mellitus (DM) is one of the highly prevalent diseases, which remarkably accelerates the development of CAD. Experimental evidence indicates that decreased bioavailability of coronary endothelial nitric oxide (NO) contributes to the development of CAD in DM. There are recent studies showing that a selective impairment of NO synthesis occurs in coronary arteries of DM patients, which is mainly due to the limited availability of endothelial NO synthase (eNOS) precursor, l-arginine. Importantly, these studies demonstrated that DM, independent of the presence of CAD, leads to selective up-regulation of arginase-1. Arginase-1 seems to play an important role in limiting l-arginine availability in the close proximity of eNOS in vessels of DM patients. This brief review examines recent clinical studies demonstrating the pathological role of vascular arginase-1 in human diabetes. Whether arginase-1, which is crucial in the synthesis of various fundamental polyamines in the body, will represent a potent therapeutic target for prevention of DM-associated CAD is still debated.
Collapse
Affiliation(s)
- Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | | | | | | |
Collapse
|
43
|
Koller A, Balasko M, Bagi Z. Endothelial regulation of coronary microcirculation in health and cardiometabolic diseases. Intern Emerg Med 2013; 8 Suppl 1:S51-4. [PMID: 23494539 PMCID: PMC3676666 DOI: 10.1007/s11739-013-0910-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiometabolic disorders have been shown to impair coronary microvascular functions leading to diminished cardiac performance and increased mortality. In this review, we focus on the molecular pathomechanisms of impaired endothelium-dependent and flow-induced dysregulation of coronary vasomotor tone in cardiometabolic disorders such as obesity, diabetes mellitus or hyperhomocysteinemia based on animal experiments and human studies. We also briefly summarize the relationship among key signaling mechanisms that contribute to the development of coronary dysfunctions in these disorders, which may help develop new targets for efficient cardiometabolic prevention and treatments.
Collapse
Affiliation(s)
- Akos Koller
- Department of Pathophysiology and Gerontology, Medical School, J. Szentagothai Res. Centre, University of Pecs, 12. Szigeti Str, 7624, Pecs, Hungary.
| | | | | |
Collapse
|
44
|
Rueda A, Fernández-Velasco M, Benitah JP, Gómez AM. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 2013; 8:e53321. [PMID: 23301060 PMCID: PMC3536748 DOI: 10.1371/journal.pone.0053321] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
Diabetes is a major risk factor for stroke. However, the molecular mechanisms involved in cerebral artery dysfunction found in the diabetic patients are not completely elucidated. In cerebral artery smooth muscle cells (CASMCs), spontaneous and local increases of intracellular Ca2+ due to the opening of ryanodine receptors (Ca2+ sparks) activate large conductance Ca2+-activated K+ (BK) channels that generate spontaneous transient outward currents (STOCs). STOCs have a key participation in the control of vascular myogenic tone and blood pressure. Our goal was to investigate whether alterations in Ca(2+) spark and STOC activities, measured by confocal microscopy and patch-clamp technique, respectively, occur in isolated CASMCs of an experimental model of type-2 diabetes (db/db mouse). We found that mean Ca(2+) spark amplitude, duration, size and rate-of-rise were significantly smaller in Fluo-3 loaded db/db compared to control CASMCs, with a subsequent decrease in the total amount of Ca(2+) released through Ca(2+) sparks in db/db CASMCs, though Ca(2+) spark frequency remained. Interestingly, the frequency of large-amplitude Ca(2+) sparks was also significantly reduced in db/db cells. In addition, the frequency and amplitude of STOCs were markedly reduced at all voltages tested (from -50 to 0 mV) in db/db CASMCs. The latter correlates with decreased BK channel β1/α subunit ratio found in db/db vascular tissues. Taken together, Ca(2+) spark alterations lead to inappropriate BK channels activation in CASMCs of db/db mice and this condition is aggravated by the decrease in the BK β1 subunit/α subunit ratio which underlies the significant reduction of Ca(2+) spark/STOC coupling in CASMCs of diabetic animals.
Collapse
Affiliation(s)
- Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- * E-mail: (AMG); (AR)
| | - María Fernández-Velasco
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jean-Pierre Benitah
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
| | - Ana María Gómez
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
- * E-mail: (AMG); (AR)
| |
Collapse
|
45
|
Nguyen C, Bascaramurty S, Kuzio B, Gregorash L, Kupriyanov V, Jilkina O. Near-infrared fluorescence imaging of mouse myocardial microvascular endothelium using Cy5.5-lectin conjugate. JOURNAL OF BIOPHOTONICS 2012; 5:754-767. [PMID: 22371316 DOI: 10.1002/jbio.201100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/12/2012] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
Cy5.5-lectin, a non-toxic conjugate, combines the benefits of near-infrared (NIR) imaging, such as significant reduction of background fluorescence and increased tissue depth penetration, with its affinity for vascular endothelial cells. When compared to endothelial staining methods using FITC-lectin and ICAM2 antibodies, Cy5.5-lectin was confirmed to specifically bind endothelial cells and produce a fluorescence signal both in real-time and post-infusion. Ex-vivo experiments with isolated hearts demonstrated that binding was limited to perfused areas of the myocardium. With mouse in-vivo tail-vein injections, other organs such as the liver, spleen, and kidney were also stained and yielded similar quality images of the heart.
Collapse
Affiliation(s)
- Cecilia Nguyen
- University of Manitoba, Department of Oral Biology, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Huang A, Yang YM, Feher A, Bagi Z, Kaley G, Sun D. Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 2012; 302:R674-81. [PMID: 22262308 DOI: 10.1152/ajpregu.00699.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 μm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | |
Collapse
|
47
|
Picchi A, Limbruno U, Focardi M, Cortese B, Micheli A, Boschi L, Severi S, De Caterina R. Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients. Am J Physiol Heart Circ Physiol 2011; 301:H2279-84. [DOI: 10.1152/ajpheart.00615.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (Tmn); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic Tmn. We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4–3.2) vs. 4.1 (2.7–4.4); P = 0.02]. Basal Tmn was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25–0.71) vs. 0.64 (0.50–1.17); P = 0.04], while hyperemic Tmn and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index ( r2 = 0.35; P = 0.0005) and between basal Tmn and the HOMA index ( r2 = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.
Collapse
Affiliation(s)
- Andrea Picchi
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Ugo Limbruno
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Marta Focardi
- Department of Cardiology, Misericordia Hospital, Grosseto
| | | | - Andrea Micheli
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Letizia Boschi
- Department of Physiology, University of Siena, Siena; and
| | - Silva Severi
- Department of Cardiology, Misericordia Hospital, Grosseto
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University-Chieti, Chieti, Italy
| |
Collapse
|
48
|
Jefferson A, Wijesurendra RS, McAteer MA, Digby JE, Douglas G, Bannister T, Perez-Balderas F, Bagi Z, Lindsay AC, Choudhury RP. Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: rational design through target quantification. Atherosclerosis 2011; 219:579-87. [PMID: 21872249 PMCID: PMC3234340 DOI: 10.1016/j.atherosclerosis.2011.07.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Optical coherence tomography (OCT) is a high resolution imaging technique used to assess superficial atherosclerotic plaque morphology. Utility of OCT may be enhanced by contrast agents targeting molecular mediators of inflammation. METHODS AND RESULTS Microparticles of iron oxide (MPIO; 1 and 4.5 μm diameter) in suspension were visualized and accurately quantified using a clinical optical coherence tomography system. Bound to PECAM-1 on a plane of cultured endothelial cells under static conditions, 1 μm MPIO were also readily detected by OCT. To design a molecular contrast probe that would bind activated endothelium under conditions of shear stress, we quantified the expression (basal vs. TNF-activated; molecules μm(-2)) of VCAM-1 (not detected vs. 16 ± 1); PECAM-1 (132 ± 6 vs. 198 ± 10) and E-selectin (not detected vs. 46 ± 0.6) using quantitative flow cytometry. We then compared the retention of antibody-conjugated MPIO targeting each of these molecules plus a combined VCAM-1 and E-selectin (E+V) probe across a range of physiologically relevant shear stresses. E+V MPIO were consistently retained with highest efficiency (P < 0.001) and at a density that provided conspicuous contrast effects on OCT pullback. CONCLUSION Microparticles of iron oxide were detectable using a clinical OCT system. Assessment of binding under flow conditions recommended an approach that targeted both E-selectin and VCAM-1. Bound to HUVEC under conditions of flow, targeted 1 μm E+V MPIO were readily identified on OCT pullback. Molecular imaging with OCT may be feasible in vivo using antibody targeted MPIO.
Collapse
Affiliation(s)
- Andrew Jefferson
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Rohan S. Wijesurendra
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Martina A. McAteer
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Janet E. Digby
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Gillian Douglas
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Thomas Bannister
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Francisco Perez-Balderas
- Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | - Zsolt Bagi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Alistair C. Lindsay
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Robin P. Choudhury
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
49
|
Bagi Z, Feher A, Cassuto J, Akula K, Labinskyy N, Kaley G, Koller A. Increased availability of angiotensin AT 1 receptors leads to sustained arterial constriction to angiotensin II in diabetes - role for Rho-kinase activation. Br J Pharmacol 2011; 163:1059-68. [PMID: 21385178 DOI: 10.1111/j.1476-5381.2011.01307.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Antagonists of angiotensin AT(1) receptors elicit beneficial vascular effects in diabetes mellitus. We hypothesized that diabetes induces sustained availability of AT(1) receptors, causing enhanced arterial constriction to angiotensin II. EXPERIMENTAL APPROACH To assess functional availability of AT(1) receptors, constrictions to successive applications of angiotensin II were measured in isolated skeletal muscle resistance arteries (∼150 µm) of Zucker diabetic fatty (ZDF) rats and of their controls (+/Fa), exposed acutely to high glucose concentrations (HG, 25 mM, 1 h). AT(1) receptors on cell membrane surface were measured by immunofluorescence. KEY RESULTS Angiotensin II-induced constrictions to first applications were greater in arteries of ZDF rats (maximum: 82 ± 3% original diameter) than in those from +/Fa rats (61 ± 5%). Constrictions to repeated angiotensin II administration were decreased in +/Fa arteries (20 ± 6%), but were maintained in ZDF arteries (67 ± 4%) and in +/Fa arteries vessels exposed to HG (65 ± 6%). In ZDF arteries and in HG-exposed +/Fa arteries, Rho-kinase activities were enhanced. The Rho-kinase inhibitor, Y27632 inhibited sustained constrictions to angiotensin II in ZDF arteries and in +/Fa arteries exposed to HG. Levels of surface AT(1) receptors on cultured vascular smooth muscle cells (VSMCs) were decreased by angiotensin II but were maintained in VSMCs exposed to HG. In VSMCs exposed to HG and treated with Y27632, angiotensin II decreased surface AT(1) receptors. CONCLUSIONS AND IMPLICATIONS In diabetes, elevated glucose concentrations activate Rho-kinase which inhibits internalization or facilitates recycling of AT(1) receptors, leading to increased functional availability of AT(1) receptors and sustained angiotensin II-induced arterial constriction.
Collapse
Affiliation(s)
- Zsolt Bagi
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sprague RS, Bowles EA, Achilleus D, Stephenson AH, Ellis CG, Ellsworth ML. A selective phosphodiesterase 3 inhibitor rescues low PO2-induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control. Am J Physiol Heart Circ Physiol 2011; 301:H2466-72. [PMID: 21963837 DOI: 10.1152/ajpheart.00729.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythrocytes, via release of ATP in areas of low oxygen (O(2)) tension, are components of a regulatory system for the distribution of perfusion in skeletal muscle ensuring optimal O(2) delivery to meet tissue needs. In type 2 diabetes (DM2), there are defects in O(2) supply to muscle as well as a failure of erythrocytes to release ATP. The goal of this study was to ascertain if a phosphodiesterase 3 (PDE3) inhibitor, cilostazol, would rescue low O(2)-induced ATP release from DM2 erythrocytes and, thereby, enable these cells to dilate isolated erythrocyte-perfused skeletal muscle arterioles exposed to decreased extraluminal O(2). Erythrocytes were obtained from healthy humans (HH; n = 12) and humans with DM2 (n = 17). We determined that 1) PDE3B is similarly expressed in both groups, 2) mastoparan 7 (G(i) activation) stimulates increases in cAMP in HH but not in DM2 erythrocytes, and 3) pretreatment of DM2 erythrocytes with cilostazol resulted in mastoparan 7-induced increases in cAMP not different from those in HH cells. Most importantly, cilostazol restored the ability of DM2 erythrocytes to release ATP in response to low O(2). In contrast with perfusion with HH erythrocytes, isolated hamster retractor muscle arterioles perfused with DM2 erythrocytes constricted in response to low extraluminal PO(2). However, in the presence of cilostazol (100 μM), DM2 erythrocytes induced vessel dilation not different from that seen with HH erythrocytes. Thus rescue of low O(2)-induced ATP release from DM2 erythrocytes by cilostazol restored the ability of erythrocytes to participate in the regulation of perfusion distribution in skeletal muscle.
Collapse
Affiliation(s)
- Randy S Sprague
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | | | |
Collapse
|