1
|
Young KA, Hosseini M, Mistry JJ, Morganti C, Mills TS, Cai X, James BT, Nye GJ, Fournier NR, Voisin V, Chegini A, Schimmer AD, Bader GD, Egan G, Mansour MR, Challen GA, Pietras EM, Fisher-Wellman KH, Ito K, Chan SM, Trowbridge JJ. Elevated mitochondrial membrane potential is a therapeutic vulnerability in Dnmt3a-mutant clonal hematopoiesis. Nat Commun 2025; 16:3306. [PMID: 40240771 PMCID: PMC12003737 DOI: 10.1038/s41467-025-57238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/14/2025] [Indexed: 04/18/2025] Open
Abstract
The competitive advantage of mutant hematopoietic stem and progenitor cells (HSPCs) underlies clonal hematopoiesis (CH). Drivers of CH include aging and inflammation; however, how CH-mutant cells gain a selective advantage in these contexts is an unresolved question. Using a murine model of CH (Dnmt3aR878H/+), we discover that mutant HSPCs sustain elevated mitochondrial respiration which is associated with their resistance to aging-related changes in the bone marrow microenvironment. Mutant HSPCs have DNA hypomethylation and increased expression of oxidative phosphorylation gene signatures, increased functional oxidative phosphorylation capacity, high mitochondrial membrane potential (Δψm), and greater dependence on mitochondrial respiration compared to wild-type HSPCs. Exploiting the elevated Δψm of mutant HSPCs, long-chain alkyl-TPP molecules (MitoQ, d-TPP) selectively accumulate in the mitochondria and cause reduced mitochondrial respiration, mitochondrial-driven apoptosis and ablate the competitive advantage of HSPCs ex vivo and in vivo in aged recipient mice. Further, MitoQ targets elevated mitochondrial respiration and the selective advantage of human DNMT3A-knockdown HSPCs, supporting species conservation. These data suggest that mitochondrial activity is a targetable mechanism by which CH-mutant HSPCs gain a selective advantage over wild-type HSPCs.
Collapse
Affiliation(s)
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology, Oncology and Medicine, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Taylor S Mills
- Division of Hematology, Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | | | | | | | | | - Veronique Voisin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ali Chegini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Grace Egan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marc R Mansour
- UCL Cancer Institute, Department of Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Kelsey H Fisher-Wellman
- East Carolina University, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, Department of Physiology, Greenville, NC, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology, Oncology and Medicine, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Adams TJ, Schuliga M, Pearce N, Bartlett NW, Liang M. Targeting respiratory virus-induced reactive oxygen species in airways diseases. Eur Respir Rev 2025; 34:240169. [PMID: 40240057 PMCID: PMC12000908 DOI: 10.1183/16000617.0169-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/02/2025] [Indexed: 04/18/2025] Open
Abstract
The immune response to virus infection in the respiratory tract must be carefully balanced to achieve pathogen clearance without excessive immunopathology. For chronic respiratory diseases where there is ongoing inflammation, such as in asthma and COPD, airway immune balance is perturbed, and viral infection frequently worsens (exacerbates) these conditions. Reactive oxygen species (ROS) are critical to the induction and propagation of inflammation, and when appropriately regulated, ROS are vital cell signalling molecules and contribute to innate immunity. However, extended periods of high ROS concentration can cause excessive cellular damage that dysregulates antiviral immunity and promotes inflammation. Traditional antioxidant therapeutics have had limited success treating inflammatory diseases such as viral exacerbations of asthma or COPD, owing to nonspecific pharmacology and poorly understood pharmacokinetic properties. These drawbacks could be addressed with novel drug delivery technologies and pharmacological agents. This review summarises current research on ROS imbalances during virus infection, discusses the commercially available mitochondrial antioxidant drugs that have progressed to clinical trial and assesses novel drug delivery approaches for antioxidant delivery to the airways. Additionally, it provides a perspective on future research into pharmacological targeting of ROS for the treatment of respiratory virus infection and disease.
Collapse
Affiliation(s)
- Thomas J Adams
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Infection Research Program, Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Infection Research Program, Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Nyoaki Pearce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Infection Research Program, Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
- Infection Research Program, Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| |
Collapse
|
3
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
4
|
Gómez Del Val A, Sánchez A, Freire-Agulleiro Ó, Martínez MP, Muñoz M, Olmos L, Medina JS, Comerma-Steffensen SG, Simonsen U, Rivera L, López M, Contreras C, Prieto D. Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: Compensatory role of H 2O 2. Free Radic Biol Med 2025; 230:222-233. [PMID: 39929293 DOI: 10.1016/j.freeradbiomed.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue. METHODS Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O2.-) and Amplex Red (H2O2) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria redox regulators was analysed by Western blot. RESULTS Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoKATP channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries compared to STD rats. CONCLUSIONS Mitochondrial dysfunction with impaired bioenergetics and reduced mitoKATP channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.
Collapse
Affiliation(s)
| | - Ana Sánchez
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Óscar Freire-Agulleiro
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pilar Martínez
- Department of Anatomy and Embriology, Madrid Complutense University, Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Lucia Olmos
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Luis Rivera
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dolores Prieto
- Department of Physiology, Madrid Complutense University, Madrid, Spain.
| |
Collapse
|
5
|
Pang M, Wang S, Shi T, Chen J. Overview of MitoQ on prevention and management of cardiometabolic diseases: a scoping review. Front Cardiovasc Med 2025; 12:1506460. [PMID: 40134978 PMCID: PMC11934253 DOI: 10.3389/fcvm.2025.1506460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Background The exploration of mitochondrial-targeted antioxidants represented a burgeoning field of research with significant implications for cardiometabolic diseases (CMD). The studies reviewed in this scoping analysis collectively highlighted the effect of MitoQ on prevention and management of CMD and underlying mechanisms were discussed, mainly including cardiovascular diseases (CVDs), liver health and others. Methods This scoping review aimed to synthesize current research on the health impacts of MitoQ on CMD, focusing primarily on human-based clinical trials. While the primary focus was on human trials, in vivo and in vitro studies were referenced as supplementary material to provide a broader understanding of MitoQ's mechanisms and potential effects. Results This scoping review had synthesized the findings that collectively contributed to the understanding of mitochondrial-targeted antioxidants and their role in CMD. Conclusion The synthesis of these findings illustrated a broad spectrum of benefits ranging from enhanced insulin secretion to improved lipid profiles and mitochondrial function, yet the path to clinical application required further investigation on appropriate doses and populations.
Collapse
Affiliation(s)
- Mingli Pang
- School of Public Affairs, Zhejiang University, Hangzhou, China
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Shidi Wang
- Department of Social Medicine and Health Care Management, Fudan University, Shanghai, China
| | - Tianyi Shi
- Faculty of Medical and Health Sciences, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Jinsong Chen
- School of Public Affairs, Zhejiang University, Hangzhou, China
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
- Faculty of Public Administration, School of Law, Hangzhou City University, Hangzhou, China
| |
Collapse
|
6
|
Hoffmann C, Foster D, Fletcher E, Sasaki M, Li F, McLaughlin D, Cui X, Koutakis P, Call JA, Brewster L. Structured Exercise Therapy Increases Endogenous Antioxidants to Repair Muscle Strength and Health in Porcine Ischemic Myopathy Model of Peripheral Artery Disease. Adv Wound Care (New Rochelle) 2025. [PMID: 39906922 DOI: 10.1089/wound.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Objective: The mechanisms of structured exercise therapy (SET) in peripheral artery disease (PAD) are not clear. We have developed an SET module for our large animal model of ischemic myopathy. We hypothesized that SET would increase muscle strength and walking distance in this model. The objective was to discover the SET-dependent mechanisms involved in this process. Approach: After induction of unilateral hind limb ischemia, three animals were exposed to standard environmental enrichment (sedentary or SED) and four animals underwent SET thrice weekly for 4 weeks postoperatively. Walking, hind limb pressure indices, and strength testing were performed weekly. Terminal muscle samples were used for skeletal muscle testing. Results: SET animals increased walking distance over time. SET increased muscle strength in both the ischemic and nonischemic limb. When comparing the ischemic SED hind limb muscle with that of ischemic + SET, the SET group has improved respiration and decreased oxidative stress. Markers of cell death and impaired functional regeneration were increased in SED ischemic muscles but returned toward baseline in the SET ischemic muscle. Innovation: This study uses a validated, large animal model of ischemic myopathy similar to that seen in humans with PAD. The effects of exercise on limb function, strength, and skeletal muscle health are reported in this model. Conclusion: SET increases muscle strength and regeneration by increasing endogenous antioxidants and mitochondrial respiration, resulting in favorable muscle health despite ongoing ischemia. This model may assist in preclinical testing of PAD therapies designed to improve muscle health. [Figure: see text].
Collapse
Affiliation(s)
- Carson Hoffmann
- Division of Vascular Surgery, Emory University, Atlanta, Georgia, USA
- Joseph Maxwell Cleland Atlanta VA Medical Center, Surgical and Research Services, Decatur, Georgia, USA
| | - Dennis Foster
- Division of Vascular Surgery, Emory University, Atlanta, Georgia, USA
- Joseph Maxwell Cleland Atlanta VA Medical Center, Surgical and Research Services, Decatur, Georgia, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Maiko Sasaki
- Joseph Maxwell Cleland Atlanta VA Medical Center, Surgical and Research Services, Decatur, Georgia, USA
| | - Feifei Li
- Division of Vascular Surgery, Emory University, Atlanta, Georgia, USA
| | - Dylan McLaughlin
- Division of Vascular Surgery, Emory University, Atlanta, Georgia, USA
- Joseph Maxwell Cleland Atlanta VA Medical Center, Surgical and Research Services, Decatur, Georgia, USA
| | - Xiangqin Cui
- Division of Vascular Surgery, Emory University, Atlanta, Georgia, USA
- Joseph Maxwell Cleland Atlanta VA Medical Center, Surgical and Research Services, Decatur, Georgia, USA
| | - Panagiotis Koutakis
- Usha Kundu MD, College of Health, University of West Florida, Pensacola, Florida, USA
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia, USA
| | - Luke Brewster
- Division of Vascular Surgery, Emory University, Atlanta, Georgia, USA
- Joseph Maxwell Cleland Atlanta VA Medical Center, Surgical and Research Services, Decatur, Georgia, USA
| |
Collapse
|
7
|
Lee KH, Kim UJ, Lee BH, Cha M. Safeguarding the brain from oxidative damage. Free Radic Biol Med 2025; 226:143-157. [PMID: 39547523 DOI: 10.1016/j.freeradbiomed.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Oxidative stress imposes a substantial cellular burden on the brain and contributes to diverse neurodegenerative diseases. Various antioxidant signaling pathways have been implicated in oxidative stress and have a protective effect on brain cells by increasing the release of numerous enzymes and through anti-inflammatory responses to oxidative damage caused by abnormal levels of reactive oxygen species (ROS). Although many molecules evaluated as antioxidants have shown therapeutic potentials in preclinical studies, the results of clinical trials have been less than satisfactory. This review focuses on several signaling pathways involved in oxidative stress that are associated with antioxidants. These pathways have a protective effect against stressors by increasing the release of various enzymes and also exert anti-inflammatory responses against oxidative damage. There is no doubt that oxidative stress is a crucial therapeutic target in the treatment of neurological diseases. Therefore, it is essential to understand the discovery of multiple routes that can efficiently repair the damage caused by ROS and prevent neurodegenerative disorders. This paper aims to provide a concise and objective review of the oxidative and antioxidant pathways and their potential therapeutic applications in treating oxidative injury in the brain.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, South Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Medical Science, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
8
|
Speer H, Ali MM, D'Cunha NM, Naumovski N, Praet SFE, Hickner RC, McKune AJ. Skeletal muscle reactive oxygen species and microvascular endothelial function in age-related hypertension: a study protocol using a microdialysis technique. J Physiol 2024. [PMID: 39520694 DOI: 10.1113/jp287187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Increased reactive oxygen species (ROS) generation and microvascular endothelial disruptions occur with natural ageing, but often transpire before the detection of cardiometabolic conditions including hypertension. Age-related increases in blood pressure are driven by complex systemic changes with poorly understood integrated mechanisms. The deconditioning experienced by ageing skeletal muscle from mid-life is associated with reduced microvascular blood flow and increased peripheral resistance, suggesting that vasodilatory decrements in the muscle may precede the age-related increases in blood pressure. Structural and functional changes within the vascular and skeletal muscle systems with advancing age can influence redox homeostasis, and vice versa, further compounding microvascular endothelial dysfunction. Therefore, comparisons between the microvascular environments of healthy and hypertensive cohorts can provide insights into the changes that occur during significant periods of functional decline. This comprehensive study protocol describes a microdialysis technique to assess the interactions of microvascular health and functional changes in the muscle, which currently cannot be otherwise addressed. Here, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H2O2 and indirect O2 -), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. We expect that healthy middle-aged individuals should not have increased ROS generation in the muscle at rest, compared to their hypertensive or older counterparts, but may exhibit perturbed microvascular function. The described technique allows for intricate exploration of microvascular physiology that will provide a critically novel insight into benchmarking potential age-related mechanisms involved in the development of age-related hypertension, and aid in early identification and prevention. KEY POINTS: Increased reactive oxygen species (ROS) production and microvascular endothelial dysfunction precede the onset of age-related cardiometabolic and vascular conditions such as hypertension. The profound structural and functional changes that occur within the vasculature and in skeletal muscle from middle age prompt a need to mechanistically explore the microvascular environment in healthy and hypertensive individuals. Using a novel microdialysis technique, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H2O2 and indirect O2 -), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. With this technique and study protocol, we can reveal functional insights into potential perturbations in ROS generation at rest and the microvascular endothelium, which play important roles in the development of age-related hypertension.
Collapse
Affiliation(s)
- Hollie Speer
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
| | - Mostafa M Ali
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, Florida, USA
| | - Nathan M D'Cunha
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Department of Nutrition-Dietetics, School of Health and Education, Harokopio University, Athens, Greece
| | - Stephan F E Praet
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
| | - Robert C Hickner
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, Florida, USA
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew J McKune
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
9
|
Fiorenza M, Onslev J, Henríquez-Olguín C, Persson KW, Hesselager SA, Jensen TE, Wojtaszewski JFP, Hostrup M, Bangsbo J. Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans. SCIENCE ADVANCES 2024; 10:eadq4461. [PMID: 39475607 PMCID: PMC11524190 DOI: 10.1126/sciadv.adq4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Preclinical models suggest mitochondria-derived oxidative stress as an underlying cause of insulin resistance. However, it remains unknown whether this pathophysiological mechanism is conserved in humans. Here, we used an invasive in vivo mechanistic approach to interrogate muscle insulin action while selectively manipulating the mitochondrial redox state in humans. To this end, we conducted insulin clamp studies combining intravenous infusion of a lipid overload with intake of a mitochondria-targeted antioxidant (mitoquinone). Under lipid overload, selective modulation of mitochondrial redox state by mitoquinone enhanced insulin-stimulated glucose uptake in skeletal muscle. Mechanistically, mitoquinone did not affect canonical insulin signaling but augmented insulin-stimulated glucose transporter type 4 (GLUT4) translocation while reducing the mitochondrial oxidative burden under lipid oversupply. Complementary ex vivo studies in human muscle fibers exposed to high intracellular lipid levels revealed that mitoquinone improves features of mitochondrial bioenergetics, including diminished mitochondrial H2O2 emission. These findings provide translational and mechanistic evidence implicating mitochondrial oxidants in the development of lipid-induced muscle insulin resistance in humans.
Collapse
Affiliation(s)
- Matteo Fiorenza
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Onslev
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Henríquez-Olguín
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 1509, Chile
| | - Kaspar W. Persson
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sofie A. Hesselager
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Thomas E. Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F. P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Morten Hostrup
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jens Bangsbo
- August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
10
|
Allen MF, Park SY, Kwak YS. Oxidative stress and vascular dysfunction: Potential therapeutic targets and therapies in peripheral artery disease. Microvasc Res 2024; 155:104713. [PMID: 38914307 DOI: 10.1016/j.mvr.2024.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Peripheral artery disease (PAD) is the manifestation of atherosclerosis characterized by the accumulation of plaques in the arteries of the lower limbs. Interestingly, growing evidence suggests that the pathology of PAD is multifaceted and encompasses both vascular and skeletal muscle dysfunctions, which contributes to blunted physical capabilities and diminished quality of life. Importantly, it has been suggested that many of these pathological impairments may stem from blunted reduction-oxidation (redox) handling. Of note, in those with PAD, excessive production of reactive oxygen species (ROS) outweighs antioxidant capabilities resulting in oxidative damage, which may have systemic consequences. It has been suggested that antioxidant supplementation may be able to assist in handling ROS. However, the activation of various ROS production sites makes it difficult to determine the efficacy of these antioxidant supplements. Therefore, this review focuses on the common cellular mechanisms that facilitate ROS production and discusses how excessive ROS may impair vascular and skeletal muscle function in PAD. Furthermore, we provide insight for current and potential antioxidant therapies, specifically highlighting activation of the Kelch-like ECH-associated protein 1 (Keap1) - Nuclear Factor Erythroid 2-related factor 2 (Nrf2) pathway as a potential pharmacological therapy to combat ROS accumulation and aid in vascular function, and physical performance in patients with PAD. Altogether, this review provides a better understanding of excessive ROS in the pathophysiology of PAD and enhances our perception of potential therapeutic targets that may improve vascular function, skeletal muscle function, walking capacity, and quality of life in patients with PAD.
Collapse
Affiliation(s)
- Michael F Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States of America
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States of America; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Yi-Sub Kwak
- Department of Physical Education, College of Arts, Design, and Sports Science, Dong-Eui University, Busan, Republic of Korea.
| |
Collapse
|
11
|
Gonzalo-Skok O, Casuso RA. Effects of Mitoquinone (MitoQ) Supplementation on Aerobic Exercise Performance and Oxidative Damage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:77. [PMID: 38981985 PMCID: PMC11233485 DOI: 10.1186/s40798-024-00741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation. METHODS In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI). RESULTS We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance. CONCLUSION While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4-16 weeks) alters adaptations induced by exercise alone and using different doses.
Collapse
Affiliation(s)
- Oliver Gonzalo-Skok
- Department of Communication and Education, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Sevilla, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
12
|
Kim DJK, Gao Z, Luck JC, Brandt K, Miller AJ, Kim-Shapiro D, Basu S, Leuenberger U, Gardner AW, Muller MD, Proctor DN. Effects of short-term dietary nitrate supplementation on exercise and coronary blood flow responses in patients with peripheral artery disease. Front Nutr 2024; 11:1398108. [PMID: 39027664 PMCID: PMC11257697 DOI: 10.3389/fnut.2024.1398108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Peripheral arterial disease (PAD) is a prevalent vascular disorder characterized by atherosclerotic occlusion of peripheral arteries, resulting in reduced blood flow to the lower extremities and poor walking ability. Older patients with PAD are also at a markedly increased risk of cardiovascular events, including myocardial infarction. Recent evidence indicates that inorganic nitrate supplementation, which is abundant in certain vegetables, augments nitric oxide (NO) bioavailability and may have beneficial effects on walking, blood pressure, and vascular function in patients with PAD. Objective We sought to determine if short-term nitrate supplementation (via beetroot juice) improves peak treadmill time and coronary hyperemic responses to plantar flexion exercise relative to placebo (nitrate-depleted juice) in older patients with PAD. The primary endpoints were peak treadmill time and the peak coronary hyperemic response to plantar flexion exercise. Methods Eleven PAD patients (52-80 yr.; 9 men/2 women; Fontaine stage II) were randomized (double-blind) to either nitrate-rich (Beet-IT, 0.3 g inorganic nitrate twice/day; BRnitrate) or nitrate-depleted (Beet-IT, 0.04 g inorganic nitrate twice/day, BRplacebo) beetroot juice for 4 to 6 days, followed by a washout of 7 to 14 days before crossing over to the other treatment. Patients completed graded plantar flexion exercise with their most symptomatic leg to fatigue, followed by isometric handgrip until volitional fatigue at 40% of maximum on day 4 of supplementation, and a treadmill test to peak exertion 1-2 days later while continuing supplementation. Hemodynamics and exercise tolerance, and coronary blood flow velocity (CBV) responses were measured. Results Although peak walking time and claudication onset time during treadmill exercise did not differ significantly between BRplacebo and BRnitrate, the diastolic blood pressure response at the peak treadmill walking stage was significantly lower in the BRnitrate condition. Increases in CBV from baseline to peak plantar flexion exercise after BRplacebo and BRnitrate showed a trend for a greater increase in CBV at the peak workload of plantar flexion with BRnitrate (p = 0.06; Cohen's d = 0.56). Conclusion Overall, these preliminary findings suggest that inorganic nitrate supplementation in PAD patients is safe, well-tolerated, and may improve the coronary hyperemic and blood pressure responses when their calf muscles are most predisposed to ischemia.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT02553733.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Jonathan C. Luck
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Kristen Brandt
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Amanda J. Miller
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Daniel Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Urs Leuenberger
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Andrew W. Gardner
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Matthew D. Muller
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David N. Proctor
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, United States
- Noll Laboratory, Department of Kinesiology, Penn State University, University Park, PA, United States
| |
Collapse
|
13
|
Fakhri YA, Al-Ani AW. Superoxide Dismutase and Clopidogrel: A Potential Role in Peripheral Arterial Disease Treatment. DOKL BIOCHEM BIOPHYS 2024; 516:83-92. [PMID: 38700818 DOI: 10.1134/s1607672924600088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of peripheral artery disease (PAD). This study aimed to investigate the effect of clopidogrel on oxidative stress in PAD patients. Seventy subjects were divided into three groups: PAD patients before treatment (B-PAD), PAD patients after treatment with clopidogrel (A-PAD), and healthy controls. Serum levels of superoxide dismutase (SOD), copper (Cu), zinc (Zn), manganese (Mn), and oxidized protein were measured. SOD activities were also determined. The results showed that SOD activities, and SOD specific activities were significantly decreased in PAD patients compared to healthy individuals. After treatment with clopidogrel, SOD activities, and SOD specific activities were continuously decrease in PAD patients. The SOD and oxidized protein concentrations were significantly increased in PAD patients compared to healthy individuals. After treatment with clopidogrel, the oxidized protein concentration was significantly decreased, while SOD concentration was significantly increased in PAD patients. These findings suggest that the treatment by clopidogrel stimulated the production of the enzyme but the ratio of active enzyme remained low. The decrease in oxidized protein can be explained by the treatment having antioxidant efficacy that may have compensated for the deficiency in enzyme activity and led to a decrease in oxidized protein. Additionally, the results of this study provide promising evidence that oxidative stress biomarkers including SOD concentration, T-SOD activity, Mn-SOD activity, and oxidized protein levels have potential utility in the diagnosis and management of PAD.
Collapse
Affiliation(s)
- Yasameen Ali Fakhri
- Department of Chemistry, College of Science, University of Baghdad, 10071, Baghdad, Iraq.
| | - Ali W Al-Ani
- Department of Chemistry, College of Science, University of Baghdad, 10071, Baghdad, Iraq
| |
Collapse
|
14
|
Carlini NA, Harber MP, Fleenor BS. Acute effects of MitoQ on vascular endothelial function are influenced by cardiorespiratory fitness and baseline FMD in middle-aged and older adults. J Physiol 2024; 602:1923-1937. [PMID: 38568933 DOI: 10.1113/jp285636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
A key mechanism promoting vascular endothelial dysfunction is mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function in preclinical models by lowering mtROS. However, the effects of mtROS on endothelial function in exercising and non-exercising adults is limited. In a double-blind, randomized, placebo-controlled crossover study design 23 (10 M/13 F, age 62.1 ± 11.5 years) middle-aged and older (MA/O, ≥45 years) adults were divided into two groups: exercisers (EX, n = 11) and non-exercisers (NEX, n = 12). All participants had endothelial function (brachial artery flow-mediated dilatation, FMDBA) measured before and ∼1 h after mitoquinone mesylate (MitoQ) (single dose, 80 mg) and placebo supplementation. A two-way repeated measures ANOVA was used to determine the effects of MitoQ and placebo on FMDBA. Pearson correlations assessed the association between the change in FMDBA with MitoQ and baseline FMDBA and cardiorespiratory fitness (CRF). Compared with placebo, MitoQ increased FMDBA in NEX by + 2.1% (MitoQ pre: 4.9 ± 0.4 vs. post: 7.0 ± 0.4 %, P = 0.004, interaction) but not in EX (P = 0.695, interaction). MitoQ also increased endothelial function in adults with a FMDBA <6% (P < 0.0001, interaction) but not >6% (P = 0.855, interaction). Baseline FMDBA and CRF were correlated (r = 0.44, P = 0.037), whereas the change in FMDBA with MitoQ was inversely correlated with CRF (r = -0.66, P < 0.001) and baseline FMDBA (r = -0.73, P < 0.0001). The relationship between the change in FMDBA and baseline FMDBA remained correlated after adjusting for CRF (r = -0.55, P = 0.007). These data demonstrate that MitoQ acutely improves FMDBA in NEX and EX adults who have a baseline FMDBA <6%. KEY POINTS: A key age-related change contributing to increased cardiovascular disease (CVD) risk is vascular endothelial dysfunction due to increased mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function via suppression of mtROS in preclinical models but the evidence in humans is limited. In the present study, a single dose of the mitochondria-targeted antioxidant, mitoquinone mesylate (MitoQ), increases endothelial function in non-exercisers with lower cardiorespiratory fitness (CRF) but not in exercisers with higher CRF. The acute effects of MitoQ on endothelial function in middle-aged and older adults (MA/O) are influenced by baseline endothelial function independent of CRF. These data provide initial evidence that the acute MitoQ-enhancing effects on endothelial function in MA/O adults are influenced, in part, via CRF and baseline endothelial function.
Collapse
Affiliation(s)
- Nicholas A Carlini
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Matthew P Harber
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
| | - Bradley S Fleenor
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| |
Collapse
|
15
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
16
|
Marshall AG, Neikirk K, Afolabi J, Mwesigwa N, Shao B, Kirabo A, Reddy AK, Hinton A. Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes. Curr Hypertens Rep 2024; 26:131-140. [PMID: 38159167 PMCID: PMC10955453 DOI: 10.1007/s11906-023-01285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Pulse wave velocity (PWV) is an important and well-established measure of arterial stiffness that is strongly associated with aging. Age-related alterations in the elastic properties and integrity of arterial walls can lead to cardiovascular disease. PWV measurements play an important role in the early detection of these changes, as well as other cardiovascular disease risk factors, such as hypertension. This review provides a comprehensive summary of the current knowledge of the effects of aging on arterial stiffness, as measured by PWV. RECENT FINDINGS This review highlights recent findings showing the applicability of PWV analysis for investigating heart failure, hypertension, and other cardiovascular diseases, as well as cerebrovascular diseases and Alzheimer's disease. It also discusses the clinical implications of utilizing PWV to monitor treatment outcomes, various challenges in implementing PWV assessment in clinical practice, and the development of new technologies, including machine learning and artificial intelligence, which may improve the usefulness of PWV measurements in the future. Measuring arterial stiffness through PWV remains an important technique to study aging, especially as the technology continues to evolve. There is a clear need to leverage PWV to identify interventions that mitigate age-related increases in PWV, potentially improving CVD outcomes and promoting healthy vascular aging.
Collapse
Affiliation(s)
- Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jeremiah Afolabi
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
Leung PY, Chen W, Sari AN, Sitaram P, Wu PK, Tsai S, Park JI. Erlotinib combination with a mitochondria-targeted ubiquinone effectively suppresses pancreatic cancer cell survival. World J Gastroenterol 2024; 30:714-727. [PMID: 38515951 PMCID: PMC10950623 DOI: 10.3748/wjg.v30.i7.714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.
Collapse
Affiliation(s)
- Pui-Yin Leung
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Anissa N Sari
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Poojitha Sitaram
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
18
|
Chen W, Dream S, Leung PY, Wu PK, Wong S, Park JI. Selpercatinib combination with the mitochondria-targeted antioxidant MitoQ effectively suppresses RET-mutant thyroid cancer. NPJ Precis Oncol 2024; 8:39. [PMID: 38378752 PMCID: PMC10879150 DOI: 10.1038/s41698-024-00536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Genetic alternation of REarranged during Transfection (RET) that leads to constitutive RET activation is a crucial etiological factor for thyroid cancer. RET is known to regulate mitochondrial processes, although the underlying molecular mechanisms remain unclear. We previously showed that the multi-kinase inhibitors vandetanib and cabozantinib increase the mitochondrial membrane potential (Δψm) in RET-mutated thyroid tumor cells and that this effect can be exploited to increase mitochondrial enrichment of Δψm-sensitive agents in the tumor cells. In this study, we hypothesized that the RET-selective inhibitor, selpercatinib, can increase Δψm and, subsequently, tumor cell uptake of the mitochondria-targeted ubiquinone (MitoQ) to the level to break the mitochondrial homeostasis and induce lethal responses in RET-mutated thyroid tumor cells. We show that selpercatinib significantly increased Δψm, and its combination with MitoQ synergistically suppressed RET-mutated human thyroid tumor cells, which we validated using RET-targeted genetic approaches. Selpercatinib and MitoQ, in combination, also suppressed CCDC6-RET fusion cell line xenografts in mice and prolonged animal survival more effectively than single treatments of each agent. Moreover, we treated two patients with CCDC6-RET or RETM918T thyroid cancer, who could not take selpercatinib at regular doses due to adverse effects, with a dose-reduced selpercatinib and MitoQ combination. In response to this combination therapy, both patients showed tumor reduction. The quality of life of one patient significantly improved over a year until the tumor relapsed. This combination of selpercatinib with MitoQ may have therapeutic potential for patients with RET-mutated tumors and intolerant to regular selpercatinib doses.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sophie Dream
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Pui-Yin Leung
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Stuart Wong
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
19
|
Lin L, Yan Y, Jiang B, Hou G, Yin Y, Wang L, Kang J, Wang Q. Ultrasonic AccV: a potential indicator of peripheral arteriosclerosis in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2024; 24:77. [PMID: 38336639 PMCID: PMC10854041 DOI: 10.1186/s12890-024-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the risk factors for peripheral arteriosclerosis (PAS) and peripheral artery disease (PAD) in chronic obstructive pulmonary disease (COPD) patients and potential ultrasound indicators that could be used to improve detection. METHOD Outpatients seeking care between January 1, 2017, and December 31, 2020, in The First Affiliated Hospital of China Medical University were prospectively recruited. Subjects were divided into COPD and non-COPD (control) groups, and the COPD group was further divided into PAD and non-PAD subgroup, at the same time, PAS and non-PAS subgroup. Indicators of PAD -ankle-brachial index (ABI), indicators of PAS- pulse wave velocity (PWV), and ultrasound indices -peak systolic blood flow velocity (PSV) and blood flow acceleration velocity (AccV) were compared. RESULT Sixty-nine (61.6%) of 112 enrolled subjects had COPD. COPD patients had higher age, and blood pressure (BP)lower than controls. Seventeen (24.6%) COPD patients had PAD, the prevalence of PAD increases with the decrease of lung function, and seven (16.3%) non-COPD patients had PAD, however, there was no significant statistical difference between COPD and non-COPD groups. Fifty (72.5%) COPD patients had PAS, and thirty-four (79.1%) non-COPD patients had PAS, however, there was also no significant difference. The PAS subgroup had higher age, body mass index(BMI), body fat percentage(BFP), lower FEV1 and FEV1/FVC, as well as higher levels of right brachial artery and left dorsalis pedis artery AccV. Factors that correlated with ABI were 6MWD, post-bronchodilator FEV1, FEV1/ FVC, and maximal middle expiratory flow between 75% and 25% of FVC. Age, BP, and 6MWD, but not pulmonary function, were associated with brachial-ankle PWV (baPWV). There was a positive correlation between baPWV and radial artery AccV bilaterally. CONCLUSION Radial artery AccV correlated well with baPWV, which suggests that ultrasound could be used to assess both morphological and functional changes in vessels, may serving as a better method to identify PAS in high-risk COPD patients.
Collapse
Affiliation(s)
- Li Lin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, China
| | - Yuting Yan
- Department of Critical Care Medicine, The affiliated hospital of Qingdao university, Qingdao, China
| | - Bin Jiang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, China
| | - Lei Wang
- Department of vascular surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
20
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
21
|
Webster KA. Translational Relevance of Advanced Age and Atherosclerosis in Preclinical Trials of Biotherapies for Peripheral Artery Disease. Genes (Basel) 2024; 15:135. [PMID: 38275616 PMCID: PMC10815340 DOI: 10.3390/genes15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.
Collapse
Affiliation(s)
- Keith A. Webster
- Vascular Biology Institute, University of Miami, Miami, FL 33146, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Linder BA, Stute NL, Hutchison ZJ, Barnett AM, Tharpe MA, Kavazis AN, Kirkman DL, Gutierrez OM, Robinson AT. Acute high-dose MitoQ does not increase urinary kidney injury markers in healthy adults: a randomized crossover trial. Am J Physiol Renal Physiol 2024; 326:F135-F142. [PMID: 37942539 PMCID: PMC11198989 DOI: 10.1152/ajprenal.00186.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
Several human studies have used the mitochondrial antioxidant MitoQ. Recent in vitro data indicating that MitoQ may induce nephrotoxicity caused concern regarding the safety of MitoQ on the kidneys, but the doses were supraphysiological. Therefore, we sought to determine whether acute MitoQ elicits changes in urinary biomarkers associated with tubular injury in healthy adults with our hypothesis being there would be no changes. Using a randomized crossover design, 32 healthy adults (16 females and 16 males, 29 ± 11 yr old) consumed MitoQ (100-160 mg based on body mass) or placebo capsules. We obtained serum samples and a 4- to 6-h postcapsule consumption urine sample. We assessed creatinine clearance and urine kidney injury biomarkers including the chitinase 3-like-1 gene product YKL-40, kidney-injury marker-1, monocyte chemoattractant protein-1, epidermal growth factor, neutrophil gelatinase-associated lipocalin, interleukin-18, and uromodulin using multiplex assays. We used t tests, Wilcoxon tests, and Hotelling's T2 to assess global differences in urinary kidney injury markers between conditions. Acute MitoQ supplementation did not influence urine flow rate (P = 0.086, rrb = 0.39), creatinine clearance (P = 0.085, rrb = 0.42), or urinary kidney injury markers (T22,8 = 30.6, P = 0.121, univariate ps > 0.064). Using exploratory univariate analysis, MitoQ did not alter individual injury markers compared with placebo (e.g., placebo vs. MitoQ: YKL-40, 507 ± 241 vs. 442 ± 236 pg/min, P = 0.241; kidney injury molecule-1, 84.1 ± 43.2 vs. 76.2 ± 51.2 pg/min, P = 0.890; and neutrophil gelatinase-associated lipocalin, 10.8 ± 10.1 vs. 9.83 ± 8.06 ng/min, P = 0.609). In conclusion, although longer-term surveillance and data are needed in clinical populations, our findings suggest that acute high-dose MitoQ had no effect on urinary kidney injury markers in healthy adults.NEW & NOTEWORTHY We found acute high-dose mitochondria-targeted antioxidant (MitoQ) supplementation was not nephrotoxic and had no effect on markers of acute kidney injury in healthy adults. These findings can help bolster further confidence in the safety of MitoQ, particularly for future investigations seeking to examine the role of mitochondrial oxidative stress, via acute MitoQ supplementation, on various physiological outcomes.
Collapse
Affiliation(s)
- Braxton A Linder
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Nina L Stute
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Zach J Hutchison
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Alex M Barnett
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - McKenna A Tharpe
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Orlando M Gutierrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Austin T Robinson
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| |
Collapse
|
23
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
24
|
Hughes RP, Carlini NA, Fleenor BS, Harber MP. Mitochondrial-targeted antioxidant ingestion acutely blunts VO 2max in physically inactive females. Physiol Rep 2023; 11:e15871. [PMID: 38061764 PMCID: PMC10703545 DOI: 10.14814/phy2.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE To determine the acute effects of a mitochondrial targeting antioxidant (MitoQ) on the metabolic response during exercise. METHODS Nine (n = 9) physically inactive females (age 47 ± 22 years) performed two trials (Placebo and MitoQ) in a double-blind randomized cross-over design. In both trials, participants performed an exercise protocol consisting of 3-min stages at submaximal workloads followed by a ramp protocol to volitional exhaustion. Participants received either Placebo or MitoQ (80 mg) 1 h prior to exercise. Indirect calorimetry and cardiovascular measurements were collected throughout the duration of the exercise bout. RESULTS Submaximal metabolic and cardiovascular variables were not different between trials (p > 0.05). VO2max was higher (p = 0.03) during Placebo (23.5 ± 5.7 mL kg min-1 ) compared to MitoQ (21.0 ± 6.6 mL kg min-1 ). Maximal ventilation was also higher (p = 0.02) in Placebo (82.4 ± 17.7 L/min) compared to MitoQ (75.0 ± 16.8 L/min). Maximal cardiovascular variables and blood lactate were not different between trials (p > 0.05). CONCLUSION An acute dose of MitoQ blunted VO2max , which was primarily mediated by impairment of ventilatory function. These data suggest that the acute accumulation of exercise-induced mitochondrial reactive oxygen species (mtROS) are necessary for maximal aerobic capacity. Further research is warranted on mtROS-antioxidant cell signaling cascades, and how they relate to mitochondrial function during exercise.
Collapse
Affiliation(s)
- Ryan P. Hughes
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Nicholas A. Carlini
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Bradley S. Fleenor
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Matthew P. Harber
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| |
Collapse
|
25
|
Kirkman DL, Stock JM, Shenouda N, Bohmke NJ, Kim Y, Kidd J, Townsend RR, Edwards DG. Effects of a mitochondrial-targeted ubiquinol on vascular function and exercise capacity in chronic kidney disease: a randomized controlled pilot study. Am J Physiol Renal Physiol 2023; 325:F448-F456. [PMID: 37560769 DOI: 10.1152/ajprenal.00067.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Mitochondria-derived oxidative stress has been implicated in vascular and skeletal muscle abnormalities in chronic kidney disease (CKD). The purpose of this study was to investigate the effects of a mitochondria-targeted ubiquinol (MitoQ) on vascular function and exercise capacity in CKD. In this randomized controlled trial, 18 patients with CKD (means ± SE, age: 62 ± 3 yr and estimated glomerular filtration rate: 45 ± 3 mL/min/1.73 m2) received 4 wk of 20 mg/day MitoQ (MTQ group) or placebo (PLB). Outcomes assessed at baseline and follow-up included macrovascular function measured by flow-mediated dilation, microvascular function assessed by laser-Doppler flowmetry combined with intradermal microdialysis, aortic hemodynamics assessed by oscillometry, and exercise capacity assessed by cardiopulmonary exercise testing. Compared with PLB, MitoQ improved flow-mediated dilation (baseline vs. follow-up: MTQ, 2.4 ± 0.3% vs. 4.0 ± 0.9%, and PLB, 4.2 ± 1.0% vs. 2.5 ± 1.0%, P = 0.04). MitoQ improved microvascular function (change in cutaneous vascular conductance: MTQ 4.50 ± 2.57% vs. PLB -2.22 ± 2.67%, P = 0.053). Central aortic systolic and pulse pressures were unchanged; however, MitoQ prevented increases in augmentation pressures that were observed in the PLB group (P = 0.026). MitoQ did not affect exercise capacity. In conclusion, this study demonstrates the potential for a MitoQ to improve vascular function in CKD. The findings hold promise for future investigations of mitochondria-targeted therapies in CKD.NEW & NOTEWORTHY In this randomized controlled pilot study, we investigated the effects of a mitochondria-targeted ubiquinol (MitoQ) on vascular function and exercise capacity in chronic kidney disease. Our novel findings showed that 4-wk supplementation of MitoQ was well tolerated and improved macrovascular endothelial function, arterial hemodynamics, and microvascular function in patients with stage 3-4 chronic kidney disease. Our mechanistic findings also suggest that MitoQ improved microvascular function in part by reducing the NADPH oxidase contribution to vascular dysfunction.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Natalie J Bohmke
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Youngdeok Kim
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jason Kidd
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia, United States
| | - Raymond R Townsend
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
26
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel) 2023; 12:1675. [PMID: 37759978 PMCID: PMC10525108 DOI: 10.3390/antiox12091675] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
27
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
28
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
29
|
Wong SA, Drovandi A, Jones R, Golledge J. Effect of Dietary Supplements Which Upregulate Nitric Oxide on Walking and Quality of Life in Patients with Peripheral Artery Disease: A Meta-Analysis. Biomedicines 2023; 11:1859. [PMID: 37509499 PMCID: PMC10376856 DOI: 10.3390/biomedicines11071859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This systematic review pooled evidence from randomised controlled trials (RCTs) on the effectiveness of dietary upregulators of nitric oxide (NO) in improving the walking and quality of life of patients with peripheral artery disease (PAD). RCTs examining the effect of dietary upregulators of NO in patients with PAD were included. The primary outcome was the maximum walking distance. Secondary outcomes were the initial claudication distance, the six-minute walking distance, quality of life, the ankle-brachial pressure index (ABI), adverse events and risk of mortality, revascularisation or amputation. Meta-analyses were performed using random effects models. The risk of bias was assessed using Cochrane's ROB-2 tool. Leave-one-out and subgroup analyses were conducted to assess the effect of individual studies, the risk of bias and intervention type on pooled estimates. Thirty-four RCTs involving 3472 participants were included. Seven trials tested NO donors, nineteen tested antioxidants, three tested NO synthase inducers and five tested enhancers of NO availability. Overall, the dietary supplements significantly improved the initial claudication (SMD 0.34; 95%CI 0.04, 0.64; p = 0.03) but not maximum walking (SMD 0.13; 95%CI -0.17, 0.43; p = 0.39) distances. Antioxidant supplements significantly increased both the maximum walking (SMD 0.36; 95%CI 0.14, 0.59; p = 0.001) and initial claudication (SMD 0.58; 95%CI 0.26, 0.90; p < 0.001) distances. The dietary interventions did not improve the physical function domain of the Short Form-36 (SMD -0.16; 95%CI -0.32, 0.00; p = 0.38), ABI or risk of adverse events, mortality, revascularisation or amputation. Dietary NO upregulators, especially antioxidants, appear to improve the initial claudication distance in patients with PAD. Larger high-quality RCTs are needed to fully examine the benefits and risks of these treatments. PROSPERO Registration: CRD42022256653.
Collapse
Affiliation(s)
- Shannon A Wong
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Aaron Drovandi
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Rhondda Jones
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia
| |
Collapse
|
30
|
Becker PH, Thérond P, Gaignard P. Targeting mitochondrial function in macrophages: A novel treatment strategy for atherosclerotic cardiovascular disease? Pharmacol Ther 2023; 247:108441. [PMID: 37201736 DOI: 10.1016/j.pharmthera.2023.108441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of morbidity and mortality due to chronic arterial injury caused by hyperlipidemia, hypertension, inflammation and oxidative stress. Recent studies have shown that the progression of this disease is associated with mitochondrial dysfunction and with the accumulation of mitochondrial alterations within macrophages of atherosclerotic plaques. These alterations contribute to processes of inflammation and oxidative stress. Among the many players involved, macrophages play a pivotal role in atherogenesis as they can exert both beneficial and deleterious effects due to their anti- and pro-inflammatory properties. Their atheroprotective functions, such as cholesterol efflux and efferocytosis, as well as the maintenance of their polarization towards an anti-inflammatory state, are particularly dependent on mitochondrial metabolism. Moreover, in vitro studies have demonstrated deleterious effects of oxidized LDL on macrophage mitochondrial function, resulting in a switch to a pro-inflammatory state and to a potential loss of atheroprotective capacity. Therefore, preservation of mitochondrial function is now considered a legitimate therapeutic strategy. This review focuses on the potential therapeutic strategies that could improve the mitochondrial function of macrophages, enabling them to maintain their atheroprotective capacity. These emerging therapies could play a valuable role in counteracting the progression of atherosclerotic lesions and possibly inducing their regression.
Collapse
Affiliation(s)
- Pierre-Hadrien Becker
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France.
| | - Patrice Thérond
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| | - Pauline Gaignard
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| |
Collapse
|
31
|
Castelli R, Gidaro A, Casu G, Merella P, Profili NI, Donadoni M, Maioli M, Delitala AP. Aging of the Arterial System. Int J Mol Sci 2023; 24:6910. [PMID: 37108072 PMCID: PMC10139087 DOI: 10.3390/ijms24086910] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Aging of the vascular system is associated with deep changes of the structural proprieties of the arterial wall. Arterial hypertension, diabetes mellitus, and chronic kidney disease are the major determinants for the loss of elasticity and reduced compliance of vascular wall. Arterial stiffness is a key parameter for assessing the elasticity of the arterial wall and can be easily evaluated with non-invasive methods, such as pulse wave velocity. Early assessment of vessel stiffness is critical because its alteration can precede clinical manifestation of cardiovascular disease. Although there is no specific pharmacological target for arterial stiffness, the treatment of its risk factors helps to improve the elasticity of the arterial wall.
Collapse
Affiliation(s)
- Roberto Castelli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Gavino Casu
- Cardiology Unit, Azienda Ospedaliero, Universitaria di Sassari, 07100 Sassari, Italy
| | - Pierluigi Merella
- Cardiology Unit, Azienda Ospedaliero, Universitaria di Sassari, 07100 Sassari, Italy
| | - Nicia I. Profili
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Mattia Donadoni
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Margherita Maioli
- Department of Biochemical Science, University of Sassari, 07100 Sassari, Italy
| | - Alessandro P. Delitala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
32
|
Allen MF, Pekas EJ, Park SY. Arterial Stiffness as a Prognostic Marker for Peripheral Artery Disease Risk: Clinical Relevance and Considerations. JACC. ASIA 2023; 3:298-300. [PMID: 37181382 PMCID: PMC10167508 DOI: 10.1016/j.jacasi.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Michael F. Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
33
|
Sex differences in the association between systemic oxidative stress status and optic nerve head blood flow in normal-tension glaucoma. PLoS One 2023; 18:e0282047. [PMID: 36827337 PMCID: PMC9955941 DOI: 10.1371/journal.pone.0282047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE To investigate the association of systemic oxidative stress markers and optic nerve head (ONH) blood flow in normal-tension glaucoma (NTG) patients, as well as sex differences in this association. METHODS This was a cross-sectional study of 235 eyes with NTG of 134 patients (56 male, 78 female; mean age, 60.9±14.1 years). Laser speckle flowgraphy (LSFG) was used to measure ONH blood flow (mean blur rate in the tissue area of the ONH; MBR-T) and LSFG pulse-waveform parameters, including flow acceleration index in the tissue area of the ONH (FAI-T). Oxidative stress markers, diacron-reactive oxygen metabolites (d-ROMs), and biological antioxidant potential (BAP) were measured with a free radical elective evaluator. Spearman's rank correlation test and a multivariate linear mixed-effect model were used to investigate factors associated with ONH blood flow. RESULTS MBR-T was significantly correlated with age (rs = -0.28, p < 0.001), mean arterial pressure (rs = -0.20, p = 0.002), intraocular pressure (rs = 0.24, p < 0.001), peripapillary retinal nerve fiber layer thickness (rs = 0.62, p < 0.001), and disc area (rs = -0.26, p < 0.001), but not with serum d-ROM level. Separate analyses of the subjects divided by sex showed that BAP was positively correlated to MBR-T (rs = 0.21, p = 0.036) and FAI-T (rs = 0.36, p < 0.001) only in male subjects. Similarly, BAP was significantly associated with MBR-T (β = 0.25, p = 0.026) and FAI-T (β = 0.37, p < 0.001) in male subjects in a multivariate linear mixed-effect model. CONCLUSION A lower serum antioxidant level, as indicated by BAP, was associated with reduced ONH blood flow only in male NTG patients. Our findings suggest that there are sex differences in the involvement of oxidative stress in the pathogenesis of reduced ocular blood flow in NTG.
Collapse
|
34
|
Tan G, Qin Z, Jiang S, Zhang L, Zhang G, Huang M, Huang Z, Jin J. MitoQ alleviates triptolide-induced cardiotoxicity via activation of p62/Nrf2 axis in H9c2 cells. Toxicol In Vitro 2023; 86:105487. [PMID: 36272531 DOI: 10.1016/j.tiv.2022.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 12/05/2022]
Abstract
Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Guoyao Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gengyi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Reitz KM, Althouse AD, Forman DE, Zuckerbraun BS, Vodovotz Y, Zamora R, Raffai RL, Hall DE, Tzeng E. MetfOrmin BenefIts Lower Extremities with Intermittent Claudication (MOBILE IC): randomized clinical trial protocol. BMC Cardiovasc Disord 2023; 23:38. [PMID: 36681798 PMCID: PMC9862509 DOI: 10.1186/s12872-023-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Peripheral artery disease (PAD) affects over 230 million people worldwide and is due to systemic atherosclerosis with etiology linked to chronic inflammation, hypertension, and smoking status. PAD is associated with walking impairment and mobility loss as well as a high prevalence of coronary and cerebrovascular disease. Intermittent claudication (IC) is the classic presenting symptom for PAD, although many patients are asymptomatic or have atypical presentations. Few effective medical therapies are available, while surgical and exercise therapies lack durability. Metformin, the most frequently prescribed oral medication for Type 2 diabetes, has salient anti-inflammatory and promitochondrial properties. We hypothesize that metformin will improve function, retard the progression of PAD, and improve systemic inflammation and mitochondrial function in non-diabetic patients with IC. METHODS 200 non-diabetic Veterans with IC will be randomized 1:1 to 180-day treatment with metformin extended release (1000 mg/day) or placebo to evaluate the effect of metformin on functional status, PAD progression, cardiovascular disease events, and systemic inflammation. The primary outcome is 180-day maximum walking distance on the 6-min walk test (6MWT). Secondary outcomes include additional assessments of functional status (cardiopulmonary exercise testing, grip strength, Walking Impairment Questionnaires), health related quality of life (SF-36, VascuQoL), macro- and micro-vascular assessment of lower extremity blood flow (ankle brachial indices, pulse volume recording, EndoPAT), cardiovascular events (amputations, interventions, major adverse cardiac events, all-cause mortality), and measures of systemic inflammation. All outcomes will be assessed at baseline, 90 and 180 days of study drug exposure, and 180 days following cessation of study drug. We will evaluate the primary outcome with linear mixed-effects model analysis with covariate adjustment for baseline 6MWT, age, baseline ankle brachial indices, and smoking status following an intention to treat protocol. DISCUSSION MOBILE IC is uniquely suited to evaluate the use of metformin to improve both systematic inflammatory responses, cellular energetics, and functional outcomes in patients with PAD and IC. TRIAL REGISTRATION The prospective MOBILE IC trial was publicly registered (NCT05132439) November 24, 2021.
Collapse
Affiliation(s)
- Katherine M Reitz
- Department of Surgery, University of Pittsburgh, South Tower, Rm 351.6, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Division of Vascular Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | | | - Daniel E Forman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatrics Research, Education, and Clinical Care, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, South Tower, Rm 351.6, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Surgery, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, South Tower, Rm 351.6, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, South Tower, Rm 351.6, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | | | - Daniel E Hall
- Department of Surgery, University of Pittsburgh, South Tower, Rm 351.6, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Surgery, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatrics Research, Education, and Clinical Care, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Wolff Center, UPMC, Pittsburgh, PA, USA
- Center for Health Equity Research and Promotion, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh, South Tower, Rm 351.6, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Division of Vascular Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
37
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
38
|
Craig JC, Hart CR, Layec G, Kwon OS, Richardson RS, Trinity JD. Impaired hemodynamic response to exercise in patients with peripheral artery disease: evidence of a link to inflammation and oxidative stress. Am J Physiol Regul Integr Comp Physiol 2022; 323:R710-R719. [PMID: 36154490 PMCID: PMC9602942 DOI: 10.1152/ajpregu.00159.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
An exaggerated mean arterial blood pressure (MAP) response to exercise in patients with peripheral artery disease (PAD), likely driven by inflammation and oxidative stress and, perhaps, required to achieve an adequate blood flow response, is well described. However, the blood flow response to exercise in patients with PAD actually remains equivocal. Therefore, eight patients with PAD and eight healthy controls completed 3 min of plantar flexion exercise at both an absolute work rate (WR) (2.7 W, to evaluate blood flow) and a relative intensity (40%WRmax, to evaluate MAP). The exercise-induced change in popliteal artery blood flow (BF, Ultrasound Doppler), MAP (Finapress), and vascular conductance (VC) were quantified. In addition, resting markers of inflammation and oxidative stress were measured in plasma and muscle biopsies. Exercise-induced ΔBF, assessed at 2.7 W, was lower in PAD compared with controls (PAD: 251 ± 150 vs. Controls: 545 ± 187 mL/min, P < 0.001), whereas ΔMAP, assessed at 40%WRmax, was greater for PAD (PAD: 23 ± 14 vs. Controls: 11 ± 6 mmHg, P = 0.028). The exercise-induced ΔVC was lower for PAD during both the absolute WR (PAD: 1.9 ± 1.6 vs. Controls: 4.7 ± 1.9 mL/min/mmHg) and relative intensity exercise (PAD: 1.9 ± 1.8 vs. Controls: 5.0 ± 2.2 mL/min/mmHg) trials (both, P < 0.01). Inflammatory and oxidative stress markers, including plasma interleukin-6 and muscle protein carbonyls, were elevated in PAD (both, P < 0.05), and significantly correlated with the hemodynamic changes during exercise (r = -0.57 to -0.78, P < 0.05). Thus, despite an exaggerated ΔMAP response, patients with PAD exhibit an impaired exercise-induced ΔBF and ΔVC, and both inflammation and oxidative stress likely play a role in this attenuated hemodynamic response.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Oh Sung Kwon
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
39
|
Murray KO, Berryman-Maciel M, Darvish S, Coppock ME, You Z, Chonchol M, Seals DR, Rossman MJ. Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Front Physiol 2022; 13:980783. [PMID: 36187760 PMCID: PMC9520456 DOI: 10.3389/fphys.2022.980783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cardiovascular disease (CVD) is the leading cause of death worldwide and aging is the primary risk factor for the development of CVD. The increased risk of CVD with aging is largely mediated by the development of vascular dysfunction. Excessive production of mitochondrial reactive oxygen species (mtROS) is a key mechanism of age-related vascular dysfunction. Therefore, establishing the efficacy of therapies to reduce mtROS to improve vascular function with aging is of high biomedical importance. Previously, in a small, randomized, crossover-design pilot clinical trial, our laboratory obtained initial evidence that chronic oral supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular function in healthy older adults. Here, we describe the protocol for an ongoing R01-funded phase IIa clinical trial to establish the efficacy of MitoQ as a therapy to improve vascular function in older adults (ClinicalTrials.gov Identifier: NCT04851288).Outcomes: The primary outcome of the study is nitric oxide (NO)-mediated endothelium-dependent dilation (EDD) as assessed by brachial artery flow-mediated dilation (FMDBA). Secondary outcomes include mtROS-mediated suppression of EDD, aortic stiffness as measured by carotid-femoral pulse wave velocity, carotid compliance and β-stiffness index, and intima media thickness. Other outcomes include the assessment of endothelial mitochondrial health and oxidative stress in endothelial cells obtained by endovascular biopsy; the effect of altered circulating factors following MitoQ treatment on endothelial cell NO bioavailability and whole cell and mitochondrial reactive oxygen species production ex vivo; and circulating markers of oxidative stress, antioxidant status, and inflammation.Methods: We are conducting a randomized, placebo-controlled, double-blind, parallel group, phase IIa clinical trial in 90 (45/group) healthy older men and women 60 years of age or older. Participants complete baseline testing and are then randomized to either 3 months of oral MitoQ (20 mg; once daily) or placebo supplementation. Outcome measures are assessed at the midpoint of treatment, i.e., 6 weeks, and again at the conclusion of treatment.Discussion: This study is designed to establish the efficacy of chronic supplementation with the mitochondrial-targeted antioxidant MitoQ for improving vascular endothelial function and reducing large elastic artery stiffness in older adults, and to investigate the mechanisms by which MitoQ supplementation improves endothelial function.
Collapse
Affiliation(s)
- Kevin O. Murray
- Integrative Physiology of Aging Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Morgan Berryman-Maciel
- Integrative Physiology of Aging Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Sanna Darvish
- Integrative Physiology of Aging Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - McKinley E. Coppock
- Integrative Physiology of Aging Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Zhiying You
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Douglas R. Seals
- Integrative Physiology of Aging Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Matthew J. Rossman
- Integrative Physiology of Aging Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- *Correspondence: Matthew J. Rossman,
| |
Collapse
|
40
|
Cicero AFG, Fogacci F, Di Micoli A, Veronesi M, Borghi C. Noninvasive instrumental evaluation of coenzyme Q 10 phytosome on endothelial reactivity in healthy nonsmoking young volunteers: A double-blind, randomized, placebo-controlled crossover clinical trial. Biofactors 2022; 48:1160-1165. [PMID: 35342994 PMCID: PMC9790510 DOI: 10.1002/biof.1839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Coenzyme Q10 (CoQ10 ) is a natural antioxidant compound that prevents the vascular damage induced by free radicals and the activation of inflammatory signaling pathways. Supplementation with CoQ10 is safe though its bioavailability is generally low, as far as variable depending on the pharmaceutical form of preparation. Recently, the development of phytosome technology has improved the bioavailability of CoQ10 and definitely facilitated its effective use in clinical practice. The present double-blind, randomized, placebo-controlled, crossover clinical study aimed to investigate the effect on endothelial reactivity and total antioxidant capacity (TAC) of either acute and chronic supplementation with CoQ10 phytosome in a sample of 20 healthy young nonsmoking subjects. CoQ10 phytosome supplementation acutely improved endothelial reactivity in comparison with baseline and placebo (+4.7% ± 0.9% vs. -0.1 %± 0.3% p < 0.05). Middle-term supplementation of the tested pharmaceutical formulation of CoQ10 significantly improved mean arterial pressure (-2.2 ± 1.1 mmHg vs. 0.2 ± 0.7 mmHg, p < 0.05 vs. placebo) and TAC (+29.6% ± 3.2% vs. +1.9% ± 0.8%, p < 0.05 vs. placebo). Endothelial reactivity improved compared with baseline following middle-term dietary supplementation with CoQ10 phytosome (+5.7% ± 1.1%, p < 0.05).
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Federica Fogacci
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | | | - Maddalena Veronesi
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Claudio Borghi
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| |
Collapse
|
41
|
Mason SA, Wadley GD, Keske MA, Parker L. Effect of mitochondrial-targeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2022; 24:1047-1060. [PMID: 35165982 PMCID: PMC9314850 DOI: 10.1111/dom.14669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
AIM To investigate the effects of mitochondrial-targeted antioxidants (mitoAOXs) on glycaemic control, cardiovascular health, and oxidative stress outcomes in humans. MATERIALS AND METHODS Randomized controlled trials investigating mitoAOX interventions in humans were searched for in databases (MEDLINE-PubMed, Scopus, EMBASE and Cochrane Library) and clinical trial registries up to 10 June 2021. The Cochrane Collaboration's tool for assessing risk of bias and Grading of Recommendations, Assessment, Development and Evaluations were used to assess trial quality and evidence certainty, respectively. RESULTS Nineteen studies (n = 884 participants) using mitoAOXs (including Elamipretide, MitoQ and MitoTEMPO) were included in the systematic review. There were limited studies investigating the effects of mitoAOXs on glycaemic control; and outcomes and population groups in studies focusing on cardiovascular health were diverse. MitoAOXs significantly improved brachial flow-mediated dilation (n = 3 trials; standardized mean difference: 1.19, 95% CI: 0.28, 2.16; I2 : 67%) with very low evidence certainty. No significant effects were found for any other glycaemic, cardiovascular or oxidative stress-related outcomes with mitoAOXs in quantitative analyses, with evidence certainty rated mostly as low. There was a lack of serious treatment-emergent adverse events with mitoAOXs, although subcutaneous injection of Elamipretide increased mild-moderate injection site-related events. CONCLUSION While short-term studies indicate that mitoAOXs are generally well tolerated, there is currently limited evidence to support the use of mitoAOXs in the management of glycaemic control and cardiovascular health. Review findings suggest that future research should focus on the effects of mitoAOXs on glycaemic control and endothelial function in target clinical population groups.
Collapse
Affiliation(s)
- Shaun Andrew Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| | - Glenn David Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| | - Michelle Anne Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| |
Collapse
|
42
|
Medical Therapies for Heart Failure in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9050152. [PMID: 35621863 PMCID: PMC9143150 DOI: 10.3390/jcdd9050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Significant surgical and medical advances over the past several decades have resulted in a growing number of infants and children surviving with hypoplastic left heart syndrome (HLHS) and other congenital heart defects associated with a single systemic right ventricle (RV). However, cardiac dysfunction and ultimately heart failure (HF) remain the most common cause of death and indication for transplantation in this population. Moreover, while early recognition and treatment of single ventricle-related complications are essential to improving outcomes, there are no proven therapeutic strategies for single systemic RV HF in the pediatric population. Importantly, prototypical adult HF therapies have been relatively ineffective in mitigating the need for cardiac transplantation in HLHS, likely due to several unique attributes of the failing HLHS myocardium. Here, we discuss the most commonly used medical therapies for the treatment of HF symptoms in HLHS and other single systemic RV patients. Additionally, we provide an overview of potential novel therapies for systemic ventricular failure in the HLHS and related populations based on fundamental science, pre-clinical, clinical, and observational studies in the current literature.
Collapse
|
43
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Park SY, Pekas EJ, Anderson CP, Kambis TN, Mishra PK, Schieber MN, Wooden TK, Thompson JR, Kim KS, Pipinos II. Impaired microcirculatory function, mitochondrial respiration, and oxygen utilization in skeletal muscle of claudicating patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2022; 322:H867-H879. [PMID: 35333113 PMCID: PMC9018007 DOI: 10.1152/ajpheart.00690.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease that impairs blood flow and muscle function in the lower limbs. A skeletal muscle myopathy characterized by mitochondrial dysfunction and oxidative damage is present in PAD; however, the underlying mechanisms are not well established. We investigated the impact of chronic ischemia on skeletal muscle microcirculatory function and its association with leg skeletal muscle mitochondrial function and oxygen delivery and utilization capacity in PAD. Gastrocnemius samples and arterioles were harvested from patients with PAD (n = 10) and age-matched controls (Con, n = 11). Endothelium-dependent and independent vasodilation was assessed in response to flow (30 μL·min-1), acetylcholine, and sodium nitroprusside (SNP). Skeletal muscle mitochondrial respiration was quantified by high-resolution respirometry, microvascular oxygen delivery, and utilization capacity (tissue oxygenation index, TOI) were assessed by near-infrared spectroscopy. Vasodilation was attenuated in PAD (P < 0.05) in response to acetylcholine (Con: 71.1 ± 11.1%, PAD: 45.7 ± 18.1%) and flow (Con: 46.6 ± 20.1%, PAD: 29.3 ± 10.5%) but not SNP (P = 0.30). Complex I + II state 3 respiration (P < 0.01) and TOI recovery rate were impaired in PAD (P < 0.05). Both flow and acetylcholine-mediated vasodilation were positively associated with complex I + II state 3 respiration (r = 0.5 and r = 0.5, respectively, P < 0.05). Flow-mediated vasodilation and complex I + II state 3 respiration were positively associated with TOI recovery rate (r = 0.8 and r = 0.7, respectively, P < 0.05). These findings suggest that chronic ischemia attenuates skeletal muscle arteriole endothelial function, which may be a key mediator for mitochondrial and microcirculatory dysfunction in the PAD leg skeletal muscle. Targeting microvascular dysfunction may be an effective strategy to prevent and/or reverse disease progression in PAD.NEW & NOTEWORTHY Ex vivo skeletal muscle arteriole endothelial function is impaired in claudicating patients with PAD, and this is associated with attenuated skeletal muscle mitochondrial respiration. In vivo skeletal muscle oxygen delivery and utilization capacity is compromised in PAD, and this may be due to microcirculatory and mitochondrial dysfunction. These results suggest that targeting skeletal muscle arteriole function may lead to improvements in skeletal muscle mitochondrial respiration and oxygen delivery and utilization capacity in claudicating patients with PAD.
Collapse
Affiliation(s)
- Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Cody P Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Molly N Schieber
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kyung Soo Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW We review therapeutic approaches aimed at restoring function of the failing heart by targeting mitochondrial reactive oxygen species (ROS), ion handling, and substrate utilization for adenosine triphosphate (ATP) production. RECENT FINDINGS Mitochondria-targeted therapies have been tested in animal models of and humans with heart failure (HF). Cardiac benefits of sodium/glucose cotransporter 2 inhibitors might be partly explained by their effects on ion handling and metabolism of cardiac myocytes. The large energy requirements of the heart are met by oxidative phosphorylation in mitochondria, which is tightly regulated by the turnover of ATP that fuels cardiac contraction and relaxation. In heart failure (HF), this mechano-energetic coupling is disrupted, leading to bioenergetic mismatch and production of ROS that drive the progression of cardiac dysfunction. Furthermore, HF is accompanied by changes in substrate uptake and oxidation that are considered detrimental for mitochondrial oxidative metabolism and negatively affect cardiac efficiency. Mitochondria lie at the crossroads of metabolic and energetic dysfunction in HF and represent ideal therapeutic targets.
Collapse
Affiliation(s)
- Julia Schwemmlein
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany.
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy.
| |
Collapse
|
46
|
(-)-Epicatechin Alters Reactive Oxygen and Nitrogen Species Production Independent of Mitochondrial Respiration in Human Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4413191. [PMID: 35069974 PMCID: PMC8767396 DOI: 10.1155/2022/4413191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Introduction Vascular endothelial dysfunction is characterised by lowered nitric oxide (NO) bioavailability, which may be explained by increased production of reactive oxygen species (ROS), mitochondrial dysfunction, and altered cell signalling. (-)-Epicatechin (EPI) has proven effective in the context of vascular endothelial dysfunction, but the underlying mechanisms associated with EPI's effects remain unclear. Objective(s). Our aim was to investigate whether EPI impacts reactive oxygen and nitrogen species (RONS) production and mitochondrial function of human vascular endothelial cells (HUVECs). We hypothesised that EPI would attenuate ROS production, increase NO bioavailability, and enhance indices of mitochondrial function. Methods HUVECs were treated with EPI (0-20 μM) for up to 48 h. Mitochondrial and cellular ROS were measured in the absence and presence of antimycin A (AA), an inhibitor of the mitochondrial electron transport protein complex III, favouring ROS production. Genes associated with mitochondrial remodelling and the antioxidant response were quantified by RT-qPCR. Mitochondrial bioenergetics were assessed by respirometry and signalling responses determined by western blotting. Results Mitochondrial superoxide production without AA was increased 32% and decreased 53% after 5 and 10 μM EPI treatment vs. CTRL (P < 0.001). With AA, only 10 μM EPI increased mitochondrial superoxide production vs. CTRL (25%, P < 0.001). NO bioavailability was increased by 45% with 10 μM EPI vs. CTRL (P = 0.010). However, EPI did not impact mitochondrial respiration. NRF2 mRNA expression was increased 1.5- and 1.6-fold with 5 and 10 μM EPI over 48 h vs. CTRL (P = 0.015 and P = 0.001, respectively). Finally, EPI transiently enhanced ERK1/2 phosphorylation (2.9 and 3.2-fold over 15 min and 1 h vs. 0 h, respectively; P = 0.035 and P = 0.011). Conclusion(s). EPI dose-dependently alters RONS production of HUVECs but does not impact mitochondrial respiration. The induction of NRF2 mRNA expression with EPI might relate to enhanced ERK1/2 signalling, rather than RONS production. In humans, EPI may improve vascular endothelial dysfunction via alteration of RONS and activation of cell signalling.
Collapse
|
47
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
48
|
de la Bella-Garzón R, Fernández-Portero C, Alarcón D, Amián JG, López-Lluch G. Levels of Plasma Coenzyme Q 10 Are Associated with Physical Capacity and Cardiovascular Risk in the Elderly. Antioxidants (Basel) 2022; 11:279. [PMID: 35204162 PMCID: PMC8868547 DOI: 10.3390/antiox11020279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an essential factor for mitochondrial activity and antioxidant protection of cells, tissues and plasma lipoproteins. Its deficiency has been associated with aging progression in animals and humans. To determine if CoQ10 levels in plasma can be associated with frailty in elderly people (aged > 65), we studied the relationship of CoQ10 levels in blood with other parameters in plasma and with the physical activity and capacity in aged people. Our results indicate that high CoQ10 levels are directly associated with lower cardiovascular risk measured by the quotient total cholesterol/HDL cholesterol. Furthermore, high CoQ10 levels were found in people showing higher physical activity, stronger muscle capacity. CoQ10 also showed a strong inverse relationship with sedentarism and the up and go test, which is considered to be a frailty index. Interestingly, we found gender differences, indicating stronger correlations in women than in men. The importance of the maintenance of CoQ10 levels in elderly people to avoid sarcopenia and frailty in elderly people is discussed.
Collapse
Affiliation(s)
- Rocío de la Bella-Garzón
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Cristina Fernández-Portero
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - David Alarcón
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - Josué G. Amián
- Department of Social Antropology, Psychology and Public Health, Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.F.-P.); (D.A.); (J.G.A.)
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, 41013 Seville, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U729), Instituto de Salud Carlos III-Madrid, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Centro de Investigación en Rendimiento Físico y Deportivo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
49
|
Golledge J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat Rev Cardiol 2022; 19:456-474. [PMID: 34997200 DOI: 10.1038/s41569-021-00663-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Approximately 6% of adults worldwide have atherosclerosis and thrombosis of the lower limb arteries (peripheral artery disease (PAD)) and the prevalence is rising. PAD causes leg pain, impaired health-related quality of life, immobility, tissue loss and a high risk of major adverse events, including myocardial infarction, stroke, revascularization, amputation and death. In this Review, I describe the pathophysiology, presentation, outcome, preclinical research and medical management of PAD. Established treatments for PAD include antithrombotic drugs, such as aspirin and clopidogrel, and medications to treat dyslipidaemia, hypertension and diabetes mellitus. Randomized controlled trials have demonstrated that these treatments reduce the risk of major adverse events. The drug cilostazol, exercise therapy and revascularization are the current treatment options for the limb symptoms of PAD, but each has limitations. Novel therapies to promote collateral and new capillary growth and treat PAD-related myopathy are under investigation. Methods to improve the implementation of evidence-based medical management, novel drug therapies and rehabilitation programmes for PAD-related pain, functional impairment and ischaemic foot disease are important areas for future research.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia. .,The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia. .,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
50
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|