1
|
Kalinskaya AI, Elizarova AK, Anisimova AS, Vorobyeva DA, Rusakovich GI, Maryukhnich EV, Dukhin OA, Ivanova OI, Bugrova AE, Brzhozovskiy AG, Indeykina MI, Kononikhin AS, Nikolaev EN, Vasilieva EY. Peculiarities of Hemostasis and Proteomics in Patients With Acute Myocardial Infarction and Healthy Volunteers After SARS-CоV-2 Infection. KARDIOLOGIIA 2024; 64:58-69. [PMID: 39392268 DOI: 10.18087/cardio.2024.9.n2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
AIM To identify the features of plasma, platelet hemostasis, and proteomic composition of the blood plasma in patients with acute myocardial infarction (AMI) and healthy volunteers after COVID-19. MATERIAL AND METHODS The study included patients with AMI who have recently had COVID-19 (AMI-post-COVID, n=56) and patients with AMI who have not recently had COVID-19 (AMI-control, n=141). Healthy volunteers constituted the control groups and were also divided into control-post-COVID (n=32) and control-control (n=71) groups. Previous SARS-CoV-2 infection was determined by anti-N IgG in the blood serum, the level of which persists for 6-10 months after the disease. Hemostasis was evaluated by thromboelastometry (on whole blood), thrombodynamics (on platelet-poor plasma), fibrinolysis, impedance aggregometry, and proteomic analysis. RESULTS The AMI-post-COVID and AMI-control groups had higher values of thrombus growth rate, size and density based on the data of thromboelastometry and thrombodynamics, as well as increased concentrations of the complement system components, proteins regulating the state of the endothelium, and a number of acute-phase and procoagulant proteins compared to the control groups. Furthermore, in the AMI-post-COVID group, compared to the AMI-control group, the thrombus density was lower, and its lysis rates were higher when measured by the thrombodynamics method on platelet-poor plasma, while the platelet aggregation induced by ADP and thrombin was higher. Also, in the control-post-COVID group, compared to the control-control group, the thrombus formation rate was lower, whereas, in contrast, the thrombus size as measured by the thrombodynamics method and the platelet aggregation induced by arachidonic acid and thrombin were higher. In addition, in the AMI-post-COVID group, compared to the AMI-control group, the concentrations of proteins involved in inflammation and hemostasis were lower. CONCLUSION Patients with AMI who have recently had COVID-19 are characterized by a less pronounced activation of the immune response compared to patients with AMI who have not had COVID-19. This may be due to long-term chronic inflammation and depletion of components of the immune activation system after SARS-CoV-2 infection. Long-term activation of the hemostasis system in both patients with AMI and healthy volunteers after COVID-19 is primarily due to the platelet component of hemostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - O A Dukhin
- Davydovsky Municipal Clinical Hospital, Moscow
| | | | - A E Bugrova
- Emanuel Institute of Biochemical Physics, Moscow
| | | | - M I Indeykina
- Skolkovo Institute of Science and Technologies, Moscow
| | | | - E N Nikolaev
- Skolkovo Institute of Science and Technologies, Moscow
| | | |
Collapse
|
2
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
3
|
Kurup S, Tan C, Kume T. Cardiac and intestinal tissue conduct developmental and reparative processes in response to lymphangiocrine signaling. Front Cell Dev Biol 2023; 11:1329770. [PMID: 38178871 PMCID: PMC10764504 DOI: 10.3389/fcell.2023.1329770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Lymphatic vessels conduct a diverse range of activities to sustain the integrity of surrounding tissue. Besides facilitating the movement of lymph and its associated factors, lymphatic vessels are capable of producing tissue-specific responses to changes within their microenvironment. Lymphatic endothelial cells (LECs) secrete paracrine signals that bind to neighboring cell-receptors, commencing an intracellular signaling cascade that preludes modifications to the organ tissue's structure and function. While the lymphangiocrine factors and the molecular and cellular mechanisms themselves are specific to the organ tissue, the crosstalk action between LECs and adjacent cells has been highlighted as a commonality in augmenting tissue regeneration within animal models of cardiac and intestinal disease. Lymphangiocrine secretions have been owed for subsequent improvements in organ function by optimizing the clearance of excess tissue fluid and immune cells and stimulating favorable tissue growth, whereas perturbations in lymphatic performance bring about the opposite. Newly published landmark studies have filled gaps in our understanding of cardiac and intestinal maintenance by revealing key players for lymphangiocrine processes. Here, we will expand upon those findings and review the nature of lymphangiocrine factors in the heart and intestine, emphasizing its involvement within an interconnected network that supports daily homeostasis and self-renewal following injury.
Collapse
Affiliation(s)
- Shreya Kurup
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Honors College, University of Illinois at Chicago, Chicago, IL, United States
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Kalinskaya A, Vorobyeva D, Rusakovich G, Maryukhnich E, Anisimova A, Dukhin O, Elizarova A, Ivanova O, Bugrova A, Brzhozovskiy A, Kononikhin A, Nikolaev E, Vasilieva E. Targeted Blood Plasma Proteomics and Hemostasis Assessment of Post COVID-19 Patients with Acute Myocardial Infarction. Int J Mol Sci 2023; 24:ijms24076523. [PMID: 37047497 PMCID: PMC10094800 DOI: 10.3390/ijms24076523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers. The groups were divided according to the anti-N IgG levels (AMI post-COVID (n = 44), AMI control (n = 22), control post-COVID (n = 31), and control (n = 27)). All participants underwent rotational thromboelastometry, thrombodynamics, impedance aggregometry, and blood plasma proteomics analysis. Both AMI groups of patients demonstrated higher values of clot growth rates, thrombus size and density, as well as the elevated levels of components of the complement system, proteins modifying the state of endothelium, acute-phase and procoagulant proteins. In comparison with AMI control, AMI post-COVID patients demonstrated decreased levels of proteins connected to inflammation and hemostasis (lipopolysaccharide-binding protein, C4b-binding protein alpha-chain, plasma protease C1 inhibitor, fibrinogen beta-chain, vitamin K-dependent protein S), and altered correlations between inflammation and fibrinolysis. A new finding is that AMI post-COVID patients opposite the AMI control group, are characterized by a less noticeable growth of acute-phase proteins and hemostatic markers that could be explained by prolonged immune system alteration after COVID-19.
Collapse
|
5
|
Nagar H, Kim S, Lee I, Choi SJ, Piao S, Jeon BH, Shong M, Kim CS. CRIF1 deficiency suppresses endothelial cell migration via upregulation of RhoGDI2. PLoS One 2021; 16:e0256646. [PMID: 34437633 PMCID: PMC8389428 DOI: 10.1371/journal.pone.0256646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
7
|
Koyama T, Kuriyama N, Suzuki Y, Saito S, Tanaka R, Iwao M, Tanaka M, Maki T, Itoh H, Ihara M, Shindo T, Uehara R. Mid-regional pro-adrenomedullin is a novel biomarker for arterial stiffness as the criterion for vascular failure in a cross-sectional study. Sci Rep 2021; 11:305. [PMID: 33431996 PMCID: PMC7801498 DOI: 10.1038/s41598-020-79525-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
We investigated the potential of mid-regional pro-adrenomedullin (MR-proADM) for use as a novel biomarker for arterial stiffness as the criterion for vascular failure and cardiometabolic disease (obesity, hypertension, dyslipidemia, diabetes, and metabolic syndrome) compared with high-sensitivity C-reactive protein (hsCRP). Overall, 2169 individuals (702 men and 1467 women) were enrolled. Multiple regression analysis was performed to assess the association of MR-proADM and hsCRP with brachial-ankle pulse wave velocity (baPWV), adjusting for other variables. The diagnostic performance (accuracy) of MR-proADM with regard to the index of vascular failure was tested with the help of receiver operating characteristic curve analysis in the models. MR-proADM was significantly higher in participants with vascular failure, as defined by baPWV and/or its risk factors (obesity, hypertension, dyslipidemia, diabetes, and metabolic syndrome), than in control groups. Independent of cardiovascular risk factors (age, drinking, smoking, body mass index, systolic blood pressure, lipid and glycol metabolism), MR-proADM was significantly associated with baPWV, and MR-proADM showed higher areas under the curve of baPWV than hsCRP showed. MR-proADM is more suitable for the diagnosis of higher arterial stiffness as the criterion for vascular failure than hsCRP. Because vascular assessment is important to mitigate the most significant modifiable cardiovascular risk factors, MR-proADM may be useful as a novel biomarker on routine blood examination.
Collapse
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Japan.,Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Motoshi Iwao
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Ritei Uehara
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Bellis A, Mauro C, Barbato E, Di Gioia G, Sorriento D, Trimarco B, Morisco C. The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction. Cells 2020; 9:cells9092134. [PMID: 32967374 PMCID: PMC7565478 DOI: 10.3390/cells9092134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a "multi-targeted cardioprotective therapy", defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.
Collapse
Affiliation(s)
- Alessandro Bellis
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Giuseppe Di Gioia
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Cardiac Catheterization Laboratory, Montevergine Clinic, 83013 Mercogliano (AV), Italy
| | - Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
9
|
Trincot CE, Xu W, Zhang H, Kulikauskas MR, Caranasos TG, Jensen BC, Sabine A, Petrova TV, Caron KM. Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circ Res 2019; 124:101-113. [PMID: 30582443 PMCID: PMC6318063 DOI: 10.1161/circresaha.118.313835] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.
Collapse
Affiliation(s)
- Claire E. Trincot
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Molly R. Kulikauskas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Thomas G. Caranasos
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Amelie Sabine
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
- Division of Experimental Pathlogy, Lausanne University Hospital
| | - Kathleen M. Caron
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , 111 Mason Farm Rd, MBRB 6312B, CB 7545, Chapel Hill, NC 27599
| |
Collapse
|
10
|
Tsuruda T, Kato J, Kuwasako K, Kitamura K. Adrenomedullin: Continuing to explore cardioprotection. Peptides 2019; 111:47-54. [PMID: 29577955 DOI: 10.1016/j.peptides.2018.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Adrenomedullin (AM), a peptide isolated from an extract of human pheochromocytoma, comprises 52 amino acids with an intramolecular disulfide bond and amidation at the carboxy-terminus. AM is present in various tissues and organs in rodents and humans, including the heart. The peptide concentration increases with cardiac hypertrophy, acute myocardial infarction, and overt heart failure in the plasma and the myocardium. The principal function of AM in the cardiovascular system is the regulation of the vascular tone by vasodilation and natriuresis via cyclic adenosine monophosphate-dependent or -independent mechanism. In addition, AM may possess unique properties that inhibit aldosterone secretion, oxidative stress, apoptosis, and stimulation of angiogenesis, resulting in the protection of the structure and function of the heart. The AM receptor comprises a complex between calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 2 or 3, and the AM-CLR/RAMP2 system is essential for heart development during embryogenesis. Small-scale clinical trials have proven the efficacy and safety of recombinant AM peptide therapy for heart failure. Gene delivery and a modified AM peptide that prolongs the half-life of the native peptide could be an innovative method to improve the efficacy and benefit of AM in clinical settings. In this review, we focus on the pathophysiological roles of AM and its receptor system in the heart and describe the advances in AM and proAM-derived peptides as diagnostic biomarkers as well as the therapeutic application of AM and modified AM for cardioprotection.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kenji Kuwasako
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
11
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
12
|
Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc Natl Acad Sci U S A 2018; 115:E8727-E8736. [PMID: 30166452 DOI: 10.1073/pnas.1721635115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Increased adrenomedullin (ADM) levels are associated with various cardiac diseases such as myocardial infarction (MI). ADM is cleaved off from the full-length precursor protein proadrenomedullin (ProADM) during its posttranslational processing. To date, no biological effect of ProADM is reported, while ADM infusion leads to antiapoptotic effects and improved cardiac function. Using an MI mouse model, we found an induction of ProADM gene as well as protein expression during the early phase of MI. This was accompanied by apoptosis and increasing inflammation, which substantially influence the post-MI remodeling processes. Simulating ischemia in vitro, we demonstrate that ProADM expression was increased in cardiomyocytes and cardiac fibroblasts. Subsequently, we treated ischemic cardiomyocytes with either ProADM or ADM and found that both proteins increased survival. This effect was diminishable by blocking the ADM1 receptor. To investigate whether ProADM and ADM play a role in the regulation of cardiac inflammation, we analyzed chemokine expression after treatment of cells with both proteins. While ProADM induced an expression of proinflammatory cytokines, thus promoting inflammation, ADM reduced chemokine expression. On leukocytes, both proteins repressed chemokine expression, revealing antiinflammatory effects. However, ProADM but not ADM dampened concurrent activation of leukocytes. Our data show that the full-length precursor ProADM is biologically active by reducing apoptosis to a similar extent as ADM. We further assume that ProADM induces local inflammation in affected cardiac tissue but attenuates exaggerated inflammation, whereas ADM has low impact. Our data suggest that both proteins are beneficial during MI by influencing apoptosis and inflammation.
Collapse
|
13
|
Broughton KM, Wang BJ, Firouzi F, Khalafalla F, Dimmeler S, Fernandez-Aviles F, Sussman MA. Mechanisms of Cardiac Repair and Regeneration. Circ Res 2018; 122:1151-1163. [PMID: 29650632 PMCID: PMC6191043 DOI: 10.1161/circresaha.117.312586] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular regenerative therapies are pursued on both basic and translational levels. Although efficacy and value of cell therapy for myocardial regeneration can be debated, there is a consensus that profound deficits in mechanistic understanding limit advances, optimization, and implementation. In collaboration with the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes), this review overviews several pivotal aspects of biological processes impinging on cardiac maintenance, repair, and regeneration. The goal of summarizing current mechanistic understanding is to prompt innovative directions for fundamental studies delineating cellular reparative and regenerative processes. Empowering myocardial regenerative interventions, whether dependent on endogenous processes or exogenously delivered repair agents, ultimately depends on mastering mechanisms and novel strategies that take advantage of rather than being limited by inherent myocardial biology.
Collapse
Affiliation(s)
- Kathleen M Broughton
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Bingyan J Wang
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Fareheh Firouzi
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Farid Khalafalla
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Stefanie Dimmeler
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Francisco Fernandez-Aviles
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.)
| | - Mark A Sussman
- From the Department of Biology, San Diego State University Heart Institute and the Integrated Regenerative Research Institute, CA (K.M.B., B.J.W., F.F., F.K., M.A.S.); Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Frankfurt, Germany (S.D.); and Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), CIBERCV and Universidad Complutense de Madrid, Spain (F.F.-A.).
| |
Collapse
|
14
|
Effect of Valsartan on Cerebellar Adrenomedullin System Dysregulation During Hypertension. THE CEREBELLUM 2017; 16:132-141. [PMID: 27108271 DOI: 10.1007/s12311-016-0780-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adrenomedullin (AM) and its receptors components, calcitonin-receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP1, RAMP2, and RAMP3) are expressed in cerebellum. Cerebellar AM, AM binding sites and receptor components are altered during hypertension, suggesting a role for cerebellar AM in blood pressure regulation. Thus, we assessed the effect of valsartan, on AM and its receptor components expression in the cerebellar vermis of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Additionally, we evaluated AM action on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, and thiobarbituric acid reactive substances (TBARS) production in cerebellar vermis. Animals were treated with valsartan or vehicle for 11 days. Rats were sacrificed by decapitation; cerebellar vermis was dissected; and AM, CRLR, RAMP1, RAMP2, and RAMP3 expression was quantified by Western blot analysis. CAT, SOD, and GPx activity was determined spectrophotometrically and blood pressure by non-invasive plethysmography. We demonstrate that AM and RAMP2 expression was lower in cerebellum of SHR rats, while CRLR, RAMP1, and RAMP3 expression was higher than those of WKY rats. AM reduced cerebellar CAT, SOD, GPx activities, and TBARS production in WKY rats, but not in SHR rats. Valsartan reduced blood pressure and reversed the altered expression of AM and its receptors components, as well the loss of AM capacity to reduce antioxidant enzyme activity and TBARS production in SHR rats. These findings demonstrate that valsartan is able to reverse the dysregulation of cerebellar adrenomedullinergic system; and they suggest that altered AM system in the cerebellum could represent the primary abnormality leading to hypertension.
Collapse
|
15
|
Figueira L, Israel A. Dysregulation of Cerebellar Adrenomedullin Signaling During Hypertension. J Mol Neurosci 2017; 62:281-290. [PMID: 28653133 DOI: 10.1007/s12031-017-0936-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/05/2017] [Indexed: 01/24/2023]
Abstract
Adrenomedullin (AM) is a peptide involved in blood pressure regulation. AM activates three different receptors, the AM type 1 (AM1), type 2 (AM2), and calcitonin gene-related peptide 1 (CGRP1) receptors. AM triggers several signaling pathways such as adenylyl cyclase (AC), guanylyl cyclase (GC), and extracellular signal-regulated kinases (ERK) and modulates reactive oxygen species (ROS) metabolism. Cerebellar AM, AM-binding sites, and its receptor components are altered during hypertension, although it is unknown if these alterations are associated with changes in AM signaling. Thus, we assessed AM signaling pathways in cerebellar vermis of 16-week-old Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Animals were sacrificed by decapitation, and cerebellar vermis was microdissected under stereomicroscopic control. Tissue was stimulated in vitro with AM. Then the production of cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and cyclic adenosine monophosphate (cAMP) were assessed along with ERK1/2 activation and three antioxidant enzymes' activity: glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Our findings demonstrate that in the cerebellar vermis of normotensive rats, AM increases cGMP, NO, cAMP production, and ERK1/2 phosphorylation, while decreases basal antioxidant enzyme activity. In addition, AM antagonizes angiotensin II (ANG II)-induced increment of antioxidant enzyme activity. Hypertension blunts AM-induced cGMP and NO production and AM-induced decrease of antioxidant enzyme activity. Meanwhile, AM-induced effects on cAMP production, ERK1/2 activation, and AM-ANG II antagonism were not altered in SHR rats. Our results support a dysregulation of several AM signaling pathways during hypertension in cerebellar vermis.
Collapse
Affiliation(s)
- Leticia Figueira
- School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Santa Rosa de Lima, Sec. Las Mesetas, Calle La Cima, Res. Mara, No. 82., Caracas, Venezuela.,School of Bioanalysis, Laboratory of Investigation and Postgraduate of School of Bioanalysis (LIPEB), School of Health Sciences, Universidad de Carabobo, Valencia, Carabobo, Venezuela
| | - Anita Israel
- School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Santa Rosa de Lima, Sec. Las Mesetas, Calle La Cima, Res. Mara, No. 82., Caracas, Venezuela.
| |
Collapse
|
16
|
Fattahi F, Kalbitz M, Malan EA, Abe E, Jajou L, Huber-Lang MS, Bosmann M, Russell MW, Zetoune FS, Ward PA. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. FASEB J 2017; 31:4129-4139. [PMID: 28572445 DOI: 10.1096/fj.201700140r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023]
Abstract
Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and -2. Use of a water-soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.-Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huber-Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miriam Kalbitz
- Department of Orthopaedic Trauma, Hand, Plastic, and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - Elizabeth A Malan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elizabeth Abe
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lawrence Jajou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Markus S Huber-Lang
- Department of Orthopaedic Trauma, Hand, Plastic, and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - Mark W Russell
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
17
|
Xian X, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Tanaka M, Koyama T, Kawate H, Yang L, Liu T, Imai A, Zhai L, Hirabayashi K, Dai K, Tanimura K, Liu T, Cui N, Igarashi K, Yamauchi A, Shindo T. Vasoprotective Activities of the Adrenomedullin-RAMP2 System in Endothelial Cells. Endocrinology 2017; 158:1359-1372. [PMID: 28324104 DOI: 10.1210/en.2016-1531] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
Neointimal hyperplasia is the primary lesion underlying atherosclerosis and restenosis after coronary intervention. We previously described the essential angiogenic function of the adrenomedullin (AM)-receptor activity-modifying protein (RAMP) 2 system. In the present study, we assessed the vasoprotective actions of the endogenous AM-RAMP2 system using a wire-induced vascular injury model. We found that neointima formation and vascular smooth muscle cell proliferation were enhanced in RAMP2+/- male mice. The injured vessels from RAMP2+/- mice showed greater macrophage infiltration, inflammatory cytokine expression, and oxidative stress than vessels from wild-type mice and less re-endothelialization. After endothelial cell-specific RAMP2 deletion in drug-inducible endothelial cell-specific RAMP2-/- (DI-E-RAMP2-/-) male mice, we observed markedly greater neointima formation than in control mice. In addition, neointima formation after vessel injury was enhanced in mice receiving bone marrow transplants from RAMP2+/- or DI-E-RAMP2-/- mice, indicating that bone marrow-derived cells contributed to the enhanced neointima formation. Finally, we found that the AM-RAMP2 system augmented proliferation and migration of endothelial progenitor cells. These results demonstrate that the AM-RAMP2 system exerts crucial vasoprotective effects after vascular injury and could be a therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Xian Xian
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Teruhide Koyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang 0050017, China
| | - Tian Liu
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Akira Imai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Liuyu Zhai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Kazutaka Hirabayashi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Kun Dai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Keiya Tanimura
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Teng Liu
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Nanqi Cui
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | | | | | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| |
Collapse
|
18
|
Figueira L, Israel A. Cerebellar Adrenomedullinergic System. Role in Cardiovascular Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:541-560. [PMID: 27614623 DOI: 10.1007/5584_2016_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenomedullin (AM) is a multifunctional peptide which exerts numerous biological activities through the activation of AM1 (CRLR + RAMP2) and AM2 (CRLR + RAMP3) receptors. AM immunoreactivity, AM binding sites and CRLR, RAMP1, RAMP2 and RAMP3 are expressed in rat cerebellar vermis. AM binding sites are discretely and differentially distributed in the rat cerebellar cortex with higher levels detected in SHR when compared with WKY rats. In addition, there is an up-regulation of cerebellar CGRP1 (CRLR + RAMP1) and AM2 (CRLR + RAMP3) receptors and a down-regulation of AM1 (CRLR + RAMP2) receptor during hypertension associated with a decreased AM expression. These changes may constitute a mechanism which contributes to the development of hypertension, and supports the notion that cerebellar AM is involved in the regulation of blood pressure. Cerebellar AM activates ERK, increases cAMP, cGMP and nitric oxide, and decreases antioxidant enzyme activity. These effects are mediated through AM1 receptor since they are blunted by AM(22-52). AM-stimulated cAMP production is mediated through AM2 and CGRP receptors. In vivo administration of AM into the cerebellar vermis caused a profound, specific and dose-dependent hypotensive effect in SHR, but not in normotensive WKY rats. This effect was mediated through AM1 receptor since it was abolished by AM(22-52). In addition, AM injected into the cerebellar vermis reduced vasopressor response to footshock stress. These findings demonstrate dysregulation of cerebellar AM system during hypertension, and suggest that cerebellar AM plays an important role in the regulation of blood pressure. Likewise, they constitute a novel mechanism of blood pressure control which has not been described so far.
Collapse
Affiliation(s)
- Leticia Figueira
- Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.,School of Bioanalysis, Department of Health Sciences, Universidad de Carabobo, Carabobo, Venezuela
| | - Anita Israel
- Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
19
|
Kato J, Kitamura K. Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol 2015; 764:140-148. [PMID: 26144371 DOI: 10.1016/j.ejphar.2015.06.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
The bioactive peptide adrenomedullin (AM) exerts pleiotropic actions in various organs and tissues. In the heart, AM has an inhibitory effect on ventricular remodeling, suppressing cardiomyocyte hypertrophy and the proliferation of cardiac fibroblasts. This pharmacological property was shown not only in rat models of acute myocardial infarction, but also clinically in patients with this cardiac disease. An originally characterized feature of AM was a potent vasodilatory effect, but this peptide was found to be important for vascular integrity and angiogenesis. AM-induced angiogenesis is involved in tumor growth, while AM inhibits apoptosis of some types of tumor cell. A unique pharmacological property is anti-inflammatory activity, which has been characterized in sepsis and inflammatory bowel diseases; thus, there is an ongoing clinical trial to test the efficacy of AM for patients with intractable ulcerative colitis. These activities are assumed to be mediated via the specific receptor formed by calcitonin receptor-like receptor and receptor activity-modifying protein 2 or 3, while some questions remain to be answered about the molecular mechanisms of this signal transduction system. Taking these findings together, AM is a bioactive peptide with pleiotropic effects, with potential as a therapeutic tool for a wide range of human diseases from myocardial infarction to malignant tumors or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | - Kazuo Kitamura
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
20
|
Adrenomedullin-RAMP2 system suppresses ER stress-induced tubule cell death and is involved in kidney protection. PLoS One 2014; 9:e87667. [PMID: 24505304 PMCID: PMC3914859 DOI: 10.1371/journal.pone.0087667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/29/2013] [Indexed: 11/19/2022] Open
Abstract
Various bioactive peptides have been implicated in the homeostasis of organs and tissues. Adrenomedullin (AM) is a peptide with various bioactivities. AM-receptor, calcitonin-receptor-like receptor (CLR) associates with one of the subtypes of the accessory proteins, RAMPs. Among the RAMP subisoforms, only RAMP2 knockout mice (−/−) reproduce the phenotype of embryonic lethality of AM−/−, illustrating the importance of the AM-RAMP2-signaling system. Although AM and RAMP2 are abundantly expressed in kidney, their function there remains largely unknown. We used genetically modified mice to assess the pathophysiological functions of the AM-RAMP2 system. RAMP2+/− mice and their wild-type littermates were used in a streptozotocin (STZ)-induced renal injury model. The effect of STZ on glomeruli did not differ between the 2 types of mice. On the other hand, damage to the proximal urinary tubules was greater in RAMP2+/−. Tubular injury in RAMP2+/− was resistant to correction of blood glucose by insulin administration. We examined the effect of STZ on human renal proximal tubule epithelial cells (RPTECs), which express glucose transporter 2 (GLUT2), the glucose transporter that specifically takes up STZ. STZ activated the endoplasmic reticulum (ER) stress sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK). AM suppressed PERK activation, its downstream signaling, and CCAAT/enhancer-binding homologous protein (CHOP)-induced cell death. We confirmed that the tubular damage was caused by ER stress-induced cell death using tunicamycin (TUN), which directly evokes ER stress. In RAMP2+/− kidneys, TUN caused severe injury with enhanced ER stress. In wild-type mice, TUN-induced tubular damage was reversed by AM administration. On the other hand, in RAMP2+/−, the rescue effect of exogenous AM was lost. These results indicate that the AM-RAMP2 system suppresses ER stress-induced tubule cell death, thereby exerting a protective effect on kidney. The AM-RAMP2 system thus has the potential to serve as a therapeutic target in kidney disease.
Collapse
|
21
|
Ma YX, Guo Z, Sun T. CGRP inhibits norepinephrine induced apoptosis with restoration of Bcl-2/Bax in cultured cardiomyocytes of rat. Neurosci Lett 2013; 549:130-4. [PMID: 23714242 DOI: 10.1016/j.neulet.2013.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/09/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
Abstract
Calcitonin gene related peptide (CGRP) and norepinephrine (NE) may interact in acute myocardial ischemia, protecting cardiomyocytes but the underlying mechanism is unclear. Here we investigated the correlation of the anti-apoptotic effect of CGRP with the change of Bcl-2/Bax. Cultured cardiomyocytes were divided into four groups: (1) control group (no treatment with any test agent), (2) NE group (treated with 10(-5)mol/L of NE), (3) CGRP+NE group (treated with 10(-8)mol/L of CGRP and NE at 10(-5)mol/L) and (4) CGRP8-37+CGRP+NE group (treated with 10(-7)mol/L of CGRP8-37, a specific antagonist of CGRP receptor, CGRP at 10(-8)mol/L and NE at 10(-5)mol/L). Apoptosis ratio was analyzed by flow cytometry. Bcl-2 and Bax and the coding mRNA were examined. It was found that the apoptosis ratio in NE group (29.4 ± 1.8%) was significantly greater (P<0.05) than that of the control group (10.1 ± 1.7%). The effect of NE was attenuated by CGRP (18.7 ± 2.1%), which was reversed by CGRP8-37 (24.9 ± 2.9%). NE treatment resulted in reductions in the ratio of Bcl-2/Bax (by 33%) and their mRNA (by 53%). CGRP restored the level of Bcl-2/Bax, which was abolished by CGRP8-37. Current study suggests that norepinephrine inhibits synthesis of Bcl-2 and increases Bax and apoptosis of cardiomyocytes. CGRP restores the ratio of Bcl-2/Bax and attenuates the apoptosis induced by NE, via specific CGRP receptor.
Collapse
Affiliation(s)
- Yan-Xia Ma
- Department of Anesthesiology, Shanxi Medical University, 56 Xinjian Nan Road, Taiyuan 030001, Shanxi, China
| | | | | |
Collapse
|
22
|
Ozcan C, Palmeri M, Horvath TL, Russell KS, Russell RR. Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias, and preconditioning. Am J Physiol Heart Circ Physiol 2013; 304:H1192-200. [PMID: 23457013 DOI: 10.1152/ajpheart.00592.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Overexpression of mitochondrial uncoupling proteins (UCPs) attenuates ischemia-reperfusion (I/R) injury in cultured cardiomyocytes. However, it is not known whether UCPs play an essential role in cardioprotection in the intact heart. This study evaluated the cardioprotective efficacy of UCPs against I/R injury and characterized the mechanism of UCP-mediated protection in addition to the role of UCPs in ischemic preconditioning (IPC). Cardiac UCP3 knockout (UCP3(-/-)) and wild-type (WT) mice hearts were subjected to ex vivo and in vivo models of I/R injury and IPC. Isolated UCP3(-/-) mouse hearts were retrogradely perfused and found to have poorer recovery of left ventricular function compared with WT hearts under I/R conditions. In vivo occlusion of the left coronary artery resulted in twofold larger infarcts in UCP3(-/-) mice compared with WT mice. Moreover, the incidence of in vivo I/R arrhythmias was higher in UCP3(-/-) mice. Myocardial energetics were significantly impaired with I/R, as reflected by a decreased ATP content and an increase in the AMP-to-ATP ratio. UCP3(-/-) hearts generated more reactive oxygen species (ROS) than WT hearts during I/R. Pretreatment of UCP3(-/-) hearts with the pharmacological uncoupling agent carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone improved postischemic functional recovery. Also the protective efficacy of IPC was abolished in UCP3(-/-) mice. We conclude that UCP3 plays a critical role in cardioprotection against I/R injury and the IPC phenomenon. There is increased myocardial vulnerability to I/R injury in hearts lacking UCP3. The mechanisms of UCP3-mediated cardioprotection include regulation of myocardial energetics and ROS generation by UCP3 during I/R.
Collapse
Affiliation(s)
- Cevher Ozcan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
23
|
Pires AL, Pinho M, Alves BS, Pinho S, Sena C, Seica RM, Leite-Moreira AF. Reverse myocardial effects of intermedin in pressure-overloaded hearts: role of endothelial nitric oxide synthase activity. J Physiol 2013; 591:677-687. [PMID: 23165766 PMCID: PMC3577549 DOI: 10.1113/jphysiol.2012.240812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/14/2012] [Indexed: 11/08/2022] Open
Abstract
Intermedin (IMD) is a cardiac peptide synthesized in a prepro form, which undergoes a series of proteolytic cleavages and amidations to yield the active forms of 47 (IMD(1-47)) and 40 amino acids (IMD(8-47)). There are several lines of evidence of increased IMD expression in rat models of cardiac pathologies, including congestive heart failure and ischaemia; however, its myocardial effects upon cardiac disease remain unexplored. With this in mind, we investigated the direct effects of increasing concentrations of IMD(1-47) (10(-10) to10(-6) m) on contraction and relaxation of left ventricular (LV) papillary muscles from two rat models of chronic pressure overload, one induced by transverse aortic constriction (TAC), the other by nitric oxide (NO) deficiency due to chronic NO synthase inhibition (NG-nitro-l-arginine, l-NAME), and respective controls (Sham and Ctrl). In TAC and l-NAME rats, exogenous administration of IMD(1-47) elicited concentration-dependent positive inotropic and lusitropic effects. By contrast, in Sham and Ctrl rats, IMD(1-47) induced a negative inotropic response without a significant effect on relaxation. Both TAC and l-NAME rats presented LV hypertrophy, elevated LV systolic pressures, preserved systolic function and elevated peroxynitrite levels. In the normal myocardium (Ctrl and Sham), IMD(1-47) induced a 3-fold increase of endothelial nitric oxide synthase (eNOS) phosphorylation at Ser(1177), indicating enhanced eNOS activity. In TAC and l-NAME rats, eNOS phosphorylation was increased at baseline, and its response to IMD(1-47) was blunted. In addition, the distinct myocardial response to IMD(1-47) was accompanied by distinct subcellular mechanisms. While in Sham rats the addition of IMD(1-47) induced the phosphorylation of cardiac troponin I due to NO/cGMP activation, in TAC rats IMD(1-47) induced phospholamban phosphorylation possibly associated with cAMP/protein kinase A activation. Therefore, we demonstrated for the first time a reversed myocardial response to IMD(1-47) neurohumoral stimulation due to impairment of eNOS activation in TAC and l-NAME rats. These results not only reveal the distinct myocardial effects and subcellular mechanisms for IMD(1-47) in normal and hypertrophic hearts, but also highlight the potential pathophysiological relevance of cardiac endothelial dysfunction in neurohumoral myocardial action.
Collapse
Affiliation(s)
- Ana Luísa Pires
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, Faculty of Medicine, University of Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
24
|
Koyama T, Ochoa-Callejero L, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Arai T, Yoshizawa T, Iesato Y, Lei Y, Uetake R, Okimura A, Yamauchi A, Tanaka M, Igarashi K, Toriyama Y, Kawate H, Adams RH, Kawakami H, Mochizuki N, Martínez A, Shindo T. Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation 2013; 127:842-53. [PMID: 23355623 DOI: 10.1161/circulationaha.112.000756] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. METHODS AND RESULTS We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. CONCLUSIONS Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.
Collapse
Affiliation(s)
- Teruhide Koyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wong HK, Cheung TT, Cheung BMY. Adrenomedullin and cardiovascular diseases. JRSM Cardiovasc Dis 2012; 1:10.1258_cvd.2012.012003. [PMID: 24175071 PMCID: PMC3738363 DOI: 10.1258/cvd.2012.012003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cardiovascular system is regulated by the autonomic nervous system, the renin-angiotensin-aldosterone system, nitric oxide (NO) and other factors including neuropeptides. Research in neurohumoral factors has led to the development of many cardiovascular drugs. Adrenomedullin (ADM), initially isolated from the adrenal gland, has diverse physiological and pathophysiological functions in the cardiovascular system. It is produced in many organs and tissues including the vasculature. ADM has numerous actions, including vasodilation, natriuresis, antiapoptosis and stimulation of NO production. It might play a protective role in various cardiovascular pathologies, and its plasma level is elevated in patients with hypertension and heart failure. Administration of ADM is a possible therapeutic approach for treating cardiovascular diseases. A number of studies have investigated the infusion of ADM in humans, which seems to be benficial in heart failure and myocardial infarction. Instead of ADM infusion, augmentation of its endogenous level is another possible strategy. Gene therapy is feasible in animal models, but its application in humans is limited. At present, the most promising clinical application of ADM is the use of the plasma level of mid-regional proadrenomedullin as a biomarker in cardiovascular diseases. It is a good marker of prognosis and survival in patients with coronary aretery disease or heart failure.
Collapse
Affiliation(s)
- Hoi Kin Wong
- Department of Medicine, University of Hong Kong , Hong Kong , China
| | | | | |
Collapse
|
26
|
Barrick CJ, Lenhart PM, Dackor RT, Nagle E, Caron KM. Loss of receptor activity-modifying protein 3 exacerbates cardiac hypertrophy and transition to heart failure in a sex-dependent manner. J Mol Cell Cardiol 2011; 52:165-74. [PMID: 22100352 DOI: 10.1016/j.yjmcc.2011.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
Sex differences exist in the hypertrophic response, cardiac remodeling, and transition to heart failure of hypertensive patients, and while some of these differences are likely influenced by estrogen, the genetic pathways downstream of estrogen that impact on cardioprotection have yet to be fully elucidated. We have previously shown that the cardioprotective effects of adrenomedullin (AM), an emerging clinical biomarker for cardiovascular disease severity, vary with sex in mouse models. AM signaling during cardiovascular stress is strongly modulated by receptor activity-modifying protein 3 (RAMP3) via its interaction with the G protein-coupled receptor calcitonin receptor-like receptor (CLR). Like AM, RAMP3 expression is potently regulated by estrogen, and so we sought to determine the consequences of genetic Ramp3 loss on cardiac adaptation to chronic hypertension, with a particular focus on characterizing potential sex differences. We generated and bred RAMP3(-/-) mice to RenTgMK mice that consistently display severe angiotensin II-mediated CV disease and compared CV disease progression in RenTgMK to that of RenTgMK:RAMP3(-/-) offspring. As expected, RAMP3 gene expression was higher in cardiovascular tissues of RenTgMK mice and more strongly up-regulated in female RenTgMK mice relative to wildtype controls. RAMP3 loss did not affect the development of hypertension or the presence and severity of perivascular and interstitial fibrosis in the left ventricle (LV). However, echocardiography revealed that while RenTgMK mice developed concentric cardiac hypertrophy with sustained systolic function, male RenTgMK:RAMP3(-/-) mice showed evidence of LV chamber dilatation and depressed systolic function, suggestive of cardiac decompensation. Consistent with these measures of heart failure, male RenTgMK:RAMP3(-/-) mice had increased cardiac apoptosis and elevated activation of Akt. These phenotypes were not present in female RenTgMK:RAMP3(-/-) mice. Collectively, these data demonstrate a sex-dependant, cardioprotective role of RAMP3 in the setting of chronic hypertension.
Collapse
Affiliation(s)
- Cordelia J Barrick
- Department of Cell & Molecular Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
27
|
Influence of adrenomedullin 2/intermedin gene polymorphism on blood pressure, renal function and silent cerebrovascular lesions in Japanese: the Ohasama study. Hypertens Res 2011; 34:1327-32. [PMID: 21832999 DOI: 10.1038/hr.2011.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenomedullin 2/intermedin (AM2/IMD) is a novel vasodilator peptide with various effects on the renal function and cardiovascular system. An exonic insertion (I)/deletion (D) polymorphism (rs3840963) may influence generation of AM2/IMD-53, due to its location within the N-terminal sequence. We investigated the association of this polymorphism with blood pressure, renal function and the risk of silent cerebrovascular lesions in a Japanese population recruited from the Ohasama study. We recorded 24 h ambulatory blood pressure (ABP), estimated glomerular filtration rate (eGFR) and proteinuria of 1073 individuals over 40 years of age. Silent cerebrovascular lesions (lacunar infarction and white matter hyperintensity (WMH)) were recorded in 794 individuals over 55 years of age. Chronic kidney disease (CKD) was diagnosed in individuals with proteinuria and/or decreased eGFR ≤60 ml min(-1) per 1.73 m(2). DD carriers, compared with II and ID carriers, displayed significantly higher 24 h ABP (127.4 vs. 122.0 and 122.9 mm Hg, respectively, in systolic ABP, P=0.009; and 74.8 vs. 71.3 and 72.5 mm Hg, respectively, in diastolic ABP, P=0.002), and lower eGFR (75.4 vs. 82.6 and 82.9 ml min(-1) per 1.73 m(2), respectively, P=0.04). DD carriers also had a significantly higher odds ratio (OR) for prevalence of CKD (OR: 2.7, P=0.003), presence of lacunar infarction (OR: 2.4, P=0.01) and WMH (OR: 2.7, P=0.003), compared with II carriers. The AM2/IMD I/D polymorphism is associated with renal dysfunction, blood pressure regulation and asymptomatic cerebrovascular diseases in the Japanese general population.
Collapse
|
28
|
Sun J, Fu L, Tang X, Han Y, Ma D, Cao J, Kang N, Ji H. Testosterone modulation of cardiac β-adrenergic signals in a rat model of heart failure. Gen Comp Endocrinol 2011; 172:518-25. [PMID: 21549119 DOI: 10.1016/j.ygcen.2011.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 03/16/2011] [Accepted: 04/20/2011] [Indexed: 01/08/2023]
Abstract
In this study, we examined the effects of castration and testosterone replacement on β-adrenoceptor and G protein expression in rats subjected to doxorubicin-induced heart failure. Five groups were included in this report: control, sham-castration with heart failure, castration with heart failure, castration+testosterone replacement with heart failure and castration+testosterone replacement and flutamide with heart failure. At 4 weeks post-treatment, echocardiography, hemodynamics and histopathology were assessed. Castration led to a further deterioration in myocardial performance, apoptosis and fibrosis, while testosterone replacement ameliorated these effects. Data obtained from Western blots revealed that testosterone upregulated the expression of β(2)-adrenoceptor, Gs, Gi(2) and bcl2 levels, downregulated the expression of β(3)-adrenoceptor, Gi(3) and GRK2 levels, and did not modify the expression of β(1)-adrenoceptor levels in the hearts of castrated rats subjected to doxorubicin-induced heart failure. Analyses of serum 17β-estradiol concentrations test confirmed that these effects of testosterone were exerted through the androgen pathway. Thus our findings suggest that testosterone may have beneficial effects for male heart failure patients with androgen deficiency and this protection involves modulation of the cardiac β-adrenergic system.
Collapse
Affiliation(s)
- Junfeng Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oyar EÖ, Kiriş I, Gülmen S, Ceyhan BM, Cüre MC, Sütcü R, Lortlar N, Okutan H. Adrenomedullin attenuates aortic cross-clamping-induced myocardial injury in rats. Am J Surg 2011; 201:226-232. [PMID: 20864086 DOI: 10.1016/j.amjsurg.2010.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND In this study we investigate the effects of adrenomedullin on myocardial injury after ischemia-reperfusion (I/R) after abdominal aortic surgery. METHODS Thirty-two Wistar rats were randomized into 4 groups (n = 8) as follows: control group (sham laparotomy), the aortic I/R group, aortic I/R plus adrenomedullin group (underwent aortic I/R periods, and received a bolus intravenous injection of .05 μg/kg/min adrenomedullin), and the control plus adrenomedullin group. RESULTS Biochemical analysis showed that aortic I/R significantly increased (P < .05) the plasma levels of troponin-I and tumor necrosis factor-α, and the myocardial tissue levels of malondialdehyde, superoxide dismutase, catalase, and angiotensin II, whereas aortic I/R plus adrenomedullin significantly decreased these same factors (P < .05). Aortic I/R significantly increased (P < .05) myocardial tissue levels of nitric oxide whereas aortic I/R plus adrenomedullin significantly increased the same factor (P < .05). CONCLUSIONS These results indicate that adrenomedullin has protective effects against myocardial injury induced by abdominal aortic I/R in rats.
Collapse
Affiliation(s)
- Eser Öz Oyar
- Department of Physiology, Gazi University, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Karatepe O, Kurtulus I, Yalcin O, Battal M, Kamali G, Aydin T. Adrenomedulline improves ischemic left colonic anastomotic healing in an experimental rodent model. Clinics (Sao Paulo) 2011; 66:1805-10. [PMID: 22012055 PMCID: PMC3181232 DOI: 10.1590/s1807-59322011001000021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/04/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Leakage from colonic anastomosis is a major complication causing increased mortality and morbidity. Ischemia is a well-known cause of this event. This study was designed to investigate the effects of adrenomedullin on the healing of ischemic colon anastomosis in a rat model. METHODS Standardized left colon resection 3 cm above the peritoneal reflection and colonic anastomosis were performed in 40 Wistar rats that were divided into four groups. To mimic ischemia, the mesocolon was ligated 2 cm from either side of the anastomosis in all of the groups. The control groups (1 and 2) received no further treatment. The experimental groups (3 and 4) received adrenomedullin treatment. Adrenomedullin therapy was started in the perioperative period in group 3 and 4 rats (the therapeutic groups). Group 1 and group 3 rats were sacrificed on postoperative day 3. Group 2 and group 4 rats were sacrificed on postoperative day 7. After careful relaparotomy, bursting pressure, hydroxyproline, malondialdehyde, interleukin 6, nitric oxide, vascular endothelial growth factor, and tumor necrosis factor alpha levels were measured. Histopathological characteristics of the anastomosis were analyzed. RESULTS The group 3 animals had a significantly higher bursting pressure than group 1 (p<0.05). Hydroxyproline levels in group 1 were significantly lower than in group 3 (p<0.05). The mean bursting pressure was significantly different between group 2 and group 4 (p<0.05). Hydroxyproline levels in groups 3 and 4 were significantly increased by adrenomedullin therapy relative to the control groups (p<0.05). When all groups were compared, malondialdehyde and nitric oxide were significantly lower in the control groups (p<0.05). When vascular endothelial growth factor levels were compared, no statistically significant difference between groups was observed. Interleukin 6 and tumor necrosis factor alpha were significantly decreased by adrenomedullin therapy (p<0.05). The healing parameters and inflammatory changes (e.g., granulocytic cell infiltration, necrosis, and exudate) were significantly different among all groups (p<0.05). CONCLUSION Adrenomedullin had positive effects on histopathologic anastomotic healing in this experimental model of ischemic colon anastomosis.
Collapse
Affiliation(s)
- Oguzhan Karatepe
- Department of Surgery, Okmeydani Education and Research Hospital, Okmeydani, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
32
|
Hirose T, Totsune K, Mori N, Mori T, Morimoto R, Metoki H, Asayama K, Kikuya M, Ohkubo T, Kohzuki M, Takahashi K, Imai Y. Expression of adrenomedullin 2/intermedin, a possible reno-protective peptide, is decreased in the kidneys of rats with hypertension or renal failure. Am J Physiol Renal Physiol 2010; 299:F128-34. [PMID: 20462970 DOI: 10.1152/ajprenal.00679.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenomedullin 2/intermedin (AM2/IMD) is a potent vasodilator peptide with organ-protective effects and is abundantly expressed in the kidney. We examined the expression of AM2/IMD in the kidneys of rats with hypertension or chronic renal impairment using quantitative RT-PCR, radioimmunoassay, and immunohistochemistry. Kidneys of 8-wk-old male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were dissected into inner medulla, outer medulla, cortex, and glomerulus fractions. A rat renal impairment model was prepared by 5/6 nephrectomy in WKY rats. AM2/IMD mRNA levels were the highest in the cortex among four renal portions, and significantly lower in SHR than WKY rats in all renal portions. In the remnant kidneys of 5/6 nephrectomized rats, AM2/IMD mRNA levels were significantly decreased on days 3 and 56, whereas mRNA levels of calcitonin receptor-like receptor, receptor activity-modifying proteins-1 and -2, which form receptor for AM and AM2/IMD, were increased, compared with that in sham-operated rats. AM mRNA levels were decreased on day 3, but increased on day 56, after nephrectomy. Decreased immunoreactive AM2/IMD levels in the remnant kidneys of 5/6 nephrectomized rats on day 56 were confirmed by radioimmunoassay. The renal tubules were immunostained with anti-AM2/IMD antibody, with a decreased AM2/IMD immunostaining found in proximal tubular cells of 5/6 nephrectomized rats compared with sham-operated rats. In conclusion, intrarenal AM2/IMD expression is decreased in SHR and 5/6 nephrectomized rats. Given the organ-protective effects of AM2/IMD, the downregulation of AM2/IMD as an endogenous regulatory peptide may have a role in the progression of renal impairment.
Collapse
Affiliation(s)
- Takuo Hirose
- Dept. of Clinical Pharmacology and Therapeutics, Tohoku Univ. Graduate School of Pharmaceutical Sciences and Medicine, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Protein kinase A-dependent suppression of reactive oxygen species in transient focal ischemia in adrenomedullin-deficient mice. J Cereb Blood Flow Metab 2009; 29:1769-79. [PMID: 19568255 DOI: 10.1038/jcbfm.2009.92] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was designed to examine the effect of adrenomedullin deficiency on cerebral infarction and the relationship between adrenomedullin and cyclic AMP-protein kinase A pathway in regulating reactive oxygen species (ROS). Adrenomedullin heterozygous and wild-type mice were subjected to 60-mins focal ischemia. We used adrenomedullin heterozygous mice because adrenomedullin homozygotes die in utero. Infarct volume, neurologic deficit scores, and immunohistochemical analyses were evaluated at several time points after ischemia. The infarct volume and neurologic deficit scores were significantly worse in adrenomedullin heterozygous mice. Significant accumulation of inducible nitric oxide, oxidative DNA damage, and lipid peroxidation was noted after reperfusion in adrenomedullin heterozygous mice. Treatment of wild-type mice with H89, a protein kinase A inhibitor, resulted in increased infarct size, and worsening of neurologic deficit score and other parameters to levels comparable to those of adrenomedullin heterozygous mice. In contrast, cilostazol, which increases cyclic AMP, rescued neurologic deficit and ROS accumulation in adrenomedullin heterozygous mice. This study showed that adrenomedullin downregulation results in increase in ROS after transient focal ischemia in mice. The results also indicated that adrenomedullin has an important function against ischemic injury through the cyclic AMP-protein kinase A pathway.
Collapse
|
34
|
Sussman MA. Mitochondrial integrity: preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Expert Rev Cardiovasc Ther 2009; 7:929-38. [PMID: 19673671 DOI: 10.1586/erc.09.48] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase.
Collapse
Affiliation(s)
- Mark A Sussman
- San Diego State University, SDSU Heart Institute, Department of Biology, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
35
|
|
36
|
Nunobiki O, Nakamura M, Taniguchi E, Utsunomiya H, Mori I, Tsubota Y, Mabuchi Y, Kakudo K. Adrenomedullin, Bcl-2 and microvessel density in normal, hyperplastic and neoplastic endometrium. Pathol Int 2009; 59:530-6. [PMID: 19627536 DOI: 10.1111/j.1440-1827.2009.02403.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adrenomedullin (ADM) is a multifunctional 52-amino acid peptide involved in numerous physiological and pathological processes, including angiogenesis, growth regulation, differentiation, and vasodilation. ADM is thought to act through the G protein-coupled receptor calcitonin receptor-like receptor, with specificity being conferred by receptor-associated modifying protein 2. The aim of the present study was to clarify the roles of ADM status, and tumor vessels in endometrium. Specimens were examined for ADM, microvessel density (MVD), area of venules (AV) and Bcl-2 oncoprotein using an immunoperoxidase method. The difference of ADM between normal proliferative phase and hyperplasia without atypia was significant (P < 0.05). The level of Bcl-2 was significantly different between hyperplasia without atypia and hyperplasia with atypia (P < 0.05). ADM, MVD and AV in the endometrium increased in a stepwise manner from normal, simple or complex hyperplasia with or without atypia to grade 1 adenocarcinoma. In contrast, expression of Bcl-2 oncoprotein was decreased. These parameters identify the role of ADM expression and Bcl-2 protein in relation to cell growth and vasodilating in the neoplastic changes.
Collapse
Affiliation(s)
- Osamu Nunobiki
- Department of Medical Technology, Kobe Tokiwa University, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Walsh SK, Kane KA, Wainwright CL. Mast cells, peptides and cardioprotection - an unlikely marriage? ACTA ACUST UNITED AC 2009; 29:73-84. [PMID: 19566747 DOI: 10.1111/j.1474-8673.2009.00436.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1 Mast cells have classically been regarded as the 'bad guys' in the setting of acute myocardial ischaemia, where their released contents are believed to contribute both to tissue injury and electrical disturbances resulting from ischaemia. Recent evidence suggests, however, that if mast cell degranulation occurs in advance of ischaemia onset, this may be cardioprotective by virtue of the depletion of mast cell contents that can no longer act as instruments of injury when the tissue becomes ischaemic. 2 Many peptides, such as ET-1, adrenomedullin, relaxin and atrial natriuretic peptide, have been demonstrated to be cardioprotective when given prior to the onset of myocardial ischaemia, although their physiological functions are varied and the mechanisms of their cardioprotective actions appear to be diverse and often ill defined. However, one common denominator that is emerging is the ability of these peptides to modulate mast cell degranulation, raising the possibility that peptide-induced mast cell degranulation or stabilization may hold the key to a common mechanism of their cardioprotection. 3 The aim of this review was to consolidate the evidence implying that mast cell degranulation could play both a detrimental and protective role in myocardial ischaemia, depending upon when it occurs, and that this may underlie the cardioprotective effects of a range of diverse peptides that exerts physiological effects within the cardiovascular system.
Collapse
Affiliation(s)
- S K Walsh
- Anu Research Centre, Department of Obstetrics & Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland
| | | | | |
Collapse
|
38
|
Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol 2009; 105:257-66. [PMID: 19714395 DOI: 10.1007/s00395-009-0058-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/14/2009] [Accepted: 08/19/2009] [Indexed: 01/30/2023]
Abstract
We demonstrated previously that adrenomedullin (AM), when given during early reperfusion, limited infarct size in rat heart. The present study was undertaken to provide direct evidence of the NO-dependency of AM's cardioprotective action by assessing NO biosynthesis and involvement of the soluble guanylyl cyclase (sGC) pathway. Perfused hearts from male CD-1 mice were subjected to 30-min left coronary occlusion and 60-min reperfusion. Infarct size was determined by tetrazolium staining. AM 10 nM was administered from 20 min after coronary occlusion until 10 min after reperfusion. Coronary effluent was analysed for NO2- and NO3-, and myocardial samples were analysed for NO2-, NO3-, nitroso-adducts and cGMP concentration. To examine the role of NO/sGC signalling in the infarct-limiting action of AM, further hearts received the sGC inhibitor ODQ 2 microM. AM treatment stimulated NO synthesis, indicated by increased NO2- efflux in coronary effluent throughout reperfusion (summarised as area under curve, AM 29.2 +/- 3.9 vs. control 14.4 +/- 2.8 micromol min2 mL(-1), P < 0.05). AM limited infarct size (35.4 +/- 2.7 vs. 12.2 +/- 2.3%, P < 0.01), associated with a 2.45-fold increase (P < 0.05) in myocardial cGMP concentration at 10 min after reperfusion. ODQ abolished the infarct size-limiting effect of AM (28.9 +/- 4.3%). These data provide the first evidence that AM increases NO bioavailability in intact murine myocardium and confirm that the NO/sGC/cGMP pathway is central to the cytoprotective action of AM against ischaemia-reperfusion injury.
Collapse
|
39
|
Cantarella G, Di Benedetto G, Martinez G, Loreto C, Clementi G, Cantarella A, Prato A, Bernardini R. Amylin prevents TRAIL-mediated apoptotic effects of reserpine in the rat gastric mucosa. Peptides 2009; 30:1466-72. [PMID: 19463876 DOI: 10.1016/j.peptides.2009.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/15/2022]
Abstract
We have previously shown that amylin has a protective effect upon the damaged rat gastric mucosa via a cytokine-mediated mechanism. Here, the effects of amylin on the proapoptotic cytokine TNF-related-apoptosis-inducing-ligand (TRAIL) were tested in the rat gastric mucosa damaged by reserpine administration in vivo. Intraperitoneal administration of reserpine in adult male Sprague-Dawley rats resulted in increased TRAIL expression in the gastric mucosa. Immunohistochemistry showed that the TRAIL death-receptor 5 (DR5) was constitutively expressed by the mucosa cells. Western blot showed that pretreatment of reserpine-treated rats with amylin was associated with attenuated expression of TRAIL. In the same samples, we also investigated about TRAIL-related signaling and observed that activation of caspases-8 and -3 occurs in parallel to increased TRAIL expression in rats treated with reserpine. Similarly to the latter, activation of caspases was attenuated in rats pretreated with amylin. Treatment with reserpine was associated with increased expression of the proapoptotic protein Bax, whereas that of the antiapoptotic protein Bcl-2 was significantly decreased. Amylin prevented the effects of reserpine on these genes. Reserpine sets into motion mechanisms of apoptosis in the rat gastric mucosa, which appear mediated, at least in part, by TRAIL. In addition, TRAIL downstream signaling is activated along with subversion of gene expression related to apoptosis. Amylin was able to prevent detrimental effects of reserpine. Finally, amylin and related molecules may be envisioned as protective agent in gastric mucosa damage.
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Viale Andrea Doria, 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Biological actions resulting from phosphoinositide synthesis trigger multiple downstream signalling cascades by recruiting proteins with pleckstrin homology domains, including phosphoinositide-dependent kinase-1 and protein kinase B (also known as Akt). Retrospectively, more attention has been focused on the plasma membrane-associated interactions of these molecules and resulting cytoplasmic target activation. The complex biological activities exerted by Akt activation suggest, however, that more subtle and complex subcellular control mechanisms are involved. This review examines the regulation of Akt activity from the perspective of subcellular compartmentalization and focuses specifically upon the actions of Akt activation downstream from phosphoinositide synthesis that influence cell biology by altering nuclear signalling leading to Pim-1 kinase induction as well as hexokinase phosphorylation that, together with Akt, serves to preserve mitochondrial integrity.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA 92093-0636, USA
| | - Marta Rubio
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A. Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
- Corresponding author. Tel: +1 619 594 2983; +1 619 594 2610. E-mail address:
| |
Collapse
|
41
|
Czibik G, Martinov V, Ruusalepp A, Sagave J, Skare Ø, Valen G. In vivo remote delivery of DNA encoding for hypoxia-inducible factor 1 alpha reduces myocardial infarct size. Clin Transl Sci 2009; 2:33-40. [PMID: 20443865 PMCID: PMC5350792 DOI: 10.1111/j.1752-8062.2008.00077.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested if remote gene delivery of hypoxia-inducible factor 1 alpha (HIF-1 alpha) protected hearts against induced ischemia, hypothesizing that gene delivery into skeletal muscle may lead to secretion of proteins with actions elsewhere. Murine quadriceps muscles were transfected with DNA encoding for human HIF-1 alpha, which resulted in a local, but lasting expression (mRNA and protein, where the latter had nuclear localization). Subjection of isolated hearts to global ischemia and reperfusion 1, 4, and 8 weeks after gene delivery resulted in infarct size reduction (p < 0.05). Supporting that this was due to paracrine effects, HL-1 cells treated with conditioned media from cells transfected with HIF-1 alpha or serum from HIF-1 alpha-treated mice were protected against H(2)O(2)-induced cell death (p < 0.05, respectively). The latter protection was reduced when a heme oxygenase activity blocker was used. Taqman low-density array of 47 HIF-1 alpha-regulated genes at the treatment site showed nine specific upregulations (p < 0.05). Of the corresponding proteins, PDGF-B and adrenomedullin were upregulated in the heart. HIF-1 alpha treatment induced an increased vascularization of the heart and skeletal muscle. In conclusion, remote delivery of DNA for HIF-1 alpha was cardioprotective, represented by consistent infarct size reduction, which may be due to release of paracrine factors from the transfected muscle.
Collapse
Affiliation(s)
- Gabor Czibik
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
42
|
Czibik G, Martinov V, Ruusalepp A, Sagave J, Skare Ø, Valen G. In vivoRemote Delivery of DNA Encoding for Hypoxia-inducible Factor 1 Alpha Reduces Myocardial Infarct Size. Clin Transl Sci 2009. [DOI: 10.1111/j.1752-8062.2009.00077.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Yasuda S, Shimokawa H. Acute Myocardial Infarction The Enduring Challenge for Cardiac Protection and Survival. Circ J 2009; 73:2000-8. [DOI: 10.1253/circj.cj-09-0655] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
44
|
Ma D, Fu L, Shen J, Zhou P, Gao Y, Xie R, Li Y, Han Y, Wang Y, Wang F. Interventional effect of valsartan on expression of inducible cAMP early repressor and phosphodiesterase 3A in rats after myocardial infarction. Eur J Pharmacol 2008; 602:348-54. [PMID: 19027736 DOI: 10.1016/j.ejphar.2008.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
To investigate the changes of inducible cAMP early repressor (ICER) and phosphodiesterase 3A in rats after myocardial infarction and to evaluate the beneficial effects of valsartan on cardiac function and ventricular remodeling. Rats were split into four groups: sham-operation group, pre-myocardial infarction group (valsartan administration 2 weeks before myocardial infarction), post-myocardial infarction group (valsartan administration after myocardial infarction) and myocardial infarction group (vehicle after myocardial infarction). Echocardiograph and hemodynamic data were measured and cardiocyte apoptosis was estimated by TUNEL staining. ICER, cAMP response element binding protein (CREB), phosphodiesterase 3A and Bcl-2 mRNA expression levels were assayed by real-time reverse transcriptase polymerase chain reaction and protein expression was measured using immunoblot analysis. ICER and CREB mRNA expression in the myocardial infarction group were higher and phosphodiesterase 3A and Bcl-2 mRNA expression were lower than the sham-operation group (Ps<0.01). Following the improvement of cardiac function and ventricular remodeling, ICER and CREB mRNA in pre- and post- myocardial-infarction groups were down-regulated, and phosphodiesterase 3A and Bcl-2 mRNA were up-regulated (P<0.05). The changes brought on by valsartan pre-myocardial infarction were stronger than post-myocardial infarction (P<0.05). These data suggest that there is a phosphodiesterase 3A-ICER positive-feedback loop leading to myocyte apoptosis and ongoing development of heart failure after myocardial infarction. Maintaining the function of phosphodiesterase 3A or reducing ICER may be an effective way to prevent myocardium apoptosis and heart dysfunction. Valsartan can ameliorate ventricular remodeling and heart failure by inhibiting the expression of ICER and increasing the expression of phosphodiesterase 3A.
Collapse
Affiliation(s)
- Dan Ma
- Cardiovascular Department, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Anderson P, Delgado M. Endogenous anti-inflammatory neuropeptides and pro-resolving lipid mediators: a new therapeutic approach for immune disorders. J Cell Mol Med 2008; 12:1830-47. [PMID: 18554314 PMCID: PMC4506154 DOI: 10.1111/j.1582-4934.2008.00387.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/05/2008] [Indexed: 01/23/2023] Open
Abstract
Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from omega-3 and omega-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents.
Collapse
Affiliation(s)
- Per Anderson
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones CientificasGranada 18100, Spain
| | - Mario Delgado
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones CientificasGranada 18100, Spain
| |
Collapse
|
46
|
Kerem M, Bedirli A, Pasaoglu H, Ofluoğlu E, Yilmazer D, Salman B, Yilmaz TU. Effect of adrenomedullin on hepatic damage in hepatic ischaemia/reperfusion injury in rats. Liver Int 2008; 28:972-81. [PMID: 18435717 DOI: 10.1111/j.1478-3231.2008.01741.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
AIMS Adrenomedullin (AM) is a multifunctional peptide with a putative beneficial role after an ischaemic insult. The aim of this study was to evaluate the effect of AM on partial hepatic ischaemia reperfusion (I/R) injury. METHODS Rats were subjected to 1 h of 70% hepatic ischaemia, followed by reperfusion or sham. At the end of ischaemia, vehicle (phosphate-buffered saline solution), N-nitro-L-arginine methyl ester (L-NAME) and AM with or without L-NAME were infused via the portal vein. Analysis was performed at pre-ischaemia, ischaemia onset and 1, 2 and 4 h after reperfusion. Hepatic tissue blood flow (HTBF) was evaluated by laser Doppler. RESULTS Plasma AM levels in the I/R groups were significantly lower than the levels in the sham group. AM treatment significantly reduced levels of aspartate transaminase and tissue arginase (P<0.05). Significant decreases of tumour necrosis factor-alpha, interleukin-1beta and endothelin-1 levels were also found in the serum. Endothelin-1, malondialdehyde and necrosis were observed more frequently in liver tissue in the AM group than the control (P<0.05). Tissue nitric oxide, energy charge and HTBF were significantly increased in AM treatment experiments (P<0.05). CONCLUSION The improved HTBF, energy charge and nitric oxide and the reduction of hepatic necrosis, oxidative stress, liver enzymes, endotelin-1 and pro-inflammatory cytokines demonstrate that treatment with AM attenuates liver I/R injury.
Collapse
Affiliation(s)
- Mustafa Kerem
- Department of General Surgery, Medical Faculty, Gazi University, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
47
|
Leskinen H, Rauma-Pinola T, Szokodi I, Kerkelä R, Pikkarainen S, Uusimaa P, Hautala T, Vuolteenaho O, Ruskoaho H. Adaptive or maladaptive response to adenoviral adrenomedullin gene transfer is context-dependent in the heart. J Gene Med 2008; 10:867-77. [DOI: 10.1002/jgm.1219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
48
|
Bell D, McDermott BJ. Intermedin (adrenomedullin-2): a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J Pharmacol 2008; 153 Suppl 1:S247-62. [PMID: 17965749 PMCID: PMC2268039 DOI: 10.1038/sj.bjp.0707494] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/28/2007] [Accepted: 09/10/2007] [Indexed: 01/15/2023] Open
Abstract
Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). Proteolytic processing of a larger precursor yields a series of biologically active C-terminal fragments, IMD(1-53), IMD(1-47) and IMD(8-47). IMD shares a family of receptors with AM and CGRP composed of a calcitonin-receptor like receptor (CALCRL) associated with one of three receptor activity modifying proteins (RAMP). Compared to CGRP, IMD is less potent at CGRP(1) receptors but more potent at AM(1) receptors and AM(2) receptors; compared to AM, IMD is more potent at CGRP(1) receptors but less potent at AM(1) and AM(2) receptors. The cellular and tissue distribution of IMD overlaps in some aspects with that of CGRP and AM but is distinct from both. IMD is present in neonatal but absent or expressed sparsely, in adult heart and vasculature and present at low levels in plasma. The prominent localization of IMD in hypothalamus and pituitary and in kidney is consistent with a physiological role in the central and peripheral regulation of the circulation and water-electrolyte homeostasis. IMD is a potent systemic and pulmonary vasodilator, influences regional blood flow and augments cardiac contractility. IMD protects myocardium from the deleterious effects of oxidative stress associated with ischaemia-reperfusion injury and exerts an anti-growth effect directly on cardiomyocytes to oppose the influence of hypertrophic stimuli. The robust increase in expression of the peptide in hypertrophied and ischaemic myocardium indicates an important protective role for IMD as an endogenous counter-regulatory peptide in the heart.
Collapse
Affiliation(s)
- D Bell
- Cardiovascular Research Group, School of Medicine and Dentistry, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | | |
Collapse
|
49
|
Uzan B, Villemin A, Garel JM, Cressent M. Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway. J Cell Physiol 2008; 215:122-8. [PMID: 17941085 DOI: 10.1002/jcp.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adrenomedullin (ADM) has been shown to mediate multifunctional responses in cell culture and animal system such as regulation of growth and apoptosis. ADM stimulates the proliferation of osteoblasts in vitro and promotes bone growth in vivo. The ability of ADM to influence osteoblastic cell number through inhibition of apoptosis has not yet been studied. To address this question we have investigated its effect on the apoptosis of serum-deprived osteoblastic cells using mouse MC3T3-E1 cells which express both ADM and ADM receptors. Treatment with ADM significantly blunted apoptosis, evaluated by caspase-3 activity, DNA fragmentation quantification and annexin V-FITC labeling. This effect was abolished by the subtype-1 CGRP receptor antagonist, CGRP(8-37). Both ADM and its specific receptor antagonist, the (22-52) ADM fragment exhibited a similar anti-apoptotic effect. Thus, our data suggest that ADM exerts anti-apoptotic effects through CGRP1 receptors. This was substantiated by a similar protective effect of CGRP on MC3T3-E1 cells apoptosis. Accordingly, neutralization of endogenous ADM by a specific antibody enhanced apoptosis. Finally, the selective inhibitor of MAPK kinase (MEK), PD98059, abolished the apoptosis protective effect of ADM and prevented ADM activation of ERK1/2. These data show that ADM acts as a survival factor in osteoblastic cells via a CGRP1 receptor-MEK-ERK pathway, which provides further understanding on the physiological function of ADM in osteoblasts.
Collapse
|
50
|
Wang XF, Shao Y, Chen SW, Tian DZ, Huang GY, Huang Y, Yao T, Lu LM. AMELIORATION OF CARDIAC FUNCTION IN CHRONIC MYOCARDIAL INFARCTED RATS FOLLOWING ADMINISTRATION OF VECTOR pcDNA3.1AM. Clin Exp Pharmacol Physiol 2007; 34:861-5. [PMID: 17645630 DOI: 10.1111/j.1440-1681.2007.04678.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The present study was designed to examine the cardiovascular effects of intravenously administered pcDNA3.1AM, a recombinant non-virus vector carrying a rat adrenomedullin (AM) gene translation fragment, in rats with chronic cardiac dysfunction induced by ligation of the left descending coronary artery. 2. Haemodynamic parameters were recorded by intraventricular catheterization. In situ hybridization and polymerase chain reaction (PCR) were performed to identify the distribution of the introduced vector. The concentration of AM was determined by radioimmunoassay. 3. Progressive cardiac dysfunction was observed following coronary artery ligation, as indicated by a significant reduction in mean arterial pressure (MAP) and increases in both central venous pressure (CVP) and end-diastolic pressure of the left ventricle (LVEDP; P < 0.01). Administration of pcDNA3.1AM significantly attenuated the progressive cardiac dysfunction and lowered the elevated CVP and LVEDP. The introduced vector was widely distributed in different organs, including the lungs, kidney, heart, liver, spleen and brain. However, intense staining of pcDNA3.1 AM was observed in the lungs and kidneys. The introduced vector was localized mainly in the endothelial cells of blood vessels. Radioimmunoassay showed elevated levels of AM in the plasma and lung and heart after surgery, but there was no significant further increase in the concentration of AM after pcDNA3.1AM delivery. 4. The present study has provided some novel findings on the potential beneficial effects of AM gene delivery on chronic cardiac function in rats. Expression of AM by a non-virus vector may also have therapeutic value against cardiac dysfunction in vivo.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|