1
|
Taylor AD, Hathaway QA, Meadows EM, Durr AJ, Kunovac A, Pinti MV, Cook CC, Miller BR, Nohoesu R, Nicoletti R, Alabere HO, Robart AR, Hollander JM. Diabetes mellitus disrupts lncRNA Malat1 regulation of cardiac mitochondrial genome-encoded protein expression. Am J Physiol Heart Circ Physiol 2024; 327:H1503-H1518. [PMID: 39453425 PMCID: PMC11684948 DOI: 10.1152/ajpheart.00607.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Understanding the cellular mechanisms behind diabetes-related cardiomyopathy is crucial as it is a common and deadly complication of diabetes mellitus. Dysregulation of the mitochondrial genome has been linked to diabetic cardiomyopathy and can be ameliorated by altering microRNA (miRNA) availability in the mitochondrion. Long noncoding RNAs (lncRNAs) have been identified to downregulate miRNAs. This study aimed to determine if diabetes mellitus impacts the mitochondrial localization of lncRNAs, their interaction with miRNAs, and how this influences mitochondrial and cardiac function. In mouse and human nondiabetic and type 2 diabetic cardiac tissue, RNA was isolated from purified mitochondria and sequenced (Ilumina HiSeq). Malat1 was significantly downregulated in both human and mouse cardiac mitochondria. The use of a mouse model with an insertional deletion of Malat1 transcript expression resulted in exacerbated systolic and diastolic dysfunction when evaluated in conjunction with a high-fat diet. The cardiac effects of a high-fat diet were countered in a mouse model with transgenic overexpression of Malat1. MiR-320a, a miRNA that binds to both mitochondrial genome-encoded gene NADH-ubiquinone oxidoreductase chain 1 (MT-ND1) as well as Malat1, was upregulated in human and mouse diabetic mitochondria. Conversely, MT-ND1 was downregulated in human and mouse diabetic mitochondria. Mice with an insertional inactivation of Malat1 displayed increased recruitment of both miR-320a and MT-ND1 to the RNA-induced silencing complex (RISC). In vitro pulldown assays of Malat1 fragments with conserved secondary structure confirmed binding capacity for miR-320a. In vitro Seahorse assays indicated that Malat1 knockdown and miR-320a overexpression impaired overall mitochondrial bioenergetics and Complex I functionality. In summary, the disruption of Malat1 presence in mitochondria, as observed in diabetic cardiomyopathy, is linked to cardiac dysfunction and mitochondrial genome regulation.NEW & NOTEWORTHY Currently, there is no known mechanism for the development of diabetes-related cardiac dysfunction. Previous evaluations have shown that mitochondria, specifically mitochondrial genome-encoded transcripts, are disrupted in diabetic cardiac cells. This study explores the presence of long noncoding RNAs (lncRNAs) such as Malat1 in cardiac mitochondria and how that presence is impacted by diabetes mellitus. Furthermore, this study will examine how the loss of Malat1 results in bioenergetic and cardiac dysfunction through mitochondrial transcriptome dysregulation.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- Humans
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/etiology
- Male
- Mice
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Genome, Mitochondrial/genetics
- Gene Expression Regulation
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diet, High-Fat
Collapse
Affiliation(s)
- Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ethan M Meadows
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Brianna R Miller
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Remi Nohoesu
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Roxy Nicoletti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Hafsat O Alabere
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
2
|
Huang X, Mu M, Wang B, Zhang H, Liu Y, Yu L, Zhou M, Ma J, Wang D, Chen W. Associations of coal mine dust exposure with arterial stiffness and atherosclerotic cardiovascular disease risk in chinese coal miners. Int Arch Occup Environ Health 2024; 97:473-484. [PMID: 38530481 DOI: 10.1007/s00420-024-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Whether coal mine dust exposure increases cardiovascular diseases (CVDs) risk was rarely explored. Our objective was to examine the association between coal mine dust exposure and cardiovascular risk. METHODS We estimated cumulative coal mine dust exposure (CDE) for 1327 coal miners by combining data on workplace dust concentrations and work history. We used brachial-ankle pulse wave velocity (baPWV, a representative indicator of arterial stiffness) and ten-year atherosclerotic cardiovascular disease (ASCVD) risk to assess potential CVD risk, exploring their associations with CDE. RESULTS Positive dose-response relationships of CDE with baPWV and ten-year ASCVD risk were observed after adjusting for covariates. Specifically, each 1 standard deviation (SD) increase in CDE was related to a 0.27 m/s (95% CI: 0.21, 0.34) increase in baPWV and a 1.29 (95% CI: 1.14, 1.46) elevation in OR (odds ratio) of risk of abnormal baPWV. Moreover, each 1 SD increase in CDE was associated with a 0.74% (95% CI: 0.63%, 0.85%) increase in scores of ten-year ASCVD and a 1.91 (95% CI: 1.62, 2.26) increase in OR of risk of ten-year ASCVD. When compared with groups unexposed to coal mine dust, significant increase in the risk of arterial stiffness and ten-year ASCVD in the highest CDE groups were detected. CONCLUSION The study suggested that cumulative exposure to coal mine dust was associated with elevated arterial stiffness and ten-year ASCVD risk in a dose-response manner. These findings contribute valuable insights for cardiovascular risk associated with coal mine dust.
Collapse
Affiliation(s)
- Xuezan Huang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232000, Anhui, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Haozhe Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Bae HR, Chandy M, Aguilera J, Smith EM, Nadeau KC, Wu JC, Paik DT. Adverse effects of air pollution-derived fine particulate matter on cardiovascular homeostasis and disease. Trends Cardiovasc Med 2022; 32:487-498. [PMID: 34619335 PMCID: PMC9063923 DOI: 10.1016/j.tcm.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Air pollution is a rapidly growing major health concern around the world. Atmospheric particulate matter that has a diameter of less than 2.5 µm (PM2.5) refers to an air pollutant composed of particles and chemical compounds that originate from various sources. While epidemiological studies have established the association between PM2.5 exposure and cardiovascular diseases, the precise cellular and molecular mechanisms by which PM2.5 promotes cardiovascular complications are yet to be fully elucidated. In this review, we summarize the various sources of PM2.5, its components, and the concentrations of ambient PM2.5 in various settings. We discuss the experimental findings to date that evaluate the potential adverse effects of PM2.5 on cardiovascular homeostasis and function, and the possible therapeutic options that may alleviate PM2.5-driven cardiovascular damage.
Collapse
Affiliation(s)
- Hye Ryeong Bae
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Juan Aguilera
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eric M Smith
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research and the Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
5
|
Cooper DB, Walker CJ, Christian WJ. Maternal proximity to mountain-top removal mining and birth defects in Appalachian Kentucky, 1997-2003. PLoS One 2022; 17:e0272998. [PMID: 35951600 PMCID: PMC9371306 DOI: 10.1371/journal.pone.0272998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023] Open
Abstract
Extraction of coal through mountaintop removal mining (MTR) alters many dimensions of the landscape. Explosive blasts, exposed rock, and coal washing have the potential to pollute air and water. Previous research suggests that infants born to mothers living in areas with MTR have a higher prevalence of birth defects. In this cross-sectional study, we further examine the relationship between MTR activity and several types of birth defects. Maternal exposure to MTR was assessed using remote sensing data from Skytruth, which captures MTR activity in the Central Appalachian region of the United States. Active MTR area was quantified within a five-kilometer buffer surrounding geocoded maternal address captured on birth records for live births to Appalachian Kentucky mothers between 1997 and 2003 (N = 95,581). We assigned high, medium, and low exposure based on the tertile of total MTR area within 5-km, and births with no MTR within this buffer were assigned zero exposure. The presence or absence of a birth defect grouped into six major organ systems was identified using birth records alone. Finally, we applied conditional multiple imputation for variables with missing values before conducting separate multivariable log-binomial regression models for each birth defect group. Prevalence ratio (PR) estimates were adjusted for individual level covariates from birth records. The prevalence of gastro-intestinal defects was significantly higher in birth records with high and low active MTR exposure compared to records with no exposure. (High exposure: PR = 1.99, 95% CI = 1.14-3.47; low exposure PR = 1.88, 95% CI = 1.06-3.31). This study supports some of the existing findings of previous ecological studies. Research addressing the relationship between gastro-intestinal birth defects and MTR coal mining is warranted but should carefully consider temporal dimensions of exposure.
Collapse
Affiliation(s)
- Daniel B. Cooper
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - Courtney J. Walker
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - W. Jay Christian
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
6
|
Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK, Hollander JM. Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol 2022; 322:C482-C495. [PMID: 35108116 PMCID: PMC8917913 DOI: 10.1152/ajpcell.00446.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus has been linked to an increase in mitochondrial microRNA-378a (miR-378a) content. Enhanced miR-378a content has been associated with a reduction in mitochondrial genome-encoded mt-ATP6 abundance, supporting the hypothesis that miR-378a inhibition may be a therapeutic option for maintaining ATP synthase functionality during diabetes mellitus. Evidence also suggests that long noncoding RNAs (lncRNAs), including lncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (Kcnq1ot1), participate in regulatory axes with microRNAs (miRs). Prediction analyses indicate that Kcnq1ot1 has the potential to bind miR-378a. This study aimed to determine if loss of miR-378a in a genetic mouse model could ameliorate cardiac dysfunction in type 2 diabetes mellitus (T2DM) and to ascertain whether Kcnq1ot1 interacts with miR-378a to impact ATP synthase functionality by preserving mt-ATP6 levels. MiR-378a was significantly higher in patients with T2DM and 25-wk-old Db/Db mouse mitochondria, whereas mt-ATP6 and Kcnq1ot1 levels were significantly reduced when compared with controls. Twenty-five-week-old miR-378a knockout Db/Db mice displayed preserved mt-ATP6 and ATP synthase protein content, ATP synthase activity, and preserved cardiac function, implicating miR-378a as a potential therapeutic target in T2DM. Assessments following overexpression of the 500-bp Kcnq1ot1 fragment in established mouse cardiomyocyte cell line (HL-1) cardiomyocytes overexpressing miR-378a revealed that Kcnq1ot1 may bind and significantly reduce miR-378a levels, and rescue mt-ATP6 and ATP synthase protein content. Together, these data suggest that Kcnq1ot1 and miR-378a may act as constituents in an axis that regulates mt-ATP6 content, and that manipulation of this axis may provide benefit to ATP synthase functionality in type 2 diabetic heart.
Collapse
Affiliation(s)
- Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
7
|
Marchini T, Magnani N, Garces M, Kelly J, Paz M, Caceres L, Calabro V, Lasagni Vitar R, Caltana L, Contin M, Reynoso S, Lago N, Vico T, Vanasco V, Wolf D, Tripodi V, Gonzalez Maglio D, Alvarez S, Buchholz B, Berra A, Gelpi R, Evelson P. Chronic exposure to polluted urban air aggravates myocardial infarction by impaired cardiac mitochondrial function and dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118677. [PMID: 34906594 DOI: 10.1016/j.envpol.2021.118677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Air pollution exposure positively correlates with increased cardiovascular morbidity and mortality rates, mainly due to myocardial infarction (MI). Herein, we aimed to study the metabolic mechanisms underlying this association, focusing on the evaluation of cardiac mitochondrial function and dynamics, together with its impact over MI progression. An initial time course study was performed in BALB/c mice breathing filtered air (FA) or urban air (UA) in whole-body exposure chambers located in Buenos Aires City downtown for up to 16 weeks (n = 8 per group and time point). After 12 weeks, lung inflammatory cell recruitment was evident in UA-exposed mice. Interestingly, impaired redox metabolism, characterized by decreased lung SOD activity and increased GSSG levels and NOX activity, precede local inflammation in this group. At this selected time point, additional mice were exposed to FA or UA (n = 12 per group) and alveolar macrophage PM uptake and nitric oxide (NO) production was observed in UA-exposed mice, together with increased pro-inflammatory cytokine levels (TNF-α and IL-6) in BAL and plasma. Consequently, impaired heart tissue oxygen metabolism and altered mitochondrial ultrastructure and function were observed in UA-exposed mice after 12 weeks, characterized by decreased active state respiration and ATP production rates, and enhanced mitochondrial H2O2 production. Moreover, disturbed cardiac mitochondrial dynamics was detected in this group. This scenario led to a significant increase in the area of infarcted tissue following myocardial ischemia reperfusion injury in vivo, from 43 ± 3% of the area at risk in mice breathing FA to 66 ± 4% in UA-exposed mice (n = 6 per group, p < 0.01), together with a sustained increase in LVEDP during myocardial reperfusion. Taken together, our data unravel cardiac mitochondrial mechanisms that contribute to the understanding of the adverse health effects of urban air pollution exposure, and ultimately highlight the importance of considering environmental factors in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Jazmin Kelly
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Mariela Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, C1113AAD, Argentina
| | - Lourdes Caceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Valeria Calabro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Romina Lasagni Vitar
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Laura Caltana
- CONICET - Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias (IBCN), Buenos Aires, C1121ABG, Argentina
| | - Mario Contin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, C1113AAD, Argentina
| | - Sofia Reynoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Nestor Lago
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Dennis Wolf
- University Heart Center Freiburg-Bad Krozingen, Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, C1113AAD, Argentina
| | - Daniel Gonzalez Maglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, C1113AAD, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina
| | - Bruno Buchholz
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Alejandro Berra
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Ricardo Gelpi
- CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, C1113AAD, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, C1113AAD, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, C1113AAD, Argentina.
| |
Collapse
|
8
|
Hathaway QA, Majumder N, Goldsmith WT, Kunovac A, Pinti MV, Harkema JR, Castranova V, Hollander JM, Hussain S. Transcriptomics of single dose and repeated carbon black and ozone inhalation co-exposure highlight progressive pulmonary mitochondrial dysfunction. Part Fibre Toxicol 2021; 18:44. [PMID: 34911549 PMCID: PMC8672524 DOI: 10.1186/s12989-021-00437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nairrita Majumder
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA
| | - William T Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V Pinti
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Vince Castranova
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Salik Hussain
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
9
|
Kunovac A, Hathaway QA, Pinti MV, Durr AJ, Taylor AD, Goldsmith WT, Garner KL, Nurkiewicz TR, Hollander JM. Enhanced antioxidant capacity prevents epitranscriptomic and cardiac alterations in adult offspring gestationally-exposed to ENM. Nanotoxicology 2021; 15:812-831. [PMID: 33969789 PMCID: PMC8363568 DOI: 10.1080/17435390.2021.1921299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
Maternal engineered nanomaterial (ENM) exposure during gestation has been associated with negative long-term effects on cardiovascular health in progeny. Here, we evaluate an epitranscriptomic mechanism that contributes to these chronic ramifications and whether overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) can preserve cardiovascular function and bioenergetics in offspring following gestational nano-titanium dioxide (TiO2) inhalation exposure. Wild-type (WT) and mPHGPx (Tg) dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.01 ± 0.50 mg/m3 starting from gestational day (GD) 5 for 360 mins/day for 6 nonconsecutive days over 8 days. Echocardiography was performed in pregnant dams, adult (11-week old) and fetal (GD 14) progeny. Mitochondrial function and global N6-methyladenosine (m6A) content were assessed in adult progeny. MPHGPx enzymatic function was further evaluated in adult progeny and m6A-RNA immunoprecipitation (RIP) was combined with RT-qPCR to evaluate m6A content in the 3'-UTR. Following gestational ENM exposure, global longitudinal strain (GLS) was 32% lower in WT adult offspring of WT dams, with preservation in WT offspring of Tg dams. MPHGPx activity was significantly reduced in WT offspring (29%) of WT ENM-exposed dams, but preserved in the progeny of Tg dams. M6A-RIP-qPCR for the SEC insertion sequence region of mPHGPx revealed hypermethylation in WT offspring from ENM-exposed WT dams, which was thwarted in the presence of the maternal transgene. Our findings implicate that m6A hypermethylation of mPHGPx may be culpable for diminished antioxidant capacity and resultant mitochondrial and cardiac deficits that persist into adulthood following gestational ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V. Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrew D. Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L. Garner
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
10
|
Lai A, Chang ML, O'Donnell RP, Zhou C, Sumner JA, Hsiai TK. Association of COVID-19 transmission with high levels of ambient pollutants: Initiation and impact of the inflammatory response on cardiopulmonary disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146464. [PMID: 33961545 PMCID: PMC7960028 DOI: 10.1016/j.scitotenv.2021.146464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/14/2023]
Abstract
Ambient air pollution contributes to 7 million premature deaths annually. Concurrently, the ongoing coronavirus disease 2019 (COVID-19) pandemic, complicated with S-protein mutations and other variants, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 2.5 million deaths globally. Chronic air pollution-mediated cardiopulmonary diseases have been associated with an increased incidence of hospitalization and mechanical ventilation following COVID-19 transmission. While the underlying mechanisms responsible for this association remain elusive, air pollutant-induced vascular oxidative stress and inflammatory responses have been implicated in amplifying COVID-19-mediated cytokine release and vascular thrombosis. In addition, prolonged exposure to certain types of particulate matter (PM2.5, d < 2.5 μm) has also been correlated with increased lung epithelial and vascular endothelial expression of the angiotensin-converting enzyme-2 (ACE2) receptors to which the SARS-CoV-2 spike glycoproteins (S) bind for fusion and internalization into host cells. Emerging literature has linked high rates of SARS-CoV-2 infection to regions with elevated levels of PM2.5, suggesting that COVID-19 lockdowns have been implicated in regional reductions in air pollutant-mediated cardiopulmonary effects. Taken together, an increased incidence of SARS-CoV-2-mediated cardiopulmonary diseases seems to overlap with highly polluted regions. To this end, we will review the redox-active components of air pollutants, the pathophysiology of SARS-CoV-2 transmission, and the key oxidative mechanisms and ACE2 overexpression underlying air pollution-exacerbated SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America
| | - Megan L Chang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America
| | - Ryan P O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jennifer A Sumner
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, United States of America
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States of America; Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, United States of America; Department of Bioengineering, Henry Samueli School of Engineering & Applied Science, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
11
|
Calabró V, Garcés M, Cáceres L, Magnani ND, Marchini T, Freire A, Vico T, Martinefski M, Vanasco V, Tripodi V, Berra A, Alvarez S, Evelson P. Urban air pollution induces alterations in redox metabolism and mitochondrial dysfunction in mice brain cortex. Arch Biochem Biophys 2021; 704:108875. [PMID: 33891961 DOI: 10.1016/j.abb.2021.108875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/21/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Previous reports indicate that the central nervous system (CNS) is a target of air pollution, causing tissue damage and functional alterations. Oxidative stress and neuroinflammation have been pointed out as possible mechanisms mediating these effects. The aim of this work was to study the chronic effects of urban air pollution on mice brain cortex, focusing on oxidative stress markers, and mitochondrial function. Male 8-week-old BALB/c mice were exposed to filtered air (FA, control) or urban air (UA) inside whole-body exposure chambers, located in a highly polluted area of Buenos Aires city, for up to 4 weeks. Glutathione levels, assessed as GSH/GSSG ratio, were decreased after 1 and 2 weeks of exposure to UA (45% and 25% respectively vs. FA; p < 0.05). A 38% increase in lipid peroxidation was found after 1 week of UA exposure (p < 0.05). Regarding protein oxidation, carbonyl content was significantly increased at week 2 in UA-exposed mice, compared to FA-group, and an even higher increment was found after 4 weeks of exposure (week 2: 40% p < 0.05, week 4: 54% p < 0.001). NADPH oxidase (NOX) and glutathione peroxidase (GPx) activities were augmented at all the studied time points, while superoxide dismutase (Cu,Zn-SOD cytosolic isoform) and glutathione reductase (GR) activities were increased only after 4 weeks of UA exposure (p < 0.05). The increased NOX activity was accompanied with higher expression levels of NOX2 regulatory subunit p47phox, and NOX4 (p < 0.05). Also, UA mice showed impaired mitochondrial function due to a 50% reduction in O2 consumption in active state respiration (p < 0.05), a 29% decrease in mitochondrial inner membrane potential (p < 0.05), a 65% decrease in ATP production rate (p < 0.01) and a 30% increase in H2O2 production (p < 0.01). Moreover, respiratory complexes I-III and II-III activities were decreased in UA group (30% and 36% respectively vs. FA; p < 0.05). UA exposed mice showed alterations in mitochondrial function, increased oxidant production evidenced by NOX activation, macromolecules damage and the onset of the enzymatic antioxidant system. These data indicate that oxidative stress and impaired mitochondrial function may play a key role in CNS damage mechanisms triggered by air pollution.
Collapse
Affiliation(s)
- Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Agustina Freire
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Manuela Martinefski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Argentina
| | - Virginia Vanasco
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Argentina
| | - Alejandro Berra
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Centro de Patología Experimental y Aplicada, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|
12
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
13
|
Wang S, Wang W, Li X, Zhao X, Wang Y, Zhang H, Xu S. Cooperative application of transcriptomics and ceRNA hypothesis: LncRNA-107052630/miR-205a/G0S2 crosstalk is involved in ammonia-induced intestinal apoptotic injury in chicken. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122605. [PMID: 32334290 DOI: 10.1016/j.jhazmat.2020.122605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), as a harmful gas from agricultural production, plays an important role in air pollution, such as haze. Although numerous researchers have paid attention to health damage through NH3 inhalation, the exhaustive mechanism of NH3 induced intestinal toxicity remains unclear. A genes crosstalk named competing endogenous RNAs (ceRNA) can explain many regulatory manners from the molecular perspective. However, few studies have attempted to interpret the injury mechanism of air pollutants to the organism via ceRNA theory. Here, we thoroughly investigated the lncRNA-associated-ceRNA mechanism in jejunum samples from a 42-days-old NH3-exposed chicken model through deep RNA sequencing. We observed the occurrence of apoptosis in jejunum, obtained 46 significantly dysregulated lncRNAs and 30 dysregulated miRNAs, and then constructed lncRNA-associated-ceRNA networks in jejunum. Importantly, a network regulating G0S2 in NH3-induced apoptosis was discovered. Research results showed that G0S2 was upregulated in jejunum of NH3-exposed group and was associated with activation of the mitochondrial apoptosis pathway. G0S2 antagonized the anti-apoptotic effect of Bcl2, which could be reversed by miR-205a. Meanwhile, lncRNA-107052630 acted as ceRNA to affect G0S2 function. These data provide new insight for revealing the biological effect of NH3 toxicity, as well as the environmental research.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
14
|
Bennett BT, Mohamed JS, Alway SE. The Effects of Calcium- β-Hydroxy- β-Methylbutyrate on Aging-Associated Apoptotic Signaling and Muscle Mass and Function in Unloaded but Nonatrophied Extensor Digitorum Longus Muscles of Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3938672. [PMID: 32774671 PMCID: PMC7396042 DOI: 10.1155/2020/3938672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36 mo.) male Fisher 344 × Brown Norway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading (R). Throughout the study, the rats were gavaged daily with 170 mg of Ca-HMB or water 7 days prior to HS, then throughout 14 days of HS and 14 days of recovery after removing HS. The animals' body weights were significantly reduced by ~18% after 14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.
Collapse
Affiliation(s)
- Brian T. Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
| | - Junaith S. Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Nerve and Muscle, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA 26506
- Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA 38163
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA 38163
| |
Collapse
|
15
|
Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Van Laake LW. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br J Pharmacol 2020; 177:5393-5412. [PMID: 31833063 PMCID: PMC7680009 DOI: 10.1111/bph.14949] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Risk factors in the environment such as air pollution and mental stress contribute to the development of chronic non-communicable disease. Air pollution was identified as the leading health risk factor in the physical environment, followed by water pollution, soil pollution/heavy metals/chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors (e.g. mental stress and noise). Epidemiological data suggest that environmental risk factors are associated with higher risk for cardiovascular, metabolic and mental diseases, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, depression and anxiety disorders. We provide an overview on the impact of the external exposome comprising risk factors/exposures on cardiovascular health with a focus on dysregulation of stress hormones, mitochondrial function, redox balance and inflammation with special emphasis on the circadian clock. Finally, we assess the impact of circadian clock dysregulation on cardiovascular health and the potential of environment-specific preventive strategies or "chrono" therapy for cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Aoife B Kilgallen
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany.,Structural Chronobiology, Institute of Molecular Biology, Mainz, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Abstract
This article reviews evidence for the public health impacts of coal across the extraction, processing, use, and waste disposal continuum. Surface coal mining and processing impose public health risks on residential communities through air and water pollution. Burning coal in power plants emits more nitrogen oxides, sulfur dioxide, particulate matter, and heavy metals per unit of energy than any other fuel source and impairs global public health. Coal ash disposal exposes communities to heavy metals and particulate matter waste. Use of coal in domestic households causes public health harm concentrated in developing nations. Across the coal continuum, adverse impacts are disproportionately felt by persons of poor socioeconomic status, contributing to health inequities. Despite efforts to develop renewable energy sources, coal use has not declined on a global scale. Concentrated efforts to eliminate coal as an energy source are imperative to improve public health and avert serious climate change consequences.
Collapse
Affiliation(s)
- Michael Hendryx
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana 47405, USA;
| | - Keith J Zullig
- Department of Social and Behavioral Sciences, School of Public Health, West Virginia University, Morgantown, West Virginia 26506, USA;
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
17
|
Aggregate removal of particulate matter by selective protein-rich fraction of Moringa oleifera extract. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Myers MJ, Shepherd DL, Durr AJ, Stanton DS, Mohamed JS, Hollander JM, Alway SE. The role of SIRT1 in skeletal muscle function and repair of older mice. J Cachexia Sarcopenia Muscle 2019; 10:929-949. [PMID: 31197980 PMCID: PMC6711423 DOI: 10.1002/jcsm.12437] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Sirtuin 1 (SIRT1) is a NAD+ sensitive deacetylase that has been linked to longevity and has been suggested to confer beneficial effects that counter aging-associated deterioration. Muscle repair is dependent upon satellite cell function, which is reported to be reduced with aging; however, it is not known if this is linked to an aging-suppression of SIRT1. This study tested the hypothesis that Sirtuin 1 (SIRT1) overexpression would increase the extent of muscle repair and muscle function in older mice. METHODS We examined satellite cell dependent repair in tibialis anterior, gastrocnemius, and soleus muscles of 13 young wild-type mice (20-30 weeks) and 49 older (80+ weeks) mice that were controls (n = 13), overexpressed SIRT1 in skeletal muscle (n = 14), and had a skeletal muscle SIRT1 knockout (n = 12) or a satellite cell SIRT1 knockout (n = 10). Acute muscle injury was induced by injection of cardiotoxin (CTX), and phosphate-buffered saline was used as a vector control. Plantarflexor muscle force and fatigue were evaluated before or 21 days after CTX injection. Satellite cell proliferation and mitochondrial function were also evaluated in undamaged muscles. RESULTS Maximal muscle force was significantly lower in control muscles of older satellite cell knockout SIRT1 mice compared to young adult wild-type (YWT) mice (P < 0.001). Mean contraction force at 40 Hz stimulation was significantly greater after recovery from CTX injury in older mice that overexpressed muscle SIRT1 than age-matched SIRT1 knockout mice (P < 0.05). SIRT1 muscle knockout models (P < 0.05) had greater levels of p53 (P < 0.05 MKO, P < 0.001 OE) in CTX-damaged tissues as compared to YWT CTX mice. SIRT1 overexpression with co-expression of p53 was associated with increased fatigue resistance and increased force potentiation during repeated contractions as compared to wild-type or SIRT1 knockout models (P < 0.001). Muscle structure and mitochondrial function were not different between the groups, but proliferation of satellite cells was significantly greater in older mice with SIRT1 muscle knockout (P < 0.05), but not older SIRT1 satellite cell knockout models, in vitro, although this effect was attenuated in vivo after 21 days of recovery. CONCLUSIONS The data suggest skeletal muscle structure, function, and recovery after CTX-induced injury are not significantly influenced by gain or loss of SIRT1 abundance alone in skeletal muscle; however, muscle function is impaired by ablation of SIRT1 in satellite cells. SIRT1 appears to interact with p53 to improve muscle fatigue resistance after repair from muscle injury.
Collapse
Affiliation(s)
- Matthew J. Myers
- Laboratory of Muscle Biology and SarcopeniaWest Virginia University School of MedicineMorgantownUSA
| | - Danielle L. Shepherd
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory SciencesWest Virginia University School of MedicineMorgantownUSA
| | - Andrya J. Durr
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory SciencesWest Virginia University School of MedicineMorgantownUSA
| | - David S. Stanton
- Laboratory of Muscle Biology and SarcopeniaWest Virginia University School of MedicineMorgantownUSA
| | - Junaith S. Mohamed
- Laboratory of Muscle Biology and SarcopeniaWest Virginia University School of MedicineMorgantownUSA
- Laboratory of Nerve and Muscle, Department of Clinical Laboratory Sciences, College of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisUSA
| | - John M. Hollander
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory SciencesWest Virginia University School of MedicineMorgantownUSA
| | - Stephen E. Alway
- Laboratory of Muscle Biology and SarcopeniaWest Virginia University School of MedicineMorgantownUSA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisUSA
- Department of Physiology, College of MedicineUniversity of Tennessee Health Science CenterMemphisUSA
| |
Collapse
|
19
|
Kunovac A, Hathaway QA, Pinti MV, Goldsmith WT, Durr AJ, Fink GK, Nurkiewicz TR, Hollander JM. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Part Fibre Toxicol 2019; 16:24. [PMID: 31215478 PMCID: PMC6582485 DOI: 10.1186/s12989-019-0310-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. RESULTS Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. CONCLUSIONS Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Mark V. Pinti
- West Virginia University School of Pharmacy, Morgantown, WV USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
| | - Garrett K. Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
20
|
Hathaway QA, Roth SM, Pinti MV, Sprando DC, Kunovac A, Durr AJ, Cook CC, Fink GK, Cheuvront TB, Grossman JH, Aljahli GA, Taylor AD, Giromini AP, Allen JL, Hollander JM. Machine-learning to stratify diabetic patients using novel cardiac biomarkers and integrative genomics. Cardiovasc Diabetol 2019; 18:78. [PMID: 31185988 PMCID: PMC6560734 DOI: 10.1186/s12933-019-0879-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic disease that impacts an increasing percentage of people each year. Among its comorbidities, diabetics are two to four times more likely to develop cardiovascular diseases. While HbA1c remains the primary diagnostic for diabetics, its ability to predict long-term, health outcomes across diverse demographics, ethnic groups, and at a personalized level are limited. The purpose of this study was to provide a model for precision medicine through the implementation of machine-learning algorithms using multiple cardiac biomarkers as a means for predicting diabetes mellitus development. METHODS Right atrial appendages from 50 patients, 30 non-diabetic and 20 type 2 diabetic, were procured from the WVU Ruby Memorial Hospital. Machine-learning was applied to physiological, biochemical, and sequencing data for each patient. Supervised learning implementing SHapley Additive exPlanations (SHAP) allowed binary (no diabetes or type 2 diabetes) and multiple classification (no diabetes, prediabetes, and type 2 diabetes) of the patient cohort with and without the inclusion of HbA1c levels. Findings were validated through Logistic Regression (LR), Linear Discriminant Analysis (LDA), Gaussian Naïve Bayes (NB), Support Vector Machine (SVM), and Classification and Regression Tree (CART) models with tenfold cross validation. RESULTS Total nuclear methylation and hydroxymethylation were highly correlated to diabetic status, with nuclear methylation and mitochondrial electron transport chain (ETC) activities achieving superior testing accuracies in the predictive model (~ 84% testing, binary). Mitochondrial DNA SNPs found in the D-Loop region (SNP-73G, -16126C, and -16362C) were highly associated with diabetes mellitus. The CpG island of transcription factor A, mitochondrial (TFAM) revealed CpG24 (chr10:58385262, P = 0.003) and CpG29 (chr10:58385324, P = 0.001) as markers correlating with diabetic progression. When combining the most predictive factors from each set, total nuclear methylation and CpG24 methylation were the best diagnostic measures in both binary and multiple classification sets. CONCLUSIONS Using machine-learning, we were able to identify novel as well as the most relevant biomarkers associated with type 2 diabetes mellitus by integrating physiological, biochemical, and sequencing datasets. Ultimately, this approach may be used as a guideline for future investigations into disease pathogenesis and novel biomarker discovery.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Skyler M Roth
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Mark V Pinti
- West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Daniel C Sprando
- West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Tristen B Cheuvront
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Jasmine H Grossman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Ghadah A Aljahli
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Andrew P Giromini
- West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Jessica L Allen
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA.
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA.
| |
Collapse
|
21
|
Hathaway QA, Durr AJ, Shepherd DL, Pinti MV, Brandebura AN, Nichols CE, Kunovac A, Goldsmith WT, Friend SA, Abukabda AB, Fink GK, Nurkiewicz TR, Hollander JM. miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology 2019; 13:644-663. [PMID: 30704319 PMCID: PMC6629495 DOI: 10.1080/17435390.2019.1570372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
Abstract
Nano-titanium dioxide (nano-TiO2), though one of the most utilized and produced engineered nanomaterials (ENMs), diminishes cardiovascular function through dysregulation of metabolism and mitochondrial bioenergetics following inhalation exposure. The molecular mechanisms governing this cardiac dysfunction remain largely unknown. The purpose of this study was to elucidate molecular mediators that connect nano-TiO2 exposure with impaired cardiac function. Specifically, we were interested in the role of microRNA (miRNA) expression in the resulting dysfunction. Not only are miRNA global regulators of gene expression, but also miRNA-based therapeutics provide a realistic treatment modality. Wild type and MiRNA-378a knockout mice were exposed to nano-TiO2 with an aerodynamic diameter of 182 ± 1.70 nm and a mass concentration of 11.09 mg/m3 for 4 h. Cardiac function, utilizing the Vevo 2100 Imaging System, electron transport chain complex activities, and mitochondrial respiration assessed cardiac and mitochondrial function. Immunoblotting and qPCR examined molecular targets of miRNA-378a. MiRNA-378a-3p expression was increased 48 h post inhalation exposure to nano-TiO2. Knockout of miRNA-378a preserved cardiac function following exposure as revealed by preserved E/A ratio and E/SR ratio. In knockout animals, complex I, III, and IV activities (∼2- to 6-fold) and fatty acid respiration (∼5-fold) were significantly increased. MiRNA-378a regulated proteins involved in mitochondrial fusion, transcription, and fatty acid metabolism. MiRNA-378a-3p acts as a negative regulator of mitochondrial metabolic and biogenesis pathways. MiRNA-378a knockout animals provide a protective effect against nano-TiO2 inhalation exposure by altering mitochondrial structure and function. This is the first study to manipulate a miRNA to attenuate the effects of ENM exposure.
Collapse
Affiliation(s)
- Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Danielle L. Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V. Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ashley N. Brandebura
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Cody E. Nichols
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology, Pharmacology & Neuroscience, Morgantown, WV, USA
| | - Sherri A. Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alaeddin B. Abukabda
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology, Pharmacology & Neuroscience, Morgantown, WV, USA
| | - Garrett K. Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology, Pharmacology & Neuroscience, Morgantown, WV, USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
22
|
Hendryx M, Yonts SD, Li Y, Luo J. Mountaintop removal mining and multiple illness symptoms: A latent class analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:764-769. [PMID: 30677941 DOI: 10.1016/j.scitotenv.2018.12.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Mountaintop removal mining has been associated with multiple types of disease outcomes for populations living nearby. The current study tested whether latent classes identifying people with symptoms from multiple organ systems were associated with residence in mountaintop mining communities. METHODS We used data from three cross-sectional household community surveys conducted in three Appalachian states (N = 2756). The surveys contained information on 29 recent illness symptoms grouped into eight organ systems (respiratory, cardiovascular, gastrointestinal, musculoskeletal, skin, eye-ear-nose-throat, neurological, and other.) We identified latent classes, and then tested whether classes with higher probabilities of multiple symptoms would be associated with residence in mountaintop removal areas after control for covariates. RESULTS Three latent classes were identified, including a low-symptom referent class, an intermediate class, and a class with high symptom probability across organ systems. Controlling for covariates, latent classes characterized by intermediate and high multi-symptom probabilities were significantly associated with residence near mountaintop removal mining, with the highest odds ratio for the MTR versus control condition for the high multi-symptom group (OR = 2.17, 95% CI = 1.80-2.61). CONCLUSIONS Symptoms across multiple organ systems were related to residential proximity to mountaintop removal mining. Prior research has established multiple environmental contaminants related to mining that may contribute to poor population health through more than one exposure route or chemical of concern.
Collapse
Affiliation(s)
- Michael Hendryx
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, United States of America.
| | - Sarah D Yonts
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, United States of America
| | - Yueyao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, United States of America
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, United States of America
| |
Collapse
|
23
|
Karoui A, Crochemore C, Mulder P, Preterre D, Cazier F, Dewaele D, Corbière C, Mekki M, Vendeville C, Richard V, Vaugeois JM, Fardel O, Sichel F, Lecureur V, Monteil C. An integrated functional and transcriptomic analysis reveals that repeated exposure to diesel exhaust induces sustained mitochondrial and cardiac dysfunctions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:518-526. [PMID: 30583160 DOI: 10.1016/j.envpol.2018.12.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Diesel exhaust (DE) contributes to air pollution, an important risk factor for cardiovascular diseases. However, the mechanisms by which DE exposure induces cardiovascular dysfunction remain unknown and there is still debate on the contribution of the primary particulate matter (PM) fraction compared to the gaseous phase. Although the mitochondria play a key role in the events leading to cardiovascular diseases, their role in DE-induced cardiovascular effects has not been investigated. The aim of this study was to highlight cardiac and mitochondrial events that could be disrupted following acute and/or repeated DE exposures and the contribution of gaseous pollutants to these effects. To address this question, Wistar rats were exposed to DE generated under strictly controlled and characterized conditions and extracted upstream or downstream of the diesel particulate filter (DPF). Evaluation of the cardiac function after acute DE exposure showed a disturbance in echocardiographic parameters, which persisted and worsened after repeated exposures. The presence of the DPF did not modify the cardiovascular dysfunction revealing an important implication of the gas phase in this response. Surprisingly, redox parameters were not altered by DE exposures while an alteration in mitochondrial oxidative capacity was observed. Exploration of the mitochondrial function demonstrated a more specific alteration in complex I of the respiratory chain after repeated exposures, which was further confirmed by transcriptional analysis of left ventricular (LV) tissue. In conclusion, this work provides new insights into cardiovascular effects induced by DE, demonstrating a cardiac mitochondrial impairment associated with the gaseous phase. These effects suggest deleterious consequences in terms of cardiac function for vulnerable populations with underlying energy deficit such as patients with heart failure or the elderly.
Collapse
Affiliation(s)
- Ahmed Karoui
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Clément Crochemore
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Paul Mulder
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale, U1096, Rouen, France
| | - David Preterre
- CERTAM, 1 rue Joseph Fourier, 76800, Saint-Etienne du Rouvray, France
| | - Fabrice Cazier
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, 59140, Dunkerque, France
| | - Dorothée Dewaele
- Common Center of Measurements (CCM), Univ. Littoral Côte d'Opale, 59140, Dunkerque, France
| | - Cécile Corbière
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Malik Mekki
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Cathy Vendeville
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Institut National de la Santé et de la Recherche Médicale, U1096, Rouen, France
| | | | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000, Rennes, France; Pôle Biologie, Rennes University Hospital, 35203, Rennes, France
| | - François Sichel
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France; Centre François Baclesse, 14000, Caen, France
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000, Rennes, France
| | - Christelle Monteil
- Normandie Univ, UNIROUEN, UNICAEN, ABTE, 14000 Caen et 76 000 Rouen, France.
| |
Collapse
|
24
|
Holland NA, Fraiser CR, Sloan RC, Devlin RB, Brown DA, Wingard CJ. Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore. Cardiovasc Toxicol 2018; 17:441-450. [PMID: 28194639 DOI: 10.1007/s12012-017-9402-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrafine particulate matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM-associated cardiovascular disease and dysfunction remain unclear. We examined the impact of oropharyngeal aspiration of 100 μg UFP from the Chapel Hill, NC, air shed in Sprague-Dawley rats on cardiac function, arrhythmogenesis, and cardiac ischemia/reperfusion (I/R) injury using a Langendorff working heart model. We found that exposure to UFP was capable of significantly exacerbating cardiac I/R injury without changing overall cardiac function or major changes in arrhythmogenesis. Cardiac I/R injury was attenuable with administration of cyclosporin A (CsA), suggesting a role for the mitochondrial permeability transition pore (mPTP) in UFP-associated cardiovascular toxicity. Isolated cardiac mitochondria displayed decreased Ca2+ buffering before opening of the mPTP. These findings suggest that UFP-induced expansion of cardiac I/R injury may be a result of mPTP Ca2+ sensitization resulting in increased mitochondrial permeability transition and potential initiation of mPTP-associated cell death pathways.
Collapse
Affiliation(s)
- Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Chad R Fraiser
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ruben C Sloan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, Environmental Public Health Division, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David A Brown
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. .,Lansing School of Nursing and Health Sciences, Physical Therapy Department, Bellarmine University, 2001 Newburg Rd, Louisville, KY, 40205, USA.
| |
Collapse
|
25
|
Shepherd DL, Hathaway QA, Nichols CE, Durr AJ, Pinti MV, Hughes KM, Kunovac A, Stine SM, Hollander JM. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus. J Mol Cell Cardiol 2018; 119:104-115. [PMID: 29733819 PMCID: PMC5987221 DOI: 10.1016/j.yjmcc.2018.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 01/17/2023]
Abstract
>99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM.
Collapse
Affiliation(s)
- Danielle L Shepherd
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Cody E Nichols
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Andrya J Durr
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Mark V Pinti
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Kristen M Hughes
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Amina Kunovac
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Seth M Stine
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - John M Hollander
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States.
| |
Collapse
|
26
|
Bhargava A, Tamrakar S, Aglawe A, Lad H, Srivastava RK, Mishra DK, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:406-419. [PMID: 29202419 DOI: 10.1016/j.envpol.2017.11.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 05/28/2023]
Abstract
Particulate matter (PM), broadly defined as coarse (2.5-10 μm), fine (0.1-2.5 μm) and ultrafine particles (≤0.1 μm), is a major constituent of ambient air pollution. Recent studies have linked PM exposure (coarse and fine particles) with several human diseases including cancer. However, the molecular mechanisms underlying ultrafine PM exposure induced cellular and sub-cellular repercussions are ill-defined. Since mitochondria are one of the major targets of different environmental pollutants, we herein aimed to understand the molecular repercussion of ultrafine PM exposure on mitochondrial machinery in peripheral blood lymphocytes. Upon comparative analysis, a significantly higher DCF fluorescence was observed in ultrafine PM exposed cells that confirmed the strong pro-oxidant nature of these particles. In addition, the depleted activity of antioxidant enzymes, glutathione reductase and superoxide dismutase suggested the strong association of ultrafine PM with oxidative stress. These results further coincided with mitochondrial membrane depolarization, altered mitochondrial respiratory chain enzyme activity and decline in mtDNA copy number. Moreover, the higher accumulation of DNA damage response proteins (γH2AX, pATM, p-p53), suggested that exposure to ultrafine PM induces DNA damage and triggers phosphatidylinositol 3 kinase mediated response pathway. Further, the alterations in mitochondrial machinery and redox balance among ultrafine PM exposed cells were accompanied by a considerably elevated pro-inflammatory cytokine response. Interestingly, the lower apoptosis levels observed in ultrafine particle treated cells suggest the possibility that the marked alterations may lead to the impairment of mitochondrial-nuclear cross talk. Together, our results showed that ultrafine PM, because of their smaller size possesses significant ability to disturb mitochondrial redox homeostasis and activates phosphatidylinositol 3 kinase mediated DNA damage response pathway, an unknown molecular paradigm of ultrafine PM exposure. Our findings also indicate that maneuvering through the mitochondrial function might be a viable, indirect method to modulate lymphocyte homeostasis in air pollution associated immune disorders.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shivani Tamrakar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Aniket Aglawe
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Harsha Lad
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Dinesh Kumar Mishra
- School of Pharmacy and Technology Management, Narsee Moonjee Institute of Management Studies, Shirpur, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
27
|
Nichols CE, Shepherd DL, Hathaway QA, Durr AJ, Thapa D, Abukabda A, Yi J, Nurkiewicz TR, Hollander JM. Reactive oxygen species damage drives cardiac and mitochondrial dysfunction following acute nano-titanium dioxide inhalation exposure. Nanotoxicology 2018; 12:32-48. [PMID: 29243970 PMCID: PMC5777890 DOI: 10.1080/17435390.2017.1416202] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
Nanotechnology offers innovation in products from cosmetics to drug delivery, leading to increased engineered nanomaterial (ENM) exposure. Unfortunately, health impacts of ENM are not fully realized. Titanium dioxide (TiO2) is among the most widely produced ENM due to its use in numerous applications. Extrapulmonary effects following pulmonary exposure have been identified and may involve reactive oxygen species (ROS). The goal of this study was to determine the extent of ROS involvement on cardiac function and the mitochondrion following nano-TiO2 exposure. To address this question, we utilized a transgenic mouse model with overexpression of a novel mitochondrially-targeted antioxidant enzyme (phospholipid hydroperoxide glutathione peroxidase; mPHGPx) which provides protection against oxidative stress to lipid membranes. MPHGPx mice and littermate controls were exposed to nano-TiO2 aerosols (Evonik, P25) to provide a calculated pulmonary deposition of 11 µg/mouse. Twenty-four hours following exposure, we observed diastolic dysfunction as evidenced by E/A ratios greater than 2 and increased radial strain during diastole in wild-type mice (p < 0.05 for both), indicative of restrictive filling. Overexpression of mPHGPx mitigated the contractile deficits resulting from nano-TiO2 exposure. To investigate the cellular mechanisms associated with the observed cardiac dysfunction, we focused our attention on the mitochondrion. We observed a significant increase in ROS production (p < 0.05) and decreased mitochondrial respiratory function (p < 0.05) following nano-TiO2 exposure which were attenuated in mPHGPx transgenic mice. In summary, nano-TiO2 inhalation exposure is associated with cardiac diastolic dysfunction and mitochondrial functional alterations, which can be mitigated by the overexpression of mPHGPx, suggesting ROS contribution in the development of contractile and bioenergetic dysfunction.
Collapse
Affiliation(s)
- Cody E. Nichols
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Danielle L. Shepherd
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Quincy A. Hathaway
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Andrya J. Durr
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Dharendra Thapa
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Alaeddin Abukabda
- Department of Physiology and Pharmacology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jinghai Yi
- Department of Physiology and Pharmacology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - Timothy R. Nurkiewicz
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
- Department of Physiology and Pharmacology; West Virginia University School of Medicine, Morgantown, WV 26506
| | - John M. Hollander
- Division of Exercise Physiology; West Virginia University School of Medicine, Morgantown, WV 26506
- Mitochondria, Metabolism & Bioenergetics Working Group; West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
28
|
Boyles AL, Blain RB, Rochester JR, Avanasi R, Goldhaber SB, McComb S, Holmgren SD, Masten SA, Thayer KA. Systematic review of community health impacts of mountaintop removal mining. ENVIRONMENT INTERNATIONAL 2017; 107:163-172. [PMID: 28738262 PMCID: PMC5562233 DOI: 10.1016/j.envint.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The objective of this evaluation is to understand the human health impacts of mountaintop removal (MTR) mining, the major method of coal mining in and around Central Appalachia. MTR mining impacts the air, water, and soil and raises concerns about potential adverse health effects in neighboring communities; exposures associated with MTR mining include particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), metals, hydrogen sulfide, and other recognized harmful substances. METHODS A systematic review was conducted of published studies of MTR mining and community health, occupational studies of MTR mining, and any available animal and in vitro experimental studies investigating the effects of exposures to MTR-mining-related chemical mixtures. Six databases (Embase, PsycINFO, PubMed, Scopus, Toxline, and Web of Science) were searched with customized terms, and no restrictions on publication year or language, through October 27, 2016. The eligibility criteria included all human population studies and animal models of human health, direct and indirect measures of MTR-mining exposure, any health-related effect or change in physiological response, and any study design type. Risk of bias was assessed for observational and experimental studies using an approach developed by the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT). To provide context for these health effects, a summary of the exposure literature is included that focuses on describing findings for outdoor air, indoor air, and drinking water. RESULTS From a literature search capturing 3088 studies, 33 human studies (29 community, four occupational), four experimental studies (two in rat, one in vitro and in mice, one in C. elegans), and 58 MTR mining exposure studies were identified. A number of health findings were reported in observational human studies, including cardiopulmonary effects, mortality, and birth defects. However, concerns for risk of bias were identified, especially with respect to exposure characterization, accounting for confounding variables (such as socioeconomic status), and methods used to assess health outcomes. Typically, exposure was assessed by proximity of residence or hospital to coal mining or production level at the county level. In addition, assessing the consistency of findings was challenging because separate publications likely included overlapping case and comparison groups. For example, 11 studies of mortality were conducted with most reporting higher rates associated with coal mining, but many of these relied on the same national datasets and were unable to consider individual-level contributors to mortality such as poor socioeconomic status or smoking. Two studies of adult rats reported impaired microvascular and cardiac mitochondrial function after intratracheal exposure to PM from MTR-mining sites. Exposures associated with MTR mining included reports of PM levels that sometimes exceeded Environmental Protection Agency (EPA) standards; higher levels of dust, trace metals, hydrogen sulfide gas; and a report of increased public drinking water violations. DISCUSSION This systematic review could not reach conclusions on community health effects of MTR mining because of the strong potential for bias in the current body of human literature. Improved characterization of exposures by future community health studies and further study of the effects of MTR mining chemical mixtures in experimental models will be critical to determining health risks of MTR mining to communities. Without such work, uncertainty will remain regarding the impact of these practices on the health of the people who breathe the air and drink the water affected by MTR mining.
Collapse
Affiliation(s)
- Abee L Boyles
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Durham, NC, USA.
| | | | | | | | | | | | - Stephanie D Holmgren
- Office of Science Information Management, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Durham, NC, USA
| | - Scott A Masten
- Office of Nomination and Selection, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Durham, NC, USA
| | - Kristina A Thayer
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services, Durham, NC, USA
| |
Collapse
|
29
|
Shepherd DL, Hathaway QA, Pinti MV, Nichols CE, Durr AJ, Sreekumar S, Hughes KM, Stine SM, Martinez I, Hollander JM. Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase). J Mol Cell Cardiol 2017; 110:15-25. [PMID: 28709769 PMCID: PMC5854179 DOI: 10.1016/j.yjmcc.2017.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the primary cause of mortality for individuals with type 2 diabetes mellitus. During the diabetic condition, cardiovascular dysfunction can be partially attributed to molecular changes in the tissue, including alterations in microRNA (miRNA) interactions. MiRNAs have been reported in the mitochondrion and their presence may influence cellular bioenergetics, creating decrements in functional capacity. In this study, we examined the roles of Argonaute 2 (Ago2), a protein associated with cytosolic and mitochondrial miRNAs, and Polynucleotide Phosphorylase (PNPase), a protein found in the inner membrane space of the mitochondrion, to determine their role in mitochondrial miRNA import. In cardiac tissue from human and mouse models of type 2 diabetes mellitus, Ago2 protein levels were unchanged while PNPase protein expression levels were increased; also, there was an increase in the association between both proteins in the diabetic state. MiRNA-378 was found to be significantly increased in db/db mice, leading to decrements in ATP6 levels and ATP synthase activity, which was also exhibited when overexpressing PNPase in HL-1 cardiomyocytes and in HL-1 cells with stable miRNA-378 overexpression (HL-1-378). To assess potential therapeutic interventions, flow cytometry evaluated the capacity for targeting miRNA-378 species in mitochondria through antimiR treatment, revealing miRNA-378 level-dependent inhibition. Our study establishes PNPase as a contributor to mitochondrial miRNA import through the transport of miRNA-378, which may regulate bioenergetics during type 2 diabetes mellitus. Further, our data provide evidence that manipulation of PNPase levels may enhance the delivery of antimiR therapeutics to mitochondria in physiological and pathological conditions.
Collapse
Affiliation(s)
- Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Cody E Nichols
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Shruthi Sreekumar
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Kristen M Hughes
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Seth M Stine
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Ivan Martinez
- Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
30
|
de Oliveira-Fonoff AM, Mady C, Pessoa FG, Fonseca KCB, Salemi VMC, Fernandes F, Saldiva PHN, Ramires FJA. The role of air pollution in myocardial remodeling. PLoS One 2017; 12:e0176084. [PMID: 28426774 PMCID: PMC5398702 DOI: 10.1371/journal.pone.0176084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
Background Excessive air pollution in urban environments can impact morbidity and mortality. The authors evaluated the role of particulate matter2.5 (PM2.5) in structural, geometric, and functional remodeling in hearts, using an experimental model of myocardial infarction. Methods and findings Seventy-five rats were divided into 5 groups: control (CG), CG exposed to PM2.5 pollution (CGP), myocardial infarcted group (MI), infarcted group immediately exposed to pollution (IGP-I), and infarcted group previously exposed to pollution and kept exposed after infarction (IGP-II). Greater deposition of interstitial collagen occurred in the left ventricle in CGP, MI, IGP-I, and IGP-II groups compared with that in controls (p = 0.002 CG vs CGP and p<0.0001 CG vs MI, IGP-I, and IGP-II). In the right ventricle, greater collagen deposition existed in CGP, MI, IGP-I, and IGP-II compared with that in CG (p<0.021 CG vs CGP and p<0.0001 CG vs MI, IGP-I, and IGP-II). At the end of the study, CG had a higher mean shortening fraction than the other groups had (p≤0.03). Left ventricular systolic diameter was lower in CG than in infarcted groups (p≤0.003). The infarcted groups had greater expression of TGF-β (p≤0.04). PM2.5 increased the expression of TGF-β in the IGP-II compared with the MI group (p = 0.004). The TNF-α gene was overexpressed in the IGP-II compared with the CGP group (p = 0.012). INF-γ gene expression was greater in IGP-II (p≤0.01). Oxidative stress analysis showed a higher glutathione concentration in CGP (p = 0.03), MI (p = 0.014), and IGP-I (p = 0.008) compared with that in CG. Conclusions PM2.5 stimulates the deposition of fibrosis in the myocardium of healthy hearts, but not in infarcted hearts. PM2.5 modulates the inflammatory response, which was greater in the IGP-II group. It also modulates oxidative stress in healthy hearts but not in infarcted hearts.
Collapse
Affiliation(s)
- A. M. de Oliveira-Fonoff
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
- Department of Pathology, Medical School of the University of São Paulo, São Paulo, Brazil
| | - C. Mady
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
| | - F. G. Pessoa
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
| | - K. C. B. Fonseca
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
| | - V. M. C. Salemi
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
| | - F. Fernandes
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
| | - P. H. N. Saldiva
- Department of Pathology, Medical School of the University of São Paulo, São Paulo, Brazil
| | - F. J. A. Ramires
- Cardiomyopathy Unit at the Heart Institute (InCor) of the University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|