1
|
Lee Y, Fang Y, Kuila S, Imoukhuede PI. Cross-family interactions of vascular endothelial growth factors and platelet-derived growth factors on the endothelial cell surface: A computational model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640640. [PMID: 40093087 PMCID: PMC11908192 DOI: 10.1101/2025.02.27.640640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Angiogenesis, the formation of new vessels from existing vessels, is mediated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Despite discoveries supporting the cross-family interactions between VEGF and PDGF families, sharing the binding partners between them makes it challenging to identify growth factors that predominantly affect angiogenesis. Systems biology offers promises to untangle this complexity. Thus, in this study, we developed a mass-action kinetics-based computational model for cross-family interactions between VEGFs (VEGF-A, VEGF-B, and PlGF) and PDGFs (PDGF-AA, PDGF-AB, and PDGF-BB) with their receptors (VEGFR1, VEGFR2, NRP1, PDGFRα, and PDGFRβ). The model, parametrized with our literature mining and surface resonance plasmon assays, was validated by comparing the concentration of VEGFR1 complexes with a previously constructed angiogenesis model. The model predictions include five outcomes: 1) the percentage of free or bound ligands and 2) receptors, 3) the concentration of free ligands, 4) the percentage of ligands occupying each receptor, and 5) the concentration of ligands that is bound to each receptor. We found that at equimolar ligand concentrations (1 nM), PlGF and VEGF-A were the main binding partners of VEGFR1 and VEGFR2, respectively. Varying the density of receptors resulted in the following five outcomes: 1) Increasing VEGFR1 density depletes the free PlGF concentration, 2) increasing VEGFR2 density decreases PDGF:PDGFRα complexes, 3) increased NRP1 density generates a biphasic concentration of the free PlGF, 4) increased PDGFRα density increases PDGFs:PDGFRα binding, and 5) increasing PDGFRβ density increases VEGF-A:PDGFRβ. Our model offers a reproducible, fundamental framework for exploring cross-family interactions that can be extended to the tissue level or intracellular molecular level. Also, our model may help develop therapeutic strategies in pathological angiogenesis by identifying the dominant complex in the cell signaling. Author summary New blood vessel formation from existing ones is essential for growth, healing, and reproduction. However, when this process is disrupted-either too much or too little-it can contribute to diseases such as cancer and peripheral arterial disease. Two key families of proteins, vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs), regulate this process. Traditionally, scientists believed that VEGFs only bind to VEGF receptors and PDGFs to PDGF receptors. However, recent findings show that these proteins can interact with each other's receptors, making it more challenging to understand and control blood vessel formation. To clarify these complex interactions, we combined computer modeling with biological data to map out which proteins bind to which receptors and to what extent. Our findings show that when VEGFs and PDGFs are present in equal amounts, VEGFs are the primary binding partners for VEGF receptors. We also explored how changes in receptor levels affect these interactions in disease-like conditions. This work provides a foundational computational model for studying cross-family interactions, which can be expanded to investigate tissue-level effects and processes inside cells. Ultimately, our model may help develop better treatments for diseases linked to abnormal blood vessel growth by identifying key protein-receptor interactions.
Collapse
|
2
|
Gill A, Kinghorn K, Bautch VL, Mac Gabhann F. Mechanistic computational modeling of sFLT1 secretion dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637983. [PMID: 40027776 PMCID: PMC11870409 DOI: 10.1101/2025.02.12.637983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Constitutively secreted by endothelial cells, soluble FLT1 (sFLT1 or sVEGFR1) binds and sequesters extracellular vascular endothelial growth factors (VEGF), thereby reducing VEGF binding to VEGF receptor tyrosine kinases and their downstream signaling. In doing so, sFLT1 plays an important role in vascular development and in the patterning of new blood vessels in angiogenesis. Here, we develop multiple mechanistic models of sFLT1 secretion and identify a minimal mechanistic model that recapitulates key qualitative and quantitative features of temporal experimental datasets of sFLT1 secretion from multiple studies. We show that the experimental data on sFLT1 secretion is best represented by a delay differential equation (DDE) system including a maturation term, reflecting the time required between synthesis and secretion. Using optimization to identify appropriate values for the key mechanistic parameters in the model, we show that two model parameters (extracellular degradation rate constant and maturation time) are very strongly constrained by the experimental data, and that the remaining parameters are related by two strongly constrained constants. Thus, only one degree of freedom remains, and measurements of the intracellular levels of sFLT1 would fix the remaining parameters. Comparison between simulation predictions and additional experimental data of the outcomes of chemical inhibitors and genetic perturbations suggest that intermediate values of the secretion rate constant best match the simulation with experiments, which would completely constrain the model. However, some of the inhibitors tested produce results that cannot be reproduced by the model simulations, suggesting that additional mechanisms not included here are required to explain those inhibitors. Overall, the model reproduces most available experimental data and suggests targets for further quantitative investigation of the sFLT1 system.
Collapse
Affiliation(s)
- Amy Gill
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karina Kinghorn
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bautch
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Lee Y, Tukei KL, Fang Y, Kuila S, Liu X, Imoukhuede PI. Integrative analysis of angiogenic signaling in obesity: capillary features and VEGF binding kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630107. [PMID: 39763822 PMCID: PMC11703262 DOI: 10.1101/2024.12.23.630107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Obesity is a global health crisis, with its prevalence particularly severe in the United States, where over 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms that remain poorly understood. Among these, angiogenesis-primarily mediated by vascular endothelial growth factor (VEGF-A)-is critical for adipose tissue expansion but presents unique challenges for therapeutic targeting due to its intricate regulation. Systems biology approaches have advanced our understanding of VEGF-A signaling in vascular diseases, but their application to obesity is limited by scattered and sometimes contradictory data. To address this gap, we performed a comprehensive analysis of the existing literature to synthesize key findings, standardize data, and provide a holistic perspective on the adipose vascular microenvironment. The data mining revealed five key findings: (1) obesity increases adipocyte size by 78%; (2) vessel density in adipose tissue decreases by 51% in obese mice, with vessels being 47-58% smaller and 4-9 times denser in comparison with tumor vessels; (3) capillary basement membrane thickness remains similar regardless of obesity; (4) VEGF-A shows the strongest binding affinity for VEGFR1, with four times stronger affinity for VEGFR2 than for NRP1; and (5) binding affinities measured by radioligand binding assay and surface plasmon resonance (SPR) are significantly different. These consolidated findings provide essential parameters for systems biology modeling, new insights into obesity-induced changes in adipose tissue, and a foundation for developing angiogenesis-targeting therapies for obesity.
Collapse
|
4
|
Thadhani R, Cerdeira AS, Karumanchi SA. Translation of mechanistic advances in preeclampsia to the clinic: Long and winding road. FASEB J 2024; 38:e23441. [PMID: 38300220 DOI: 10.1096/fj.202301808r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
As one of the leading causes of premature birth and maternal and infant mortality worldwide, preeclampsia remains a major unmet public health challenge. Preeclampsia and related hypertensive disorders of pregnancy are estimated to cause >75 000 maternal and 500 000 infant deaths globally each year. Because of rising rates of risk factors such as obesity, in vitro fertilization and advanced maternal age, the incidence of preeclampsia is going up with rates ranging from 5% to 10% of all pregnancies worldwide. A major discovery in the field was the realization that the clinical phenotypes related to preeclampsia, such as hypertension, proteinuria, and other adverse maternal/fetal events, are due to excess circulating soluble fms-like tyrosine kinase-1 (sFlt-1, also referred to as sVEGFR-1). sFlt-1 is an endogenous anti-angiogenic protein that is made by the placenta and acts by neutralizing the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). During the last decade, this work has spawned a new era of molecular diagnostics for early detection of this condition. Antagonizing sFlt-1 either by reducing production or blocking its actions has shown salutary effects in animal models. Further, in early-stage human studies, the therapeutic removal of sFlt-1 from maternal circulation has shown promise in delaying disease progression and improving outcomes. Recently, the FDA approved the first molecular test for preterm preeclampsia (sFlt-1/PlGF ratio) for clinical use in the United States. Measuring serum sFlt-1/PlGF ratio in the acute hospital setting may aid short-term management, particularly regarding step-up or step-down of care, decision to transfer to settings better equipped to manage both the mother and the preterm neonate, appropriate timing of administration of steroids and magnesium sulfate, and in expectant management decisions. The test itself has the potential to save lives. Furthermore, the availability of a molecular test that correlates with adverse outcomes has set the stage for interventional clinical trials testing treatments for this disorder. In this review, we will discuss the role of circulating sFlt-1 and related factors in the pathogenesis of preeclampsia and specifically how this discovery is leading to concrete advances in the care of women with preeclampsia.
Collapse
Affiliation(s)
- Ravi Thadhani
- Woodruff Health Sciences Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Sofia Cerdeira
- Nuffield Department of Women's Health and Reproductive Research, University of Oxford, Oxford, UK
- Fetal Maternal Medicine Unit, Queen Charlotte's and Chelsea Hospital, London, UK
| | - S Ananth Karumanchi
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
5
|
Naidoo N, Moodley J, Khaliq OP, Naicker T. Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus Res 2022; 319:198880. [PMID: 35905790 PMCID: PMC9316720 DOI: 10.1016/j.virusres.2022.198880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
Abstract
This review explores the role of transmembrane neuropilin-1 (NRP-1) in pregnancy, preeclampsia (PE), human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Since these conditions are assessed independently, this review attempts to predict their comorbid clinical manifestations. Dysregulation of NRP-1 contributes to the pathogenesis of PE by (a) impairing vascular endothelial growth factor (VEGF) signaling for adequate spiral artery remodeling and placentation, (b) inducing syncytiotrophoblast (ST) cell apoptosis and increasing ST-derived microparticle circulation and (c) by decreasing regulatory T cell activity predisposing maternal immune intolerance. Although NRP-1 is upregulated in SARS-CoV-2 placentae, its exploitation for SARS-CoV-2 internalization and increased infectivity may alter angiogenesis through the competitive inhibition of VEGF. The anti-inflammatory nature of NRP-1 may aid its upregulation in HIV-1 infection; however, the HIV-accessory protein, tat, reduces NRP-1 expression. Upregulated NRP-1 in macrophages and dendritic cells also demonstrated HIV-1 resistance/reduced infectivity. Notably, HIV-1-infected pregnant women receiving antiretroviral therapy (ART) to prevent vertical transmission may experience immune reconstitution, impaired decidualization, and elevated markers of endothelial injury. Since endothelial dysfunction and altered immune responses are central to PE, HIV-1 infection, ART usage and SARS-CoV-2 infection, it is plausible that an exacerbation of both features may prevail in the synergy of these events. Additionally, this review identifies microRNAs (miRNAs) mediating NRP-1 expression. MiR-320 and miR-141 are overexpressed in PE, while miR-206 and miR-124-3p showed increased expression in PE and HIV-1 infection. Additionally, miR-214 is overexpressed in PE, HIV-1 and SARS-CoV-2 infection, implicating treatment strategies to reduce these miRNAs to upregulate and normalize NRP-1 expression. However, inconsistencies in the data of the role and regulation of miRNAs in PE, HIV-1 and SARS-CoV-2 infections require clarification. This review provides a platform for early diagnosis and potential therapeutic intervention of PE, HIV-1, and SARS-CoV-2 infections independently and as comorbidities.
Collapse
Affiliation(s)
- Nitalia Naidoo
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Olive Pearl Khaliq
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Goswami AG, Basu S, Huda F, Pant J, Ghosh Kar A, Banerjee T, Shukla VK. An appraisal of vascular endothelial growth factor (VEGF): the dynamic molecule of wound healing and its current clinical applications. Growth Factors 2022; 40:73-88. [PMID: 35584274 DOI: 10.1080/08977194.2022.2074843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a critical step of wound healing, and its failure leads to chronic wounds. The idea of restoring blood flow to the damaged tissues by promoting neo-angiogenesis is lucrative and has been researched extensively. Vascular endothelial growth factor (VEGF), a key dynamic molecule of angiogenesis has been investigated for its functions. In this review, we aim to appraise its biology, the comprehensive role of this dynamic molecule in the wound healing process, and how this knowledge has been translated in clinical application in various types of wounds. Although, most laboratory research on the use of VEGF is promising, its clinical applications have not met great expectations. We discuss various lacunae that might exist in making its clinical application unsuccessful for commercial use, and provide insight to the foundation for future research.
Collapse
Affiliation(s)
- Aakansha Giri Goswami
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Somprakas Basu
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Farhanul Huda
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Jayanti Pant
- Department of Physiology, All India Institute of Medical Sciences, Rishikesh, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Rustagi Y, Abouhashem AS, Verma P, Verma SS, Hernandez E, Liu S, Kumar M, Guda PR, Srivastava R, Mohanty SK, Kacar S, Mahajan S, Wanczyk KE, Khanna S, Murphy MP, Gordillo GM, Roy S, Wan J, Sen CK, Singh K. Endothelial Phospholipase Cγ2 Improves Outcomes of Diabetic Ischemic Limb Rescue Following VEGF Therapy. Diabetes 2022; 71:1149-1165. [PMID: 35192691 PMCID: PMC9044136 DOI: 10.2337/db21-0830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Therapeutic vascular endothelial growth factor (VEGF) replenishment has met with limited success for the management of critical limb-threatening ischemia. To improve outcomes of VEGF therapy, we applied single-cell RNA sequencing (scRNA-seq) technology to study the endothelial cells of the human diabetic skin. Single-cell suspensions were generated from the human skin followed by cDNA preparation using the Chromium Next GEM Single-cell 3' Kit v3.1. Using appropriate quality control measures, 36,487 cells were chosen for downstream analysis. scRNA-seq studies identified that although VEGF signaling was not significantly altered in diabetic versus nondiabetic skin, phospholipase Cγ2 (PLCγ2) was downregulated. The significance of PLCγ2 in VEGF-mediated increase in endothelial cell metabolism and function was assessed in cultured human microvascular endothelial cells. In these cells, VEGF enhanced mitochondrial function, as indicated by elevation in oxygen consumption rate and extracellular acidification rate. The VEGF-dependent increase in cell metabolism was blunted in response to PLCγ2 inhibition. Follow-up rescue studies therefore focused on understanding the significance of VEGF therapy in presence or absence of endothelial PLCγ2 in type 1 (streptozotocin-injected) and type 2 (db/db) diabetic ischemic tissue. Nonviral topical tissue nanotransfection technology (TNT) delivery of CDH5 promoter-driven PLCγ2 open reading frame promoted the rescue of hindlimb ischemia in diabetic mice. Improvement of blood flow was also associated with higher abundance of VWF+/CD31+ and VWF+/SMA+ immunohistochemical staining. TNT-based gene delivery was not associated with tissue edema, a commonly noted complication associated with proangiogenic gene therapies. Taken together, our study demonstrates that TNT-mediated delivery of endothelial PLCγ2, as part of combination gene therapy, is effective in diabetic ischemic limb rescue.
Collapse
Affiliation(s)
- Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Sharkia Clinical Research Department, Ministry of Health and Population, Cairo, Egypt
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sumit S. Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Rajneesh Srivastava
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sujit K. Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sanskruti Mahajan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kristen E. Wanczyk
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Michael P. Murphy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Gayle M. Gordillo
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
8
|
Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, Weiler KBS, Karsten MM. How VEGF-A and its splice variants affect breast cancer development - clinical implications. Cell Oncol (Dordr) 2022; 45:227-239. [PMID: 35303290 PMCID: PMC9050780 DOI: 10.1007/s13402-022-00665-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Altered expression levels and structural variations in the vascular endothelial growth factor (VEGF) have been found to play important roles in cancer development and to be associated with the overall survival and therapy response of cancer patients. Particularly VEGF-A and its splice variants have been found to affect physiological and pathological angiogenic processes, including tumor angiogenesis, correlating with tumor progression, mostly caused by overexpression. This review focuses on the expression and impact of VEGF-A splice variants under physiologic conditions and in tumors and, in particular, the distribution and role of isoform VEGF165b in breast cancer. CONCLUSIONS AND PERSPECTIVES Many publications already highlighted the importance of VEGF-A and its splice variants in tumor therapy, especially in breast cancer, which are summarized in this review. Furthermore, we were able to demonstrate that cytoplasmatic VEGFA/165b expression is higher in invasive breast cancer tumor cells than in normal tissues or stroma. These examples show that the detection of VEGF splice variants can be performed also on the protein level in formalin fixed tissues. Although no quantitative conclusions can be drawn, these results may be the starting point for further studies at a quantitative level, which can be a major step towards the design of targeted antibody-based (breast) cancer therapies.
Collapse
Affiliation(s)
- Hivin Al Kawas
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Inas Saaid
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | | | - Carsten Denkert
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Therese Pross
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Maria Margarete Karsten
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Zhang Y, Wang H, Oliveira RHM, Zhao C, Popel AS. Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mech Dis 2021; 14:e1550. [PMID: 34970866 PMCID: PMC9243197 DOI: 10.1002/wsbm.1550] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Angiogenesis is a highly regulated multiscale process that involves a plethora of cells, their cellular signal transduction, activation, proliferation, differentiation, as well as their intercellular communication. The coordinated execution and integration of such complex signaling programs is critical for physiological angiogenesis to take place in normal growth, development, exercise, and wound healing, while its dysregulation is critically linked to many major human diseases such as cancer, cardiovascular diseases, and ocular disorders; it is also crucial in regenerative medicine. Although huge efforts have been devoted to drug development for these diseases by investigation of angiogenesis‐targeted therapies, only a few therapeutics and targets have proved effective in humans due to the innate multiscale complexity and nonlinearity in the process of angiogenic signaling. As a promising approach that can help better address this challenge, systems biology modeling allows the integration of knowledge across studies and scales and provides a powerful means to mechanistically elucidate and connect the individual molecular and cellular signaling components that function in concert to regulate angiogenesis. In this review, we summarize and discuss how systems biology modeling studies, at the pathway‐, cell‐, tissue‐, and whole body‐levels, have advanced our understanding of signaling in angiogenesis and thereby delivered new translational insights for human diseases. This article is categorized under:Cardiovascular Diseases > Computational Models Cancer > Computational Models
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Wieczór R, Rość D, Wieczór AM, Kulwas A. VASCULAR-1 and VASCULAR-2 as a New Potential Angiogenesis and Endothelial Dysfunction Markers in Peripheral Arterial Disease. Clin Appl Thromb Hemost 2020; 25:1076029619877440. [PMID: 31564130 PMCID: PMC6829630 DOI: 10.1177/1076029619877440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The quotient of concentrations concerning the key proangiogenic factor, that is, the vascular endothelial growth factor (VEGF-A) and the angiogenesis inhibitor, namely, its soluble receptors (sVEGFR-1 or sVEGFR-2), seems to reflect increased hypoxia and intensity of compensation angiogenesis. Therefore, it can be an ischemic and endothelial dysfunction marker reflected in intermittent claudication (IC) or critical limb ischemia (CLI) in patients with symptomatic peripheral arterial disease (PAD). The main objective of this study was to evaluate the levels of VEGF-A/sVEGFR-1 and VEGF-A/sVEGFR-2—presented using a novelty acronym VASCULAR-1 and VASCULAR-2—in patients with IC and CLI, as well as displayed in 4 classes of severity of PAD. VASCULAR-1 and VASCULAR-2 were calculated using the plasma of venous blood sampled from 80 patients with IC (n = 65) and CLI (n = 15) and the control group (n = 30). Patients with CLI were reported to have a slightly higher index of VASCULAR-1 and double VASCULAR-2 levels as compared to patients with IC (P = nonsignificant), and these markers were significantly higher than controls (P < .01 and P < .01, respectively). VASCULAR-2 levels were observed to have an increasing tendency in the subsequent degrees of PAD severity according to the Fontaine classification (P = .02). In view of the need to consider the role of the proangiogenic and antiangiogenic factor in the assessment of the so-called “angiogenic potential,” VASCULAR-1 ratio and VASCULAR-2 ratio may be a new useful biomarker of limb ischemia in patients with IC and CLI. However, this requires further studies and evidence on a very large group of patients with PAD.
Collapse
Affiliation(s)
- Radosław Wieczór
- Department of Pathophysiology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.,Dr Jan Biziel University Hospital No. 2, Bydgoszcz, Poland
| | - Danuta Rość
- Department of Pathophysiology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Maria Wieczór
- Department of Pathophysiology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Arleta Kulwas
- Department of Pathophysiology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
11
|
Kühn C, Checa S. Computational Modeling to Quantify the Contributions of VEGFR1, VEGFR2, and Lateral Inhibition in Sprouting Angiogenesis. Front Physiol 2019; 10:288. [PMID: 30971939 PMCID: PMC6445957 DOI: 10.3389/fphys.2019.00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
Sprouting angiogenesis is a necessary process in regeneration and development as well as in tumorigenesis. VEGF-A is the main pro-angiogenic chemoattractant and it can bind to the decoy receptor VEGFR1 or to VEGFR2 to induce sprouting. Active sprout cells express Dll4, which binds to Notch1 on neighboring cells, in turn inhibiting VEGFR2 expression. It is known that the balance between VEGFR2 and VEGFR1 determines tip selection and network architecture, however the quantitative interrelationship of the receptors and their interrelated balances, also with relation to Dll4-Notch1 signaling, remains yet largely unknown. Here, we present an agent-based computer model of sprouting angiogenesis, integrating VEGFR1 and VEGFR2 in a detailed model of cellular signaling. Our model reproduces experimental data on VEGFR1 knockout. We show that soluble VEGFR1 improves the efficiency of angiogenesis by directing sprouts away from existing cells over a wide range of parameters. Our analysis unravels the relevance of the stability of the active notch intracellular domain as a dominating hub in this regulatory network. Our analysis quantitatively dissects the regulatory interactions in sprouting angiogenesis. Because we use a detailed model of intracellular signaling, the results of our analysis are directly linked to biological entities. We provide our computational model and simulation engine for integration in complementary modeling approaches.
Collapse
Affiliation(s)
- Clemens Kühn
- Julius Wolff Institute, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charite - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charite - UIniversitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Clegg LE, Mac Gabhann F. A computational analysis of pro-angiogenic therapies for peripheral artery disease. Integr Biol (Camb) 2018; 10:18-33. [PMID: 29327758 PMCID: PMC7017937 DOI: 10.1039/c7ib00218a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inducing therapeutic angiogenesis to effectively form hierarchical, non-leaky networks of perfused vessels in tissue engineering applications and ischemic disease remains an unmet challenge, despite extensive research and multiple clinical trials. Here, we use a previously-developed, multi-scale, computational systems pharmacology model of human peripheral artery disease to screen a diverse array of promising pro-angiogenic strategies, including gene therapy, biomaterials, and antibodies. Our previously-validated model explicitly accounts for VEGF immobilization, Neuropilin-1 binding, and weak activation of VEGF receptor 2 (VEGFR2) by the "VEGFxxxb" isoforms. First, we examine biomaterial-based delivery of VEGF engineered for increased affinity to the extracellular matrix. We show that these constructs maintain VEGF close to physiological levels and extend the duration of VEGFR2 activation. We demonstrate the importance of sub-saturating VEGF dosing to prevent angioma formation. Second, we examine the potential of ligand- or receptor-based gene therapy to normalize VEGF receptor signaling. Third, we explore the potential for antibody-based pro-angiogenic therapy. Our model supports recent observations that improvement in perfusion following treatment with anti-VEGF165b in mice is mediated by VEGF-receptor 1, not VEGFR2. Surprisingly, the model predicts that the approved anti-VEGF cancer drug, bevacizumab, may actually improve signaling of both VEGFR1 and VEGFR2 via a novel 'antibody swapping' effect that we demonstrate here. Altogether, this model provides insight into the mechanisms of action of several classes of pro-angiogenic strategies within the context of the complex molecular and physiological processes occurring in vivo. We identify molecular signaling similarities between promising approaches and key differences between promising and ineffective strategies.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
14
|
Sharma A, Molla MDS, Katti KS, Katti DR. Multiscale Models of Degradation and Healing of Bone Tissue Engineering Nanocomposite Scaffolds. JOURNAL OF NANOMECHANICS AND MICROMECHANICS 2017. [DOI: 10.1061/(asce)nm.2153-5477.0000133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Clegg LE, Ganta VC, Annex BH, Mac Gabhann F. Systems Pharmacology of VEGF165b in Peripheral Artery Disease. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:833-844. [PMID: 29193887 PMCID: PMC5744173 DOI: 10.1002/psp4.12261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023]
Abstract
We built a whole‐body computational model to study the role of the poorly understood vascular endothelial growth factor (VEGF)165b splice isoform in peripheral artery disease (PAD). This model was built and validated using published and new experimental data from cells, mice, and humans, and explicitly accounts for known properties of VEGF165b: lack of extracellular matrix (ECM)‐binding and weak phosphorylation of vascular endothelial growth factor receptor‐2 (VEGFR2) in vitro. The resulting model captures all known information about VEGF165b distribution and signaling in human PAD, and provides novel, nonintuitive insight into VEGF165b mechanism of action in vivo. Although VEGF165a and VEGF165b compete for VEGFR2 in vitro, simulations show that these isoforms do not compete for VEGFR2 at much lower physiological concentrations. Instead, reduced VEGF165a may drive impaired VEGFR2 signaling. The model predicts that VEGF165b does compete for binding to VEGFR1, supporting a VEGFR1‐mediated response to anti‐VEGF165b. The model predicts a key role for VEGF165b in PAD, but in a different way than previously hypothesized.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vijay C Ganta
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Brian H Annex
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA.,Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Iyer SR, Annex BH. Therapeutic Angiogenesis for Peripheral Artery Disease: Lessons Learned in Translational Science. JACC Basic Transl Sci 2017; 2:503-512. [PMID: 29430558 PMCID: PMC5802410 DOI: 10.1016/j.jacbts.2017.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 01/31/2023]
Abstract
Peripheral arterial disease (PAD) is a major health care problem. There have been limited advances in medical therapies, and a huge burden of symptomatic patients with intermittent claudication and critical limb ischemia who have limited treatment options. Angiogenesis is the growth and proliferation of blood vessels from existing vasculature. For approximately 2 decades, "therapeutic angiogenesis" has been studied as an investigational approach to treat patients with symptomatic PAD. Despite literally hundreds of positive preclinical studies, results from human clinical studies thus far have been disappointing. Here we present an overview of where the field of therapeutic angiogenesis stands today and examine lessons learned from previously conducted clinical trials. The objective is not to second-guess past efforts but to place the lessons in perspective to allow for trial success in the future to improve agent development, trial design, and ultimately, clinical outcomes for new therapeutics for PAD.
Collapse
Affiliation(s)
- Sunil R. Iyer
- Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brian H. Annex
- Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Robert Bernie Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
17
|
Sultan S, Kavanagh EP, Michalus R, Hynes N. Stem Cell Smart Technology, where are we now and how far we have to go? Vascular 2017; 26:216-228. [PMID: 28841129 DOI: 10.1177/1708538117727429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately eight million people in the United States have peripheral arterial disease, which increases exponentially with age. There have been a plethora of available treatments including surgery, angioplasty, atherectomy, laser technology, and cell-based therapies. Cell-based therapies were developed in the hope of translating laboratory-based technology into clinical successes. However, clinical results have been disappointing. Infusion or injection for stem cell therapy is still considered experimental and investigational, and major questions on safety and durability have arisen. In no option patients, how can they be treated safely and successfully? In this article, we review contemporary practice for cell therapy, its pitfalls and breakthroughs, and look at the future ahead. We introduce a novel smart system for minimally invasive delivery of cell therapies, which exemplifies the next generation of endovascular solutions to stem cell technology and promises safety, efficacy, and reliability.
Collapse
Affiliation(s)
- Sherif Sultan
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Edel P Kavanagh
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Robert Michalus
- 2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Niamh Hynes
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| |
Collapse
|
18
|
Clegg LE, Mac Gabhann F. A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands. PLoS Comput Biol 2017; 13:e1005445. [PMID: 28319199 PMCID: PMC5378411 DOI: 10.1371/journal.pcbi.1005445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
The splice isoforms of vascular endothelial growth A (VEGF) each have different affinities for the extracellular matrix (ECM) and the coreceptor NRP1, which leads to distinct vascular phenotypes in model systems expressing only a single VEGF isoform. ECM-immobilized VEGF can bind to and activate VEGF receptor 2 (VEGFR2) directly, with a different pattern of site-specific phosphorylation than diffusible VEGF. To date, the way in which ECM binding alters the distribution of isoforms of VEGF and of the related placental growth factor (PlGF) in the body and resulting angiogenic signaling is not well-understood. Here, we extend our previous validated cell-level computational model of VEGFR2 ligation, intracellular trafficking, and site-specific phosphorylation, which captured differences in signaling by soluble and immobilized VEGF, to a multi-scale whole-body framework. This computational systems pharmacology model captures the ability of the ECM to regulate isoform-specific growth factor distribution distinctly for VEGF and PlGF, and to buffer free VEGF and PlGF levels in tissue. We show that binding of immobilized growth factor to VEGF receptors, both on endothelial cells and soluble VEGFR1, is likely important to signaling in vivo. Additionally, our model predicts that VEGF isoform-specific properties lead to distinct profiles of VEGFR1 and VEGFR2 binding and VEGFR2 site-specific phosphorylation in vivo, mediated by Neuropilin-1. These predicted signaling changes mirror those observed in murine systems expressing single VEGF isoforms. Simulations predict that, contrary to the 'ligand-shifting hypothesis,' VEGF and PlGF do not compete for receptor binding at physiological concentrations, though PlGF is predicted to slightly increase VEGFR2 phosphorylation when over-expressed by 10-fold. These results are critical to design of appropriate therapeutic strategies to control VEGF availability and signaling in regenerative medicine applications.
Collapse
Affiliation(s)
- Lindsay E. Clegg
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine, Institute for NanoBioTechnology, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Chu LH, Ganta VC, Choi MH, Chen G, Finley SD, Annex BH, Popel AS. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF 165b in peripheral arterial disease in human and mouse. Sci Rep 2016; 6:37030. [PMID: 27853189 PMCID: PMC5113071 DOI: 10.1038/srep37030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is the growth of new blood vessels from pre-existing microvessels. Peripheral arterial disease (PAD) is caused by atherosclerosis that results in ischemia mostly in the lower extremities. Clinical trials including VEGF-A administration for therapeutic angiogenesis have not been successful. The existence of anti-angiogenic isoform (VEGF165b) in PAD muscle tissues is a potential cause for the failure of therapeutic angiogenesis. Experimental measurements show that in PAD human muscle biopsies the VEGF165b isoform is at least as abundant if not greater than the VEGF165a isoform. We constructed three-compartment models describing VEGF isoforms and receptors, in human and mouse, to make predictions on the secretion rate of VEGF165b and the distribution of various isoforms throughout the body based on the experimental data. The computational results are consistent with the data showing that in PAD calf muscles secrete mostly VEGF165b over total VEGF. In the PAD calf compartment of human and mouse models, most VEGF165a and VEGF165b are bound to the extracellular matrix. VEGF receptors VEGFR1, VEGFR2 and Neuropilin-1 (NRP1) are mostly in ‘Free State’. This study provides a computational model of VEGF165b in PAD supported by experimental measurements of VEGF165b in human and mouse, which gives insight of VEGF165b in therapeutic angiogenesis and VEGF distribution in human and mouse PAD model.
Collapse
Affiliation(s)
- Liang-Hui Chu
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Vijay Chaitanya Ganta
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, VA 22901, United States
| | - Min H Choi
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, VA 22901, United States
| | - George Chen
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Brian H Annex
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, VA 22901, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
20
|
Hsieh MJ, Liu HT, Wang CN, Huang HY, Lin Y, Ko YS, Wang JS, Chang VHS, Pang JHS. Therapeutic potential of pro-angiogenic BPC157 is associated with VEGFR2 activation and up-regulation. J Mol Med (Berl) 2016; 95:323-333. [PMID: 27847966 DOI: 10.1007/s00109-016-1488-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
BPC 157, a pentadecapeptide with extensive healing effects, has recently been suggested to contribute to angiogenesis. However, the underlying mechanism is not yet clear. The present study aimed to explore the potential therapeutic effect and pro-angiogenic mechanism of BPC 157. As demonstrated by the chick chorioallantoic membrane (CAM) assay and endothelial tube formation assay, BPC 157 could increase the vessel density both in vivo and in vitro, respectively. BPC 157 could also accelerate the recovery of blood flow in the ischemic muscle of the rat hind limb as detected by laser Doppler scanning, indicating the promotion of angiogenesis. Histological analysis of the hind limb muscle confirmed the increased number of vessels and the enhanced vascular expression of vascular endothelial growth factor receptor 2 (VEGFR2) in rat with BPC 157 treatment. In vitro study using human vascular endothelial cells further confirmed the increased mRNA and protein expressions of VEGFR2 but not VEGF-A by BPC 157. In addition, BPC 157 could promote VEGFR2 internalization in vascular endothelial cells which was blocked in the presence of dynasore, an inhibitor of endocytosis. BPC 157 time dependently activated the VEGFR2-Akt-eNOS signaling pathway which could also be suppressed by dynasore. The increase of endothelial tube formation induced by BPC 157 was also inhibited by dynasore. This study demonstrates the pro-angiogenic effects of BPC 157 that is associated with the increased expression, internalization of VEGFR2, and the activation of VEGFR2-Akt-eNOS signaling pathway. BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation. KEY MESSAGE BPC 157 promotes angiogenesis in CAM assay and tube formation assay. BPC 157 accelerates the blood flow recovery and vessel number in rats with hind limb ischemia. BPC 157 up-regulates VEGFR2 expression in rats with hind limb ischemia and endothelial cell culture. BPC 157 promotes VEGFR2 internalization in association with VEGFR2-Akt-eNOS activation.
Collapse
Affiliation(s)
- Ming-Jer Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Lin-kou, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Hsien-Ta Liu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China.,Division of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic Of China.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nin Wang
- Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, Republic Of China
| | - Hsiu-Yun Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China
| | - Yuling Lin
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China
| | - Yu-Shien Ko
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Lin-kou, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan City, Taiwan, Republic Of China
| | - Vincent Hung-Shu Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, Republic Of China
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan City, Taiwan, Republic Of China. .,Department of Physical Medicine and Rehabilitation, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, Republic Of China.
| |
Collapse
|
21
|
Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans 2015; 42:1616-22. [PMID: 25399579 DOI: 10.1042/bst20140197] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In human skeletal muscle, the capillary net readily adapts according to the level of muscular activity to allow for optimal diffusion conditions for oxygen from the blood to the muscle. Animal studies have demonstrated that stimulation of capillary growth in skeletal muscle can occur either by mechanical or by chemical signalling. Mechanical signals originate from shear stress forces on the endothelial cell layer induced by the blood flowing through the vessel, but include also mechanical stretch and compression of the vascular structures and the surrounding tissue, as the muscle contracts. Depending on the mechanical signal provided, capillary growth may occur either by longitudinal splitting (shear stress) or by sprouting (passive stretch). The mechanical signals initiate angiogenic processes by up-regulation or release of angioregulatory proteins that either promote, modulate or inhibit angiogenesis. A number of such regulatory proteins have been described in skeletal muscle in animal and cell models but also in human skeletal muscle. Important pro-angiogenic factors in skeletal muscle are vascular endothelial growth factor, endothelial nitric oxide synthase and angiopoietin 2, whereas angiostatic factors include thrombospondin-1 and tissue inhibitor of matrix metalloproteinase. Which of these angiogenic factors are up-regulated in the muscle tissue depends on the mechanical and chemical stimulus provided and, consequently, the process by which capillary growth occurs. The present review addresses physiological signals and angiogenic factors in skeletal muscle with a focus on human data.
Collapse
|
22
|
Abstract
The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling.
Collapse
Affiliation(s)
- Lindsay E Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
23
|
Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 2015; 21:301-14. [PMID: 24450403 DOI: 10.1111/micc.12117] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
In skeletal muscle, growth of capillaries is an important adaptation to exercise training that secures adequate diffusion capacity for oxygen and nutrients even at high-intensity exercise when increases in muscle blood flow are profound. Mechanical forces present during muscle activity, such as shear stress and passive stretch, lead to cellular signaling, enhanced expression of angiogenic factors, and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is VEGF. During muscle contraction, VEGF increases in the muscle interstitium, acts on VEGF receptors on the capillary endothelium, and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity, these VEGF-containing vesicles are redistributed toward the sarcolemma where the contents are secreted into the extracellular fluid. VEGF mRNA expression is increased primarily after exercise, which allows for a more rapid replenishment of VEGF stores lost through secretion during exercise. Future studies should focus on elucidating mechanisms and regulation of VEGF secretion.
Collapse
Affiliation(s)
- Birgitte Hoier
- Division of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Chen D, Bobko AA, Gross AC, Evans R, Marsh CB, Khramtsov VV, Eubank TD, Friedman A. Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione. PLoS One 2014; 9:e107511. [PMID: 25295611 PMCID: PMC4189793 DOI: 10.1371/journal.pone.0107511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022] Open
Abstract
The four variables, hypoxia, acidity, high glutathione (GSH) concentration and fast reducing rate (redox) are distinct and varied characteristics of solid tumors compared to normal tissue. These parameters are among the most significant factors underlying the metabolism and physiology of solid tumors, regardless of their type or origin. Low oxygen tension contributes to both inhibition of cancer cell proliferation and therapeutic resistance of tumors; low extracellular pH, the reverse of normal cells, mainly enhances tumor invasion; and dysregulated GSH and redox potential within cancer cells favor their proliferation. In fact, cancer cells under these microenvironmental conditions appreciably alter tumor response to cytotoxic anti-cancer treatments. Recent experiments measured the in vivo longitudinal data of these four parameters with tumor development and the corresponding presence and absence of tumor macrophage HIF-1α or HIF-2α in a mouse model of breast cancer. In the current paper, we present a mathematical model-based system of (ordinary and partial) differential equations to monitor tumor growth and susceptibility to standard chemotherapy with oxygen level, pH, and intracellular GSH concentration. We first show that our model simulations agree with the corresponding experiments, and then we use our model to suggest treatments of tumors by altering these four parameters in tumor microenvironment. For example, the model qualitatively predicts that GSH depletion can raise the level of reactive oxygen species (ROS) above a toxic threshold and result in inhibition of tumor growth.
Collapse
Affiliation(s)
- Duan Chen
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Andrey A. Bobko
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy C. Gross
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Randall Evans
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Valery V. Khramtsov
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy D. Eubank
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
25
|
Ahimastos AA, Latouche C, Natoli AK, Reddy-luthmoodoo M, Golledge J, Kingwell BA. Potential Vascular Mechanisms of Ramipril Induced Increases in Walking Ability in Patients With Intermittent Claudication. Circ Res 2014; 114:1144-55. [DOI: 10.1161/circresaha.114.302420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
We recently reported that ramipril more than doubled maximum walking times in patients with peripheral artery disease with intermittent claudication.
Objective:
Our aim was to conduct exploratory analyses of the effects of ramipril therapy on circulating biomarkers of angiogenesis/arteriogenesis, thrombosis, inflammation, and leukocyte adhesion in patients with intermittent claudication.
Methods and Results:
One hundred sixty-five patients with intermittent claudication (mean, 65.3 [SD, 6.7] years) were administered ramipril 10 mg per day (n=82) or matching placebo (n=83) for 24 weeks in a randomized, double-blind study. Plasma biomarkers of angiogenesis/arteriogenesis (vascular endothelial growth factor-A, fibroblast growth factor-2), thrombosis (D-dimer, von Willebrand factor, thrombin-antithrombin III), inflammation (high-sensitivity C-reactive protein, osteopontin), and leukocyte adhesion (soluble vascular cell adhesion molecule-1, soluble intracellular adhesion molecule-1) were measured at baseline and 24 weeks. Relative to placebo, ramipril was associated with increases in vascular endothelial growth factor-A by 38% (95% confidence interval [CI], 34%–42%) and fibroblast growth factor-2 by 64% (95% CI, 44–85%;
P
<0.001 for both), and reductions in D-dimer by 24% (95% CI, −30% to −18%), von Willebrand factor by 22% (95% CI, −35% to −9%), thrombin-antithrombin III by 16% (95% CI, −19% to −13%), high-sensitivity C-reactive protein by 13% (95% CI, −14% to −9%), osteopontin by 12% (95% CI, −14% to −10%), soluble vascular cell adhesion molecule-1 by 14% (95% CI, −18% to −10%), and soluble intracellular adhesion molecule-1 by 15% (95% CI, −17% to −13%; all
P
<0.001). With the exception of von Willebrand factor, all the above changes correlated significantly with the change in maximum walking time (
P
=0.02−0.001) in the group treated with ramipril.
Conclusions:
Ramipril is associated with an increase in the biomarkers of angiogenesis/arteriogenesis and reduction in the markers of thrombosis, inflammation, and leukocyte adhesion. This study informs strategies to improve mobility in patients with intermittent claudication.
Clinical Trial Registration Information:
URL:
http://clinicaltrials.gov
. Unique identifier: NCT00681226.
Collapse
Affiliation(s)
- Anna A. Ahimastos
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Celine Latouche
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Alaina K. Natoli
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Medini Reddy-luthmoodoo
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Bronwyn A. Kingwell
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| |
Collapse
|
26
|
Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2013; 18:1491-508. [PMID: 24237862 PMCID: PMC4190897 DOI: 10.1111/jcmm.12164] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Blood travels throughout the body in an extensive network of vessels – arteries, veins and capillaries. This vascular network is not static, but instead dynamically remodels in response to stimuli from cells in the nearby tissue. In particular, the smallest vessels – arterioles, venules and capillaries – can be extended, expanded or pruned, in response to exercise, ischaemic events, pharmacological interventions, or other physiological and pathophysiological events. In this review, we describe the multi-step morphogenic process of angiogenesis – the sprouting of new blood vessels – and the stability of vascular networks in vivo. In particular, we review the known interactions between endothelial cells and the various blood cells and plasma components they convey. We describe progress that has been made in applying computational modelling, quantitative biology and high-throughput experimentation to the angiogenesis process.
Collapse
Affiliation(s)
- Elizabeth A Logsdon
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Imoukhuede PI, Dokun AO, Annex BH, Popel AS. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 2013; 304:H1085-93. [PMID: 23376830 PMCID: PMC3625905 DOI: 10.1152/ajpheart.00514.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
Abstract
VEGF receptor (VEGFR) cell surface localization plays a critical role in transducing VEGF signaling toward angiogenic outcomes, and quantitative characterization of these parameters is critical to advancing computational models for predictive medicine. However, studies to this point have largely examined intact muscle; thus, essential data on the cellular localization of the receptors within the tissue are currently unknown. Therefore, our aims were to quantitatively analyze VEGFR localization on endothelial cells (ECs) from mouse hindlimb skeletal muscles after the induction of hindlimb ischemia, an established model for human peripheral artery disease. Flow cytometry was used to measure and compare the ex vivo surface localization of VEGFR1 and VEGFR2 on CD31(+)/CD34(+) ECs 3 and 10 days after unilateral ligation of the femoral artery. We determined that 3 days after hindlimb ischemia, VEGFR2 surface levels were decreased by 80% compared with ECs from the nonischemic limb; 10 days after ischemia, we observed a twofold increase in surface levels of the modulatory receptor, VEGFR1, along with increased proliferating cell nuclear antigen, urokinase plasminogen activator, and urokinase plasminogen activator receptor mRNA expression compared with the nonischemic limb. The significant upregulation of VEGFR1 surface levels indicates that VEGFR1 indeed plays a critical role in the ischemia-induced perfusion recovery process, a process that includes both angiogenesis and arteriogenesis. The quantification of these dissimilarities, for the first time ex vivo, provides insights into the balance of modulatory (VEGFR1) and proangiogenic (VEGFR2) receptors in ischemia and lays the foundation for systems biology approaches toward therapeutic angiogenesis.
Collapse
Affiliation(s)
- P I Imoukhuede
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
29
|
Chen D, Roda JM, Marsh CB, Eubank TD, Friedman A. Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull Math Biol 2012; 74:2752-77. [PMID: 23073704 DOI: 10.1007/s11538-012-9776-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/20/2012] [Indexed: 01/21/2023]
Abstract
Under hypoxia, tumor cells, and tumor-associated macrophages produce VEGF (vascular endothelial growth factor), a signaling molecule that induces angiogenesis. The same macrophages, when treated with GM-CSF (granulocyte/macrophage colony-stimulating factor), produce sVEGFR-1 (soluble VEGF receptor-1), a soluble protein that binds with VEGF and inactivates its function. The production of VEGF by macrophages is regulated by HIF-1α (hypoxia inducible factor-1α), and the production of sVEGFR-1 is mediated by HIF-2α. Recent experiments measured the effect of inhibiting tumor growth by GM-CSF treatment in mice with HIF-1α-deficient or HIF-2α-deficient macrophages. In the present paper, we represent these experiments by a mathematical model based on a system of partial differential equations. We show that the model simulations agree with the above experiments. The model can then be used to suggest strategies for inhibiting tumor growth. For example, the model qualitatively predicts the extent to which GM-CSF treatment in combination with a small molecule inhibitor that stabilizes HIF-2α will reduce tumor volume and angiogenesis.
Collapse
Affiliation(s)
- Duan Chen
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Imoukhuede PI, Popel AS. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012; 7:e44791. [PMID: 22984559 PMCID: PMC3440347 DOI: 10.1371/journal.pone.0044791] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023] Open
Abstract
VEGFR surface localization plays a critical role in converting extracellular VEGF signaling towards angiogenic outcomes, and the quantitative characterization of these parameters is critical for advancing computational models; however the levels of these receptors on blood vessels is currently unknown. Therefore our aim is to quantitatively determine the VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles. We contextualize this VEGFR quantification through comparison to VEGFR-levels on cells in vitro. Using quantitative fluorescence we measure and compare the levels of VEGFR1 and VEGFR2 on endothelial cells isolated from C57BL/6 and BALB/c gastrocnemius and tibialis anterior hindlimb muscles. Fluorescence measurements are calibrated using beads with known numbers of phycoerythrin molecules. The data show a 2-fold higher VEGFR1 surface localization relative to VEGFR2 with 2,000-3,700 VEGFR1/endothelial cell and 1,300-2,000 VEGFR2/endothelial cell. We determine that endothelial cells from the highly glycolytic muscle, tibialis anterior, contain 30% higher number of VEGFR1 surface receptors than gastrocnemius; BALB/c mice display ~17% higher number of VEGFR1 than C57BL/6. When we compare these results to mouse fibroblasts in vitro, we observe high levels of VEGFR1 (35,800/cell) and very low levels of VEGFR2 (700/cell), while in human endothelial cells in vitro, we observe that the balance of VEGFRs is inverted, with higher levels VEGFR2 (5,800/cell) and lower levels of VEGFR1 (1,800/cell). Our studies also reveal significant cell-to-cell heterogeneity in receptor expression, and the quantification of these dissimilarities ex vivo for the first time provides insight into the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) signaling.
Collapse
Affiliation(s)
- Princess I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Peirce SM, Mac Gabhann F, Bautch VL. Integration of experimental and computational approaches to sprouting angiogenesis. Curr Opin Hematol 2012; 19:184-91. [PMID: 22406822 PMCID: PMC4132663 DOI: 10.1097/moh.0b013e3283523ea6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW We summarize recent experimental and computational studies that investigate molecular and cellular mechanisms of sprouting angiogenesis. We discuss how experimental tools have unveiled new opportunities for computational modeling by providing detailed phenomenological descriptions and conceptual models of cell-level behaviors underpinned by high-quality molecular data. Using recent examples, we show how new understanding results from bridging computational and experimental approaches. RECENT FINDINGS Experimental data extends beyond the tip cell vs. stalk cell paradigm, and involves numerous molecular inputs such as vascular endothelial growth factor and Notch. This data is being used to generate and validate computational models, which can then be used to predict the results of hypothetical experiments that are difficult to perform in the laboratory, and to generate new hypotheses that account for system-wide interactions. As a result of this integration, descriptions of critical gradients of growth factor-receptor complexes have been generated, and new modulators of cell behavior have been described. SUMMARY We suggest that the recent emphasis on the different stages of sprouting angiogenesis, and integration of experimental and computational approaches, should provide a way to manage the complexity of this process and help identify new regulatory paradigms and therapeutic targets.
Collapse
Affiliation(s)
- Shayn M. Peirce
- Dept. of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Feilim Mac Gabhann
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore MD 21218
- Institute for Computational Medicine, Johns Hopkins University, Baltimore MD 21218
| | - Victoria L Bautch
- Dept. of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
33
|
Jones WS, Duscha BD, Robbins JL, Duggan NN, Regensteiner JG, Kraus WE, Hiatt WR, Dokun AO, Annex BH. Alteration in angiogenic and anti-angiogenic forms of vascular endothelial growth factor-A in skeletal muscle of patients with intermittent claudication following exercise training. Vasc Med 2012; 17:94-100. [PMID: 22402934 DOI: 10.1177/1358863x11436334] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aims of this study were twofold: (1) to identify whether peripheral artery disease (PAD) patients had increased muscle concentration of angiogenic VEGF-A, anti-angiogenic VEGF₁₆₅b or VEGF receptor 1 (VEGF-R1) when compared with control subjects, and (2) to evaluate whether exercise training in PAD patients was associated with changes in muscle concentration of VEGF-A, VEGF₁₆₅b or VEGF-R1. At baseline, 22 PAD and 30 control subjects underwent gastrocnemius muscle biopsy. Twelve PAD patients were treated with supervised exercise training (SET) and underwent muscle biopsy after 3 weeks and 12 weeks of training and had sufficient tissue to measure VEGF-A, VEGF₁₆₅b and VEGF-R1 concentrations in skeletal muscle lysates by ELISA. Muscle concentrations of VEGF-A and VEGF₁₆₅b were similar in PAD patients versus controls at baseline. At both time points after the start of SET, VEGF-A levels decreased and there was a trend towards increased VEGF₁₆₅b concentrations. At baseline, VEGF-R1 concentrations were lower in PAD patients when compared with controls but did not change after SET. Skeletal muscle concentrations of VEGF-A are not different in PAD patients when compared with controls at baseline. SET is associated with a significant reduction in VEGF-A levels and a trend towards increased VEGF₁₆₅b levels. These somewhat unexpected findings suggest that further investigation into the mechanism of vascular responses to exercise training in PAD patients is warranted.
Collapse
Affiliation(s)
- W Schuyler Jones
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis – the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF120 and VEGF164) and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in other tissues and cell types, the model can be expanded to include additional compartments and vascular elements.
Collapse
|
35
|
Hashambhoy YL, Chappell JC, Peirce SM, Bautch VL, Mac Gabhann F. Computational modeling of interacting VEGF and soluble VEGF receptor concentration gradients. Front Physiol 2011; 2:62. [PMID: 22007175 PMCID: PMC3185289 DOI: 10.3389/fphys.2011.00062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/30/2011] [Indexed: 12/16/2022] Open
Abstract
Experimental data indicates that soluble vascular endothelial growth factor (VEGF) receptor 1 (sFlt-1) modulates the guidance cues provided to sprouting blood vessels by VEGF-A. To better delineate the role of sFlt-1 in VEGF signaling, we have developed an experimentally based computational model. This model describes dynamic spatial transport of VEGF, and its binding to receptors Flt-1 and Flk-1, in a mouse embryonic stem cell model of vessel morphogenesis. The model represents the local environment of a single blood vessel. Our simulations predict that blood vessel secretion of sFlt-1 and increased local sFlt-1 sequestration of VEGF results in decreased VEGF–Flk-1 levels on the sprout surface. In addition, the model predicts that sFlt-1 secretion increases the relative gradient of VEGF–Flk-1 along the sprout surface, which could alter endothelial cell perception of directionality cues. We also show that the proximity of neighboring sprouts may alter VEGF gradients, VEGF receptor binding, and the directionality of sprout growth. As sprout distances decrease, the probability that the sprouts will move in divergent directions increases. This model is a useful tool for determining how local sFlt-1 and VEGF gradients contribute to the spatial distribution of VEGF receptor binding, and can be used in conjunction with experimental data to explore how multi-cellular interactions and relationships between local growth factor gradients drive angiogenesis.
Collapse
Affiliation(s)
- Yasmin L Hashambhoy
- Department of Biomedical Engineering, Johns Hopkins University Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
36
|
Yu LL, Zhao JM, Jiang WW. Portal vein infusion of recombinant vascular endothelial growth factor 165 mitigates liver fibrosis in cirrhotic rats. Shijie Huaren Xiaohua Zazhi 2011; 19:2214-2219. [DOI: 10.11569/wcjd.v19.i21.2214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of portal vein infusion of recombinant vascular endothelial growth factor (VEGF) 165 on liver fibrosis in rats with cirrhosis.
METHODS: Fifty male SD rats were randomly divided into normal group (n = 10) and model group (n = 40). The model group was used to induce cirrhosis using the thioacetamide approach. After 10 wk, 25 cirrhotic rats were randomly divided into experimental group (n = 15) and model control group (n = 10). The experimental group was intubated for implantation of an Alzet osmotic pump, which was used to infuse recombinant VEGF165 via the portal vein for 2 wk. The normal group and model control group underwent sham operation. All rats were killed after 2 wk, and HE staining was used to observe the pathological changes in liver tissue. Serum hyaluronic acid and laminin were measured using radioimmunoassay method. Immunohistochemistry was used to detect the expression of type I and type IV collagen in the liver.
RESULTS: Degeneration and necrosis of liver cells, diffuse proliferation of fibrous connective tissue and formation of pseudo lobules occurred in the model control group. In the experimental group, degeneration and necrosis of liver cells were milder and the rate of liver fibrosis was improved significantly compared to the model control group (P < 0.01). Compared to the normal group, serum hyaluronic acid and laminin concentrations increased significantly in the model control group (P < 0.01). However, serum concentrations of hyaluronic acid and laminin was significantly lower in the experimental group than in the model control group (412.63 μg/L ± 85.18 μg/L vs 741.60 μg/L ± 72.83 μg/L; 58.87 μg/L ± 5.46 μg/L vs 92.80 μg/L ± 8.41 μg/L; both P < 0.01). The expression levels of type I and type IV collagen in the liver was significantly lower in the experimental group than in the model control group (6.84 ± 0.96, 8.25 ± 0.82 vs 18.38 ± 1.86, 20.86 ± 2.48, all P < 0.01).
CONCLUSION: Portal vein infusion of VEGF165 can relieve liver fibrosis in rats with cirrhosis.
Collapse
|
37
|
Idei N, Nishioka K, Soga J, Hidaka T, Hata T, Fujii Y, Fujimura N, Maruhashi T, Mikami S, Teragawa H, Kihara Y, Noma K, Chayama K, Higashi Y. Vascular function and circulating progenitor cells in thromboangitis obliterans (Buerger's disease) and atherosclerosis obliterans. Hypertension 2011; 57:70-78. [PMID: 21115876 DOI: 10.1161/hypertensionaha.110.163683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/29/2010] [Indexed: 01/26/2023]
Abstract
Thromboangitis obliterans (TAO; Buerger's disease) and atherosclerosis obliterans (ASO) are associated with endothelial dysfunction. The purpose of this study was to evaluate the role of circulating progenitor cells (CPCs) in endothelial function in patients with TAO and ASO. We measured flow-mediated vasodilation (FMD), nitroglycerine-induced vasodilation, and circulating CPCs in 30 patients with TAO and 30 age- and sex-matched healthy subjects and in 40 patients with ASO. FMD was smaller in both the TAO group and ASO group than in the control group (6.6 ± 2.7%, 5.7 ± 3.3% versus 9.5 ± 3.1%, P<0.0001, respectively). There was no significant difference in FMD between the TAO group and ASO group. Nitroglycerine-induced vasodilation was similar in the 3 groups. The number of and migration of circulating CPCs were similar in the TAO group and control group, whereas the number of and migration of circulating CPCs were significantly lower in the ASO group than in other groups (ASO 553 ± 297/mL versus TAO 963 ± 543/mL; control 1063 ± 426/mL and ASO 36 ± 18/hpf versus TAO 62 ± 23/hpf; control 68 ± 18/hpf, P<0.0001, respectively). There was a significant relationship between the number of and migration of CPCs and FMD (r = 0.43 and r = 0.40, P<0.0001, respectively). FMD was impaired in patients with TAO as well as in patients with ASO compared to that in normal control subjects, and the number of and function of circulating CPCs were not decreased in patients with TAO. These findings may partially explain why there are differences in cardiovascular morbidity and mortality rates between patients with TAO and patients with ASO.
Collapse
Affiliation(s)
- Naomi Idei
- Department of Cardiovascular Physiology and Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Validation of Molecular and Genomic Biomarkers of Retinal Drug Efficacy: Use of Ocular Fluid Sampling to Evaluate VEGF. Neurochem Res 2010; 36:655-67. [DOI: 10.1007/s11064-010-0328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
39
|
Mac Gabhann F, Annex BH, Popel AS. Gene therapy from the perspective of systems biology. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2010; 12:570-7. [PMID: 20886389 PMCID: PMC3021921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gene therapy research has expanded from its original concept of replacing absent or defective DNA with functional DNA to include the manipulation (increase or decrease) of gene expression by the delivery of modified genes, siRNA or other genetic material via multiple vectors, including naked plasmid DNA, viruses and even cells. Specific tissues or cell types are targeted in order to decrease the risks of systemic or side effects. As with the development of any drug, there is an amount of empiricism in the choice of gene target, route of administration, dosing and, in particular, the scaling-up from preclinical models to clinical trials. High-throughput experimental and computational systems biology studies that account for the complexities of host-disease-therapy interactions hold significant promise in assisting in the development and optimization of gene therapies, including personalized therapies and the identification of biomarkers to evaluate the success of such strategies. This review describes some of the obstacles and successes in gene therapy, using the specific example of growth factor gene delivery to promote angiogenesis and blood vessel remodeling in ischemic diseases; anti-angiogenic gene therapy in cancer is also discussed. In addition, the opportunities for systems biology and in silico modeling to improve on current outcomes are highlighted.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| | - Brian H. Annex
- Division of Cardiovascular Medicine, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, PO Box 800158, Charlottesville, VA 22908 USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD 21205 USA
| |
Collapse
|