1
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
2
|
Honeyman L, Bergeron ME, Thang C, Kunwar A, McCurry EE, Haston CK. A chromosome 2 locus influences the onset of radiation-induced lung disease in mice. Int J Radiat Biol 2025:1-9. [PMID: 40080429 DOI: 10.1080/09553002.2025.2473977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE The onset of distress from radiation-induced lung disease differs among patients and among inbred strains of mice exposed to thoracic cavity radiotherapy. For the latter specifically, C3H/HeJ mice present distress due to pneumonitis at approximately 10-14 weeks following thoracic irradiation, while C57BL/6J mice show distress due to pneumonitis with pulmonary fibrosis at 22-30 weeks. Mapping studies completed in offspring derived from these inbred strains revealed a chromosome 2 locus to be linked to onset of distress in irradiated mice. Herein, we bred and phenotyped a panel of chromosome 2 subcongenic mice with 64 Mb of C3H/HeJ alleles on a C57BL/6J background, to investigate the contribution of the chromosome 2 locus to radiation-induced lung disease. MATERIALS AND METHODS Mice received 18 Gy to the thoracic cavity and were monitored for the onset of distress. Lung disease was assessed histologically and with bronchoalveolar lavage. RESULTS Following whole thorax irradiation, subcongenic mice with C3H/HeJ alleles from 95 to 123 Mb showed significantly earlier onset of respiratory distress (16-22 weeks; p < .02) from pneumonitis and fibrosis compared to C57BL/6J mice. These subcongenic mice did not differ from C57BL/6J mice in pneumonitis (p = .23), mast cell counts (p = .96), or lavage neutrophils (p = .69), evident at distress. In silico analyses reveal 246 protein coding genes mapped within the reduced region, 52 of which differ in pulmonary expression of C3H/HeJ, compared to C57BL/6J, mice after whole thorax irradiation. CONCLUSIONS We have identified a 28 Mb region of chromosome 2 to influence the onset of radiation-induced lung disease in mice.
Collapse
Affiliation(s)
- Lisa Honeyman
- Meakins-Christie Laboratories and the Departments of Human Genetics, McGill University, Montreal, Canada
| | | | - Cin Thang
- Medicine, McGill University, Montreal, Canada
| | - Amit Kunwar
- Medicine, McGill University, Montreal, Canada
| | - Erin E McCurry
- Physics Department, I.K. Barber Faculty of Science, The University of British Columbia Okanagan, Kelowna, Canada
| | | |
Collapse
|
3
|
Brauer J, Tumani M, Frey N, Lehmann LH. The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models. Basic Res Cardiol 2025; 120:91-112. [PMID: 39621070 PMCID: PMC11790711 DOI: 10.1007/s00395-024-01090-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.
Collapse
Affiliation(s)
- J Brauer
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - M Tumani
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - N Frey
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - L H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024; 21:880-898. [PMID: 38987578 PMCID: PMC12037960 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
5
|
An D, Ibrahim ES. Elucidating Early Radiation-Induced Cardiotoxicity Markers in Preclinical Genetic Models Through Advanced Machine Learning and Cardiac MRI. J Imaging 2024; 10:308. [PMID: 39728205 DOI: 10.3390/jimaging10120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Radiation therapy (RT) is widely used to treat thoracic cancers but carries a risk of radiation-induced heart disease (RIHD). This study aimed to detect early markers of RIHD using machine learning (ML) techniques and cardiac MRI in a rat model. SS.BN3 consomic rats, which have a more subtle RIHD phenotype compared to Dahl salt-sensitive (SS) rats, were treated with localized cardiac RT or sham at 10 weeks of age. Cardiac MRI was performed 8 and 10 weeks post-treatment to assess global and regional cardiac function. ML algorithms were applied to differentiate sham-treated and irradiated rats based on early changes in myocardial function. Despite normal global left ventricular ejection fraction in both groups, strain analysis showed significant reductions in the anteroseptal and anterolateral segments of irradiated rats. Gradient boosting achieved an F1 score of 0.94 and an ROC value of 0.95, while random forest showed an accuracy of 88%. These findings suggest that ML, combined with cardiac MRI, can effectively detect early preclinical changes in RIHD, particularly alterations in regional myocardial contractility, highlighting the potential of these techniques for early detection and monitoring of radiation-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Dayeong An
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - El-Sayed Ibrahim
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Kondelaji MHR, Sharma GP, Jagtap J, Shafiee S, Hansen C, Gasperetti T, Frei A, Veley D, Narayanan J, Fish BL, Parchur AK, Ibrahim ESH, Medhora M, Himburg HA, Joshi A. 2 nd Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature. Mol Imaging Biol 2024; 26:124-137. [PMID: 37530966 PMCID: PMC11188939 DOI: 10.1007/s11307-023-01840-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.
Collapse
Affiliation(s)
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip Jagtap
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
SenthilKumar G, Heisner JS, Schlaak R, Mishra J, Katunaric B, Pedersen LN, Lavine K, Javaheri A, Camara AK, Bergom C. Targeted Cardiac Ionizing Radiation in Dahl Salt-Sensitive Rats Can Improve Recovery From Ischemic Injury. JACC Basic Transl Sci 2023; 8:1025-1027. [PMID: 37719423 PMCID: PMC10504396 DOI: 10.1016/j.jacbts.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, Missouri 63110, USA
| |
Collapse
|
8
|
Andruska N, Schlaak RA, Frei A, Schottstaedt AM, Lin CY, Fish BL, Gasperetti T, Mpoy C, Pipke JL, Pedersen LN, Flister MJ, Javaheri A, Bergom C. Differences in radiation-induced heart dysfunction in male versus female rats. Int J Radiat Biol 2023; 99:1096-1108. [PMID: 36971580 PMCID: PMC10431914 DOI: 10.1080/09553002.2023.2194404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren N. Pedersen
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ali Javaheri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St Louis, Missouri
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
9
|
Melam A, Pedersen LN, Klaas A, Xu Z, Bergom C. Methods to assess radiation-induced cardiotoxicity in rodent models. Methods Cell Biol 2023; 180:127-146. [PMID: 37890926 DOI: 10.1016/bs.mcb.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Cancer survivors who have received thoracic radiation as part of their primary treatment are at risk for developing radiation-induced cardiotoxicity (RICT) due to incidental radiation delivered to the heart. In recent decades, advancements in radiation delivery have dramatically improved the therapeutic ratio of radiation therapy (RT)-efficiently targeting malignancies while sparing the heart; yet, in many patients, incidental radiation to the heart cannot be fully avoided. Cardiac radiation exposure can cause long-term morbidity and contribute to poorer survival in cancer patients. Severe cardiac effects can occur within 2years of treatment. Currently, there is no way to predict who is at higher or lower risk of developing cardiotoxicity from radiation, and the critical factors that alter RICT have not yet been clearly identified. Thus, pre-clinical investigations are an important step towards better prevention, detection, and management of RICT in cancer survivors. The overarching aim of this chapter is to provide researchers with foundational and technical knowledge in the use of mice and rats for RICT investigations. After a brief overview of RICT pathophysiology and clinical manifestations, we discuss important considerations of RICT study design, including animal selection and radiation planning. We then provide example protocols for murine tissue harvesting and processing that can support use in downstream applications of the reader's choosing.
Collapse
Affiliation(s)
- Anupama Melam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Lauren N Pedersen
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Amanda Klaas
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Zhiqiang Xu
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
10
|
Shamseddine A, Patel SH, Chavez V, Moore ZR, Adnan M, Di Bona M, Li J, Dang CT, Ramanathan LV, Oeffinger KC, Liu JE, Steingart RM, Piersigilli A, Socci ND, Chan AT, Yu AF, Bakhoum SF, Schmitt AM. Innate immune signaling drives late cardiac toxicity following DNA-damaging cancer therapies. J Exp Med 2023; 220:213768. [PMID: 36534085 PMCID: PMC9767651 DOI: 10.1084/jem.20220809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Late cardiac toxicity is a potentially lethal complication of cancer therapy, yet the pathogenic mechanism remains largely unknown, and few treatment options exist. Here we report DNA-damaging agents such as radiation and anthracycline chemotherapies inducing delayed cardiac inflammation following therapy due to activation of cGAS- and STING-dependent type I interferon signaling. Genetic ablation of cGAS-STING signaling in mice inhibits DNA damage-induced cardiac inflammation, rescues late cardiac functional decline, and prevents death from cardiac events. Treatment with a STING antagonist suppresses cardiac interferon signaling following DNA-damaging therapies and effectively mitigates cardiac toxicity. These results identify a therapeutically targetable, pathogenic mechanism for one of the most vexing treatment-related toxicities in cancer survivors.
Collapse
Affiliation(s)
- Achraf Shamseddine
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suchit H. Patel
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA
| | - Valery Chavez
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary R. Moore
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mutayyaba Adnan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody Di Bona
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chau T. Dang
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lakshmi V. Ramanathan
- Clinical Chemistry Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin C. Oeffinger
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer E. Liu
- Cardiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard M. Steingart
- Cardiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Takeda Development Center Americas, Drug Safety Research Evaluation, Cambridge, MA, USA
| | - Nicholas D. Socci
- Marie-Josee & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angel T. Chan
- Cardiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony F. Yu
- Cardiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F. Bakhoum
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam M. Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Correspondence to Adam M. Schmitt:
| |
Collapse
|
11
|
Walls GM, Ghita M, Queen R, Edgar KS, Gill EK, Kuburas R, Grieve DJ, Watson CJ, McWilliam A, Van Herk M, Williams KJ, Cole AJ, Jain S, Butterworth KT. Spatial Gene Expression Changes in the Mouse Heart After Base-Targeted Irradiation. Int J Radiat Oncol Biol Phys 2023; 115:453-463. [PMID: 35985456 DOI: 10.1016/j.ijrobp.2022.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Radiation cardiotoxicity (RC) is a clinically significant adverse effect of treatment for patients with thoracic malignancies. Clinical studies in lung cancer have indicated that heart substructures are not uniformly radiosensitive, and that dose to the heart base drives RC. In this study, we aimed to characterize late changes in gene expression using spatial transcriptomics in a mouse model of base regional radiosensitivity. METHODS AND MATERIALS An aged female C57BL/6 mouse was irradiated with 16 Gy delivered to the cranial third of the heart using a 6 × 9 mm parallel opposed beam geometry on a small animal radiation research platform, and a second mouse was sham-irradiated. After echocardiography, whole hearts were collected at 30 weeks for spatial transcriptomic analysis to map gene expression changes occurring in different regions of the partially irradiated heart. Cardiac regions were manually annotated on the capture slides and the gene expression profiles compared across different regions. RESULTS Ejection fraction was reduced at 30 weeks after a 16 Gy irradiation to the heart base, compared with the sham-irradiated controls. There were markedly more significant gene expression changes within the irradiated regions compared with nonirradiated regions. Variation was observed in the transcriptomic effects of radiation on different cardiac base structures (eg, between the right atrium [n = 86 dysregulated genes], left atrium [n = 96 dysregulated genes], and the vasculature [n = 129 dysregulated genes]). Disrupted biological processes spanned extracellular matrix as well as circulatory, neuronal, and contractility activities. CONCLUSIONS This is the first study to report spatially resolved gene expression changes in irradiated tissues. Examination of the regional radiation response in the heart can help to further our understanding of the cardiac base's radiosensitivity and support the development of actionable targets for pharmacologic intervention and biologically relevant dose constraints.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland.
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, England
| | - Kevin S Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Eleanor K Gill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland
| | - Alan McWilliam
- Division of Cancer Sciences, University of Manchester, Oglesby Building, Manchester, England; Department of Radiation Therapy Related Research, The Christie Foundation Trust, Manchester, England
| | - Marcel Van Herk
- Division of Cancer Sciences, University of Manchester, Oglesby Building, Manchester, England; Department of Radiation Therapy Related Research, The Christie Foundation Trust, Manchester, England
| | - Kaye J Williams
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology Medicine and Health, University of Manchester, Manchester, England
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland
| |
Collapse
|
12
|
Sridharan V, Krager KJ, Pawar SA, Bansal S, Li Y, Cheema AK, Boerma M. Effects of Whole and Partial Heart Irradiation on Collagen, Mast Cells, and Toll-like Receptor 4 in the Mouse Heart. Cancers (Basel) 2023; 15:cancers15020406. [PMID: 36672353 PMCID: PMC9856613 DOI: 10.3390/cancers15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In radiation therapy of tumors in the chest, such as in lung or esophageal cancer, part of the heart may be situated in the radiation field. This can lead to the development of radiation-induced heart disease. The mechanisms by which radiation causes long-term injury to the heart are not fully understood, but investigations in pre-clinical research models can contribute to mechanistic insights. Recent developments in X-ray technology have enabled partial heart irradiation in mouse models. In this study, adult male and female C57BL/6J mice were exposed to whole heart (a single dose of 8 or 16 Gy) and partial heart irradiation (16 Gy to 40% of the heart). Plasma samples were collected at 5 days and 2 weeks after the irradiation for metabolomics analysis, and the cardiac collagen deposition, mast cell numbers, and left ventricular expression of Toll-like receptor 4 (TLR4) were examined in the irradiated and unirradiated parts of the heart at 6 months after the irradiation. Small differences were found in the plasma metabolite profiles between the groups. However, the collagen deposition did not differ between the irradiated and unirradiated parts of the heart, and radiation did not upregulate the mast cell numbers in either part of the heart. Lastly, an increase in the expression of TLR4 was seen only after a single dose of 8 Gy to the whole heart. These results suggest that adverse tissue remodeling was not different between the irradiated and unirradiated portions of the mouse heart. While there were no clear differences between male and female animals, additional work in larger cohorts may be required to confirm this result, and to test the inhibition of TLR4 as an intervention strategy in radiation-induced heart disease.
Collapse
Affiliation(s)
- Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kimberly J. Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Snehalata A. Pawar
- Department of Radiation Oncology, Upstate Cancer Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Shivani Bansal
- Department of Radiation Oncology, Georgetown University, Washington, DC 20057, USA
| | - Yaoxiang Li
- Department of Radiation Oncology, Georgetown University, Washington, DC 20057, USA
| | - Amrita K. Cheema
- Department of Radiation Oncology, Georgetown University, Washington, DC 20057, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
13
|
Ibrahim ESH, Sosa A, Brown SA, An D, Klawikowski S, Baker J, Bergom C. Myocardial Contractility Pattern Characterization in Radiation-Induced Cardiotoxicity Using Magnetic Resonance Imaging: A Pilot Study with ContractiX. Tomography 2022; 9:36-49. [PMID: 36648991 PMCID: PMC9844312 DOI: 10.3390/tomography9010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) plays an integral role in treating thoracic cancers, despite the risk of radiation-induced cardiotoxicity. We hypothesize that our newly developed magnetic resonance imaging (MRI)-based contractility index (ContractiX) is a sensitive marker for early detection of RT-induced cardiotoxicity in a preclinical rat model of thoracic cancer RT. Adult salt-sensitive rats received image-guided heart RT and were imaged with MRI at 8 weeks and 10 weeks post-RT or sham. The MRI exam included cine and tagging sequences to measure left-ventricular ejection fraction (LVEF), mass, myocardial strain, and ContractiX. Furthermore, ventricular torsion, diastolic strain rate, and mechanical dyssynchrony were measured. Statistical analyses were performed between the sham, 8 weeks post-RT, and 10 weeks post-RT MRI parameters. The results showed that both LVEF and myocardial mass increased post-RT. Peak systolic strain and ContractiX significantly decreased post-RT, with a more relative reduction in ContractiX compared to strain. ContractiX showed an inverse nonlinear relationship with LVEF and continuously decreased with time post-RT. While early diastolic strain rate and mechanical dyssynchrony significantly changed post-RT, ventricular torsion changes were not significant post-RT. In conclusion, ContractiX measured via non-contrast MRI is a sensitive early marker for the detection of subclinical cardiac dysfunction post-RT, and it is superior to other MRI cardiac measures.
Collapse
Affiliation(s)
- El-Sayed H. Ibrahim
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
- Correspondence:
| | - Antonio Sosa
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Sherry-Ann Brown
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Dayeong An
- Department of Biomedical Engineering, Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Slade Klawikowski
- Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - John Baker
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University, 1 Brookings Dr, St. Louis, MO 63130, USA
| |
Collapse
|
14
|
Dreyfuss AD, Velalopoulou A, Avgousti H, Bell BI, Verginadis II. Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Front Oncol 2022; 12:920867. [PMID: 36313656 PMCID: PMC9596809 DOI: 10.3389/fonc.2022.920867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) is an important modality in cancer treatment with >50% of cancer patients undergoing RT for curative or palliative intent. In patients with breast, lung, and esophageal cancer, as well as mediastinal malignancies, incidental RT dose to heart or vascular structures has been linked to the development of Radiation-Induced Heart Disease (RIHD) which manifests as ischemic heart disease, cardiomyopathy, cardiac dysfunction, and heart failure. Despite the remarkable progress in the delivery of radiotherapy treatment, off-target cardiac toxicities are unavoidable. One of the best-studied pathological consequences of incidental exposure of the heart to RT is collagen deposition and fibrosis, leading to the development of radiation-induced myocardial fibrosis (RIMF). However, the pathogenesis of RIMF is still largely unknown. Moreover, there are no available clinical approaches to reverse RIMF once it occurs and it continues to impair the quality of life of long-term cancer survivors. Hence, there is an increasing need for more clinically relevant preclinical models to elucidate the molecular and cellular mechanisms involved in the development of RIMF. This review offers an insight into the existing preclinical models to study RIHD and the suggested mechanisms of RIMF, as well as available multi-modality treatments and outcomes. Moreover, we summarize the valuable detection methods of RIHD/RIMF, and the clinical use of sensitive radiographic and circulating biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis I. Verginadis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Ortiz de Choudens S, Sparapani R, Narayanan J, Lohr N, Gao F, Fish BL, Zielonka M, Gasperetti T, Veley D, Beyer A, Olson J, Jacobs ER, Medhora M. Lisinopril Mitigates Radiation-Induced Mitochondrial Defects in Rat Heart and Blood Cells. Front Oncol 2022; 12:828177. [PMID: 35311118 PMCID: PMC8924663 DOI: 10.3389/fonc.2022.828177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
The genetic bases and disparate responses to radiotherapy are poorly understood, especially for cardiotoxicity resulting from treatment of thoracic tumors. Preclinical animal models such as the Dahl salt-sensitive (SS) rat can serve as a surrogate model for salt-sensitive low renin hypertension, common to African Americans, where aldosterone contributes to hypertension-related alterations of peripheral vascular and renal vascular function. Brown Norway (BN) rats, in comparison, are a normotensive control group, while consomic SSBN6 with substitution of rat chromosome 6 (homologous to human chromosome 14) on an SS background manifests cardioprotection and mitochondrial preservation to SS rats after injury. In this study, 2 groups from each of the 3 rat strains had their hearts irradiated (8 Gy X 5 fractions). One irradiated group was treated with the ACE-inhibitor lisinopril, and a separate group in each strain served as nonirradiated controls. Radiation reduced cardiac end diastolic volume by 9-11% and increased thickness of the interventricular septum (11-16%) and left ventricular posterior wall (14-15%) in all 3 strains (5-10 rats/group) after 120 days. Lisinopril mitigated the increase in posterior wall thickness. Mitochondrial function was measured by the Seahorse Cell Mitochondrial Stress test in peripheral blood mononuclear cells (PBMC) at 90 days. Radiation did not alter mitochondrial respiration in PBMC from BN or SSBN6. However, maximal mitochondrial respiration and spare capacity were reduced by radiation in PBMC from SS rats (p=0.016 and 0.002 respectively, 9-10 rats/group) and this effect was mitigated by lisinopril (p=0.04 and 0.023 respectively, 9-10 rats/group). Taken together, these results indicate injury to the heart by radiation in all 3 strains of rats, although the SS rats had greater susceptibility for mitochondrial dysfunction. Lisinopril mitigated injury independent of genetic background.
Collapse
Affiliation(s)
| | - Rodney Sparapani
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jayashree Narayanan
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Nicole Lohr
- Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Feng Gao
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Brian L Fish
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tracy Gasperetti
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Dana Veley
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States
| | - Andreas Beyer
- Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica Olson
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth R Jacobs
- Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pulmonary Medicine, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Research Service, Veterans Affairs, Zablocki VA Medical Center (VAMC), Milwaukee, WI, United States
| | - Meetha Medhora
- Department of Radiation Oncology, Froedtert & the Medical College of Wisconsin, Milwaukee WI, United States.,Cardiovascular Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pulmonary Medicine, Froedtert & the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Research Service, Veterans Affairs, Zablocki VA Medical Center (VAMC), Milwaukee, WI, United States
| |
Collapse
|
16
|
L'Abbate S, Chianca M, Fabiani I, Del Franco A, Giannoni A, Vergaro G, Grigoratos C, Kusmic C, Passino C, D'Alessandra Y, Burchielli S, Emdin M, Cardinale DM. In Vivo Murine Models of Cardiotoxicity Due to Anticancer Drugs: Challenges and Opportunities for Clinical Translation. J Cardiovasc Transl Res 2022; 15:1143-1162. [PMID: 35312959 DOI: 10.1007/s12265-022-10231-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Modern therapeutic approaches have led to an improvement in the chances of surviving a diagnosis of cancer. However, this may come with side effects, with patients experiencing adverse cardiovascular events or exacerbation of underlying cardiovascular disease related to their cancer treatment. Rodent models of chemotherapy-induced cardiotoxicity are useful to define pathophysiological mechanisms of cardiac damage and to identify potential therapeutic targets. The key mechanisms involved in cardiotoxicity induced by specific different antineoplastic agents are summarized in this state-of-the-art review, as well as the rodent models of cardiotoxicity by different classes of anticancer drugs, along with the strategies tested for primary and secondary cardioprotection. Current approaches for early detection of cardiotoxicity in preclinical studies with a focus on the application of advanced imaging modalities and biomarker strategies are also discussed. Potential applications of cardiotoxicity modelling in rodents are illustrated in relation to the advancements of promising research topics of cardiotoxicity. Created with BioRender.com.
Collapse
Affiliation(s)
- Serena L'Abbate
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michela Chianca
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Annamaria Del Franco
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Yuri D'Alessandra
- Cardiovascular Proteomics Unit, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
17
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
18
|
Boerma M, Davis CM, Jackson IL, Schaue D, Williams JP. All for one, though not one for all: team players in normal tissue radiobiology. Int J Radiat Biol 2021; 98:346-366. [PMID: 34129427 PMCID: PMC8781287 DOI: 10.1080/09553002.2021.1941383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.
Collapse
Affiliation(s)
- Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Asnani A, Moslehi JJ, Adhikari BB, Baik AH, Beyer AM, de Boer RA, Ghigo A, Grumbach IM, Jain S, Zhu H. Preclinical Models of Cancer Therapy-Associated Cardiovascular Toxicity: A Scientific Statement From the American Heart Association. Circ Res 2021; 129:e21-e34. [PMID: 33934611 DOI: 10.1161/res.0000000000000473] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although cardiovascular toxicity from traditional chemotherapies has been well recognized for decades, the recent explosion of effective novel targeted cancer therapies with cardiovascular sequelae has driven the emergence of cardio-oncology as a new clinical and research field. Cardiovascular toxicity associated with cancer therapy can manifest as a broad range of potentially life-threatening complications, including heart failure, arrhythmia, myocarditis, and vascular events. Beyond toxicology, the intersection of cancer and heart disease has blossomed to include discovery of genetic and environmental risk factors that predispose to both. There is a pressing need to understand the underlying molecular mechanisms of cardiovascular toxicity to improve outcomes in patients with cancer. Preclinical cardiovascular models, ranging from cellular assays to large animals, serve as the foundation for mechanistic studies, with the ultimate goal of identifying biologically sound biomarkers and cardioprotective therapies that allow the optimal use of cancer treatments while minimizing toxicities. Given that novel cancer therapies target specific pathways integral to normal cardiovascular homeostasis, a better mechanistic understanding of toxicity may provide insights into fundamental pathways that lead to cardiovascular disease when dysregulated. The goal of this scientific statement is to summarize the strengths and weaknesses of preclinical models of cancer therapy-associated cardiovascular toxicity, to highlight overlapping mechanisms driving cancer and cardiovascular disease, and to discuss opportunities to leverage cardio-oncology models to address important mechanistic questions relevant to all patients with cardiovascular disease, including those with and without cancer.
Collapse
|
20
|
Lee CL, Lee JW, Daniel AR, Holbrook M, Hasapis S, Wright AO, Brownstein J, Da Silva Campos L, Ma Y, Mao L, Abraham D, Badea CT, Kirsch DG. Characterization of cardiovascular injury in mice following partial-heart irradiation with clinically relevant dose and fractionation. Radiother Oncol 2021; 157:155-162. [DOI: 10.1016/j.radonc.2021.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
|
21
|
Ibrahim ESH, Baruah D, Croisille P, Stojanovska J, Rubenstein JC, Frei A, Schlaak RA, Lin CY, Pipke JL, Lemke A, Xu Z, Klaas A, Brehler M, Flister MJ, Laviolette PS, Gore EM, Bergom C. Cardiac Magnetic Resonance for Early Detection of Radiation Therapy-Induced Cardiotoxicity in a Small Animal Model. JACC: CARDIOONCOLOGY 2021; 3:113-130. [PMID: 33912843 PMCID: PMC8078846 DOI: 10.1016/j.jaccao.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Over half of all cancer patients receive radiation therapy (RT). However, radiation exposure to the heart can cause cardiotoxicity. Nevertheless, there is a paucity of data on RT-induced cardiac damage, with limited understanding of safe regional RT doses, early detection, prevention and management. A common initial feature of cardiotoxicity is asymptomatic dysfunction, which if left untreated may progress to heart failure. The current paradigm for cardiotoxicity detection and management relies primarily upon assessment of ejection fraction (EF). However, cardiac injury can occur without a clear change in EF. Objectives To identify magnetic resonance imaging (MRI) markers of early RT-induced cardiac dysfunction. Methods We investigated the effect of RT on global and regional cardiac function and myocardial T1/T2 values at two timepoints post-RT using cardiac MRI in a rat model of localized cardiac RT. Rats who received image-guided whole-heart radiation of 24Gy were compared to sham-treated rats. Results The rats maintained normal global cardiac function post-RT. However, a deterioration in strain was particularly notable at 10-weeks post RT, and changes in circumferential strain were larger than changes in radial or longitudinal strain. Compared to sham, circumferential strain changes occurred at the basal, mid-ventricular and apical levels (p<0.05 for all at both 8-weeks and 10-weeks post-RT), most of the radial strain changes occurred at the mid-ventricular (p=0.044 at 8-weeks post-RT) and basal (p=0.018 at 10-weeks post-RT) levels, and most of the longitudinal strain changes occurred at the apical (p=0.002 at 8-weeks post-RT) and basal (p=0.035 at 10-weeks post-RT) levels. Regionally, lateral myocardial segments showed the greatest worsening in strain measurements, and histologic changes supported these findings. Despite worsened myocardial strain post-RT, myocardial tissue displacement measures were maintained, or even increased. T1/T2 measurements showed small non-significant changes post-RT compared to values in non-irradiated rats. Conclusions Our findings suggest MRI regional myocardial strain is a sensitive imaging biomarker for detecting RT-induced subclinical cardiac dysfunction prior to compromise of global cardiac function.
Collapse
Affiliation(s)
- El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dhiraj Baruah
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pierre Croisille
- Jean-Monnet University, 10 Rue Trefilerie, 42100 Saint-Etienne, France
| | | | - Jason C Rubenstein
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rachel A Schlaak
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jamie L Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Angela Lemke
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhiqiang Xu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda Klaas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Brehler
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael J Flister
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Peter S Laviolette
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elizabeth M Gore
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Carmen Bergom
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Meléndez GC. CMR-Derived Regional Strain and Radiation-Induced Cardiotoxicity: The Importance of Myocardial Inflammation. JACC: CARDIOONCOLOGY 2021; 3:131-133. [PMID: 34396312 PMCID: PMC8352243 DOI: 10.1016/j.jaccao.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giselle C Meléndez
- Departments of Internal Medicine, Section on Cardiovascular Medicine, and Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
23
|
Jagtap J, Audi S, Razeghi-Kondelaji MH, Fish BL, Hansen C, Narayan J, Gao F, Sharma G, Parchur AK, Banerjee A, Bergom C, Medhora M, Joshi A. A rapid dynamic in vivo near-infrared fluorescence imaging assay to track lung vascular permeability after acute radiation injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L436-L450. [PMID: 33404364 DOI: 10.1152/ajplung.00066.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To develop a dynamic in vivo near-infrared (NIR) fluorescence imaging assay to quantify sequential changes in lung vascular permeability-surface area product (PS) in rodents. Dynamic NIR imaging methods for determining lung vascular permeability-surface area product were developed and tested on non-irradiated and 13 Gy irradiated rats with/without treatment with lisinopril, a radiation mitigator. A physiologically-based pharmacokinetic (PBPK) model of indocyanine green (ICG) pulmonary disposition was applied to in vivo imaging data and PS was estimated. In vivo results were validated by five accepted assays: ex vivo perfused lung imaging, endothelial filtration coefficient (Kf) measurement, pulmonary vascular resistance measurement, Evan's blue dye uptake, and histopathology. A PBPK model-derived measure of lung vascular permeability-surface area product increased from 2.60 ± 0.40 [CL: 2.42-2.78] mL/min in the non-irradiated group to 6.94 ± 8.25 [CL: 3.56-10.31] mL/min in 13 Gy group after 42 days. Lisinopril treatment lowered PS in the 13 Gy group to 4.76 ± 6.17 [CL: 2.12-7.40] mL/min. A much higher up to 5× change in PS values was observed in rats exhibiting severe radiation injury. Ex vivo Kf (mL/min/cm H2O/g dry lung weight), a measure of pulmonary vascular permeability, showed similar trends in lungs of irradiated rats (0.164 ± 0.081 [CL: 0.11-0.22]) as compared to non-irradiated controls (0.022 ± 0.003 [CL: 0.019-0.025]), with reduction to 0.070 ± 0.035 [CL: 0.045-0.096] for irradiated rats treated with lisinopril. Similar trends were observed for ex vivo pulmonary vascular resistance, Evan's blue uptake, and histopathology. Our results suggest that whole body dynamic NIR fluorescence imaging can replace current assays, which are all terminal. The imaging accurately tracks changes in PS and changes in lung interstitial transport in vivo in response to radiation injury.
Collapse
Affiliation(s)
- Jaidip Jagtap
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Said Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | | | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jayashree Narayan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gayatri Sharma
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abdul K Parchur
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
24
|
Ibrahim ESH, Baruah D, Budde M, Rubenstein J, Frei A, Schlaak R, Gore E, Bergom C. Optimized cardiac functional MRI of small-animal models of cancer radiation therapy. Magn Reson Imaging 2020; 73:130-137. [PMID: 32866598 DOI: 10.1016/j.mri.2020.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/23/2020] [Accepted: 08/20/2020] [Indexed: 01/27/2023]
Abstract
Cardiac MRI of small animal models of cancer radiation therapy (RT) is a valuable tool for studying the effect of RT on the heart. However, standard cardiac MRI exams require long scanning times, which is challenging for sick animals that may not survive extended periods of imaging under anesthesia. The purpose of this study is to develop an optimized, fast MRI exam for comprehensive cardiac functional imaging of small-animal models of cancer RT. Ten adult female rats (2 non-irradiated and 8 irradiated) were scanned using the developed exam. Optimal imaging parameters were determined, which minimized scanning time while ensuring measurement accuracy and avoiding imaging artifacts. This optimized, fast MRI exam lasted for 30 min, which was tolerated by all animals. EF was normal in all imaged rats, although it was significantly increased in the irradiated rats, which also showed ventricular hypertrophy. However, myocardial strain was significantly reduced in the irradiated rats. In conclusion, a fast MRI exam has been developed for comprehensive cardiac functional imaging of rats in 30 min, with optimized imaging parameters to ensure accurate measurements and tolerance by irradiated rats. The generated strain measurements provide an early marker of regional cardiac dysfunction before global function is affected.
Collapse
Affiliation(s)
- El-Sayed H Ibrahim
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Dhiraj Baruah
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Matthew Budde
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Jason Rubenstein
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Anne Frei
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Rachel Schlaak
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Elizabeth Gore
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Carmen Bergom
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA; Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MI 63108, USA..
| |
Collapse
|
25
|
Clinical and Research Tools for the Study of Cardiovascular Effects of Cancer Therapy. J Cardiovasc Transl Res 2020; 13:417-430. [PMID: 32472498 DOI: 10.1007/s12265-020-10030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
The expansion of cancer therapeutics has paved the way for improved cancer-related outcomes. Cardiotoxicity from cancer therapy occurs in a small but significant subset of patients, is often poorly understood, and contributes to adverse outcomes at all stages of cancer treatment. Given the often-idiopathic occurrence of cardiotoxicity, novel strategies are needed for risk-stratification and early identification of cancer patients experiencing cardiotoxicity. Clinical and research tools extending from imaging to blood-based biomarkers and pluripotent stem cells are being explored as methods to study the cardiovascular impact of various cancer treatments. Here we provide an overview of tools currently available for evaluation of cardiotoxicity and highlight novel techniques in development aimed at understanding underlying pathophysiologic mechanisms.
Collapse
|
26
|
Schlaak RA, Frei A, Fish BL, Harmann L, Gasperetti T, Pipke JL, Sun Y, Rui H, Flister MJ, Gantner BN, Bergom C. Acquired Immunity Is Not Essential for Radiation-Induced Heart Dysfunction but Exerts a Complex Impact on Injury. Cancers (Basel) 2020; 12:E983. [PMID: 32316187 PMCID: PMC7226421 DOI: 10.3390/cancers12040983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG-/-)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p < 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Leanne Harmann
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee WI 53226, USA;
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Michael J. Flister
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin N. Gantner
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
27
|
Schlaak RA, Frei A, SenthilKumar G, Tsaih SW, Wells C, Mishra J, Flister MJ, Camara AKS, Bergom C. Differences in Expression of Mitochondrial Complexes Due to Genetic Variants May Alter Sensitivity to Radiation-Induced Cardiac Dysfunction. Front Cardiovasc Med 2020; 7:23. [PMID: 32195269 PMCID: PMC7066205 DOI: 10.3389/fcvm.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023] Open
Abstract
Radiation therapy is received by over half of all cancer patients. However, radiation doses may be constricted due to normal tissue side effects. In thoracic cancers, including breast and lung cancers, cardiac radiation is a major concern in treatment planning. There are currently no biomarkers of radiation-induced cardiotoxicity. Complex genetic modifiers can contribute to the risk of radiation-induced cardiotoxicities, yet these modifiers are largely unknown and poorly understood. We have previously reported the SS (Dahl salt-sensitive/Mcwi) rat strain is a highly sensitized model of radiation-induced cardiotoxicity compared to the more resistant Brown Norway (BN) rat strain. When rat chromosome 3 from the resistant BN rat strain is substituted into the SS background (SS.BN3 consomic), it significantly attenuates radiation-induced cardiotoxicity, demonstrating inherited genetic variants on rat chromosome 3 modify radiation sensitivity. Genes involved with mitochondrial function were differentially expressed in the hearts of SS and SS.BN3 rats 1 week after radiation. Here we further assessed differences in mitochondria-related genes between the sensitive SS and resistant SS.BN3 rats. We found mitochondrial-related gene expression differed in untreated hearts, while no differences in mitochondrial morphology were seen 1 week after localized heart radiation. At 12 weeks after localized cardiac radiation, differences in mitochondrial complex protein expression in the left ventricles were seen between the SS and SS.BN3 rats. These studies suggest that differences in mitochondrial gene expression caused by inherited genetic variants may contribute to differences in sensitivity to cardiac radiation.
Collapse
Affiliation(s)
- Rachel A Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Clive Wells
- Electron Microscope Facility, Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
29
|
Livingston K, Schlaak RA, Puckett LL, Bergom C. The Role of Mitochondrial Dysfunction in Radiation-Induced Heart Disease: From Bench to Bedside. Front Cardiovasc Med 2020; 7:20. [PMID: 32154269 PMCID: PMC7047199 DOI: 10.3389/fcvm.2020.00020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation is a key modality in the treatment of many cancers; however, it can also affect normal tissues adjacent to the tumor, leading to toxic effects. Radiation to the thoracic region, such as that received as part of treatment for breast and lung cancer, can result in incidental dose to the heart, leading to cardiac dysfunction, such as pericarditis, coronary artery disease, ischemic heart disease, conduction defects, and valvular dysfunction. The underlying mechanisms for these morbidities are currently being studied but are not entirely understood. There has been increasing focus on the role of radiation-induced mitochondrial dysfunction and the ensuing impact on various cardiac functions in both preclinical models and in humans. Cardiomyocyte mitochondria are critical to cardiac function, and mitochondria make up a substantial part of a cardiomyocyte's volume. Mitochondrial dysfunction can also alter other cell types in the heart. This review summarizes several factors related to radiation-induced mitochondrial dysfunction in cardiomyocytes and endothelial cells. These factors include mitochondrial DNA mutations, oxidative stress, alterations in various mitochondrial function-related transcription factors, and apoptosis. Through improved understanding of mitochondria-dependent mechanisms of radiation-induced heart dysfunction, potential therapeutic targets can be developed to assist in prevention and treatment of radiation-induced heart damage.
Collapse
Affiliation(s)
- Katie Livingston
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Rachel A Schlaak
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lindsay L Puckett
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
30
|
Schlaak RA, SenthilKumar G, Boerma M, Bergom C. Advances in Preclinical Research Models of Radiation-Induced Cardiac Toxicity. Cancers (Basel) 2020; 12:E415. [PMID: 32053873 PMCID: PMC7072196 DOI: 10.3390/cancers12020415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin; Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
31
|
Weeks KL, Henstridge DC, Salim A, Shaw JE, Marwick TH, McMullen JR. CORP: Practical tools for improving experimental design and reporting of laboratory studies of cardiovascular physiology and metabolism. Am J Physiol Heart Circ Physiol 2019; 317:H627-H639. [PMID: 31347916 DOI: 10.1152/ajpheart.00327.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exercise consisted of: 1) a short survey to acquire baseline data on current practices regarding the conduct of animal studies, 2) a series of presentations for promoting awareness and providing advice and practical tools for improving experimental design, and 3) a follow-up survey 12 mo later to assess whether practices had changed. The surveys were compulsory for responsible investigators (n = 16; paired data presented). Other investigators named on animal ethics applications were encouraged to participate (2017, total of 36 investigators; 2018, 37 investigators). The major findings to come from the exercise included 1) a willingness of investigators to make changes when provided with knowledge/tools and solutions that were relatively simple to implement (e.g., proportion of responsible investigators showing improved practices using a structured method for randomization was 0.44, 95% CI (0.19; 0.70), P = 0.003, and deidentifying drugs/interventions was 0.40, 95% CI (0.12; 0.68), P = 0.010); 2) resistance to change if this involved more personnel and time (e.g., as required for allocation concealment); and 3) evidence that changes to long-term practices ("habits") require time and follow-up. Improved practices could be verified based on changes in reporting within publications or documented evidence provided during laboratory visits. In summary, this exercise resulted in changed attitudes, practices, and reporting, but continued follow-up, monitoring, and incentives are required. Efforts to improve experimental rigor will reduce bias and will lead to findings with the greatest translational potential.NEW & NOTEWORTHY The goal of this exercise was to encourage preclinical researchers to improve the quality of their cardiac and metabolic animal studies by 1) increasing awareness of concerns, which can arise from suboptimal experimental designs; 2) providing knowledge, tools, and templates to overcome bias; and 3) conducting two short surveys over 12 mo to monitor change. Improved practices were identified for the uptake of structured methods for randomization, and de-identifying interventions/drugs.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/experimental-design-survey-training-practical-tools/.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Mathematics and Statistics, La Trobe University Victoria, Australia
| | | | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
32
|
Beyer AM, Bonini MG, Moslehi J. Cancer therapy-induced cardiovascular toxicity: old/new problems and old drugs. Am J Physiol Heart Circ Physiol 2019; 317:H164-H167. [PMID: 31172808 DOI: 10.1152/ajpheart.00277.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardio-oncology has emerged as an exciting new field at the intersection of cardiology and oncology. While improved oncology treatment efficacy has increased survival rates in cancer patients, the long-term cardiovascular consequences of this life-saving treatment have become more clinically relevant. Both traditional and newer (targeted) cancer therapies can have cardiovascular and metabolic sequelae, resulting in heart failure, coronary artery disease, myocarditis, pericardial disease, hypertension, and vascular and metabolic perturbations (Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med 375: 1457-1467, 2016). Both acute and chronic cardiovascular toxicities have proven challenging for clinicians and patients, significantly contributing to morbidity and mortality. Although chronic cardiovascular disease affects a growing number of cancer survivors (~17 million in the United States in 2019), cardiovascular toxicities associated with cancer and cancer therapies are poorly understood mechanistically. To balance potential damage to the cardiovascular system with effective and efficient cancer treatment, novel strategies are sorely needed. This perspective focuses on an assembly of articles that discuss novel means of counteracting adverse cardiovascular events in response to anticancer therapy. In light of new clinical syndromes in cardiology due to cancer therapies, we hope to highlight promising research opportunities offered by cardio-oncology (Bellinger AM, Arteaga CL, Force T, Humphreys BD, Demetri GD, Druker BJ, Moslehi JJ. Cardio-oncology: how new targeted cancer therapies and precision medicine can inform cardiovascular discovery. Circulation 132: 2248-2258, 2015.).
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Redox Biology Program, Cardiovascular Center and Cancer Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Marcelo G Bonini
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin.,Redox Biology Program, Cardiovascular Center and Cancer Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Javid Moslehi
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| |
Collapse
|