1
|
Halfon M, Emsley R, Agius T, Lyon A, Déglise S, Pascual M, Uygun K, Yeh H, Riella LV, Markmann JF, Bochud PY, Golshayan D, Longchamp A. Association of Kidney Graft Long-term Outcome With Recipient Cystathionine Gamma-lyase Polymorphisms and Hydrogen Sulfide Levels: A Cohort Study. Transplant Direct 2025; 11:e1779. [PMID: 40256682 PMCID: PMC12007866 DOI: 10.1097/txd.0000000000001779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 04/22/2025] Open
Abstract
Background Hydrogen sulfide (H2S) produced endogenously by the CTH gene-encoded cystathionine gamma-lyase protects from renal ischemia-reperfusion injury in preclinical models. Here, we hypothesized that CTH gene polymorphisms (single nucleotide polymorphism [SNP]) and recipient H2S serum levels influence kidney graft outcomes after transplantation. Methods We included all consecutive recipients of a first kidney transplant in the Swiss Transplant Cohort Study and with available genotyping. In addition, 192 deceased-donor kidney transplant recipients were randomly selected to measure baseline serum H2S levels. The primary endpoint was graft loss during follow-up. Results CTH SNPs were identified in up to 50% of the patients. During median follow-up (6.4 y, interquartile range: 3.9-9.8), graft loss was observed in 247 (9.8%) of 2518 patients. The incidence of graft loss was associated with the presence or absence of CTH SNPs. Specifically, rs672203 and rs10458561, increased the risk of graft loss (hazard ratio [HR]: 1.36, 95% confidence interval [CI]: 1.04-1.78, P = 0.02; and HR: 1.29, 95% CI: 1.0-1.66, P = 0.05; respectively), whereas rs113285275 was protective (HR: 0.78, 95% CI: 0.6-1.01, P = 0.05). Interestingly, rs672203 was associated with an increased risk of acute rejection (P = 0.05), whereas rs113285275 was associated with a lower risk of acute rejection (P = 0.01). Finally, in patients with delayed graft function, serum H2S levels correlated with lower graft dysfunction (defined as estimated glomerular filtration rate <30 mL/min/1.73 m2) (P = 0.05). Conclusions Graft outcome after kidney transplantation was associated with CTH genotype and, to some extent, H2S serum levels. Further research is needed to define the underlying protective mechanisms.
Collapse
Affiliation(s)
- Matthieu Halfon
- Department of Medicine and Surgery, Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raffaella Emsley
- Service of Vascular Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thomas Agius
- Service of Vascular Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arnaud Lyon
- Department of Medicine and Surgery, Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Déglise
- Service of Vascular Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Department of Medicine and Surgery, Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| | - Leonardo V. Riella
- Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| | - James F. Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| | - Pierre-Yves Bochud
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dela Golshayan
- Department of Medicine and Surgery, Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alban Longchamp
- Service of Vascular Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
2
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Gerasimova E, Enikeev D, Yakovlev A, Zakharov A, Sitdikova G. Chronic Hyperhomocysteinemia Impairs CSD Propagation and Induces Cortical Damage in a Rat Model of Migraine with Aura. Biomolecules 2024; 14:1379. [PMID: 39595556 PMCID: PMC11591878 DOI: 10.3390/biom14111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Hyperhomocysteinemia (hHCY) is a metabolic disorder characterized by elevated levels of homocysteine in plasma. hHCY correlates with a high risk of migraine headaches, especially migraine with aura. Cortical spreading depression (CSD) is a wave of depolarization passing through neurons and glial cells of the cortex and is considered an electrophysiological correlate of migraine aura. The aim of the present study was to analyze neuronal activity and CSD in the somatosensory cortex of rats in vivo with prenatal hHCY and to assess cortex viability after 2 h of CSD generation. Female rats were fed a diet high in methionine, and their offspring with high homocysteine levels in plasma were further used in experiments. Recurrent CSD was evoked by local KCl application on the dura surface. Neuronal viability was assessed by measuring the activity of lactate dehydrogenase (LDH) in the brain and 2,3,5-triphenyltetrazolium chloride staining of the somatosensory cortex after two hours of CSD generation. Animals with hHCY exhibited higher neuronal activity, and more CSDs were generated in response to KCl, indicating higher cortical excitability. Propagation of recurrent CSD was impaired in supragranular cortical layers, and the recovery of multiple unit activity and evoked sensory potentials after CSD was delayed in the hHCY group. Finally, in animals with prenatal hHCY, an ischemic focus was identified as a consequence of multiple CSDs, along with elevated levels of LDH activity in brain tissues, suggestive of diminished neuronal viability. These findings imply that prolonged elevated levels of homocysteine may not only predispose to migraine with aura but also potentially elevate the risk of migrainous infarction.
Collapse
Affiliation(s)
- Elena Gerasimova
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Daniel Enikeev
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Aleksey Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| | - Andrey Zakharov
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Str., 420012 Kazan, Russia;
- Department of Medical Physics, Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Str., 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| |
Collapse
|
4
|
Zhao S, Deslarzes-Dubuis C, Urfer S, Lambelet M, Déglise S, Allagnat F. Cystathionine Gamma Lyase Is Regulated by Flow and Controls Smooth Muscle Migration in Human Saphenous Vein. Antioxidants (Basel) 2023; 12:1731. [PMID: 37760034 PMCID: PMC10525225 DOI: 10.3390/antiox12091731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The saphenous vein is the conduit of choice for bypass grafting. Unfortunately, the hemodynamic stress associated with the arterial environment of the bypass vein graft leads to the development of intimal hyperplasia (IH), an excessive cellular growth and collagen deposition that results in restenosis and secondary graft occlusion. Hydrogen sulfide (H2S) is a ubiquitous redox-modifying gasotransmitter that inhibits IH. H2S is produced via the reverse trans-sulfuration pathway by three enzymes: cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). However, the expression and regulation of these enzymes in the human vasculature remains unclear. Here, we investigated the expression of CSE, CBS and 3-MST in segments of native human saphenous vein and large arteries. Furthermore, we evaluated the regulation of these enzymes in vein segments cultured under static, venous (7 mmHg pressure) or arterial (100 mmHg pressure) pressure. CSE was expressed in the media, neointima and intima of the vessels and was negatively regulated by arterial shear stress. Adenoviral-mediated CSE overexpression or RNA interference-mediated CSE knock-down revealed that CSE inhibited primary human VSMC migration but not proliferation. We propose that high shear stress in arteriovenous bypass grafts inhibits CSE expression in both the media and endothelium, which may contribute to increased VSMC migration in the context of IH.
Collapse
|
5
|
Alkaissi H, McFarlane SI. Hyperhomocysteinemia and Accelerated Aging: The Pathogenic Role of Increased Homocysteine in Atherosclerosis, Osteoporosis, and Neurodegeneration. Cureus 2023; 15:e42259. [PMID: 37605676 PMCID: PMC10440097 DOI: 10.7759/cureus.42259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Cardiovascular diseases and osteoporosis, seemingly unrelated disorders that occur with advanced age, share major pathogenetic mechanisms contributing to accelerated atherosclerosis and bone loss. Hyperhomocysteinemia (hHcy) is among these mechanisms that can cause both vascular and bone disease. In its more severe form, hHcy can present early in life as homocystinuria, an inborn error of metabolic pathways of the sulfur-containing amino acid methionine. In its milder forms, hHcy may go undiagnosed and untreated into adulthood. As such, hHcy may serve as a potential therapeutic target for cardiovascular disease, osteoporosis, thrombophilia, and neurodegeneration, collectively representing accelerated aging. Multiple trials to lower cardiovascular risk and improve bone density with homocysteine-lowering agents, yet none has proven to be clinically meaningful. To understand this unmet clinical need, this review will provide mechanistic insight into the pathogenesis of vascular and bone disease in hHcy, using homocystinuria as a model for accelerated atherosclerosis and bone density loss, a model for accelerated aging.
Collapse
Affiliation(s)
- Hussam Alkaissi
- Internal Medicine, Kings County Hospital Center, Brooklyn, USA
- Internal Medicine, Veterans Affairs Medical Center, Brooklyn, USA
- Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Samy I McFarlane
- Endocrinology, State University of New York Downstate Medical Center, Brooklyn, USA
| |
Collapse
|
6
|
Bechelli C, Macabrey D, Deglise S, Allagnat F. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci 2023; 24:9955. [PMID: 37373103 DOI: 10.3390/ijms24129955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD patients suffer from reduced quality of life and are at increased risk of vascular complications and all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to address the increasing incidence of PAD and its difficult long-term pharmacological and surgical management. The cysteine-derived gasotransmitter hydrogen sulfide (H2S) has interesting vasorelaxant, cytoprotective, antioxidant and anti-inflammatory properties. In this review, we describe the current understanding of PAD pathophysiology and the remarkable benefits of H2S against atherosclerosis, inflammation, vascular calcification, and other vasculo-protective effects.
Collapse
Affiliation(s)
- Clémence Bechelli
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Sebastien Deglise
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, 1005 Lausanne, Switzerland
| |
Collapse
|
7
|
Paul BD, Pieper AA. Protective Roles of Hydrogen Sulfide in Alzheimer's Disease and Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:1095. [PMID: 37237961 PMCID: PMC10215281 DOI: 10.3390/antiox12051095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer's disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
9
|
Capatina N, Burton GJ, Yung HW. Elevated homocysteine activates unfolded protein responses and causes aberrant trophoblast differentiation and mouse blastocyst development. Physiol Rep 2022; 10:e15467. [PMID: 36117391 PMCID: PMC9483615 DOI: 10.14814/phy2.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Hyperhomocysteinemia may arise from folate/vitamin B12 deficiency, genetic polymorphisms, kidney disease, or hypothyroidism. It is associated with an increased risk of early pregnancy loss and placenta-related complications of pregnancy, including pre-eclampsia and fetal growth restriction. While the majority of studies of hyperhomocysteinemia focus on epigenetic changes secondary to metabolic disruption, the effects of homocysteine toxicity on placental development remain unexplored. Here, we investigated the influence of hyperhomocysteinemia on early blastocyst development and trophoblast differentiation. Exposure of cultured blastocysts to high homocysteine levels reduces cell number in the trophectoderm layer, most likely through increased apoptosis. Homocysteine also promotes differentiation of a trophoblast stem cell line. Both effects diminish the stem cell pool, and are mediated in an endoplasmic reticulum (ER) unfolded protein response (UPRER )-dependent manner. Targeted alleviation of UPRER may therefore provide a new therapeutic intervention to improve pregnancy outcome in women with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Nadejda Capatina
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Singh M, Pushpakumar S, Zheng Y, Homme RP, Smolenkova I, Mokshagundam SPL, Tyagi SC. Hydrogen sulfide mitigates skeletal muscle mitophagy-led tissue remodeling via epigenetic regulation of the gene writer and eraser function. Physiol Rep 2022; 10:e15422. [PMID: 35986494 PMCID: PMC9391604 DOI: 10.14814/phy2.15422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 05/29/2023] Open
Abstract
Ketone bodies (KB) serve as the food for mitochondrial biogenetics. Interestingly, probiotics are known to promote KB formation in the gut (especially those that belong to the Lactobacillus genus). Furthermore, Lactobacillus helps produce folate that lowers the levels of homocysteine (Hcy); a hallmark non-proteinogenic amino acid that defines the importance of epigenetics, and its landscape. In this study, we decided to test whether hydrogen sulfide (H2 S), another Hcy lowering agent regulates the epigenetic gene writer DNA methyltransferase (DNMT), eraser FTO and TET2, and thus mitigates the skeletal muscle remodeling. We treated hyperhomocysteinemic (HHcy, cystathionine beta-synthase heterozygote knockout; CBS+/- ) mice with NaHS (the H2 S donor). The results suggested multi-organ damage by HHcy in the CBS+/- mouse strain compared with WT control mice (CBS+/+ ). H2 S treatment abrogated most of the HHcy-induced damage. The levels of gene writer (DNMT2) and H3K9 (methylation) were higher in the CBS+/- mice, and the H2 S treatment normalized their levels. More importantly, the levels of eraser FTO, TET, and associated GADD45, and MMP-13 were decreased in the CBS+/- mice; however, H2 S treatment mitigated their respective decrease. These events were associated with mitochondrial fission, i.e., an increase in DRP1, and mitophagy. Although the MMP-2 level was lower in CBS+/- compared to WT but H2 S could further lower it in the CBS+/- mice. The MMPs levels were associated with an increase in interstitial fibrosis in the CBS+/- skeletal muscle. Due to fibrosis, the femoral artery blood flow was reduced in the CBS+/- mice, and that was normalized by H2 S. The bone and muscle strengths were found to be decreased in the CBS+/- mice but the H2 S treatment normalized skeletal muscle strength in the CBS+/- mice. Our findings suggest that H2 S mitigates the mitophagy-led skeletal muscle remodeling via epigenetic regulation of the gene writer and eraser function.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sathnur Pushpakumar
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Yuting Zheng
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Rubens P. Homme
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Irina Smolenkova
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Sri Prakash L. Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical CenterUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| | - Suresh C. Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentuckyUSA
| |
Collapse
|
11
|
Di Minno A, Gelzo M, Caterino M, Costanzo M, Ruoppolo M, Castaldo G. Challenges in Metabolomics-Based Tests, Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int J Mol Sci 2022; 23:5213. [PMID: 35563604 PMCID: PMC9103094 DOI: 10.3390/ijms23095213] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolomics helps identify metabolites to characterize/refine perturbations of biological pathways in living organisms. Pre-analytical, analytical, and post-analytical limitations that have hampered a wide implementation of metabolomics have been addressed. Several potential biomarkers originating from current targeted metabolomics-based approaches have been discovered. Precision medicine argues for algorithms to classify individuals based on susceptibility to disease, and/or by response to specific treatments. It also argues for a prevention-based health system. Because of its ability to explore gene-environment interactions, metabolomics is expected to be critical to personalize diagnosis and treatment. Stringent guidelines have been applied from the very beginning to design studies to acquire the information currently employed in precision medicine and precision prevention approaches. Large, prospective, expensive and time-consuming studies are now mandatory to validate old, and discover new, metabolomics-based biomarkers with high chances of translation into precision medicine. Metabolites from studies on saliva, sweat, breath, semen, feces, amniotic, cerebrospinal, and broncho-alveolar fluid are predicted to be needed to refine information from plasma and serum metabolome. In addition, a multi-omics data analysis system is predicted to be needed for omics-based precision medicine approaches. Omics-based approaches for the progress of precision medicine and prevention are expected to raise ethical issues.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.G.); (M.C.); (M.C.); (M.R.); (G.C.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.G.); (M.C.); (M.C.); (M.R.); (G.C.)
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Marianna Caterino
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.G.); (M.C.); (M.C.); (M.R.); (G.C.)
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Michele Costanzo
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.G.); (M.C.); (M.C.); (M.R.); (G.C.)
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.G.); (M.C.); (M.C.); (M.R.); (G.C.)
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy; (M.G.); (M.C.); (M.C.); (M.R.); (G.C.)
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
12
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
13
|
Sitanaka NY, Murakami AE, Esteves LAC, de Oliveira PC, Gasparino E, Khatlab ADS, Pozza PC. Dietary guanidinoacetic acid increases the longissimus dorsi muscle depth of finishing pigs without requiring a higher standardised ileal digestible methionine + cysteine concentration. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2063767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Natália Yoko Sitanaka
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| | - Alice Eiko Murakami
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| | | | | | - Eliane Gasparino
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| | | | - Paulo Cesar Pozza
- Animal Science Department, State University of Maringá, Avenida Colombo, Maringá, Brazil
| |
Collapse
|
14
|
Macabrey D, Longchamp A, Déglise S, Allagnat F. Clinical Use of Hydrogen Sulfide to Protect Against Intimal Hyperplasia. Front Cardiovasc Med 2022; 9:876639. [PMID: 35479275 PMCID: PMC9035533 DOI: 10.3389/fcvm.2022.876639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/18/2022] [Indexed: 12/27/2022] Open
Abstract
Arterial occlusive disease is the narrowing of the arteries via atherosclerotic plaque buildup. The major risk factors for arterial occlusive disease are age, high levels of cholesterol and triglycerides, diabetes, high blood pressure, and smoking. Arterial occlusive disease is the leading cause of death in Western countries. Patients who suffer from arterial occlusive disease develop peripheral arterial disease (PAD) when the narrowing affects limbs, stroke when the narrowing affects carotid arteries, and heart disease when the narrowing affects coronary arteries. When lifestyle interventions (exercise, diet…) fail, the only solution remains surgical endovascular and open revascularization. Unfortunately, these surgeries still suffer from high failure rates due to re-occlusive vascular wall adaptations, which is largely due to intimal hyperplasia (IH). IH develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel’s innermost layer or intima. Re-occlusive IH lesions result in costly and complex recurrent end-organ ischemia, and often lead to loss of limb, brain function, or life. Despite decades of IH research, limited therapies are currently available. Hydrogen sulfide (H2S) is an endogenous gasotransmitter derived from cysteine metabolism. Although environmental exposure to exogenous high H2S is toxic, endogenous H2S has important vasorelaxant, cytoprotective and anti-inflammatory properties. Its vasculo-protective properties have attracted a remarkable amount of attention, especially its ability to inhibit IH. This review summarizes IH pathophysiology and treatment, and provides an overview of the potential clinical role of H2S to prevent IH and restenosis.
Collapse
Affiliation(s)
- Diane Macabrey
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Wang J, Zheng B, Yang S, Zheng H, Wang J. Opicapone Protects Against Hyperhomocysteinemia-Induced Increase in Blood-Brain Barrier Permeability. Neurotox Res 2021; 39:2018-2028. [PMID: 34709593 DOI: 10.1007/s12640-021-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Hyperhomocysteinemia (HHcy)-related brain vascular disorders and brain endothelial dysfunction are important characteristics of the pathogeneses of subarachnoid hemorrhage and stroke. Upregulated homocysteine (Hcy) can impair the integrity of the blood-brain barrier (BBB). Opicapone has been recently licensed for the management of Parkinson's disease (PD); however, it is unknown whether it possesses a protective effect in brain vessels against HHcy. To investigate the beneficial effects of Opicapone on BBB permeability against HHcy, we carried out both in vivo and in vitro experiments. Mice were allocated into four groups: the Control, Opicapone, HHcy, and HHcy + Opicapone. Interestingly, we found that the administration of Opicapone attenuated the increased BBB permeability in Hcy-treated mice, as determined by sodium fluorescein staining. The immunofluorescence staining showed that Opicapone prevented homocysteine-induced reduction of claudin-2 in the mice cortices. The in situ zymography assay revealed that Opicapone suppressed homocysteine-increased matrix metalloproteinases (MMPs) activity in the cortices. In bEnd.3 brain endothelial cells, Opicapone treatment ameliorated homocysteine-induced lactate dehydrogenase (LDH) release and expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Furthermore, Opicapone alleviated homocysteine-induced decrease in claudin-2 level in bEnd.3 cells. In summary, our results show that Opicapone protects against HHcy-induced BBB permeability by reducing the expression and gelatinase activity of MMPs, and increasing the expression of claudin-2.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, 625000, Sichuan, China
| | - Bo Zheng
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, 625000, Sichuan, China
| | - Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Hui Zheng
- Department of Neurology, Chengdu First People's Hospital, Chengdu, 610000, Sichuan, China.
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
16
|
Longchamp A, MacArthur MR, Trocha K, Ganahl J, Mann CG, Kip P, King WW, Sharma G, Tao M, Mitchell SJ, Ditrói T, Yang J, Nagy P, Ozaki CK, Hine C, Mitchell JR. Plasma Hydrogen Sulfide Is Positively Associated With Post-operative Survival in Patients Undergoing Surgical Revascularization. Front Cardiovasc Med 2021; 8:750926. [PMID: 34760947 PMCID: PMC8574965 DOI: 10.3389/fcvm.2021.750926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: Hydrogen sulfide (H2S) is a gaseous signaling molecule and redox factor important for cardiovascular function. Deficiencies in its production or bioavailability are implicated in atherosclerotic disease. However, it is unknown if circulating H2S levels differ between vasculopaths and healthy individuals, and if so, whether H2S measurements can be used to predict surgical outcomes. Here, we examined: (1) Plasma H2S levels in patients undergoing vascular surgery and compared these to healthy controls, and (2) the association between H2S levels and mortality in a cohort of patients undergoing surgical revascularization. Methods: One hundred and fifteen patients undergoing carotid endarterectomy, open lower extremity revascularization or lower leg amputation were enrolled at a single institution. Peripheral blood was also collected from a matched control cohort of 20 patients without peripheral or coronary artery disease. Plasma H2S production capacity and sulfide concentration were measured using the lead acetate and monobromobimane methods, respectively. Results: Plasma H2S production capacity and plasma sulfide concentrations were reduced in patients with PAD (p < 0.001, p = 0.013, respectively). Patients that underwent surgical revascularization were divided into high vs. low H2S production capacity groups by median split. Patients in the low H2S production group had increased probability of mortality (p = 0.003). This association was robust to correction for potentially confounding variables using Cox proportional hazard models. Conclusion: Circulating H2S levels were lower in patients with atherosclerotic disease. Patients undergoing surgical revascularization with lower H2S production capacity, but not sulfide concentrations, had increased probability of mortality within 36 months post-surgery. This work provides insight on the role H2S plays as a diagnostic and potential therapeutic for cardiovascular disease.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Michael R MacArthur
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Kaspar Trocha
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Janine Ganahl
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Charlotte G Mann
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Peter Kip
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - William W King
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Gaurav Sharma
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ming Tao
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - Jie Yang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.,Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - James R Mitchell
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
17
|
Zhang D, Hong X, Wang J, Jiang Y, Zhang Y, Chen J, Niu X. Estradiol-17β inhibits homocysteine mediated damage by promoting H 2 S production via upregulating CBS and CSE expression in human umbilical vein endothelial cells. J Cell Biochem 2021; 122:915-925. [PMID: 31724756 DOI: 10.1002/jcb.29527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Associated with reduced hydrogen sulfide (H2 S) production in Hcy metabolic disorders, Plasma Hcy accumulation can bring about vascular dysfunction. Nevertheless, recently proposed therapies for vascular damage by estrogen could contribute to promoting endogenous hydrogen sulfide production. This study explores whether estrogen can come into play in protection in hyperhomocysteinemia and hypertensive patients at a population level, and then analyses the specific mechanism of estrogen protection in homocysteine (Hcy)-treated human umbilical vein endothelial cells (HUVECs) at the foundational level. A case-control study, conducted on 1277 female hypertension and non-hypertensive patients from Hunan Provincial People's Hospital, showed that the Hcy concentration of hypertensive patients emerged higher than that of healthy controls (P < .001), and that of estrogen was the reverse (P < .001). Estrogen had a negative correlation with systolic blood pressure and plasma Hcy concentration. HUVECs were treated with estrogen and Hcy in the basic experimental part, and 17β-estradiol (E2β) stimulated proliferation and inhibited damage in Hcy-treated umbilical vein endothelial cells. Treatment with Hcy dampens the expression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) then cuts down H2 S production in cultured HUVECs, however, E2β reverses this process. To sum up, we have demonstrated a significant correlation between estrogen, Hcy concentration and systolic blood pressure reduction, which is bound up with Hcy metabolism and endogenous hydrogen sulfide production. The role of E2β was further strengthened by CBS and the CSE inhibitor through overthrowing the change in hydrogen sulfide of Hcy-treated HUVECs.
Collapse
Affiliation(s)
- Dandan Zhang
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China.,Mawangdui Hospital, University of South China, Hengyang, China
| | - Xiuqin Hong
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China.,People's Hospital of Hunan Province Emergency Medicine Research Institute, Changsha, China
| | - Jia Wang
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yu Jiang
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China.,Mawangdui Hospital, University of South China, Hengyang, China.,People's Hospital of Hunan Province Emergency Medicine Research Institute, Changsha, China
| | - Ying Zhang
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China.,Mawangdui Hospital, University of South China, Hengyang, China
| | - Jian Chen
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China.,Mawangdui Hospital, University of South China, Hengyang, China
| | - Xiaona Niu
- People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha, China.,Mawangdui Hospital, University of South China, Hengyang, China
| |
Collapse
|
18
|
Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, Quantification and Genetic Diseases of the Smallest Signaling Thiol Metabolite: Hydrogen Sulfide. Antioxidants (Basel) 2021; 10:1065. [PMID: 34356298 PMCID: PMC8301176 DOI: 10.3390/antiox10071065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter and the smallest signaling thiol metabolite with important roles in human health. The turnover of H2S in humans is mainly governed by enzymes of sulfur amino acid metabolism and also by the microbiome. As is the case with other small signaling molecules, disease-promoting effects of H2S largely depend on its concentration and compartmentalization. Genetic defects that impair the biogenesis and catabolism of H2S have been described; however, a gap in knowledge remains concerning physiological steady-state concentrations of H2S and their direct clinical implications. The small size and considerable reactivity of H2S renders its quantification in biological samples an experimental challenge. A compilation of methods currently employed to quantify H2S in biological specimens is provided in this review. Substantial discrepancy exists in the concentrations of H2S determined by different techniques. Available methodologies permit end-point measurement of H2S concentration, yet no definitive protocol exists for the continuous, real-time measurement of H2S produced by its enzymatic sources. We present a summary of available animal models, monogenic diseases that impair H2S metabolism in humans including structure-function relationships of pathogenic mutations, and discuss possible approaches to overcome current limitations of study.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ilia Derevenkov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (I.D.); (S.V.M.)
| | - Sergei V. Makarov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia; (I.D.); (S.V.M.)
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
19
|
Tawfik A, Elsherbiny NM, Zaidi Y, Rajpurohit P. Homocysteine and Age-Related Central Nervous System Diseases: Role of Inflammation. Int J Mol Sci 2021; 22:ijms22126259. [PMID: 34200792 PMCID: PMC8230490 DOI: 10.3390/ijms22126259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) is remarkably common among the aging population. The relation between HHcy and the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and eye diseases, and age-related macular degeneration (AMD) and diabetic retinopathy (DR) in elderly people, has been established. Disruption of the blood barrier function of the brain and retina is one of the most important underlying mechanisms associated with HHcy-induced neurodegenerative and retinal disorders. Impairment of the barrier function triggers inflammatory events that worsen disease pathology. Studies have shown that AD patients also suffer from visual impairments. As an extension of the central nervous system, the retina has been suggested as a prominent site of AD pathology. This review highlights inflammation as a possible underlying mechanism of HHcy-induced barrier dysfunction and neurovascular injury in aging diseases accompanied by HHcy, focusing on AD.
Collapse
Affiliation(s)
- Amany Tawfik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia (MCG), Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, MCG, Augusta University, Augusta, GA 30912, USA
- Eye Research Institue, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-706-721-2582; Fax: +1-706-721-9415
| | - Nehal M. Elsherbiny
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yusra Zaidi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| | - Pragya Rajpurohit
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.M.E.); (Y.Z.); (P.R.)
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Kumar M, Sandhir R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced blood-brain barrier permeability by inhibiting MMP-9. Int J Neurosci 2021; 132:1061-1071. [PMID: 33287606 DOI: 10.1080/00207454.2020.1860967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Backgroud: Hyperhomocysteinemia (HHcy) is implicated in various neurovascular disorders including vascular dementia, subarachnoid hemorrhage and stroke. Elevated homocysteine (Hcy) levels are associated with increased oxidative stress and compromised blood-brain barrier (BBB) integrity. Hydrogen sulfide (H2S) has recently emerged as potent neuroprotective molecule in various neurological conditions including those associated with HHcy. The present study evaluates the protective effect of sodium hydrogen sulfide (NaHS; a source of H2S) on HHcy-induced BBB dysfunction and underpin molecular mechanisms.Materials and methods: Supplementation of NaHS restored the increased BBB permeability in the cortex and hippocampus of HHcy animals assessed in terms of diffused sodium fluorescein and Evans blue tracer dyes in the brain. Activity of matrix metalloproteinases (MMPs) assessed by gelatinase activity and in situ gelatinase assay was restored to the normal in the cortex and hippocampus of HHcy animals supplemented with NaHS.Results: Application of gelatin zymography revealed that specifically MMP-9 activity was increased in the cortex and hippocampus of HHcy animals, which was inhibited by NaHS supplementation. Real-time RT-PCR analysis showed that NaHS administration also decreased mRNA expression of MMP-9 in the hippocampus of HHcy animals. NaHS supplementation was further observed to reduce water retention in the brain regions of Hcy treated animals.Conclusion: Taken together, these findings suggest that NaHS supplementation ameliorates HHcy-induced BBB permeability and brain edema by inhibiting the mRNA expression and activity of MMP-9. Therefore, H2S and H2S releasing drugs may be used as a novel therapeutic approach to treat HHcy-associated neurovascular disorders.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, India.,College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, India
| |
Collapse
|
21
|
Eyob W, George AK, Homme RP, Stanisic D, Sandhu H, Tyagi SC, Singh M. Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes. Mol Cell Biochem 2021; 476:663-673. [PMID: 33074445 DOI: 10.1007/s11010-020-03934-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/07/2020] [Indexed: 01/30/2023]
Abstract
Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, "1-carbon metabolism" assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of "1-Carbon Metabolism" during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine β-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a "molecular-sponge" for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.
Collapse
Affiliation(s)
- Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Dragana Stanisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Harpal Sandhu
- Department of Ophthalmology and Visual Sciences and Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
22
|
Dongó E, Kiss L. The Potential Role of Hydrogen Sulfide in the Regulation of Cerebrovascular Tone. Biomolecules 2020; 10:biom10121685. [PMID: 33339440 PMCID: PMC7766080 DOI: 10.3390/biom10121685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/15/2023] Open
Abstract
A better understanding of the regulation of cerebrovascular circulation is of great importance because stroke and other cerebrovascular diseases represent a major concern in healthcare leading to millions of deaths yearly. The circulation of the central nervous system is regulated in a highly complex manner involving many local factors and hydrogen sulfide (H2S) is emerging as one such possible factor. Several lines of evidence support that H2S takes part in the regulation of vascular tone. Examinations using either exogenous treatment with H2S donor molecules or alterations to the enzymes that are endogenously producing this molecule revealed numerous important findings about its physiological and pathophysiological role. The great majority of these studies were performed on vessel segments derived from the systemic circulation but there are important observations made using cerebral vessels as well. The findings of these experimental works indicate that H2S is having a complex, pleiotropic effect on the vascular wall not only in the systemic circulation but in the cerebrovascular region as well. In this review, we summarize the most important experimental findings related to the potential role of H2S in the cerebral circulation.
Collapse
Affiliation(s)
- Eleni Dongó
- Department of Physiology, Semmelweis University, 1088 Budapest, Hungary
- Department of Neurology, Semmelweis University, 1088 Budapest, Hungary;
| | - Levente Kiss
- Department of Physiology, Semmelweis University, 1088 Budapest, Hungary
- Correspondence: ; Tel.: +36-20-384-5753
| |
Collapse
|
23
|
Mohammad G, Radhakrishnan R, Kowluru RA. Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:35. [PMID: 33372981 PMCID: PMC7774116 DOI: 10.1167/iovs.61.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyperglycemia damages the retinal mitochondria, and the mitochondrial damage plays a central role in the development of diabetic retinopathy. Patients with diabetes also have higher homocysteine levels, and abnormalities in homocysteine metabolism result in decreased levels of hydrogen sulfide (H2S), an endogenous gasotransmitter signaling molecule with antioxidant properties. This study aimed to investigate the role of H2S in the development of diabetic retinopathy. Methods Streptozotocin-induced diabetic mice were administered a slow releasing H2S donor GYY4137 for 6 months. The retina was used to measure H2S levels, and their retinal vasculature was analyzed for the histopathology characteristic of diabetic retinopathy and oxidative stress, mitochondrial damaging matrix metalloproteinase-9 (MMP-9), and mitochondrial integrity. These parameters were also measured in the isolated retinal endothelial cells incubated in high glucose medium containing GYY4137. Results Administration of GYY4137 to diabetic mice ameliorated decrease in H2S and prevented the development of histopathology, characteristic of diabetic retinopathy. Diabetes-induced increase in oxidative stress, MMP-9 activation, and mitochondrial damage were also attenuated in mice receiving GYY4137. Results from isolated retinal endothelial cells confirmed the results obtained from diabetic mice. Conclusions Thus, supplementation of H2S donor prevents the development of diabetic retinopathy by ameliorating increase in oxidative stress and preserving the mitochondrial integrity. H2S donors may provide a novel therapeutic strategy to inhibit the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | | | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
24
|
Di Minno A, Anesi A, Chiesa M, Cirillo F, Colombo GI, Orsini RC, Capasso F, Morisco F, Fiorelli S, Eligini S, Cavalca V, Tremoli E, Porro B, Di Minno MND. Plasma phospholipid dysregulation in patients with cystathionine-β synthase deficiency. Nutr Metab Cardiovasc Dis 2020; 30:2286-2295. [PMID: 32912785 DOI: 10.1016/j.numecd.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Patients with cystathionine β-synthase deficiency (CBSD) exhibit high circulating levels of homocysteine and enhanced lipid peroxidation. We have characterized the plasma lipidome in CBSD patients and related lipid abnormalities with reactions underlying enhanced homocysteine levels. METHODS AND RESULTS Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, plasma lipids were determined with an untargeted lipidomics approach in 11 CBSD patients and 11 matched healthy subjects (CTRL). Compared to CTRL, CBSD patients had a higher medium and long-chain polyunsaturated fatty acids (PUFA) content in phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) species (p < 0.02), and depletion of phosphatidylcholine (PC; p = 0.02) and of lysophosphatidylcholine (LPC; p = 0.003) species containing docosahexaenoic acid (DHA), suggesting impaired phosphatidylethanolamine-N-methyltransferase (PEMT) activity. PEMT converts PE into PC using methyl group by S-adenosylmethionine (SAM) thus converted in S-adenosylhomocysteine (SAH). Whole blood SAM and SAH concentrations by liquid chromatography tandem mass spectrometry were 1.4-fold (p = 0.015) and 5.3-fold (p = 0.003) higher in CBSD patients than in CTRL. A positive correlation between SAM/SAH and PC/PE ratios (r = 0.520; p = 0.019) was found. CONCLUSIONS A novel biochemical abnormality in CBSD patients consisting in depletion of PC and LPC species containing DHA and accumulation of PUFA in PE and LPE species is revealed by this lipidomic approach. Changes in plasma SAM and SAH concentrations are associated with such phospholipid dysregulation. Given the key role of DHA in thrombosis prevention, depletion of PC species containing DHA in CBSD patients provides a new direction to understand the poor cardiovascular outcome of patients with homocystinuria.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Andrea Anesi
- Fondazione Edmund Mach Research and Innovation Centre, Food Quality and Nutrition Department, S. Michele all' Adige, Trento, Italy
| | | | - Ferdinando Cirillo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | | | - Roberta C Orsini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Filomena Capasso
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Filomena Morisco
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | | | | | | | | | | | - Matteo N D Di Minno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| |
Collapse
|
25
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Diabetic Retinopathy: Mitochondria Caught in a Muddle of Homocysteine. J Clin Med 2020; 9:jcm9093019. [PMID: 32961662 PMCID: PMC7564979 DOI: 10.3390/jcm9093019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is one of the most feared complications of diabetes. In addition to the severity of hyperglycemia, systemic factors also play an important role in its development. Another risk factor in the development of diabetic retinopathy is elevated levels of homocysteine, a non-protein amino acid, and hyperglycemia and homocysteine are shown to produce synergistic detrimental effects on the vasculature. Hyperhomocysteinemia is associated with increased oxidative stress, and in the pathogenesis of diabetic retinopathy, oxidative stress-mitochondrial dysfunction precedes the development of histopathology characteristic of diabetic retinopathy. Furthermore, homocysteine biosynthesis from methionine forms S-adenosyl methionine (SAM), and SAM is a co-substrate of DNA methylation. In diabetes, DNA methylation machinery is activated, and mitochondrial DNA (mtDNA) and several genes associated with mitochondrial homeostasis undergo epigenetic modifications. Consequently, high homocysteine, by further affecting methylation of mtDNA and that of genes associated with mtDNA damage and biogenesis, does not give any break to the already damaged mitochondria, and the vicious cycle of free radicals continues. Thus, supplementation of sensible glycemic control with therapies targeting hyperhomocysteinemia could be valuable for diabetic patients to prevent/slow down the development of this sight-threatening disease.
Collapse
|
27
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
28
|
Rao G, Murphy B, Dey A, Dhar Dwivedi SK, Zhang Y, Roy RV, Chakraborty P, Bhattacharya R, Mukherjee P. Cystathionine beta synthase regulates mitochondrial dynamics and function in endothelial cells. FASEB J 2020; 34:9372-9392. [PMID: 32463541 PMCID: PMC7675787 DOI: 10.1096/fj.202000173r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the human cystathionine beta synthase (CBS) gene are known to cause endothelial dysfunction responsible for cardiovascular and neurovascular diseases. CBS is the predominant hydrogen sulfide (H2 S)-producing enzyme in endothelial cells (ECs). Recently, H2 S was shown to attenuate ROS and improve mitochondrial function. Mitochondria are metabolic organelles that actively transform their ultrastructure to mediate their function. Therefore, we questioned whether perturbation of CBS/H2 S activity could drive mitochondrial dysfunction via mitochondrial dynamics in ECs. Here we demonstrate that silencing CBS induces mitochondria fragmentation, attenuates efficient oxidative phosphorylation, and decreases EC function. Mechanistically, CBS silencing significantly elevates ROS production, thereby leading to reduced mitofusin 2 (MFN2) expression, decouple endoplasmic reticulum-mitochondria contacts, increased mitochondria fission, enhanced receptor-mediated mitophagy, and increased EC death. These defects were significantly rescued by the treatment of H2 S donors. Taken together our data highlights a novel signaling axis that mechanistically links CBS with mitochondrial function and ER-mitochondrial tethering and could be considered as a new therapeutic approach for the intervention of EC dysfunction-related pathologies.
Collapse
Affiliation(s)
- Geeta Rao
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Yushan Zhang
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ram Vinod Roy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Prabir Chakraborty
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
30
|
Zhao Q, Zhang C, Li D, Huang X, Ren B, Yue L, Du B, Godfrey O, Zhang W. CBS gene polymorphism and promoter methylation‐mediating effects on the efficacy of folate therapy in patients with hyperhomocysteinemia. J Gene Med 2020; 22:e3156. [DOI: 10.1002/jgm.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Qinglin Zhao
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Chengda Zhang
- Department of International Medicine, Beaumont Health System Royal Oak MI USA
| | - Dankang Li
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Xiaowen Huang
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Bingnan Ren
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Limin Yue
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Binghui Du
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Opolot Godfrey
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Weidong Zhang
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| |
Collapse
|
31
|
Ried K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Exp Ther Med 2019; 19:1472-1478. [PMID: 32010325 PMCID: PMC6966103 DOI: 10.3892/etm.2019.8374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/09/2019] [Indexed: 01/20/2023] Open
Abstract
Garlic supplements have shown effectiveness in reducing blood pressure in hypertensive patients, similarly to first-line standard anti-hypertensive medications. Kyolic garlic has also shown promise in improving cardiovascular health by reducing arterial stiffness, elevated cholesterol levels and blood 'stickiness'. In addition, the prebiotic properties in garlic increase gut microbial richness and diversity. This article systematically reviews previously published trials investigating the effects of garlic on blood pressure, and provides an updated meta-analysis of hypertensive participants. In addition, we summarise the findings of recent clinical trials investigating the effects of Kyolic aged garlic extract on arterial stiffness, and gut microbiota in hypertensive subjects. We searched online electronic databases, including PubMed and Google Scholar for randomised controlled trials (RCTs) published between 1955 and December, 2018 examining the effects of garlic on high blood pressure. The meta-analysis of 12 trials and 553 hypertensive participants confirmed that garlic supplements lower systolic blood pressure (SBP) by an average of 8.3±1.9 mmHg and diastolic blood pressure (DBP, n=8 trials, n=374 subjects) by 5.5±1.9 mmHg, similarly to standard anti-hypertensive medications. This reduction in blood pressure was associated with a 16-40% reduction in the risk of suffering from cardiovascular events. Additionally, this review summarises new evidence for the vitamin B12 status playing an important role in the responsiveness of blood pressure to garlic. Furthermore, Kyolic aged garlic extract significantly lowered central blood pressure, pulse pressure, pulse wave velocity and arterial stiffness, and improved the gut microbiota, evidenced by higher microbial richness and diversity, with a marked increase in the numbers of Lactobacillus and Clostridia species found following 3 months of supplementation. Thus, Kyolic aged garlic extract is considered to be highly tolerable with a high safety profile either as a stand-alone or adjunctive anti-hypertensive treatment, with multiple benefits for cardiovascular health.
Collapse
Affiliation(s)
- Karin Ried
- National Institute of Integrative Medicine (NIIM), Hawthorn, Melbourne, Victoria 3122, Australia.,Department of General Practice, The University of Adelaide, South Australia 5000, Australia.,Torrens University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
32
|
Liu N, Lin X, Huang C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer 2019; 122:279-292. [PMID: 31819185 PMCID: PMC7052275 DOI: 10.1038/s41416-019-0660-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background Ferroptosis is an iron-dependent, lipid peroxide-mediated cell death that may be exploited to selective elimination of damaged and malignant cells. Recent studies have identified that small-molecule erastin specifically inhibits transmembrane cystine–glutamate antiporter system xc−, prevents extracellular cystine import and ultimately causes ferroptosis in certain cancer cells. In this study, we aimed to investigate the molecular mechanism underlying erastin-induced ferroptosis resistance in ovarian cancer cells. Methods We treated ovarian cancer cells with erastin and examined cell viability, cellular ROS and metabolites of the transsulfuration pathway. We also depleted cystathionine β-synthase (CBS) and NRF2 to investigate the CBS and NRF2 dependency in erastin-resistant cells. Results We found that prolonged erastin treatment induced ferroptosis resistance. Upon exposure to erastin, cells gradually adapted to cystine deprivation via sustained activation of the reverse transsulfuration pathway, allowing the cells to bypass erastin insult. CBS, the biosynthetic enzyme for cysteine, was constantly upregulated and was critical for the resistance. Knockdown of CBS by RNAi in erastin-resistant cells caused ferroptotic cell death, while CBS overexpression conferred ferroptosis resistance. We determined that the antioxidant transcriptional factor, NRF2 was constitutively activated in erastin-resistant cells and NRF2 transcriptionally upregulated CBS. Genetically repression of NRF2 enhanced ferroptosis susceptibility. Conclusions Based on these results, we concluded that constitutive activation of NRF2/CBS signalling confers erastin-induced ferroptosis resistance. This study demonstrates a new mechanism underlying ferroptosis resistance, and has implications for the therapeutic response to erastin-induced ferroptosis.
Collapse
Affiliation(s)
- Nan Liu
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoli Lin
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chengying Huang
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
33
|
Mohanraj PS, Rahat B, Mahajan A, Bagga R, Kaur J. Temporal expression of genes involved in folate metabolism and transport during placental development, preeclampsia and neural tube defects. Mol Biol Rep 2019; 46:3193-3201. [PMID: 30941645 DOI: 10.1007/s11033-019-04776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023]
Abstract
Folate is an essential micronutrient during pregnancy. The differential expression of genes related to folate transport and metabolism during the advancing gestation and pregnancy complications is not well established. Hence, we studied the gene expression of folate metabolism and transport proteins in the placenta with advancing gestation, preeclampsia and neural tube defects (NTD). The expression of folate transporters and enzymes involved in folate metabolism in the placenta with advancing gestation and pregnancy-related disorders were studied by 2-step RT-PCR. Folate levels were estimated by microbiological assay using Lactobacillus casei. Significant changes in levels of placental folate metabolizing enzymes were found in both physiological and pathological pregnancies during advancing gestation. Expression of methyltetrahydrofolate reductase (MTHFR) (p < 0.001) and cystathionine-β-synthase (CBS) (p < 0.001) was decreased while that of methionine synthase (MS) (p < 0.001) was increased with advancing gestation. A much-reduced expression of MTHFR (p < 0.01) and an abnormally high expression of methionine synthase reductase (p < 0.001) were observed in the NTD group. In NTDs, there was an adaptive up-regulation of folate transporters mainly reduced folate carrier (p < 0.001) and folate receptor alpha (p < 0.001). MTHFR expression showed a strong positive correlation (r = 0.96, p < 0.01) with folate levels in placenta. Pregnant women with preeclampsia had low expression of MS (p < 0.01) in association with low folate levels. Placental folate metabolizing enzymes exhibited a differential pattern during advancing gestation. Deficient folate status in association with alteration in expression of enzymes involved in folate metabolism might be associated with pregnancy complications such as preeclampsia and NTDs.
Collapse
Affiliation(s)
- Palani Selvam Mohanraj
- Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute, SBV, Pillaiyarkuppam, Puducherry, India
| | - Beenish Rahat
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aatish Mahajan
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rashmi Bagga
- Department of Obstetrics and Gynecology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
34
|
Ried K, Travica N, Sali A. The Effect of Kyolic Aged Garlic Extract on Gut Microbiota, Inflammation, and Cardiovascular Markers in Hypertensives: The GarGIC Trial. Front Nutr 2018; 5:122. [PMID: 30619868 PMCID: PMC6297383 DOI: 10.3389/fnut.2018.00122] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Previous research suggests Kyolic-aged-garlic-extract to be effective in reducing blood pressure in a large proportion of hypertensive patients similar to first-line standard antihypertensive medication. High blood pressure has been linked to gut dysbiosis, with a significant decrease in microbial richness and diversity in hypertensives compared to normotensives. Furthermore, gut dysbiosis has been associated with increased inflammatory status and risk of cardiovascular events. Objective: To assess the effect of Kyolic aged GARlic extract on Gut microbiota, Inflammation, and Cardiovascular markers, including blood pressure, pulse wave velocity and arterial stiffness. Methods: A total of 49 participants with uncontrolled hypertension completed a double-blind randomized placebo-controlled trial of 12-weeks, investigating the effect of daily intake of aged-garlic-extract (1.2 g containing 1.2 mg S-allylcysteine) or placebo on blood pressure, pulse wave velocity and arterial stiffness, inflammatory markers, and gut microbiota. Results: Mean blood pressure was significantly reduced by 10 ± 3.6 mmHg systolic and 5.4 ± 2.3 mmHg diastolic compared to placebo. Vitamin B12 status played a role in responsiveness to garlic on blood pressure in 17% of patients. Garlic significantly lowered central blood pressure, pulse pressure and arterial stiffness (p < 0.05). Trends observed in inflammatory markers TNF-α and IL-6 need to be confirmed in larger trials. Furthermore, aged-garlic-extract improved gut microbiota, evident by higher microbial richness and diversity with a marked increase in Lactobacillus and Clostridia species after 3 months of supplementation. Conclusions: Kyolic-aged-garlic-extract is effective in reducing blood pressure in patients with uncontrolled hypertension, and has the potential to improve arterial stiffness, inflammation, and gut microbial profile. Aged-garlic-extract is highly tolerable with a high safety profile as a stand-alone or adjunctive antihypertensive treatment, with multiple benefits for cardiovascular health. Trial Registration: Australian New Zealand Clinical Trial Registry ACTRN12616000185460 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370096).
Collapse
Affiliation(s)
- Karin Ried
- National Institute of Integrative Medicine, Melbourne, VIC, Australia.,Discipline of General Practice, The University of Adelaide, Adelaide, SA, Australia.,Faculty of Health Science and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Nikolaj Travica
- National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Majumder A, Singh M, George AK, Tyagi SC. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition 1. Can J Physiol Pharmacol 2018; 97:441-456. [PMID: 30422673 DOI: 10.1139/cjpp-2018-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.
Collapse
Affiliation(s)
- Avisek Majumder
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,b Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
36
|
Hydrogen Sulfide Ameliorates Developmental Impairments of Rat Offspring with Prenatal Hyperhomocysteinemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2746873. [PMID: 30581528 PMCID: PMC6276483 DOI: 10.1155/2018/2746873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Maternal high levels of the redox active amino acid homocysteine—called hyperhomocysteinemia (hHCY)—can affect the health state of the progeny. The effects of hydrogen sulfide (H2S) treatment on rats with maternal hHCY remain unknown. In the present study, we characterized the physical development, reflex ontogeny, locomotion and exploratory activity, muscle strength, motor coordination, and brain redox state of pups with maternal hHCY and tested potential beneficial action of the H2S donor—sodium hydrosulfide (NaHS)—on these parameters. Our results indicate a significant decrease in litter size and body weight of pups from dams fed with methionine-rich diet. In hHCY pups, a delay in the formation of sensory-motor reflexes was observed. Locomotor activity tested in the open field by head rearings, crossed squares, and rearings of hHCY pups at all studied ages (P8, P16, and P26) was diminished. Exploratory activity was decreased, and emotionality was higher in rats with hHCY. Prenatal hHCY resulted in reduced muscle strength and motor coordination assessed by the paw grip endurance test and rotarod test. Remarkably, administration of NaHS to pregnant rats with hHCY prevented the observed deleterious effects of high homocysteine on fetus development. In rats with prenatal hHCY, the endogenous generation of H2S brain tissues was lower compared to control and NaHS administration restored the H2S level to control values. Moreover, using redox signaling assays, we found an increased level of malondialdehyde (MDA), the end product of lipid peroxidation, and decreased activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the brain tissues of rats of the hHCY group. Notably, NaHS treatment restored the level of MDA and the activity of SOD and GPx. Our data suggest that H2S has neuroprotective/antioxidant effects against homocysteine-induced neurotoxicity providing a potential strategy for the prevention of developmental impairments in newborns.
Collapse
|
37
|
de León Bautista MP, Romero-Valdovinos M, Zavaleta-Villa B, Martínez-Flores A, Olivo-Díaz A. Association of Cystathionine β-Synthase Gene Polymorphisms With Preeclampsia. Clin Appl Thromb Hemost 2018; 24:285S-293S. [PMID: 30380942 PMCID: PMC6714820 DOI: 10.1177/1076029618808913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy disorder that increases maternal and fetal
morbidity and mortality worldwide. High plasma levels of homocysteine (Hcy) are
a risk factor for several cardiovascular diseases. Cystathionine β-synthase
(CBS) plays an important role in Hcy homeostasis catalyzing the irreversible
degradation of Hcy to cystathionine, protecting the endothelium from injury
caused by hypoxia. Several mutations and polymorphisms may alter the expression
of the CBS gene, resulting in variable levels of Hcy. The
purpose of this study was to investigate the association of CBS
gene polymorphisms with PE in Mexican women. A case–control study consisting of
129 pregnant women with PE (37 severe and 92 mild) and 173 women with
uncomplicated pregnancies was performed. Polymorphisms, such as G797A, C785T,
T833C, G919A, T959C, C1105T, and 844ins68 base pair, in the CBS
gene were genotyped. The polymorphism G797A was monomorphic in cases with the
presence of only G797A-G allele. Allele C785T-T and genotype C785T-C/T were
associated with susceptibility in severe and mild PE. Alleles G797A-G and
T959C-T were associated with susceptibility only in severe PE. Haplotype TGTWGTC
was of susceptibility for severe PE and of protection for mild PE. Haplotypes
CGTWGCC and CATWGTC seem to be protective for severe PE, but the latter is
related to susceptibility in mild PE. The results suggest that C785T, G797A, and
T959C mutations are contributing in different ways in severe and mild PE in our
population and could be count as another related factor for this disease.
Collapse
Affiliation(s)
| | - Mirza Romero-Valdovinos
- Department of Molecular Biology and Histocompatibility, General Hospital "Dr Manuel Gea Gonzalez," Mexico City, Mexico
| | - Beatriz Zavaleta-Villa
- Department of Molecular Biology and Histocompatibility, General Hospital "Dr Manuel Gea Gonzalez," Mexico City, Mexico
| | - Arony Martínez-Flores
- Department of Ecology of Pathogens Agents, General Hospital "Dr Manuel Gea Gonzalez," Mexico City, Mexico
| | - Angélica Olivo-Díaz
- Department of Molecular Biology and Histocompatibility, General Hospital "Dr Manuel Gea Gonzalez," Mexico City, Mexico
| |
Collapse
|
38
|
Majumder A, Singh M, George AK, Homme RP, Laha A, Tyagi SC. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J Cell Biochem 2018; 120:77-92. [PMID: 30272816 DOI: 10.1002/jcb.27603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Rubens Petit Homme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Anwesha Laha
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
39
|
Majumder A, Singh M, George AK, Behera J, Tyagi N, Tyagi SC. Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine-β-synthase mutant mice via PPAR-γ/VEGF axis. Physiol Rep 2018; 6:e13858. [PMID: 30175474 PMCID: PMC6119702 DOI: 10.14814/phy2.13858] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Neoangiogenesis is a fundamental process which helps to meet energy requirements, tissue growth, and wound healing. Although previous studies showed that Peroxisome proliferator-activated receptor (PPAR-γ) regulates neoangiogenesis via upregulation of vascular endothelial growth factor (VEGF), and both VEGF and PPAR-γ expressions were inhibited during hyperhomocysteinemic (HHcy), whether these two processes could trigger pathological effects in skeletal muscle via compromising neoangiogenesis has not been studied yet. Unfortunately, there are no treatment options available to date for ameliorating HHcy-mediated neoangiogenic defects. Hydrogen sulfide (H2 S) is a novel gasotransmitter that can induce PPAR-γ levels. However, patients with cystathionine-β-synthase (CBS) mutation(s) cannot produce a sufficient amount of H2 S. We hypothesized that exogenous supplementation of H2 S might improve HHcy-mediated poor neoangiogenesis via the PPAR-γ/VEGF axis. To examine this, we created a hind limb femoral artery ligation (FAL) in CBS+/- mouse model and treated them with GYY4137 (a long-acting H2 S donor compound) for 21 days. To evaluate neoangiogenesis, we used barium sulfate angiography and laser Doppler blood flow measurements in the ischemic hind limbs of experimental mice post-FAL to assess blood flow. Proteins and mRNAs levels were studied by Western blots and qPCR analyses. HIF1-α, VEGF, PPAR-γ and p-eNOS expressions were attenuated in skeletal muscle of CBS+/- mice after 21 days of FAL in comparison to wild-type (WT) mice, that were improved via GYY4137 treatment. We also found that the collateral vessel density and blood flow were significantly reduced in post-FAL CBS+/- mice compared to WT mice and these effects were ameliorated by GYY4137. Moreover, we found that plasma nitrite levels were decreased in post-FAL CBS+/- mice compared to WT mice, which were mitigated by GYY4137 supplementation. These results suggest that HHcy can inhibit neoangiogenesis via antagonizing the angiogenic signal pathways encompassing PPAR-γ/VEGF axis and that GYY4137 could serve as a potential therapeutic to alleviate the harmful metabolic effects of HHcy conditions.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Mahavir Singh
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Akash K. George
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Jyotirmaya Behera
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Neetu Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| | - Suresh C. Tyagi
- Department of PhysiologyUniversity of Louisville School of MedicineLouisvilleKentucky40202USA
| |
Collapse
|
40
|
Kuang Q, Xue N, Chen J, Shen Z, Cui X, Fang Y, Ding X. Low Plasma Hydrogen Sulfide Is Associated with Impaired Renal Function and Cardiac Dysfunction. Am J Nephrol 2018; 47:361-371. [PMID: 29779029 DOI: 10.1159/000489606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) has been proposed to associate with decreased hydrogen sulfide (H2S) level. Nevertheless, the role of H2S in the pathogenesis of CKD has not been fully investigated. Our study aimed to investigate the plasma level of endogenous H2S in patients with different stages of CKD, and to identify the role of H2S in the progression of CKD and its relationship with cardiovascular diseases. METHODS A total of 157 non-dialysis CKD patients were recruited in our study, with 37 age- and sex-matched healthy individuals as control. Plasma concentration of H2S was measured with spectrophotometry. Sulfhemoglobin, the integration of H2S and hemoglobin, was characterized and measured by dual wavelength spectrophotometry. Serum levels of homocysteine (Hcy), cardiac troponin T (cTnT), and N-terminal pro B type natriuretic peptide were measured using automated analyzers. Conventional transthoracic echocardiography was performed and left ventricular ejection fraction (LVEF) was analyzed as a sensitive parameter of cardiac dysfunction. RESULTS The plasma H2S level (μmol/L) in CKD patients was significantly lower than those in healthy controls (7.32 ± 4.02 vs. 14.11 ± 5.24 μmol/L, p < 0.01). Plasma H2S level was positively associated with estimated glomerular filtration rate (eGFR; ρ = 0.577, p < 0.01) and negatively associated with plasma indoxyl sulfate concentration (ρ = -0.554, p < 0.01). The mRNA levels of cystathionine β-synthase and cystathionine γ-lyase, 2 catalytic enzymes of H2S formation, were significantly lower in blood mononuclear cells of CKD patients with respect to controls; however, the mRNA level of 3-mercaptopyruvate sulfurtransferase, as another H2S-producing enzyme, was significantly higher in CKD patients. The serum concentration of Hcy, acting as the substrate of H2S synthetase, was higher in the CKD group (p < 0.01). Specifically, the content of serum Hcy in CKD stages 3-5 patients was significantly higher than that in CKD stages 1-2, indicating an increasing trend of serum Hcy with the decline of renal function. Examination of ultrasonic cardiogram revealed a negative -correlation between plasma H2S level and LVEF (ρ = -0.204, p < 0.05) in CKD patients. The H2S level also correlated negatively with cTnT concentration (ρ = -0.249, p < 0.01). CONCLUSIONS Plasma H2S level decreased with the decline of eGFR, which may contribute to the cardiac dysfunction in CKD -patients.
Collapse
Affiliation(s)
- Qing Kuang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaomeng Cui
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China,
- Shanghai Medical Center of Kidney, Shanghai, China,
- Shanghai Institute of Kidney and Dialysis, Shanghai, China,
- Key Laboratory of Kidney and Blood Purification, Shanghai, China,
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
41
|
Vohra M, Sharma AR, Paul B, Bhat MK, Satyamoorthy K, Rai PS. In silico characterization of functional single nucleotide polymorphisms of folate pathway genes. Ann Hum Genet 2018; 82:186-199. [PMID: 29574679 DOI: 10.1111/ahg.12231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
Abstract
Folate metabolism genes are pivotal to critical biological processes and are related to several conditions, including developmental, cognitive, and cardiovascular anomalies. A systematic catalog of genetic polymorphisms in protein coding regions, regulatory transcription factor binding sites, and miRNA binding sites associated with folate pathway genes may contribute to personalized medicine. We performed a comprehensive computational survey of single nucleotide polymorphisms (SNPs) of folate pathway genes to highlight functional polymorphisms in the coding region, transcription factor binding sites, and miRNAs binding sites. Folate pathway genes were searched through PubMed and Kyoto Encyclopedia of Genes and Genomes pathway databases. SNPs were identified and characterized using the University of California, Santa Cruz genome browser and SNPnexus tool. Functional characterization of nonsynonymous SNPs (nsSNPS) was performed using bioinformatics tools, and common deleterious nsSNPs were identified. We identified 48 genes of folate pathway containing 287 SNPs in the coding regions. Out of these SNPs, rs5742905, rs45511401, and rs1801133 were predicted to be deleterious through four different bioinformatics tools. Three-dimensional structures of two proteins with and without deleterious nsSNPs were predicted by SWISSPDB viewer and SuperPose. Besides, a total of 237 SNPs was identified in transcription factor binding sites using the Genomatix software suite and six miRNA target site SNPs using miRNASNP. This systematic and extensive in silico analysis of functional SNPs of folate pathway may provide a foundation for future targeted mechanistic, structure-function, and genetic epidemiological studies.
Collapse
Affiliation(s)
- Manik Vohra
- Department of Biotechnology, School of Life Sciences, Manipal University, Planetarium Complex, Manipal, Karnataka, India
| | - Anu Radha Sharma
- Department of Biotechnology, School of Life Sciences, Manipal University, Planetarium Complex, Manipal, Karnataka, India
| | - Bobby Paul
- Department of Bioinformatics, School of Life Sciences, Manipal University, Planetarium Complex, Manipal, Karnataka, India
| | - Manoj K Bhat
- Department of Bioinformatics, School of Life Sciences, Manipal University, Planetarium Complex, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Planetarium Complex, Manipal, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, School of Life Sciences, Manipal University, Planetarium Complex, Manipal, Karnataka, India
| |
Collapse
|
42
|
Wang H, Sun Q, Zhou Y, Zhang H, Luo C, Xu J, Dong Y, Wu Y, Liu H, Wang W. Nitration-mediated deficiency of cystathionine β-synthase activity accelerates the progression of hyperhomocysteinemia. Free Radic Biol Med 2017; 113:519-529. [PMID: 29102635 DOI: 10.1016/j.freeradbiomed.2017.10.389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/08/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
Deficiency of cystathionine β-synthase (CBS) activity is the most common cause of increased homocysteine (Hcy). However, until now the underlying mechanisms why CBS activity decreased still remain unresolved. The goal of this study was to explore the contribution of nitrative stress to deficiency of CBS activity, and further identify the possible nitration sites of CBS protein. Results showed that in elderly people, there was an increased nitrative stress level, which was relative to elevated Hcy level. In natural aging rats and diet-induced hyperhomocysteinemia (HHcy) rats, the levels of Hcy and nitrative stress were both elevated, and interestingly, pretreatment with peroxynitrite (ONOO-) scavenger FeTMPyP ameliorated the elevation of Hcy as well as nitrative stress. Further experiments showed the reduction of CBS bioactivity and elevation of CBS nitration in two rats models were both reversed by FeTMPyP pretreatment. In vitro, replacement of tyrosine (Tyr, Y) residue (Tyr163, Tyr223, Tyr381, Tyr518) in CBS with alanine (Ala, A) abolished the Hcy-mediated CBS inactivation. These results highlighted that deficiency of CBS activity was correlated with the nitration of CBS at Tyr163, Tyr223, Tyr381 and Tyr518, which may play a mutual role in the progression of HHcy. This discovery may shed a novel light on the pathogenesis of HHcy and provide a possible gene therapy target to HHcy.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Yi Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Chenghua Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Jiahui Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Yu Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing 100069, China.
| |
Collapse
|
43
|
Yuan X, Zhang J, Xie F, Tan W, Wang S, Huang L, Tao L, Xing Q, Yuan Q. Loss of the Protein Cystathionine β-Synthase During Kidney Injury Promotes Renal Tubulointerstitial Fibrosis. Kidney Blood Press Res 2017; 42:428-443. [PMID: 28750410 DOI: 10.1159/000479295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tubulointerstitial fibrosis (TIF) is the common pathway of progressive chronic kidney disease. Inflammation has been widely accepted as the major driving force of TIF. Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway. CBS is considered to play protective role in liver and pulmonary fibrosis, but its role in TIF remains unknown. The purpose of this study was to investigate the potential role and mechanism of CBS in renal inflammation and TIF. METHODS Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of collagen I, collagen III, fibronectin, CD3, CD68, IL-1β, TNF-α were measured in sham operation and unilateral ureteral obstruction (UUO) rats. Proteomics and gene array analysis were performed to screen differentially expressed molecules in the development of renal inflammation and TIF in UUO rats. The expression of CBS was detected in patients with obstructive nephropathy and UUO rats. We confirmed the expression of CBS using western blot and real-time PCR in HK-2 cells. Overexpression plasmid and siRNA were transfected specifically to study the possible function of CBS in HK-2 cells. RESULTS Abundant expression of CBS, localized in renal tubular epithelial cells, was revealed in human and rat renal tissue, which correlated negatively with the progression of fibrotic disease. Expression of CBS was dramatically decreased in the obstructed kidney from UUO rats as compared with the sham group (SHM). In addition, knocking down CBS exacerbated extracellular matrix (ECM) deposition, whereas CBS overexpression attenuated TGF-β1-induced ECM deposition in vitro. Inflammatory and chemotactic factors were also increased in CBS knockdown HK-2 cells stimulated by IL-1β. CONCLUSIONS These findings establish CBS as a novel inhibitor in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Xiangning Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Jin Zhang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Feifei Xie
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Wenqing Tan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Shuting Wang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Ling Huang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Lijian Tao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Qiqi Xing
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiongjing Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| |
Collapse
|
44
|
Zafar S, Behrens C, Dihazi H, Schmitz M, Zerr I, Schulz-Schaeffer WJ, Ramljak S, Asif AR. Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells. Cell Death Dis 2017; 8:e2557. [PMID: 28102851 PMCID: PMC5386350 DOI: 10.1038/cddis.2016.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 μM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Christina Behrens
- Department of Neuropathology, Georg-August University, Goettingen 37075, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Goettingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | | | | | - Abdul R Asif
- Institute for Clinical Chemistry / UMG-Laboratories, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
45
|
Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget 2017; 7:8532-45. [PMID: 26885895 PMCID: PMC4890985 DOI: 10.18632/oncotarget.7384] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/30/2016] [Indexed: 02/03/2023] Open
Abstract
The disruption of retinal pigment epithelial (RPE) function and the degeneration of photoreceptors are cardinal features of age related macular degeneration (AMD); however there are still gaps in our understanding of underlying biological processes. Excess homocysteine (Hcy) has been reported to be elevated in plasma of patients with AMD. This study aimed to evaluate the direct effect of hyperhomocysteinemia (HHcy) on structure and function of RPE. Initial studies in a mouse model of HHcy, in which cystathionine-β-synthase (cbs) was deficient, revealed abnormal RPE cell morphology with features similar to that of AMD upon optical coherence tomography (OCT), fluorescein angiography (FA), histological, and electron microscopic examinations. These features include atrophy, vacuolization, hypopigmentation, thickened basal laminar membrane, hyporeflective lucency, choroidal neovascularization (CNV), and disturbed RPE-photoreceptor relationship. Furthermore, intravitreal injection of Hcy per se in normal wild type (WT) mice resulted in diffuse hyper-fluorescence, albumin leakage, and CNV in the area of RPE. In vitro experiments on ARPE-19 showed that Hcy dose-dependently reduced tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance, and impaired phagocytic activity. Collectively, our results demonstrated unreported effects of excess Hcy levels on RPE structure and function that lead to the development of AMD-like features.
Collapse
|
46
|
Steger CM, Mayr T, Bonaros N, Bonatti J, Schachner T. Vein graft disease in a knockout mouse model of hyperhomocysteinaemia. Int J Exp Pathol 2016; 97:447-456. [PMID: 28004436 DOI: 10.1111/iep.12215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
A major reason for vein graft failure after coronary artery bypass grafting is neointimal hyperplasia and thrombosis. Elevated serum levels of homocysteine (Hcy) are associated with higher incidence of cardiovascular disease, but homocysteine levels also tend to increase during the first weeks or months after cardiac surgery. To investigate this further, C57BL/6J mice (WT) and cystathionine-beta-synthase heterozygous knockout mice (CBS+/-), a mouse model for hyperhomocysteinaemia, underwent interposition of the vena cava of donor mice into the carotid artery of recipient mice. Two experimental groups were examined: 20 mice of each group underwent bypass surgery (group 1: WT donor and WT recipient; group 2: CBS+/- donor and CBS+/- recipient). After 4 weeks, the veins were harvested, dehydrated, paraffin-embedded, stained and analysed by histomorphology and immunohistochemistry. Additionally, serum Hcy levels in CBS knockout animals and in WT animals before and after bypass surgery were measured. At 4 weeks postoperatively, group 2 mice showed a higher percentage of thrombosis compared to controls, a threefold increase in neointima formation, higher general vascularization, a lower percentage of elastic fibres with shortage and fragmentation in the neointima, a lower percentage of acid mucopolysaccharides in the neointima and a more intense fibrosis in the neointima and media. In conclusion, hyperhomocysteinaemic cystathionine-beta-synthase knockout mice can play an important role in the study of mechanisms of vein graft failure. But further in vitro and in vivo studies are necessary to answer the question whether or not homocysteine itself or a related metabolic factor is the key aetiologic agent for accelerated vein graft disease.
Collapse
Affiliation(s)
- Christina Maria Steger
- Department of Pathology, Academic Teaching Hospital Feldkirch (Affiliation of the Innsbruck Medical University), Feldkirch, Austria
| | - Tobias Mayr
- Department of Surgery, State Hospital Kufstein, Kufstein, Austria
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Johannes Bonatti
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Thomas Schachner
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
47
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|
48
|
Gogiashvili M, Edlund K, Gianmoena K, Marchan R, Brik A, Andersson JT, Lambert J, Madjar K, Hellwig B, Rahnenführer J, Hengstler JG, Hergenröder R, Cadenas C. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS 1H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway. Anal Bioanal Chem 2016; 409:1591-1606. [PMID: 27896396 DOI: 10.1007/s00216-016-0100-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.
Collapse
Affiliation(s)
- Mikheil Gogiashvili
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany.
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Kathrin Gianmoena
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Institute of the Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jan T Andersson
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jörg Lambert
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | - Katrin Madjar
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Birte Hellwig
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Jörg Rahnenführer
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Roland Hergenröder
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| |
Collapse
|
49
|
Rose P, Moore PK, Zhu YZ. H 2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 2016; 74:1391-1412. [PMID: 27844098 PMCID: PMC5357297 DOI: 10.1007/s00018-016-2406-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.
Collapse
Affiliation(s)
- Peter Rose
- School of Life Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Lee Kong Chian Wing, UHL #05-02R, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
50
|
Yuan S, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling. Microcirculation 2016; 23:134-45. [PMID: 26381654 DOI: 10.1111/micc.12248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
Blockage or restriction of blood flow through conduit arteries results in tissue ischemia downstream of the disturbed area. Local tissues can adapt to this challenge by stimulating vascular remodeling through angiogenesis and arteriogenesis thereby restoring blood perfusion and removal of wastes. Multiple molecular mechanisms of vascular remodeling during ischemia have been identified and extensively studied. However, therapeutic benefits from these findings and insights are limited due to the complexity of various signaling networks and a lack of understanding central metabolic regulators governing these responses. The gasotransmitters NO and H2 S have emerged as master regulators that influence multiple molecular targets necessary for ischemic vascular remodeling. In this review, we discuss how NO and H2 S are individually regulated under ischemia, what their roles are in angiogenesis and arteriogenesis, and how their interaction controls ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shuai Yuan
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Departments of Pathology, Molecular and Cellular Physiology, and Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|