1
|
Parikh VN, Day SM, Lakdawala NK, Adler ED, Olivotto I, Seidman CE, Ho CY. Advances in the study and treatment of genetic cardiomyopathies. Cell 2025; 188:901-918. [PMID: 39983674 DOI: 10.1016/j.cell.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Cardiomyopathies are primary disorders of the heart muscle. Three key phenotypes have been defined, based on morphology and arrhythmia burden: hypertrophic cardiomyopathy (HCM), with thickened heart muscle and diastolic dysfunction; dilated cardiomyopathy (DCM), with left ventricular enlargement and systolic dysfunction; and arrhythmogenic cardiomyopathy (ACM), with right, left, or biventricular involvement and arrhythmias out of proportion to systolic dysfunction. Genetic discoveries of the molecular basis of disease are paving the way for greater precision in diagnosis and management and revealing mechanisms that account for distinguishing clinical features. This deeper understanding has propelled the development of new treatments for cardiomyopathies: disease-specific, mechanistically based medicines that counteract pathophysiology, and emergent gene therapies that aim to intercept disease progression and restore cardiac physiology. Together, these discoveries have advanced fundamental insights into cardiac biology and herald a new era for patients with cardiomyopathy.
Collapse
Affiliation(s)
- Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford School of Medicine, Stanford, CA, USA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal K Lakdawala
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric D Adler
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | | | - Christine E Seidman
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Fishbein GA, Bois MC, d'Amati G, Glass C, Masuelli L, Rodriguez ER, Seidman MA. Ultrastructural cardiac pathology: the wide (yet so very small) world of cardiac electron microscopy. Cardiovasc Pathol 2024; 73:107670. [PMID: 38880163 DOI: 10.1016/j.carpath.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Electron microscopy (EM) was a popular diagnostic tool in the 1970s and early 80s. With the adoption of newer, less expensive techniques, such as immunohistochemistry, the role of EM in diagnostic surgical pathology has dwindled substantially. Nowadays, even in academic centers, EM interpretation is relegated to renal pathologists and the handful of (aging) pathologists with experience using the technique. As such, EM interpretation is truly arcane-understood by few and mysterious to many. Nevertheless, there remain situations in which EM is the best or only ancillary test to ascertain a specific diagnosis. Thus, there remains a critical need for the younger generation of surgical pathologists to learn EM interpretation. Recognizing this need, cardiac EM was made the theme of the Cardiovascular Evening Specialty Conference at the 2023 United States and Canadian Academy of Pathology (USCAP) annual meeting in New Orleans, Louisiana. Each of the speakers contributed their part to this article, the purpose of which is to review EM as it pertains to myocardial tissue and provide illustrative examples of the spectrum of ultrastructural cardiac pathology seen in storage/metabolic diseases, cardiomyopathies, infiltrative disorders, and cardiotoxicities.
Collapse
Affiliation(s)
- Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giulia d'Amati
- Department of Oncological, Radiological and Pathological Sciences, Sapienza Università di Roma, Rome, Italy
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - E Rene Rodriguez
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Elnahas SM, Mansour HAEH, El-Sawi MR, Abou-El-Naga AM. Therapeutic effect of Momordica charantia on cardiomyopathy in a diabetic maternal rat model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:977-990. [PMID: 38973290 DOI: 10.1002/jez.2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Myocardial structural and functional abnormalities are hallmarks of diabetic cardiomyopathy (DCM), a chronic consequence of diabetes mellitus (DM). Maternal DM affects and increases the risk of heart defects in diabetic mothers compared with nondiabetic mothers. Momordica charantia exhibits antidiabetic effects due to various bioactive compounds that are phytochemicals, a broad group that includes phenolic compounds, alkaloids, proteins, steroids, inorganic compounds, and lipids. Pregnant maternal rats were split into four groups: control (C), M. charantia-treated (MC), type 2 diabetes mellitus (T2DM) (DM), and diabetic (MC + DM) groups. Diabetes mothers had increased serum glucose, insulin, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol levels. Cardiac biomarkers such as cardiac troponin T (cTnT), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase were increased. Hormone levels of follicle-stimulating hormone, luteinizing hormone, progesterone, and estrogen decreased significantly. Inflammatory markers such as interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and vascular adhesion molecule-1 (VCAM-1) were elevated in diabetic mothers. Oxidative stress markers indicated increased malondialdehyde and nitric oxide levels, while antioxidants such as glutathione, superoxide dismutase, and catalase were decreased in maternal heart tissue. The levels of apoptotic markers such as tumor suppressor 53 (P53) and cysteine aspartic protease-3 (caspase-3) were significantly greater in diabetic maternal heart tissue. Histopathological analysis revealed heart tissue abnormalities in diabetic maternal rats. M. charantia extract improved maternal diabetes-induced changes in inflammation, antioxidant levels, and heart tissue structure.
Collapse
Affiliation(s)
- Shaimaa M Elnahas
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Mamdouh R El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
4
|
Maaref Y, Jannati S, Jayousi F, Lange P, Akbari M, Chiao M, Tibbits GF. Developing a soft micropatterned substrate to enhance maturation of human induced pluripotent stem cell-derived cardiomyocytes. Acta Biomater 2024:S1742-7061(24)00621-4. [PMID: 39490605 DOI: 10.1016/j.actbio.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs) offer numerous advantages as a biological model, yet their inherent immaturity compared to adult cardiomyocytes poses significant limitations. This study addresses hiPSCCM immaturity by introducing a physiologically relevant micropatterned substrate for long-term culture and maturation. An innovative microfabrication methodology combining laser etching and casting creates a micropatterned polydimethylsiloxane (PDMS) substrate with varying stiffness, from 2 to 50 kPa, mimicking healthy and fibrotic cardiac tissue. Platinum electrodes were integrated into the cell culture chamber enable pacing of cells at various frequencies. Subsequently, cells were transferred to the incubator for time-course analysis, ensuring contamination-free conditions. Cell contractility, cytosolic Ca2+ transient, sarcomere orientation, and nucleus aspect ratio were analyzed in a 2D hiPSCCM monolayer up to 90 days post-replating in relation to substrate micropattern dimensions. Culturing hiPSCCMs for three weeks on a micropatterned PDMS substrate (2.5-5 µm deep, 20 µm center-to-center spacing of grooves, 2-5 kPa stiffness) emerges as optimal for cardiomyocyte alignment, contractility, and cytosolic Ca2+ transient. The study provides insights into substrate stiffness effects on hiPSCCM contractility and Ca2+ transient at immature and mature states. Maximum contractility and fastest Ca2+transient kinetics occur in mature hiPSCCMs cultured for two to four weeks, with the optimum at three weeks, on a soft micropatterned PDMS substrate. MS proteomic analysis further revealed that hiPSCCMs cultured on soft micropatterned substrates exhibit advanced maturation, marked by significant upregulation of key structural, electrophysiological, and metabolic proteins. This new substrate offers a promising platform for disease modeling and therapeutic interventions. STATEMENT OF SIGNIFICANCE: Human induced pluripotent stem cell derived cardiomyocytes (hiPSCCMs) have been transformative to disease-in-a-dish modeling, drug discovery and testing, and autologous regeneration for human hearts and their role will continue to expand dramatically. However, one of the major limitations of hiPSCCMs is that without intervention, the cells are immature and represent those in the fetal heart. We developed protocols for the fabrication of the PDMS matrices that includes variations in its stiffness and micropatterning. Growing our hiPSCCMs on matrices of comparable stiffness to a healthy heart (5 kPa) and grooves of 20 μm, generate heart cells typical of the healthy adult human heart.
Collapse
Affiliation(s)
- Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shayan Jannati
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Farah Jayousi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Philipp Lange
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Mohsen Akbari
- Mechanical Engineering, University of Victoria, Victoria, BC, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mu Chiao
- Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
6
|
De Bartolo A, Pasqua T, Romeo N, Rago V, Perrotta I, Giordano F, Granieri MC, Marrone A, Mazza R, Cerra MC, Lefranc B, Leprince J, Anouar Y, Angelone T, Rocca C. The redox-active defensive Selenoprotein T as a novel stress sensor protein playing a key role in the pathophysiology of heart failure. J Transl Med 2024; 22:375. [PMID: 38643121 PMCID: PMC11032602 DOI: 10.1186/s12967-024-05192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Ida Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology, E. and E. S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Concetta Granieri
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Alessandro Marrone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Rosa Mazza
- Organ and System Physiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Maria Carmela Cerra
- Organ and System Physiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Benjamin Lefranc
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183, Rouen, France
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183, Rouen, France
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000, Mont-Saint-Aignan, France
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
- National Institute of Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
7
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
West G, Sedighi S, Agnetti G, Taimen P. Intermediate filaments in the heart: The dynamic duo of desmin and lamins orchestrates mechanical force transmission. Curr Opin Cell Biol 2023; 85:102280. [PMID: 37972529 DOI: 10.1016/j.ceb.2023.102280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland
| | - Sogol Sedighi
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Giulio Agnetti
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA; DIBINEM - University of Bologna, 40123, Bologna, Italy.
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland; Department of Pathology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
9
|
Bayazit MB, Francois A, McGrail E, Accornero F, Stratton MS. mt-tRNAs in the polymerase gamma mutant heart. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:41. [PMID: 38235059 PMCID: PMC10793997 DOI: 10.20517/jca.2023.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Introduction Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein expression pattern in the right ventricular tissue of POLG mutant mice. Aim We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a way that might also reduce proteotoxic stress. Methods and Results The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated with the tRNA partner amino acid's amyloidogenic potential. Direct measurement by northern blot was conducted on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq data. Conclusion We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or PTM) and 2) this regulation is cognizant of the tRNA partner amino acid's amyloidogenic properties.
Collapse
Affiliation(s)
- M. Bilal Bayazit
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley Francois
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Erin McGrail
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew S. Stratton
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Doroudgar S. Resolving Proteotoxicity: Genetic Examination of Proteasome Activation by PKA In Vivo. Circ Res 2023; 133:588-591. [PMID: 37708246 DOI: 10.1161/circresaha.123.323502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Affiliation(s)
- Shirin Doroudgar
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| |
Collapse
|
11
|
Yang L, Parajuli N, Wu P, Liu J, Wang X. S14-Phosphorylated RPN6 Mediates Proteasome Activation by PKA and Alleviates Proteinopathy. Circ Res 2023; 133:572-587. [PMID: 37641975 PMCID: PMC10502926 DOI: 10.1161/circresaha.123.322887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.
Collapse
Affiliation(s)
- Liuqing Yang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Nirmal Parajuli
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Penglong Wu
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
12
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Abdelrahman SA, Khattab MA, Youssef MS, Mahmoud AA. Granulocyte-colony stimulating factor ameliorates di-ethylhexyl phthalate-induced cardiac muscle injury via stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms. J Mol Histol 2023; 54:349-363. [PMID: 37428366 PMCID: PMC10412672 DOI: 10.1007/s10735-023-10137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Phthalates are common plasticizers present in medical-grade plastics and other everyday products. Di-ethylhexyl phthalate (DEHP) has been noted as a causative risk factor for the initiation and augmentation of cardiovascular functional disorders. G-CSF is a glycoprotein found in numerous tissues throughout the body and is currently applied in clinical practice and has been tested in congestive heart failure. We aimed to examine in depth the effect of DEHP on the histological and biochemical structure of the cardiac muscle in adult male albino rats and the mechanisms underlying the possible ameliorative effect of G-CSF. Forty-eight adult male albino rats were divided into control group, DEHP group, DEHP+ G-CSF group and DEHP-recovery group. We measured serum levels of aspartate aminotransferase (AST), creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Left ventricular sections were processed for light and electron microscope examination, and immunohistochemical staining of Desmin, activated Caspase-3 and CD34. DEHP significantly increased enzyme levels, markedly distorted the normal architecture of cardiac muscle fibers, downregulated Desmin protein levels and enhanced fibrosis, and apoptosis. G-CSF treatment significantly decreased the enzyme levels compared to DEHP group. It enhanced CD34 positive stem cells recruitment to injured cardiac muscle, therefore improved the ultrastructural features of most cardiac muscle fibers via anti-fibrotic and anti-apoptotic effects in addition to increased Desmin protein expression levels. The recovery group showed partial improvement due to persistent DEHP effect. In conclusion, administration of G-CSF effectively corrected the histopathological, immunohistochemical and biochemical alterations in the cardiac muscle after DEHP administration by stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian S Youssef
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Yoder MW, Wright NT, Borzok MA. Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk. Int J Mol Sci 2023; 24:11726. [PMID: 37511485 PMCID: PMC10380737 DOI: 10.3390/ijms241411726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.
Collapse
Affiliation(s)
- Micah W Yoder
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, USA
| | - Maegen A Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| |
Collapse
|
15
|
Yang L, Parajuli N, Wu P, Liu J, Wang X. Ser14-RPN6 Phosphorylation Mediates the Activation of 26S Proteasomes by cAMP and Protects against Cardiac Proteotoxic Stress in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535705. [PMID: 37066344 PMCID: PMC10104033 DOI: 10.1101/2023.04.05.535705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that cAMP-dependent protein kinase (PKA) activates the 26S proteasome by phosphorylating Ser14 of RPN6 (pS14-RPN6), but this discovery and its physiological significance remain to be established in vivo . Methods Male and female mice with Ser14 of Rpn6 mutated to Ala (S14A) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system (UPS) functioning was evaluated with the GFPdgn reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G). Results PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type (WT) but not S14A embryonic fibroblasts (MEFs), adult cardiomyocytes (AMCMs), and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and AMCMs than in WT counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with non- transgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than WT neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates and of aberrant CryAB protein aggregates, less reactivation of fetal genes and cardiac hypertrophy, and delays in cardiac malfunction. Conclusions This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifies a new therapeutic target to reduce cardiac proteotoxicity.
Collapse
|
16
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Pérez-Carrillo L, Giménez-Escamilla I, Sánchez-Lázaro I, Triviño JC, Feijóo-Bandín S, Lago F, González-Juanatey JR, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Alpha-cardiac Actin Serum Expression Levels Detect Acute Cellular Rejection in Heart Transplant Patients. Transplantation 2023; 107:466-474. [PMID: 35939381 PMCID: PMC9875841 DOI: 10.1097/tp.0000000000004273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Given the central role of sarcomeric dysfunction in cardiomyocyte biology and sarcomere alterations described in endomyocardial biopsies of transplant patients with rejection, we hypothesized that the serum expression levels of genes encoding sarcomeric proteins were altered in acute cellular rejection (ACR). The aim of this study is to identify altered sarcomere-related molecules in serum and to evaluate their diagnostic accuracy for detecting rejection episodes. METHODS Serum samples from transplant recipients undergoing routine endomyocardial biopsies were included in an RNA sequencing analysis (n = 40). Protein concentrations of alpha-cardiac actin were determined using a specific enzyme-linked immunoassay (n = 80). RESULTS We identified 17 sarcomeric genes differentially expressed in patients with clinically relevant rejection (grade ≥2R ACR). A receiver operating characteristic curve was done to assess their accuracy for ACR detection and found that 6 relevant actins, myosins, and other sarcomere-related genes showed great diagnostic capacity with an area under the curve (AUC) > 0.800. Specifically, the gene encoding alpha-cardiac actin ( ACTC1 ) showed the best results (AUC = 1.000, P < 0.0001). We determine ACTC1 protein levels in a larger patient cohort, corroborating its overexpression and obtaining a significant diagnostic capacity for clinically relevant rejection (AUC = 0.702, P < 0.05). CONCLUSIONS Sarcomeric alterations are reflected in peripheral blood of patients with allograft rejection. Because of their precision to detect ACR, we propose sarcomere ACTC1 serum expression levels as potential candidate for to be included in the development of molecular panel testing for noninvasive ACR detection.
Collapse
Affiliation(s)
- Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
| | - Ignacio Sánchez-Lázaro
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | | | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain and CIBERCV, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain and CIBERCV, Madrid, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain and CIBERCV, Madrid, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain and CIBERCV, Madrid, Spain
| |
Collapse
|
18
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
19
|
Titin-truncating variants in hiPSC cardiomyocytes induce pathogenic proteinopathy and sarcomere defects with preserved core contractile machinery. Stem Cell Reports 2022; 18:220-236. [PMID: 36525964 PMCID: PMC9860080 DOI: 10.1016/j.stemcr.2022.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.
Collapse
|
20
|
Onore ME, Savarese M, Picillo E, Passamano L, Nigro V, Politano L. Bi-Allelic DES Gene Variants Causing Autosomal Recessive Myofibrillar Myopathies Affecting Both Skeletal Muscles and Cardiac Function. Int J Mol Sci 2022; 23:ijms232415906. [PMID: 36555543 PMCID: PMC9785402 DOI: 10.3390/ijms232415906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations in the human desmin gene (DES) may cause both autosomal dominant and recessive cardiomyopathies leading to heart failure, arrhythmias and atrio-ventricular blocks, or progressive myopathies. Cardiac conduction disorders, arrhythmias and cardiomyopathies usually associated with progressive myopathy are the main manifestations of autosomal dominant desminopathies, due to mono-allelic pathogenic variants. The recessive forms, due to bi-allelic variants, are very rare and exhibit variable phenotypes in which premature sudden cardiac death could also occur in the first or second decade of life. We describe a further case of autosomal recessive desminopathy in an Italian boy born of consanguineous parents, who developed progressive myopathy at age 12, and dilated cardiomyopathy four years later and died of intractable heart failure at age 17. Next Generation Sequencing (NGS) analysis identified the homozygous loss-of-function variant c.634C>T; p.Arg212*, which was likely inherited from both parents. Furthermore, we performed a comparison of clinical and genetic results observed in our patient with those of cases so far reported in the literature.
Collapse
Affiliation(s)
- Maria Elena Onore
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Marco Savarese
- Folkhälsan Research Center, 00280 Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00280 Helsinki, Finland
| | - Esther Picillo
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Luigia Passamano
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- Correspondence:
| |
Collapse
|
21
|
Ronderos-Botero DM, Dileep A, Yapor L, Singhal R. Disruption of cardio-pulmonary coupling in myopathies: Pathophysiological and mechanistic characterization with special emphasis on nemaline myopathy. Front Cardiovasc Med 2022; 9:996567. [DOI: 10.3389/fcvm.2022.996567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The heart and lung are in continuous reciprocal interaction that creates a functional and anatomical reserve referred to as cardiopulmonary coupling (CPC). Disruption of CPC can occur due to various cardiac or pulmonary pathologies but also can occur in patients with myopathies. Nemaline myopathy (NM) is a skeletal muscle heterogeneous disorder due to contractile proteins' gene mutations that impact lung and cardiac mechanics and thus is expected to adversely affect CPC in a complex manner. We present a case of NM and we review the literature on cardiac and pulmonary effects of myopathy-related disruption of CPC.
Collapse
|
22
|
Karbowski M, Oshima Y, Verhoeven N. Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci 2022; 79:574. [PMID: 36308570 PMCID: PMC11803029 DOI: 10.1007/s00018-022-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
Through their role in energy generation and regulation of several vital pathways, including apoptosis and inflammation, mitochondria are critical for the life of eukaryotic organisms. Mitochondrial dysfunction is a major problem implicated in the etiology of many pathologies, including neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), diabetes, cardiovascular diseases, and many others. Proteotoxic stress, here defined as a reduction in bioenergetic activity induced by the accumulation of aberrant proteins in the mitochondria, is likely to be implicated in disease-linked mitochondrial and cellular decline. Various quality control pathways, such as mitochondrial unfolded protein response (mtUPR), the ubiquitin (Ub)-dependent degradation of aberrant mitochondrial proteins, and mitochondria-specific autophagy (mitophagy), respond to proteotoxic stress and eliminate defective proteins or dysfunctional mitochondria. This work provides a concise review of mechanisms by which disease-linked aberrant proteins affect mitochondrial function and an overview of mitochondrial quality control pathways that counteract mitochondrial proteotoxicity. We focus on mitochondrial quality control mechanisms relying on the Ub-mediated protein degradation, such as mitochondria-specific autophagy and the mitochondrial arm of the Ub proteasome system (UPS). We highlight the importance of a widening perspective of how these pathways protect mitochondria from proteotoxic stress to better understand mitochondrial proteotoxicity in overlapping pathophysiological pathways. Implications of these mechanisms in disease development are also briefly summarized.
Collapse
Affiliation(s)
- Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
West G, Turunen M, Aalto A, Virtanen L, Li SP, Heliö T, Meinander A, Taimen P. A heterozygous p.S143P mutation in LMNA associates with proteasome dysfunction and enhanced autophagy-mediated degradation of mutant lamins A and C. Front Cell Dev Biol 2022; 10:932983. [PMID: 36111332 PMCID: PMC9468711 DOI: 10.3389/fcell.2022.932983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
Lamins A and C are nuclear intermediate filament proteins that form a proteinaceous meshwork called lamina beneath the inner nuclear membrane. Mutations in the LMNA gene encoding lamins A and C cause a heterogenous group of inherited degenerative diseases known as laminopathies. Previous studies have revealed altered cell signaling pathways in lamin-mutant patient cells, but little is known about the fate of mutant lamins A and C within the cells. Here, we analyzed the turnover of lamins A and C in cells derived from a dilated cardiomyopathy patient with a heterozygous p.S143P mutation in LMNA. We found that transcriptional activation and mRNA levels of LMNA are increased in the primary patient fibroblasts, but the protein levels of lamins A and C remain equal in control and patient cells because of a meticulous interplay between autophagy and the ubiquitin-proteasome system (UPS). Both endogenous and ectopic expression of p.S143P lamins A and C cause significantly reduced activity of UPS and an accumulation of K48-ubiquitin chains in the nucleus. Furthermore, K48-ubiquitinated lamins A and C are degraded by compensatory enhanced autophagy, as shown by increased autophagosome formation and binding of lamins A and C to microtubule-associated protein 1A/1B-light chain 3. Finally, chaperone 4-PBA augmented protein degradation by restoring UPS activity as well as autophagy in the patient cells. In summary, our results suggest that the p.S143P-mutant lamins A and C have overloading and deleterious effects on protein degradation machinery and pharmacological interventions with compounds enhancing protein degradation may be beneficial for cell homeostasis.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Minttu Turunen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anna Aalto
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Laura Virtanen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Song-Ping Li
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tiina Heliö
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Meinander
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland,Department of Pathology, Laboratory Division, Turku University Hospital, Turku, Finland,*Correspondence: Pekka Taimen,
| |
Collapse
|
24
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H, Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis 2022; 13:444. [PMID: 35534453 PMCID: PMC9085840 DOI: 10.1038/s41419-022-04906-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that participate in ATP generation and involve calcium homeostasis, oxidative stress response, and apoptosis. Dysfunctional or damaged mitochondria could cause serious consequences even lead to cell death. Therefore, maintaining the homeostasis of mitochondria is critical for cellular functions. Mitophagy is a process of selectively degrading damaged mitochondria under mitochondrial toxicity conditions, which plays an essential role in mitochondrial quality control. The abnormal mitophagy that aggravates mitochondrial dysfunction is closely related to the pathogenesis of many diseases. As the myocardium is a highly oxidative metabolic tissue, mitochondria play a central role in maintaining optimal performance of the heart. Dysfunctional mitochondria accumulation is involved in the pathophysiology of cardiovascular diseases, such as myocardial infarction, cardiomyopathy and heart failure. This review discusses the most recent progress on mitophagy and its role in cardiovascular disease.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Huayan Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
25
|
Cardiomyopathies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
27
|
van der Klooster ZJ, Sepehrkhouy S, Dooijes D, Te Rijdt WP, Schuiringa FSAM, Lingeman J, van Tintelen JP, Harakalova M, Goldschmeding R, Suurmeijer AJH, Asselbergs FW, Vink A. P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy. J Cell Mol Med 2021; 25:3160-3166. [PMID: 33605084 PMCID: PMC7957157 DOI: 10.1111/jcmm.16388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P < .0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay.
Collapse
Affiliation(s)
- Zoë Joy van der Klooster
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shahrzad Sepehrkhouy
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wouter P Te Rijdt
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Jolanthe Lingeman
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Magdalena Harakalova
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Health Data Research UK and Institute of Health Informatics, University College London, London, UK.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy. J Clin Med 2021; 10:jcm10040577. [PMID: 33557094 PMCID: PMC7913873 DOI: 10.3390/jcm10040577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combinations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby represents another example for the complex genetic and phenotypic continuum of these diseases.
Collapse
|
29
|
Li J, Zou J, Littlejohn R, Liu J, Su H. Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Front Physiol 2020; 11:612927. [PMID: 33391028 PMCID: PMC7773599 DOI: 10.3389/fphys.2020.612927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rodney Littlejohn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
30
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Nitu SS, Miriyala S, Panchatcharam M, Kevil CG, Orr AW, Bhuiyan MS. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J Am Heart Assoc 2020; 9:e017195. [PMID: 33208022 PMCID: PMC7763772 DOI: 10.1161/jaha.120.017195] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Background The mutated α-B-Crystallin (CryABR120G) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryABR120G expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryABR120G mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryABR120G mice. In the present study, we report that the CryABR120G mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryABR120G hearts. Mitochondria isolated from CryABR120G transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryABR120G hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Richa Aishwarya
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Mahboob Morshed
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sadia S. Nitu
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher G. Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - A. Wayne Orr
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
31
|
Wang X, Wang H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol Med 2020; 26:639-648. [PMID: 32589934 PMCID: PMC7321925 DOI: 10.1016/j.molmed.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Increased proteotoxic stress (IPTS) resulting from the increased production or decreased removal of abnormally folded proteins is recognized as an important pathogenic factor for a large group of highly disabling and life-threatening human diseases, such as neurodegenerative disorders and many heart diseases. The proteasome is pivotal to the timely removal of abnormal proteins but its functional capacity often becomes inadequate in the disease conditions; consequently, proteasome functional insufficiency in return exacerbates IPTS. Recent research in proteasome biology reveals that the proteasome can be activated by endogenous protein kinases, making it possible to pharmacologically prime the proteasome for treating diseases with IPTS.
Collapse
Affiliation(s)
- Xuejun Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| | - Hongmin Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
32
|
Glembotski CC, Arrieta A, Blackwood EA, Stauffer WT. ATF6 as a Nodal Regulator of Proteostasis in the Heart. Front Physiol 2020; 11:267. [PMID: 32322217 PMCID: PMC7156617 DOI: 10.3389/fphys.2020.00267] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Proteostasis encompasses a homeostatic cellular network in all cells that maintains the integrity of the proteome, which is critical for optimal cellular function. The components of the proteostasis network include protein synthesis, folding, trafficking, and degradation. Cardiac myocytes have a specialized endoplasmic reticulum (ER) called the sarcoplasmic reticulum that is well known for its role in contractile calcium handling. However, less studied is the proteostasis network associated with the ER, which is of particular importance in cardiac myocytes because it ensures the integrity of proteins that are critical for cardiac contraction, e.g., ion channels, as well as proteins necessary for maintaining myocyte viability and interaction with other cell types, e.g., secreted hormones and growth factors. A major aspect of the ER proteostasis network is the ER unfolded protein response (UPR), which is initiated when misfolded proteins in the ER activate a group of three ER transmembrane proteins, one of which is the transcription factor, ATF6. Prior to studies in the heart, ATF6 had been shown in model cell lines to be primarily adaptive, exerting protective effects by inducing genes that encode ER proteins that fortify protein-folding in this organelle, thus establishing the canonical role for ATF6. Subsequent studies in isolated cardiac myocytes and in the myocardium, in vivo, have expanded roles for ATF6 beyond the canonical functions to include the induction of genes that encode proteins outside of the ER that do not have known functions that are obviously related to ER protein-folding. The identification of such non-canonical roles for ATF6, as well as findings that the gene programs induced by ATF6 differ depending on the stimulus, have piqued interest in further research on ATF6 as an adaptive effector in cardiac myocytes, underscoring the therapeutic potential of activating ATF6 in the heart. Moreover, discoveries of small molecule activators of ATF6 that adaptively affect the heart, as well as other organs, in vivo, have expanded the potential for development of ATF6-based therapeutics. This review focuses on the ATF6 arm of the ER UPR and its effects on the proteostasis network in the myocardium.
Collapse
Affiliation(s)
- Christopher C Glembotski
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Adrian Arrieta
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
33
|
Designing Novel Therapies to Mend Broken Hearts: ATF6 and Cardiac Proteostasis. Cells 2020; 9:cells9030602. [PMID: 32138230 PMCID: PMC7140506 DOI: 10.3390/cells9030602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
The heart exhibits incredible plasticity in response to both environmental and genetic alterations that affect workload. Over the course of development, or in response to physiological or pathological stimuli, the heart responds to fluctuations in workload by hypertrophic growth primarily by individual cardiac myocytes growing in size. Cardiac hypertrophy is associated with an increase in protein synthesis, which must coordinate with protein folding and degradation to allow for homeostatic growth without affecting the functional integrity of cardiac myocytes (i.e., proteostasis). This increase in the protein folding demand in the growing cardiac myocyte activates the transcription factor, ATF6 (activating transcription factor 6α, an inducer of genes that restore proteostasis. Previously, ATF6 has been shown to induce ER-targeted proteins functioning primarily to enhance ER protein folding and degradation. More recent studies, however, have illuminated adaptive roles for ATF6 functioning outside of the ER by inducing non-canonical targets in a stimulus-specific manner. This unique ability of ATF6 to act as an initial adaptive responder has bolstered an enthusiasm for identifying small molecule activators of ATF6 and similar proteostasis-based therapeutics.
Collapse
|
34
|
Xu N, Gulick J, Osinska H, Yu Y, McLendon PM, Shay-Winkler K, Robbins J, Yutzey KE. Ube2v1 Positively Regulates Protein Aggregation by Modulating Ubiquitin Proteasome System Performance Partially Through K63 Ubiquitination. Circ Res 2020; 126:907-922. [PMID: 32081062 DOI: 10.1161/circresaha.119.316444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Compromised protein quality control can result in proteotoxic intracellular protein aggregates in the heart, leading to cardiac disease and heart failure. Defining the participants and understanding the underlying mechanisms of cardiac protein aggregation is critical for seeking therapeutic targets. We identified Ube2v1 (ubiquitin-conjugating enzyme E2 variant 1) in a genome-wide screen designed to identify novel effectors of the aggregation process. However, its role in the cardiomyocyte is undefined. OBJECTIVE To assess whether Ube2v1 regulates the protein aggregation caused by cardiomyocyte expression of a mutant αB crystallin (CryABR120G) and identify how Ube2v1 exerts its effect. METHODS AND RESULTS Neonatal rat ventricular cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB (CryABWT) or CryABR120G. Subsequently, loss- and gain-of-function experiments were performed. Ube2v1 knockdown decreased aggregate accumulation caused by CryABR120G expression. Overexpressing Ube2v1 promoted aggregate formation in CryABWT and CryABR120G-expressing neonatal rat ventricular cardiomyocytes. Ubiquitin proteasome system performance was analyzed using a ubiquitin proteasome system reporter protein. Ube2v1 knockdown improved ubiquitin proteasome system performance and promoted the degradation of insoluble ubiquitinated proteins in CryABR120G cardiomyocytes but did not alter autophagic flux. Lys (K) 63-linked ubiquitination modulated by Ube2v1 expression enhanced protein aggregation and contributed to Ube2v1's function in regulating protein aggregate formation. Knocking out Ube2v1 exclusively in cardiomyocytes by using AAV9 (adeno-associated virus 9) to deliver multiplexed single guide RNAs against Ube2v1 in cardiac-specific Cas9 mice alleviated CryABR120G-induced protein aggregation, improved cardiac function, and prolonged lifespan in vivo. CONCLUSIONS Ube2v1 plays an important role in protein aggregate formation, partially by enhancing K63 ubiquitination during a proteotoxic stimulus. Inhibition of Ube2v1 decreases CryABR120G-induced aggregate formation through enhanced ubiquitin proteasome system performance rather than autophagy and may provide a novel therapeutic target to treat cardiac proteinopathies.
Collapse
Affiliation(s)
- Na Xu
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - James Gulick
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Hanna Osinska
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Yang Yu
- Division of Developmental Biology (Y.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Patrick M McLendon
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Kritton Shay-Winkler
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Jeffrey Robbins
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Katherine E Yutzey
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| |
Collapse
|
35
|
Heffler J, Shah PP, Robison P, Phyo S, Veliz K, Uchida K, Bogush A, Rhoades J, Jain R, Prosser BL. A Balance Between Intermediate Filaments and Microtubules Maintains Nuclear Architecture in the Cardiomyocyte. Circ Res 2019; 126:e10-e26. [PMID: 31822208 DOI: 10.1161/circresaha.119.315582] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rationale: Mechanical forces are transduced to nuclear responses via the linkers of the nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoskeleton to the nuclear lamina and associated chromatin. While disruption of the LINC complex can cause cardiomyopathy, the relevant interactions that bridge the nucleoskeleton to cytoskeleton are poorly understood in the cardiomyocyte, where cytoskeletal organization is unique. Furthermore, while microtubules and desmin intermediate filaments associate closely with cardiomyocyte nuclei, the importance of these interactions is unknown. Objective: Here, we sought to determine how cytoskeletal interactions with the LINC complex regulate nuclear homeostasis in the cardiomyocyte. Methods and Results: To this end, we acutely disrupted the LINC complex, microtubules, actin, and intermediate filaments and assessed the consequences on nuclear morphology and genome organization in rat ventricular cardiomyocytes via a combination of super-resolution imaging, biophysical, and genomic approaches. We find that a balance of dynamic microtubules and desmin intermediate filaments is required to maintain nuclear shape and the fidelity of the nuclear envelope and lamina. Upon depletion of desmin (or nesprin [nuclear envelope spectrin repeat protein]-3, its binding partner in the LINC complex), polymerizing microtubules collapse the nucleus and drive infolding of the nuclear membrane. This results in DNA damage, a loss of genome organization, and broad transcriptional changes. The collapse in nuclear integrity is concomitant with compromised contractile function and may contribute to the pathophysiological changes observed in desmin-related myopathies. Conclusions: Disrupting the tethering of desmin to the nucleus results in a loss of nuclear homeostasis and rapid alterations to cardiomyocyte function. Our data suggest that a balance of forces imposed by intermediate filaments and microtubules is required to maintain nuclear structure and genome organization in the cardiomyocyte.
Collapse
Affiliation(s)
- Julie Heffler
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| | - Parisha P Shah
- Department of Medicine, Cardiovascular Institute, Institute of Regenerative Medicine, and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine (P.P.S., J.R., R.J.)
| | - Patrick Robison
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| | - Sai Phyo
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| | - Kimberly Veliz
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| | - Keita Uchida
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| | - Alexey Bogush
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| | - Joshua Rhoades
- Department of Medicine, Cardiovascular Institute, Institute of Regenerative Medicine, and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine (P.P.S., J.R., R.J.)
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia (J.R.)
| | - Rajan Jain
- Department of Medicine, Cardiovascular Institute, Institute of Regenerative Medicine, and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine (P.P.S., J.R., R.J.)
| | - Benjamin L Prosser
- From the Department of Physiology, Pennsylvania Muscle Institute, Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine (J.H., P.R., S.P., K.V., K.U., A.B., B.L.P.)
| |
Collapse
|
36
|
Azharuddin M, Adil M, Ghosh P, Kapur P, Sharma M. Periostin as a novel biomarker of cardiovascular disease: A systematic evidence landscape of preclinical and clinical studies. J Evid Based Med 2019; 12:325-336. [PMID: 31769219 DOI: 10.1111/jebm.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/17/2019] [Accepted: 11/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Periostin is a matricellular protein, expressed in various normal adult and fetal tissues. Recently, elevated periostin levels have been reported in heart failure, coronary artery disease, and stroke. However, there is lack of clinical studies to clarify the prognostic significance of systemic periostin levels in cardiovascular diseases (CVDs). The aim of the study was to perform a systematic review of published evidence on periostin and CVDs, and to clarify the diagnostic and prognostic significance of systemic periostin levels in CVDs. METHODS A systematic search on PubMed was performed to identify relevant articles from inception to December 2018. The eligible studies evaluating the periostin expression and periostin levels in animal and human studies. RESULTS A total of 24 relevant studies, including both animal and human data, were included. Periostin is significantly observed in myocardium tissue of failing hearts compared with control, and is also expressed in atherosclerotic plaques. Systemic periostin levels were significantly correlated with cardiac function and severity of CVD in several studies. A clinical study also observed positive correlation between periostin and N-terminal pro b-type natriuretic peptide (NT-proBNP), highly sensitive troponin (hsTnT), and ST2 cardiac biomarker. Studies reported limited adjustment for potential confounders. CONCLUSIONS The evidence of current review support potential role of periostin in the pathophysiology of CVD. However, scarcity of data regarding the clinical use of periostin levels in the current management of CVDs further creates room for the future investigation. Therefore, further studies warrant to clarify its potential role, if any, as a novel cardiac biomarker.
Collapse
Affiliation(s)
- Md Azharuddin
- Division of Pharmacology, Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Adil
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pinaki Ghosh
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prem Kapur
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
37
|
Pan B, Lewno MT, Wu P, Wang X. Highly Dynamic Changes in the Activity and Regulation of Macroautophagy in Hearts Subjected to Increased Proteotoxic Stress. Front Physiol 2019; 10:758. [PMID: 31297061 PMCID: PMC6606963 DOI: 10.3389/fphys.2019.00758] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy (referred to as autophagy hereafter) plays an important role in the quality control of cellular proteins and organelles. Transcription Factor EB (TFEB) globally activates the expression of genes in the autophagic-lysosomal pathway (ALP) to replenish lysosomes and ALP machineries. We previously reported that myocardial TFEB signaling was impaired in advanced cardiac proteinopathy; however, myocardial ALP status and TFEB activity at earlier stages of cardiac proteinopathy remain uncharacterized. Here a stable line of CryABR120G transgenic (R120G) and non-transgenic (NTG) littermate mice with cardiomyocyte-restricted overexpression of CryABR120G were used at 1, 3, and 6 months of age. At 1 month when no cardiac phenotypes other than aberrant protein aggregation are discernible, R120G mice displayed a 5-fold increase in myocardial LC3-II flux. Interestingly, the LC3-II flux increase co-existed with increases in mTOR complex 1 (mTORC1) activities as well as cytoplasmic, but not nuclear, TFEB proteins. This increase in cytoplasmic TFEB proteins occurred without any discernible alteration in TFEB activity as reflected by unchanged mRNA levels of representative TFEB target genes (Mcoln1, M6pr, Sqstm1, Vps18, and Uvrag). At 3 months of age when hypertrophy and diastolic malfunction start to develop, the LC3-II flux remained significantly increased but to a lesser degree (2-fold) than at 1 month. The LC3-II flux increase was associated with decreased mTORC1 activities and with increased nuclear TFEB proteins and TFEB activities. At 6 months of age when congestive heart failure is apparent in R120G mice, both LC3-II flux and TFEB activities were severely suppressed, while mTORC1 activity increased. We conclude that changes in both autophagy and TFEB signaling are highly dynamic during the progression of cardiac proteinopathy. Increases in autophagy occur before increases in TFEB activities but both increase in the compensatory stage of cardiac proteinopathy. Once congestive heart failure develops, both autophagy and TFEB signaling become impaired. Our results suggest that TFEB signaling is regulated by both mTORC1-dependent and -independent mechanisms in hearts subjected to increased proteotoxic stress. For therapeutic exploration, it will be important to test the effect of TFEB stimulation at the early, intermediate, and late stages of cardiac proteinopathy.
Collapse
Affiliation(s)
- Bo Pan
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Megan T Lewno
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| | - Penglong Wu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States.,Department of Pathophysiology, College of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
38
|
Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20123079. [PMID: 31238513 PMCID: PMC6627372 DOI: 10.3390/ijms20123079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the most serious health problem in the world, displaying high rates of morbidity and mortality. One of the main risk factors for CVDs is age. Indeed, several mechanisms are at play during aging, determining the functional decline of the cardiovascular system. Aging cells and tissues are characterized by diminished autophagy, causing the accumulation of damaged proteins and mitochondria, as well as by increased levels of oxidative stress, apoptosis, senescence and inflammation. These processes can induce a rapid deterioration of cellular quality-control systems. However, the molecular mechanisms of age-associated CVDs are only partially known, hampering the development of novel therapeutic strategies. Evidence has emerged indicating that noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and micro RNAs (miRNAs), are implicated in most patho-physiological mechanisms. Specifically, lncRNAs can bind miRNAs and act as competing endogenous-RNAs (ceRNAs), therefore modulating the levels of the mRNAs targeted by the sponged miRNA. These complex lncRNA/miRNA/mRNA networks, by regulating autophagy, apoptosis, necrosis, senescence and inflammation, play a crucial role in the development of age-dependent CVDs. In this review, the emerging knowledge on lncRNA/miRNA/mRNA networks will be summarized and the way in which they influence age-related CVDs development will be discussed.
Collapse
|
39
|
Milic J, Tian Y, Bernhagen J. Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Biomolecules 2019; 9:biom9060217. [PMID: 31195722 PMCID: PMC6628250 DOI: 10.3390/biom9060217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is an evolutionarily conserved multi-protein complex, consisting of eight subunits termed CSN1-CSN8. The main biochemical function of the CSN is the control of protein degradation via the ubiquitin-proteasome-system through regulation of cullin-RING E3-ligase (CRL) activity by deNEDDylation of cullins, but the CSN also serves as a docking platform for signaling proteins. The catalytic deNEDDylase (isopeptidase) activity of the complex is executed by CSN5, but only efficiently occurs in the three-dimensional architectural context of the complex. Due to its positioning in a central cellular pathway connected to cell responses such as cell-cycle, proliferation, and signaling, the CSN has been implicated in several human diseases, with most evidence available for a role in cancer. However, emerging evidence also suggests that the CSN is involved in inflammation and cardiovascular diseases. This is both due to its role in controlling CRLs, regulating components of key inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and complex-independent interactions of subunits such as CSN5 with inflammatory proteins. In this case, we summarize and discuss studies suggesting that the CSN may have a key role in cardiovascular diseases such as atherosclerosis and heart failure. We discuss the implicated molecular mechanisms ranging from inflammatory NF-κB signaling to proteotoxicity and necrosis, covering disease-relevant cell types such as myeloid and endothelial cells or cardiomyocytes. While the CSN is considered to be disease-exacerbating in most cancer entities, the cardiovascular studies suggest potent protective activities in the vasculature and heart. The underlying mechanisms and potential therapeutic avenues will be critically discussed.
Collapse
Affiliation(s)
- Jelena Milic
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Yuan Tian
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
- Munich Heart Alliance, 80802 Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
40
|
Hayashi Y, Ono K, Ono S. Mutations in Caenorhabditis elegans actin, which are equivalent to human cardiomyopathy mutations, cause abnormal actin aggregation in nematode striated muscle. F1000Res 2019; 8:279. [PMID: 30984387 PMCID: PMC6446495 DOI: 10.12688/f1000research.18476.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 01/19/2023] Open
Abstract
Actin is a central component of muscle contractile apparatuses, and a number of actin mutations cause diseases in skeletal, cardiac, and smooth muscles. However, many pathogenic actin mutations have not been characterized at cell biological and physiological levels. In this study, we tested whether the nematode Caenorhabditis elegans could be used to characterize properties of actin mutants in muscle cells in vivo. Two representative actin mutations, E99K and P164A, which cause hypertrophic cardiomyopathy in humans, are introduced in a muscle-specific C. elegans actin ACT-4 as E100K and P165A, respectively. When green fluorescent protein-tagged wild-type ACT-4 (GFP-ACT-4), is transgenically expressed in muscle at low levels as compared with endogenous actin, it is incorporated into sarcomeres without disturbing normal structures. GFP-ACT-4 variants with E100K and P165A are incorporated into sarcomeres, but also accumulated in abnormal aggregates, which have not been reported for equivalent actin mutations in previous studies. Muscle contractility, as determined by worm motility, is not apparently affected by expression of ACT-4 mutants. Our results suggest that C. elegans muscle is a useful model system to characterize abnormalities caused by actin mutations.
Collapse
Affiliation(s)
- Yuriko Hayashi
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
41
|
VanHecke GC, Abeywardana MY, Ahn YH. Proteomic Identification of Protein Glutathionylation in Cardiomyocytes. J Proteome Res 2019; 18:1806-1818. [PMID: 30831029 DOI: 10.1021/acs.jproteome.8b00986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules, but their overproduction is associated with many cardiovascular diseases, including cardiomyopathy. ROS induce various oxidative modifications, among which glutathionylation is one of the significant protein oxidations that occur under oxidative stress. Despite previous efforts, direct and site-specific identification of glutathionylated proteins in cardiomyocytes has been limited. In this report, we used a clickable glutathione approach in a HL-1 mouse cardiomyocyte cell line under exposure to hydrogen peroxide, finding 1763 glutathionylated peptides with specific Cys modification sites, which include many muscle-specific proteins. Bioinformatic and cluster analyses found 125 glutathionylated proteins, whose mutations or dysfunctions are associated with cardiomyopathy, many of which include sarcomeric structural and contractile proteins, chaperone, and other signaling or regulatory proteins. We further provide functional implication of glutathionylation for several identified proteins, including CSRP3/MLP and complex I, II, and III, by analyzing glutathionylated sites in their structures. Our report establishes a chemoselective method for direct identification of glutathionylated proteins and provides potential target proteins whose glutathionylation may contribute to muscle diseases.
Collapse
Affiliation(s)
- Garrett C VanHecke
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | | | - Young-Hoon Ahn
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
42
|
Risk Stratification of Sudden Cardiac Death in Patients with Heart Failure: An update. J Clin Med 2018; 7:jcm7110436. [PMID: 30423853 PMCID: PMC6262425 DOI: 10.3390/jcm7110436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome in which structural/functional myocardial abnormalities result in symptoms and signs of hypoperfusion and/or pulmonary or systemic congestion at rest or during exercise. More than 80% of deaths in patients with HF recognize a cardiovascular cause, with most being either sudden cardiac death (SCD) or death caused by progressive pump failure. Risk stratification of SCD in patients with HF and preserved (HFpEF) or reduced ejection fraction (HFrEF) represents a clinical challenge. This review will give an update of current strategies for SCD risk stratification in both HFrEF and HFpEF.
Collapse
|
43
|
Galata Z, Kloukina I, Kostavasili I, Varela A, Davos CH, Makridakis M, Bonne G, Capetanaki Y. Amelioration of desmin network defects by αB-crystallin overexpression confers cardioprotection in a mouse model of dilated cardiomyopathy caused by LMNA gene mutation. J Mol Cell Cardiol 2018; 125:73-86. [PMID: 30342008 DOI: 10.1016/j.yjmcc.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
The link between the cytoplasmic desmin intermediate filaments and those of nuclear lamins serves as a major integrator point for the intracellular communication between the nucleus and the cytoplasm in cardiac muscle. We investigated the involvement of desmin in the cardiomyopathy caused by the lamin A/C gene mutation using the LmnaH222P/H222P mouse model of the disease. We demonstrate that in these mouse hearts desmin loses its normal Z disk and intercalated disc localization and presents aggregate formation along with mislocalization of basic intercalated disc protein components, as well as severe structural abnormalities of the intercalated discs and mitochondria. To address the extent by which the observed desmin network defects contribute to the progression of LmnaH222P/H222P cardiomyopathy, we investigated the consequences of desmin-targeted approaches for the disease treatment. We showed that cardiac-specific overexpression of the small heat shock protein αΒ-Crystallin confers cardioprotection in LmnaH222P/H222P mice by ameliorating desmin network defects and by attenuating the desmin-dependent mislocalization of basic intercalated disc protein components. In addition, αΒ-Crystallin overexpression rescues the intercalated disc, mitochondrial and nuclear defects of LmnaH222P/H222P hearts, as well as the abnormal activation of ERK1/2. Consistent with that, by generating the LmnaH222P/H222PDes+/- mice, we showed that the genetically decreased endogenous desmin levels have cardioprotective effects in LmnaH222P/H222P hearts since less desmin is available to form dysfunctional aggregates. In conclusion, our results demonstrate that desmin network disruption, disorganization of intercalated discs and mitochondrial defects are a major mechanism contributing to the progression of this LMNA cardiomyopathy and can be ameliorated by αΒ-Crystallin overexpression.
Collapse
Affiliation(s)
- Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Aimilia Varela
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Constantinos H Davos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Gisѐle Bonne
- Sorbonne Université, INSERM UMRS-974, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece.
| |
Collapse
|
44
|
Increase in soluble protein oligomers triggers the innate immune system promoting inflammation and vascular dysfunction in the pathogenesis of sepsis. Clin Sci (Lond) 2018; 132:1433-1438. [PMID: 30021912 DOI: 10.1042/cs20180368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is a profoundly morbid and life-threatening condition, and an increasingly alarming burden on modern healthcare economies. Patients with septic shock exhibit persistent hypotension despite adequate volume resuscitation requiring pharmacological vasoconstrictors, but the molecular mechanisms of this phenomenon remain unclear. The accumulation of misfolded proteins is linked to numerous diseases, and it has been observed that soluble oligomeric protein intermediates are the primary cytotoxic species in these conditions. Oligomeric protein assemblies have been shown to bind and activate a variety of pattern recognition receptors (PRRs) including formyl peptide receptor (FPR). While inhibition of endoplasmic reticulum (ER) stress and stabilization of protein homeostasis have been promising lines of inquiry regarding sepsis therapy, little attention has been given to the potential effects that the accumulation of misfolded proteins may have in driving sepsis pathogenesis. Here we propose that in sepsis, there is an accumulation of toxic misfolded proteins in the form of soluble protein oligomers (SPOs) that contribute to the inflammation and vascular dysfunction observed in sepsis via the activation of one or more PRRs including FPR. Our laboratory has shown increased levels of SPOs in the heart and intrarenal arteries of septic mice. We have also observed that exposure of resistance arteries and vascular smooth muscle cells to SPOs is associated with increased mitogen-activated protein kinase (MAPK) signaling including phosphorylated extracellular signal-regulated kinase (p-ERK) and p-P38 MAPK pathways, and that this response is abolished with the knockout of FPR. This hypothesis has promising clinical implications as it proposes a novel mechanism that can be exploited as a therapeutic target in sepsis.
Collapse
|
45
|
Dimauro I, Antonioni A, Mercatelli N, Caporossi D. The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 2018; 23:491-505. [PMID: 29190034 PMCID: PMC6045558 DOI: 10.1007/s12192-017-0866-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/25/2022] Open
Abstract
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ambra Antonioni
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
46
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
47
|
Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM. HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight 2018; 3:99319. [PMID: 29875314 PMCID: PMC6124431 DOI: 10.1172/jci.insight.99319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology
| | | | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | | | - Sharlene M. Day
- Department of Molecular and Integrative Physiology
- Department of Internal Medicine
| |
Collapse
|
48
|
Chen TH, Chen MR, Chen TY, Wu TC, Liu SW, Hsu CH, Liou GG, Kao YY, Dong GC, Chu PH, Liao JW, Lin KMC. Cardiac fibrosis in mouse expressing DsRed tetramers involves chronic autophagy and proteasome degradation insufficiency. Oncotarget 2018; 7:54274-54289. [PMID: 27494843 PMCID: PMC5342341 DOI: 10.18632/oncotarget.11026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
Proteinopathy in the heart which often manifests excessive misfolded/aggregated proteins in cardiac myocytes can result in severe fibrosis and heart failure. Here we developed a mouse model, which transgenically express tetrameric DsRed, a red fluorescent protein (RFP), in an attempt to mimic the pathological mechanisms ofcardiac fibrosis. Whilst DsRed is expressed and forms aggregation in most mouse organs, certain pathological defects are specifically recapitulated in cardiac muscle cells including mitochondria damages, aggresome-like residual bodies, excessive ubiquitinated proteins, and the induction of autophagy. The proteinopathy and cellular injuries caused by DsRed aggregates may be due to impaired or overburdened ubiquitin-proteasome system and autophagy-lysosome systems. We further identified that DsRed can be ubiquitinated and associated with MuRF1, a muscle-specific E3 ligase. Concomitantly, an activation of NF-κB signaling and a strong TIMP1 induction were noted, suggesting that RFP-induced fibrosis was augmented by a skewed balance between TIMP1 and MMPs. Taken together, our study highlights the molecular consequences of uncontrolled protein aggregation leading to congestive heart failure, and provides novel insights into fibrosis formation that can be exploited for improved therapy.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Chin Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Han Hsu
- Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Gan-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yu-Ying Kao
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| |
Collapse
|
49
|
Singh SR, Zech ATL, Geertz B, Reischmann-Düsener S, Osinska H, Prondzynski M, Krämer E, Meng Q, Redwood C, van der Velden J, Robbins J, Schlossarek S, Carrier L. Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004140. [PMID: 29021349 DOI: 10.1161/circheartfailure.117.004140] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in autophagy have been reported in hypertrophic cardiomyopathy (HCM) caused by Danon disease, Vici syndrome, or LEOPARD syndrome, but not in HCM caused by mutations in genes encoding sarcomeric proteins, which account for most of HCM cases. MYBPC3, encoding cMyBP-C (cardiac myosin-binding protein C), is the most frequently mutated HCM gene. METHODS AND RESULTS We evaluated autophagy in patients with HCM carrying MYBPC3 mutations and in a Mybpc3-targeted knockin HCM mouse model, as well as the effect of autophagy modulators on the development of cardiomyopathy in knockin mice. Microtubule-associated protein 1 light chain 3 (LC3)-II protein levels were higher in HCM septal myectomies than in nonfailing control hearts and in 60-week-old knockin than in wild-type mouse hearts. In contrast to wild-type, autophagic flux was blunted and associated with accumulation of residual bodies and glycogen in hearts of 60-week-old knockin mice. We found that Akt-mTORC1 (mammalian target of rapamycin complex 1) signaling was increased, and treatment with 2.24 mg/kg·d rapamycin or 40% caloric restriction for 9 weeks partially rescued cardiomyopathy or heart failure and restored autophagic flux in knockin mice. CONCLUSIONS Altogether, we found that (1) autophagy is altered in patients with HCM carrying MYBPC3 mutations, (2) autophagy is impaired in Mybpc3-targeted knockin mice, and (3) activation of autophagy ameliorated the cardiac disease phenotype in this mouse model. We propose that activation of autophagy might be an attractive option alone or in combination with another therapy to rescue HCM caused by MYBPC3 mutations.
Collapse
Affiliation(s)
- Sonia R Singh
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Antonia T L Zech
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Birgit Geertz
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Silke Reischmann-Düsener
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Hanna Osinska
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Maksymilian Prondzynski
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Elisabeth Krämer
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Qinghang Meng
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Charles Redwood
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jolanda van der Velden
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Jeffrey Robbins
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Saskia Schlossarek
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.)
| | - Lucie Carrier
- From the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (S.R.S., A.T.L.Z., B.G., S.R.-D., M.P., E.K., S.S., L.C.); Department of Pediatrics, The Heart Institute, The Cincinnati Children's Hospital Medical Center, OH (S.R.S., H.O., Q.M., J.R.); Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.R.); Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (J.v.d.V.); and ICIN-Netherlands Heart Institute, Utrecht (J.v.d.V.).
| |
Collapse
|
50
|
Khudiakov A, Kostina D, Zlotina A, Nikulina T, Sergushichev A, Gudkova A, Tomilin A, Malashicheva A, Kostareva A. Generation of iPSC line from desmin-related cardiomyopathy patient carrying splice site mutation of DES gene. Stem Cell Res 2017; 24:77-80. [DOI: 10.1016/j.scr.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022] Open
|