1
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Jing D. Deciphering the dynamics: Exploring the impact of mechanical forces on histone acetylation. FASEB J 2024; 38:e23849. [PMID: 39096133 DOI: 10.1096/fj.202400907rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Living cells navigate a complex landscape of mechanical cues that influence their behavior and fate, originating from both internal and external sources. At the molecular level, the translation of these physical stimuli into cellular responses relies on the intricate coordination of mechanosensors and transducers, ultimately impacting chromatin compaction and gene expression. Notably, epigenetic modifications on histone tails govern the accessibility of gene-regulatory sites, thereby regulating gene expression. Among these modifications, histone acetylation emerges as particularly responsive to the mechanical microenvironment, exerting significant control over cellular activities. However, the precise role of histone acetylation in mechanosensing and transduction remains elusive due to the complexity of the acetylation network. To address this gap, our aim is to systematically explore the key regulators of histone acetylation and their multifaceted roles in response to biomechanical stimuli. In this review, we initially introduce the ubiquitous force experienced by cells and then explore the dynamic alterations in histone acetylation and its associated co-factors, including HDACs, HATs, and acetyl-CoA, in response to these biomechanical cues. Furthermore, we delve into the intricate interactions between histone acetylation and mechanosensors/mechanotransducers, offering a comprehensive analysis. Ultimately, this review aims to provide a holistic understanding of the nuanced interplay between histone acetylation and mechanical forces within an academic framework.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
3
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
4
|
A Detailed Study to Discover the Trade between Left Atrial Blood Flow, Expression of Calcium-Activated Potassium Channels and Valvular Atrial Fibrillation. Cells 2022; 11:cells11091383. [PMID: 35563689 PMCID: PMC9103658 DOI: 10.3390/cells11091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The present study aimed to explore the correlation between calcium-activated potassium channels, left atrial flow field mechanics, valvular atrial fibrillation (VAF), and thrombosis. The process of transforming mechanical signals into biological signals has been revealed, which offers new insights into the study of VAF. Methods: Computational fluid dynamics simulations use numeric analysis and algorithms to compute flow parameters, including turbulent shear stress (TSS) and wall pressure in the left atrium (LA). Real-time PCR and western blotting were used to detect the mRNA and protein expression of IKCa2.3/3.1, ATK1, and P300 in the left atrial tissue of 90 patients. Results: In the valvular disease group, the TSS and wall ressure in the LA increased, the wall pressure increased in turn in all disease groups, mainly near the mitral valve and the posterior portion of the LA, the increase in TSS was the most significant in each group near the mitral valve, and the middle and lower part of the back of the LA and the mRNA expression and protein expression levels of IKCa2.3/3.1, AKT1, and P300 increased (p < 0.05) (n = 15). The present study was preliminarily conducted to elucidate whether there might be a certain correlation between IKCa2.3 and LA hemodynamic changes. Conclusions: The TSS and wall pressure changes in the LA are correlated with the upregulation of mRNA and protein expression of IKCa2.3/3.1, AKT1, and P300.
Collapse
|
5
|
Metabolic regulation and dysregulation of endothelial small conductance calcium activated potassium channels. Eur J Cell Biol 2022; 101:151208. [DOI: 10.1016/j.ejcb.2022.151208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
|
6
|
Kolski-Andreaco A, Balut CM, Bertuccio CA, Wilson AS, Rivers WM, Liu X, Gandley RE, Straub AC, Butterworth MB, Binion D, Devor DC. Histone deacetylase inhibitors (HDACi) increase expression of KCa2.3 (SK3) in primary microvascular endothelial cells. Am J Physiol Cell Physiol 2022; 322:C338-C353. [PMID: 35044858 PMCID: PMC8858676 DOI: 10.1152/ajpcell.00409.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension. Herein, we show that HDACi increase KCa2.3 expression when heterologously expressed in HEK cells and endogenously expressed in primary cultures of human umbilical vein endothelial cells (HUVECs) and human intestinal microvascular endothelial cells (HIMECs). When primary endothelial cells were exposed to HDACi, KCa2.3 transcripts, subunits, and functional current are increased. Quantitative RT-PCR (qPCR) demonstrated increased KCa2.3 mRNA following HDACi, confirming transcriptional regulation of KCa2.3 by HDACs. By using pharmacological agents selective for different classes of HDACs, we discriminated between cytoplasmic and epigenetic modulation of KCa2.3. Biochemical analysis revealed an association between the cytoplasmic HDAC6 and KCa2.3 in immunoprecipitation studies. Specifically inhibiting HDAC6 increases expression of KCa2.3. In addition to increasing the expression of KCa2.3, we show that nonspecific inhibition of HDACs causes an increase in the expression of the molecular chaperone Hsp70 in endothelial cells. When Hsp70 is inhibited in the presence of HDACi, the magnitude of the increase in KCa2.3 expression is diminished. Finally, we show a slower rate of endocytosis of KCa2.3 as a result of exposure of primary endothelial cells to HDACi. These data provide the first demonstrated approach to increase KCa2.3 channel number in endothelial cells and may partially account for the mechanism by which HDACi induce vasorelaxation.
Collapse
Affiliation(s)
| | - Corina M. Balut
- 1Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Annette S. Wilson
- 2Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William M. Rivers
- 2Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoning Liu
- 1Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robin E. Gandley
- 3Department of Obstetrics and Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C. Straub
- 4Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - David Binion
- 2Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel C. Devor
- 1Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Vitexin inhibits APEX1 to counteract the flow-induced endothelial inflammation. Proc Natl Acad Sci U S A 2021; 118:2115158118. [PMID: 34810252 DOI: 10.1073/pnas.2115158118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.
Collapse
|
8
|
Sun WT, Hou HT, Chen HX, Xue HM, Wang J, He GW, Yang Q. Calcium-activated potassium channel family in coronary artery bypass grafts. J Thorac Cardiovasc Surg 2021; 161:e399-e409. [PMID: 31928817 DOI: 10.1016/j.jtcvs.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES We examined the expression, distribution, and contribution to vasodilatation of the calcium-activated potassium (KCa) channel family in the commonly used coronary artery bypass graft internal thoracic artery (ITA) and saphenous vein (SV) to understand the role of large conductance KCa (BKCa), intermediate-conductance KCa (IKCa), and small-conductance KCa (SKCa) channel subtypes in graft dilating properties determined by endothelium-smooth muscle interaction that is essential to the postoperative performance of the graft. METHODS Real-time polymerase chain reaction and western blot were employed to detect the messenger RNA and protein level of KCa channel subtypes. Distribution of KCa channel subtypes was examined by immunohistochemistry. KCa subtype-mediated vasorelaxation was studied using wire myography. RESULTS Both ITA and SV express all KCa channel subtypes with each subtype distributed in both endothelium and smooth muscle. ITA and SV do not differ in the overall expression level of each KCa channel subtype, corresponding to comparable relaxant responses to respective subtype activators. In ITA, BKCa is more abundantly expressed in smooth muscle than in endothelium, whereas SKCa exhibits more abundance in the endothelium. In comparison, SV shows even distribution of KCa channel subtypes in the 2 layers. The BKCa subtype in the KCa family plays a significant role in vasodilatation of ITA, whereas its contribution in SV is quite limited. CONCLUSIONS KCa family is abundantly expressed in ITA and SV. There are differences between these 2 grafts in the abundance of KCa channel subtypes in the endothelium and the smooth muscle. The significance of the BKCa subtype in vasodilatation of ITA may suggest the potential of development of BKCa modulators for the prevention and treatment of ITA spasm during/after coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hong-Mei Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Department of Surgery, Oregon Health and Science University, Portland, Ore
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
9
|
Jia X, Yang Q, Gao C, Chen X, Li Y, Su H, Zheng Y, Zhang S, Wang Z, Wang H, Jiang LH, Sun Y, Fan Y. Stimulation of vascular smooth muscle cell proliferation by stiff matrix via the IK Ca channel-dependent Ca 2+ signaling. J Cell Physiol 2021; 236:6897-6906. [PMID: 33650160 DOI: 10.1002/jcp.30349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Vascular stiffening, an early and common characteristic of cardiovascular diseases (CVDs), stimulates vascular smooth muscle cell (VSMC) proliferation which reciprocally accelerates the progression of CVDs. However, the mechanisms by which extracellular matrix stiffness accompanying vascular stiffening regulates VSMC proliferation remain largely unknown. In the present study, we examined the role of the intermediate-conductance Ca2+ -activated K+ (IKCa ) channel in the matrix stiffness regulation of VSMC proliferation by growing A7r5 cells on soft and stiff polydimethylsiloxane substrates with stiffness close to these of arteries under physiological and pathological conditions, respectively. Stiff substrates stimulated cell proliferation and upregulated the expression of the IKCa channel. Stiff substrate-induced cell proliferation was suppressed by pharmacological inhibition using TRAM34, an IKCa channel blocker, or genetic depletion of the IKCa channel. In addition, stiff substrate-induced cell proliferation was also suppressed by reducing extracellular Ca2+ concentration using EGTA or intracellular Ca2+ concentration using BAPTA-AM. Moreover, stiff substrate induced activation of extracellular signal-regulated kinases (ERKs), which was inhibited by treatment with TRAM34 or BAPTA-AM. Stiff substrate-induced cell proliferation was suppressed by treatment with PD98059, an ERK inhibitor. Taken together, these results show that substrates with pathologically relevant stiffness upregulate the IKCa channel expression to enhance intracellular Ca2+ signaling and subsequent activation of the ERK signal pathway to drive cell proliferation. These findings provide a novel mechanism by which vascular stiffening regulates VSMC function.
Collapse
Affiliation(s)
- Xiaoling Jia
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Qingmao Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Chao Gao
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Xinlan Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Yanan Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Hao Su
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Yufan Zheng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Shuwen Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Ziyu Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Haikun Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Yan Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, haidian district, Beijing, China
| |
Collapse
|
10
|
Pang ZD, Wang Y, Song Z, She G, Ma XZ, Sun X, Wu W, Lai BC, Zhang J, Zhang Y, Du XJ, Shyy JYJ, Deng XL. AMPK upregulates K Ca2.3 channels and ameliorates endothelial dysfunction in diet-induced obese mice. Biochem Pharmacol 2020; 183:114337. [PMID: 33186592 DOI: 10.1016/j.bcp.2020.114337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023]
Abstract
The opening of endothelial small-conductance calcium-activated potassium channels (KCa2.3) is essential for endothelium-dependent hyperpolarization (EDH), which predominantly occurs in small resistance arteries. Adenosine monophosphate-activated protein kinase (AMPK), an important metabolic regulator, has been implicated in regulating endothelial nitric oxide synthase activity. However, it was unclear whether AMPK regulated endothelial KCa2.3-mediated EDH-type vasodilation. Using bioinformatics analysis and myograph system, we investigated the regulation by AMPK of KCa2.3 in human umbilical vein endothelial cells (HUVECs) or mouse second-order mesenteric resistance arteries. In HUVECs, AMPK activation either by activators (AICAR, A769662 and MK-8722) or expression of the constitutively active form of AMPK significantly upregulated KCa2.3 expression. Such effects were abolished by AMPK inhibitor (compound C) or AMPK α1-/α2-siRNA, extracellular-signal-regulated-kinase 5 (ERK5) inhibitor (ERK5-IN-1), and specific siRNA to myocyte-enhancer factor 2 (MEF2) or krüppel-like factor 2/4 (KLF2/4). KCa2.3 expression was significantly reduced in mesenteric resistance arteries in AMPKα2 knockout mice when compared with littermate control mice. Furthermore, in high-fat diet fed mice, 2-week treatment with AICAR restored endothelial KCa2.3 expression in mesenteric resistance arteries with improved endothelial dysfunction. Our results demonstrate that activation of AMPK upregulates KCa2.3 channel expression through the ERK5-MEF2-KLF2/4 signaling pathway in vascular endothelium, which contributes to benefits through KCa2.3-mediated EDH-type vasodilation in mesenteric resistance arteries.
Collapse
Affiliation(s)
- Zheng-Da Pang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Zheng Song
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Gang She
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Xiao-Zhen Ma
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Xia Sun
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Wei Wu
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Bao-Chang Lai
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0613, CA, United States
| | - Yi Zhang
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - John Y J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0613, CA, United States.
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
11
|
Zhao J, Quan X, Xie Z, Zhang L, Ding Z. Juglanin suppresses oscillatory shear stress-induced endothelial dysfunction: An implication in atherosclerosis. Int Immunopharmacol 2020; 89:107048. [PMID: 33049495 DOI: 10.1016/j.intimp.2020.107048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Atherosclerosis is characterized by endothelial cell dysfunction followed by lesion formation, arterial stenosis, potentially arterial occlusion, and severe outcomes. Novel treatments to slow or prevent the progression of the disease are of considerable clinical value. In the present study, we investigated the potential anti-atherosclerotic effects of the natural product juglanin in oscillatory shear stress (OSS) exposed endothelial cells. METHODS Human aortic endothelial cells (HAECs) were exposed to OSS generated by a micro fluidal Teflon cone at 1 Hz frequency cycles (±5 dyn/cm2) in the presence or absence of 2.5 and 5 μM juglanin for 24 h. The expression levels of inflammatory factors and vascular adhesion molecules were evaluated using qRT-PCR, Western Blot, and ELISA. DHE assay was used to detect the production of ROS. The monocytic THP-1 cells were labeled with calcein-AM and incubated with HAECs for adhesion assay. RESULTS Juglanin reduces OSS-induced oxidative stress by reducing the production of ROS through downregulation of NOX-2 and rescuing OSS-induced reduced expression of eNOS. Juglanin also inhibits the inflammatory response by suppressing OSS-induced expressions of IL-1β, MCP-1, and HMGB1. Using THP-1 monocytes, we show that juglanin reduces the attachment of monocytes to endothelial cells by inhibiting the expression of VCAM-1 and E-selectin. Moreover, Juglanin rescues OSS-reduced expression of atheroprotective transcriptional factor KLF2. CONCLUSIONS Our findings indicate that juglanin protects against various atheroprone OSS-induced endothelial dysfunction. Juglanin has potential implication as a candidate for vascular intervention of atherosclerosis.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Xiaoqiang Quan
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Zhouliang Xie
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Leilei Zhang
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Zhiwei Ding
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| |
Collapse
|
12
|
Amador-Muñoz D, Gutiérrez ÁM, Payán-Gómez C, Matheus LM. In silico and in vitro analysis of cation-activated potassium channels in human corneal endothelial cells. Exp Eye Res 2020; 197:108114. [PMID: 32561484 DOI: 10.1016/j.exer.2020.108114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
The corneal endothelium is the inner cell monolayer involved in the maintenance of corneal transparence by the generation of homeostatic dehydration. The glycosaminoglycans of the corneal stroma develop a continuous swelling pressure that should be counteracted by the corneal endothelial cells through active transport mechanisms to move the water to the anterior chamber. Protein transporters for sodium (Na+), potassium (K+), chloride (Cl-) and bicarbonate (HCO3-) are involved in this endothelial "pump function", however despite its physiological importance, the efflux mechanism is not completely understood. There is experimental evidence describing transendothelial diffusion of water in the absence of osmotic gradients. Therefore, it is important to get a deeper understanding of alternative models that drive the fluid transport across the endothelium such as the electrochemical gradients. Three transcriptomic datasets of the corneal endothelium were used in this study to analyze the expression of genes that encode proteins that participate in the transport and the reestablishment of the membrane potential across the semipermeable endothelium. Subsequently, the expression of the identified channels was validated in vitro both at mRNA and protein levels. The results of this study provide the first evidence of the expression of KCNN2, KCNN3 and KCNT2 genes in the corneal endothelium. Differences among the level of expression of KCNN2, KCNT2 and KCNN4 genes were found in a differentially expressed gene analysis of the dataset. Taken together these results underscore the potential importance of the ionic channels in the pathophysiology of corneal diseases. Moreover, we elucidate novel mechanisms that might be involved in the pivotal dehydrating function of the endothelium and in others physiologic functions of these cells using in silico pathways analysis.
Collapse
Affiliation(s)
- Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| | - Ángela María Gutiérrez
- Escuela Superior de Oftalmología, Instituto Barraquer de América, Calle 100 No. 18 A 51, Bogotá, Colombia.
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, Bogotá, P.O 111221, Colombia.
| | - Luisa Marina Matheus
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| |
Collapse
|
13
|
Lin CH, Shih CH, Jiang CP, Wen HC, Cheng WH, Chen BC. Mammalian target of rapamycin and p70S6K mediate thrombin-induced nuclear factor-κB activation and IL-8/CXCL8 release in human lung epithelial cells. Eur J Pharmacol 2019; 868:172879. [PMID: 31863766 DOI: 10.1016/j.ejphar.2019.172879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
Thrombin plays a crucial role in lung inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Thrombin induces the release of interleukin-8 (IL-8)/CXCL8 by lung epithelial cells, and this phenomenon plays a vital role in lung inflammation. Our previous studies have indicated that thrombin stimulates IL-8/CXCL8 expression through PI3K/Akt/IκB kinase (IKK)α/β/nuclear factor-κB (NF-κB) and p300 pathways in human lung epithelial cells. In the present study, we explored the roles of mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K) in thrombin-induced NF-κB activation and IL-8/CXCL8 release in human lung epithelial cells. In this study, we found that rapamycin (an mTOR inhibitor) and p70S6K siRNA diminished thrombin-induced IL-8/CXCL8 release. Thrombin induced mTOR Ser2448 phosphorylation and p70S6K Thr389 phosphorylation in a time-dependent manner. Moreover, rapamycin attenuated thrombin-stimulated p70S6K phosphorylation. We also found that transfection of cells with the dominant negative mutant of Akt (Akt DN) reduced the thrombin-induced increase in mTOR phosphorylation and p70S6K phosphorylation. Moreover, thrombin-stimulated p300 phosphorylation was attenuated by Akt DN, rapamycin, and p70S6K siRNA. Thrombin triggered p70S6K translocation from the cytosol to the nucleus in a time-dependent manner. Thrombin induced the complex formation of p70S6K, p300, and p65; acetylation of p65 Lys310, and recruitment of p70S6K, p300, and p65 to the κB-binding site of the IL-8/CXCL8 promoter region. In conclusion, these results indicate that thrombin initiates the Akt-dependent mTOR/p70S6K signaling pathway to promote p300 phosphorylation and NF-κB activation and finally induces IL-8/CXCL8 release in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chung-Hung Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Heng-Ching Wen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Bing-Chang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
14
|
Li G, Yang Q, Yang Y, Yang G, Wan J, Ma Z, Du L, Sun Y, Ζhang G. Laminar shear stress alters endothelial KCa2.3 expression in H9c2 cells partially via regulating the PI3K/Akt/p300 axis. Int J Mol Med 2019; 43:1289-1298. [PMID: 30664154 PMCID: PMC6365081 DOI: 10.3892/ijmm.2019.4063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
In cardiac tissues, myoblast atrial myocytes continue to be exposed to mechanical forces including shear stress. However, little is known about the effects of shear stress on atrial myocytes, particularly on ion channel function, in association with disease. The present study demonstrated that the Ca2+-activated K+ channel (KCa)2.3 serves a vital role in regulating arterial tone. As increased intracellular Ca2+ levels and activation of histone acetyltransferase p300 (p300) are early responses to laminar shear stress (LSS) that result in the transcriptional activation of genes, the role of p300 and the phosphoinositide3-kinase (PI3K)/protein kinase B (Akt) pathway, an intracellular pathway that promotes the growth and proliferation rather than the differentiation of adult cells, in the LSS-dependent regulation of KCa2.3 in cardiac myoblasts was examined. In cultured H9c2 cells, exposure to LSS (15 dyn/cm2) for 12 h markedly increased KCa2.3 mRNA expression. Inhibiting PI3K attenuated the LSS-induced increases in the expression and channel activity of KCa2.3, and decreased the phosphorylation levels of p300. The upregulation of these channels was abolished by the inhibition of Akt through decreasing p300 phosphorylation. ChIP assays indicated that p300 was recruited to the promoter region of the KCa2.3 gene. Therefore, the PI3K/Akt/p300 axis serves a crucial role in the LSS-dependent induction of KCa2.3 expression, by regulating cardiac myoblast function and adaptation to hemodynamic changes. The key novel insights gained from the present study are: i) KCa2.3 was upregulated in patients with atrial fibrillation (AF) and in patients with AF combined with mitral value disease; ii) LSS induced a profound upregulation of KCa2.3 mRNA and protein expression in H9c2 cells; iii) PI3K activation was associated with LSS-induced upregulation of the KCa2.3 channel; iv) PI3K activation was mediated by PI3K/Akt-dependent Akt activation; and v) LSS induction of KCa2.3 involved the binding of p300 to transcription factors in the promoter region of the KCa2.3 gene.
Collapse
Affiliation(s)
- Guojian Li
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Qionghui Yang
- Department of Pharmacy, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650200, P.R. China
| | - Yong Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Guokai Yang
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Zhenhuan Ma
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Lingjuan Du
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming Medical University, Kunming, Yunnan 650200, P.R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Guimin Ζhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| |
Collapse
|
15
|
Climent B, Sánchez A, Moreno L, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Underlying mechanisms preserving coronary basal tone and NO-mediated relaxation in obesity: Involvement of β1 subunit-mediated upregulation of BKCa channels. Atherosclerosis 2017; 263:227-236. [DOI: 10.1016/j.atherosclerosis.2017.06.354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
|
16
|
Lu H, Fan Y, Qiao C, Liang W, Hu W, Zhu T, Zhang J, Chen YE. TFEB inhibits endothelial cell inflammation and reduces atherosclerosis. Sci Signal 2017; 10:10/464/eaah4214. [PMID: 28143903 DOI: 10.1126/scisignal.aah4214] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcription factor EB (TFEB) is a master regulator of autophagy and lysosome biogenesis. We investigated the function of TFEB in vascular biology and pathophysiology and demonstrated that TFEB in endothelial cells inhibited inflammation and reduced atherosclerosis development. Laminar shear stress, which protects against atherosclerosis, increased TFEB abundance in cultured primary human endothelial cells. Furthermore, TFEB overexpression in these cells was anti-inflammatory, whereas TFEB knockdown aggravated inflammation. The anti-inflammatory effect of TFEB was, at least, partially due to reduced oxidative stress because TFEB overexpression in endothelial cells decreased the concentrations of reactive oxygen species and increased the expression of the antioxidant genes HO1 (which encodes heme oxygenase 1) and SOD2 (which encodes superoxide dismutase 2). In addition, transgenic mice with endothelial cell-specific expression of TFEB exhibited reduced leukocyte recruitment to endothelial cells and decreased atherosclerosis development. Our study suggests that TFEB is a protective transcription factor against endothelial cell inflammation and a potential target for treating atherosclerosis and associated cardiovascular diseases.
Collapse
Affiliation(s)
- Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Congzhen Qiao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tianqing Zhu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 626] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
18
|
Abstract
Fluid shear stress is an important environmental cue that governs vascular physiology and pathology, but the molecular mechanisms that mediate endothelial responses to flow are only partially understood. Gating of ion channels by flow is one mechanism that may underlie many of the known responses. Here, we review the literature on endothelial ion channels whose activity is modulated by flow with an eye toward identifying important questions for future research.
Collapse
Affiliation(s)
- Kristin A Gerhold
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, Connecticut; and
| | - Martin A Schwartz
- Department of Internal Medicine (Cardiology), Yale Cardiovascular Research Center, Yale University, New Haven, Connecticut; and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
19
|
Qiao C, Meng F, Jang I, Jo H, Chen YE, Zhang J. Deep transcriptomic profiling reveals the similarity between endothelial cells cultured under static and oscillatory shear stress conditions. Physiol Genomics 2016; 48:660-6. [PMID: 27449656 DOI: 10.1152/physiolgenomics.00025.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/17/2016] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a multifactorial disease that preferentially develops in specific regions in the arterial tree. This characteristic is mainly attributed to the unique pattern of hemodynamic shear stress in vivo. High laminar shear stress (LS) found in straight lumen exerts athero-protective effects. Low or oscillatory shear stress (OS) present in regions of lesser curvature and arterial bifurcations predisposes arterial intima to atherosclerosis. Shear stress-regulated endothelial function plays an important role in the process of atherosclerosis. Most in vitro research studies focusing on the molecular mechanisms of endothelial function are performed in endothelial cells (ECs) under cultured static (ST) condition. Some findings, however, are not recapitulated in subsequent translational studies, mostly likely due to the missing biomechanical milieu. Here, we profiled the whole transcriptome of primary human coronary arterial endothelial cells (HCAECs) under different shear stress conditions with RNA sequencing. Among 16,313 well-expressed genes, we detected 8,177 that were differentially expressed in OS vs. LS conditions and 9,369 in ST vs. LS conditions. Notably, only 1,618 were differentially expressed in OS vs. ST conditions. Hierarchical clustering of ECs demonstrated a strong similarity between ECs under OS and ST conditions at the transcriptome level. Subsequent pairwise heat mapping and principal component analysis gave further weight to the similarity. At the individual gene level, expressional analysis of representative well-known genes as well as novel genes showed a comparable amount at mRNA and protein levels in ECs under ST and OS conditions. In conclusion, the present work compared the whole transcriptome of HCAECs under different shear stress conditions at the transcriptome level as well as at the individual gene level. We found that cultured ECs are significantly different from those under LS conditions. Thus using cells under ST conditions is unlikely to elucidate endothelial physiology. Given the revealed high similarities of the endothelial transcriptome under OS and ST conditions, it may be helpful to understand the underlying mechanisms of OS-induced endothelial dysfunction from static cultured endothelial studies.
Collapse
Affiliation(s)
- Congzhen Qiao
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
| | - Fan Meng
- Department of Psychiatry and Molecular and Behavioral Neuroscience Institute, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Inhwan Jang
- Wallace H. Coulter Department of Biomedical Engineering, Division of Cardiology, Department of Medicine, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Division of Cardiology, Department of Medicine, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Y Eugene Chen
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan; Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
| | - Jifeng Zhang
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
20
|
Crottès D, Félix R, Meley D, Chadet S, Herr F, Audiger C, Soriani O, Vandier C, Roger S, Angoulvant D, Velge-Roussel F. Immature human dendritic cells enhance their migration through KCa3.1 channel activation. Cell Calcium 2016; 59:198-207. [PMID: 27020659 DOI: 10.1016/j.ceca.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.
Collapse
Affiliation(s)
- David Crottès
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Romain Félix
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Daniel Meley
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Stéphanie Chadet
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Florence Herr
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Cindy Audiger
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Olivier Soriani
- Institut de Biologie Valrose (iBV), CNRS UMR7277, Inserm U1091, UNS 28, Avenue Valrose, 06108 Nice, France
| | - Christophe Vandier
- Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France
| | - Sébastien Roger
- Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France
| | - Denis Angoulvant
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; Service de cardiologie, CHRU de Tours, 2 Bd Tonnellé, F-37032 Tours, France
| | - Florence Velge-Roussel
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; UFR des Sciences Pharmaceutiques, Av Monge, F-37000 Tours, France.
| |
Collapse
|
21
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
22
|
Ho AL, Lin N, Frerichs KU, Du R. Smoking and Intracranial Aneurysm Morphology. Neurosurgery 2016; 77:59-66; discussion 66. [PMID: 25839377 DOI: 10.1227/neu.0000000000000735] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Smoking is a well-known independent risk factor for both aneurysm formation and rupture. There is mounting evidence that aneurysm morphology beyond size can have a significant role in aneurysm formation and rupture risk by its effects on aneurysmal hemodynamics. OBJECTIVE To study the variation in aneurysm morphology between smokers and nonsmokers and delineate how changes in these factors might affect aneurysm formation and rupture. METHODS We generated 3-dimensional models of aneurysms and their surrounding vasculature by analyzing preoperative computed tomography angiograms with Slicer software. We then examined the association between smoking status and intrinsic, transitional, and extrinsic aspects of aneurysm morphology in both univariate and multivariate statistical analyses. RESULTS From 2005 to 2013, 199 cerebral aneurysms in never smokers and current smokers were evaluated/treated at a single institution with available computed tomography angiograms (102 in never smokers and 97 in current smokers). Multivariate analysis of current smokers vs never smokers demonstrated that aneurysms in current smokers were significantly associated with multiple aneurysms (odds ratio [OR]: 2.15, P = .03), larger daughter vessel diameters (OR: 3.13, P = .01), larger size ratio (OR: 1.78, P = .01), and location at the basilar apex (OR: 6.26, P = .02). CONCLUSION The differences in aneurysm morphology between smoking and nonsmoking patient populations may elucidate the effects of smoking on aneurysm formation and eventual rupture. We identified several aspects of aneurysm morphology significantly associated with smoking status that may provide the morphological basis for how smoking leads to increased aneurysm rupture.
Collapse
Affiliation(s)
- Allen L Ho
- *Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts; ‡Harvard Medical School, Boston, Massachusetts; §Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | | | | | | |
Collapse
|
23
|
Köhler R, Oliván-Viguera A, Wulff H. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. ADVANCES IN PHARMACOLOGY 2016; 77:65-104. [DOI: 10.1016/bs.apha.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 2015; 591:111-31. [PMID: 26686737 DOI: 10.1016/j.abb.2015.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in the U.S., and is a multifactorial disease that preferentially occurs in regions of the arterial tree exposed to disturbed blood flow. The detailed mechanisms by which d-flow induces atherosclerosis involve changes in the expression of genes, epigenetic patterns, and metabolites of multiple vascular cells, especially endothelial cells. This review presents an overview of endothelial mechanobiology and its relation to the pathogenesis of atherosclerosis with special reference to the anatomy of the artery and the underlying fluid mechanics, followed by a discussion of a variety of experimental models to study the role of fluid mechanics and atherosclerosis. Various in vitro and in vivo models to study the role of flow in endothelial biology and pathobiology are discussed in this review. Furthermore, strategies used for the global profiling of the genome, transcriptome, miR-nome, DNA methylome, and metabolome, as they are important to define the biological and pathophysiological mechanisms of atherosclerosis. These "omics" approaches, especially those which derive data based on a single animal model, provide unprecedented opportunities to not only better understand the pathophysiology of atherosclerosis development in a holistic and integrative manner, but also to identify novel molecular and diagnostic targets.
Collapse
|
25
|
Wang XC, Sun WT, Yu CM, Pun SH, Underwood MJ, He GW, Yang Q. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IKCa and SKCa channels. Atherosclerosis 2015; 242:191-198. [PMID: 26204495 DOI: 10.1016/j.atherosclerosis.2015.07.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE It remains incompletely understood how homocysteine impairs endothelial function. Whether mechanisms such as calcium-activated potassium (KCa) channels are involved is uncertain and the significance of endoplasmic reticulum (ER) stress in KCa channel-dependent endothelial function in hyperhomocysteinemia remains unexplored. We investigated the effect of homocysteine on endothelial KCa channels in coronary vasculature with further exploration of the role of ER stress. METHODS Vasorelaxation mediated by intermediate- and small-conductance KCa (IKCa and SKCa) channels was studied in porcine coronary arteries in a myograph. IKCa and SKCa channel currents were recorded by whole-cell patch-clamp in coronary endothelial cells. Protein levels of endothelial IKCa and SKCa channels were determined for both whole-cell and surface expressions. RESULTS Homocysteine impaired bradykinin-induced IKCa and SKCa-dependent EDHF-type relaxation and attenuated the vasorelaxant response to the channel activator. IKCa and SKCa currents were suppressed by homocysteine. Inhibition of ER stress during homocysteine exposure enhanced IKCa and SKCa currents, associated with improved EDHF-type response and channel activator-induced relaxation. Homocysteine did not alter whole-cell protein levels of IKCa and SKCa whereas lowered surface expressions of these channels, which were restored by ER stress inhibition. CONCLUSIONS Homocysteine induces endothelial dysfunction through a mechanism involving ER stress-mediated suppression of IKCa and SKCa channels. Inhibition of cell surface expression of these channels by ER stress is, at least partially, responsible for the suppressive effect of homocysteine on the channel function. This study provides new mechanistic insights into homocysteine-induced endothelial dysfunction and advances our knowledge of the significance of ER stress in vascular disorders.
Collapse
Affiliation(s)
- Xiang-Chong Wang
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Wen-Tao Sun
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Cheuk-Man Yu
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Shun-Hay Pun
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Malcolm John Underwood
- Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Tianjin, China
| | - Qin Yang
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Institute of Innovative Medicine, and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; TEDA International Cardiovascular Hospital, Tianjin, China.
| |
Collapse
|
26
|
Climent B, Moreno L, Martínez P, Contreras C, Sánchez A, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats. PLoS One 2014; 9:e109432. [PMID: 25302606 PMCID: PMC4193814 DOI: 10.1371/journal.pone.0109432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals. Methods and Results In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer. Conclusions Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.
Collapse
Affiliation(s)
- Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
- * E-mail: (BC); (DP)
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
- * E-mail: (BC); (DP)
| |
Collapse
|