1
|
Li P, Zhu X, Huang C, Tian S, Li Y, Qiao Y, Liu M, Su J, Tian D. Effects of obesity on aging brain and cognitive decline: A cohort study from the UK Biobank. IBRO Neurosci Rep 2025; 18:148-157. [PMID: 39896714 PMCID: PMC11786748 DOI: 10.1016/j.ibneur.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Objective To investigate the impact of obesity on brain structure and cognition using large neuroimaging and genetic data. Methods Associations between body mass index (BMI), gray matter volume (GMV), whiter matter hyper-intensities (WMH), and fluid intelligence score (FIS) were estimated in 30283 participants from the UK Biobank. Longitudinal data analysis was conducted. Genome-wide association studies were applied to explore the genetic loci associations among BMI, GMV, WMH, and FIS. Mendelian Randomization analyses were applied to further estimate the effects of obesity on changes in the brain and cognition. Results The observational analysis revealed that BMI was negatively associated with GMV (r = -0.15, p < 1 × 10-24) and positively associated with WMH (r = 0.08, p < 1 × 10-16). The change in BMI was negatively associated with the change in GMV (r = -0.04, p < 5 × 10-5). Genetic overlap was observed among BMI, GMV, and FIS at SBK1 (rs2726032), SGF29 (rs17707300), TUFM (rs3088215), AKAP6 (rs1051695), IL27 (rs4788084), and SPI1 (rs3740689 and rs935914). The MR analysis provided evidence that higher BMI was associated with lower GMV (β=-1119.12, p = 5.77 ×10-6), higher WMH (β=42.76, p = 6.37 ×10-4), and lower FIS (β=-0.081, p = 1.92 ×10-23). Conclusions The phenotypic and genetic association between obesity and aging brain and cognitive decline suggested that weight control could be a promising strategy for slowing the aging brain.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Low S, Moh A, Goh KS, Khoo J, Ang K, Liu AYL, Tang WE, Lim Z, Subramaniam T, Sum CF, Lim SC. Association Between Kidney Disease Index and Decline in Cognitive Function with Mediation by Arterial Stiffness in Asians with Type 2 Diabetes. J Alzheimers Dis Rep 2024; 8:1199-1210. [PMID: 39247878 PMCID: PMC11380277 DOI: 10.3233/adr-240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 09/10/2024] Open
Abstract
Background Decline in renal function impairs systemic clearance of amyloid-β which characterizes Alzheimer's disease while albuminuria is associated with blood-brain barrier disruption due to endothelial damage. Arterial stiffness adversely affects the brain with high pulsatile flow damaging cerebral micro-vessels. Objective To examine association between a novel kidney disease index (KDI), which is a composite index of estimated glomerular filtration (eGFR) and urinary albumin-to-creatinine ratio (uACR), and cognitive function with potential mediation by arterial stiffness. Methods This was a longitudinal multi-center study of participants with type 2 diabetes (T2D) aged 45 years and above. We assessed cognitive function with Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Pulse wave velocity (PWV), an index of arterial stiffness, was measured using applanation tonometry method. KDI was calculated as geometric mean of 1/eGFR and natural logarithmically-transformed (ln)(ACR*100). Results There were 1,303 participants with mean age 61.3±8.0 years. LnKDI was associated with lower baseline RBANS total score with adjusted coefficient -2.83 (95% CI -4.30 to -1.35; p < 0.001). 590 participants were followed over up to 8.6 years. LnKDI was associated with lower follow-up RBANS score in total, immediate memory, visuo-spatial/construction and attention domains with corresponding adjusted coefficients -2.35 (95% CI -4.50 to -0.20; p = 0.032), -2.93 (95% CI -5.84 to -0.02; p = 0.049), -3.26 (95% CI -6.25 to -0.27; p = 0.033) and -4.88 (95% CI -7.95 to -1.82; p = 0.002). PWV accounted for 19.5% of association between and follow-up RBANS total score. Conclusions KDI was associated with lower cognitive function globally, and in immediate memory, visuo-spatial/construction and attention domains. Arterial stiffness mediated the association between KDI and cognitive decline in patients with T2D.
Collapse
Affiliation(s)
- Serena Low
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Angela Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Kiat Sern Goh
- Department of Geriatric Medicine, Changi General Hospital, Singapore
| | - Jonathon Khoo
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Allen Yan Lun Liu
- Department of Renal Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore, Singapore
| | - Ziliang Lim
- National Healthcare Group Polyclinics, Singapore, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| | - Su Chi Lim
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
3
|
Allison EY, Al-Khazraji BK. Association of Arterial Stiffness Index and Brain Structure in the UK Biobank: A 10-Year Retrospective Analysis. Aging Dis 2024; 15:1872-1884. [PMID: 37307821 PMCID: PMC11272205 DOI: 10.14336/ad.2023.0419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 06/14/2023] Open
Abstract
Arterial stiffening and changes in brain structure both occur with normal aging and can be exacerbated via acquired health conditions. While cross-sectional associations exist, the longitudinal relationship between arterial stiffness and brain structure remains unclear. In this study, we investigated 1) associations between baseline arterial stiffness index (ASI) and brain structure (global and regional grey matter volumes (GMV), white matter hyperintensities (WMH)) 10-years post-baseline (10.4±0.8 years) and 2) associations between the 10-year change in ASI from baseline and brain structure 10-years post-baseline in 650 healthy middle- to older-aged adults (53.4±7.5 years) from the UK Biobank. We observed significant associations between baseline ASI and GMV (p<0.001) and WMH (p=0.0036) 10-years post-baseline. No significant associations between 10-year change in ASI and brain structure (global GMV p=0.24; WMH volume p=0.87) were observed. There were significant associations of baseline ASI in 2 of 60 regional brain volumes analyzed (right posterior superior temporal gyrus p=0.001; left superior lateral occipital cortex p<0.001). Strong associations with baseline ASI, but not changes in ASI over 10-years, suggest arterial stiffness at the entry point of older adulthood is more impactful on brain structure 10-years later compared to age-related stiffening. Based on these associations, we suggest clinical monitoring and potential intervention for reducing arterial stiffness should occur in midlife to reduce vascular contributions to structural changes in the brain, supporting a healthy trajectory of brain aging. Our findings also support use of ASI as a surrogate for gold standard measures in showing overall relationships between arterial stiffness and brain structure.
Collapse
Affiliation(s)
- Elric Y Allison
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Baraa K Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Jaster JH. Age-related arterial dysfunction in the brain may precede Parkinson's disease and other types of dementia, reflecting a failure to release gravitational ischemia. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38958688 DOI: 10.1152/ajpheart.00281.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Affiliation(s)
- J Howard Jaster
- Department of Medicine, London Corporation, London, United Kingdom
| |
Collapse
|
5
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
6
|
Wahl D, Clayton ZS. Peripheral vascular dysfunction and the aging brain. Aging (Albany NY) 2024; 16:9280-9302. [PMID: 38805248 PMCID: PMC11164523 DOI: 10.18632/aging.205877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science and Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Zachary S. Clayton
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Han W, Zhang J, Xu Z, Yang T, Huang J, Beevers S, Kelly F, Li G. Could the association between ozone and arterial stiffness be modified by fish oil supplementation? ENVIRONMENTAL RESEARCH 2024; 249:118354. [PMID: 38325778 DOI: 10.1016/j.envres.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/10/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Arterial stiffness (AS) is an important predicting factor for cardiovascular disease. However, no epidemiological studies have ever explored the mediating role of biomarkers in the association between ozone and AS, nor weather fish oil modified such association. METHODS Study participants were drawn from the UK biobank, and a total of 95,699 middle-aged and older adults were included in this study. Ozone was obtained from Community Multiscale Air Quality (CMAQ) model matched to residential addresses, fish oil from self-reported intake, and arterial stiffness was based on device measurements. First, we applied a double robust approach to explore the association between ozone or fish oil intake and arterial stiffness, adjusting for potential confounders at the individual and regional levels. Then, how triglycerides, apolipoprotein B (Apo B)/apolipoprotein A (ApoA) and non-high-density lipoprotein cholesterol (Non-HDL-C) mediate the relationship between ozone and AS. Last, the modifying role of fish oil was further explored by stratified analysis. RESULTS The mean age of participants was 55 years; annual average ozone exposure was associated with ASI (beta:0.189 [95%CI: 0.146 to 0.233], P < 0.001), and compared to participants who did not consume fish oil, fish oil users had a lower ASI (beta: 0.061 [95%CI: -0.111 to -0.010], P = 0.016). The relationship between ozone exposure and AS was mediated by triglycerides, ApoB/ApoA, and Non-HDL-C with mediation proportions ranging from 10.90% to 18.30%. Stratified analysis showed lower estimates on the ozone-AS relationship in fish oil users (P = 0.011). CONCLUSION Ozone exposure was associated with higher levels of arterial stiffness, in contrast to fish oil consumption, which showed a protective association. The association between ozone exposure and arterial stiffness was partially mediated by some biomarkers. In the general population, fish oil consumption might provide protection against ozone-related AS.
Collapse
Affiliation(s)
- Wenxing Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China.
| | - Sean Beevers
- Environmental Research group, school of public health, Imperial college London, London, UK.
| | - Frank Kelly
- Environmental Research group, school of public health, Imperial college London, London, UK.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Environmental Research group, school of public health, Imperial college London, London, UK.
| |
Collapse
|
8
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
9
|
Ali MA, Gioscia-Ryan R, Yang D, Sutton NR, Tyrrell DJ. Cardiovascular aging: spotlight on mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H317-H333. [PMID: 38038719 PMCID: PMC11219063 DOI: 10.1152/ajpheart.00632.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Dongli Yang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nadia R Sutton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
10
|
Ransom KV, Traylor MK, Batman GB, Mulekar MS, Hill BD, Nelson AR, Keller JL. Arterial stiffness mediates the association between age and processing speed at low levels of microvascular function in humans across the adult lifespan. Am J Physiol Heart Circ Physiol 2024; 326:H346-H356. [PMID: 38038715 PMCID: PMC11219056 DOI: 10.1152/ajpheart.00662.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
The function of micro- and macrovessels within the peripheral vasculature has been identified as a target for the investigation of potential cardiovascular-based promoters of cognitive decline. However, little remains known regarding the interaction of the micro- and macrovasculature as it relates to cognitive function, especially in cognitively healthy individuals. Therefore, our purpose was to unravel peripheral factors that contribute to the association between age and processing speed. Ninety-nine individuals (51 men, 48 women) across the adult life span (19-81 yr) were used for analysis. Arterial stiffness was quantified as carotid-femoral pulse-wave velocity (cfPWV) and near-infrared spectroscopy assessed maximal tissue oxygenation (Sto2max) following a period of ischemia. Processing speed was evaluated with Trail Making Test (TMT) Parts A and B. Measures of central (cPP) and peripheral pulse pressure (pPP) were also collected. Moderated mediation analyses were conducted to determine contributions to the age and processing speed relation, and first-order partial correlations were used to assess associations while controlling for the linear effects of age. A P ≤ 0.05 was considered statistically significant. At low levels of Sto2max, there was a significant positive (b = 1.92; P = 0.005) effect of cfPWV on time to completion on TMT part A. In addition, cPP (P = 0.028) and pPP (P = 0.027) remained significantly related to part A when controlling for age. These results suggested that the peripheral microvasculature may be a valuable target for delaying cognitive decline, especially in currently cognitively healthy individuals. Furthermore, we reinforced current evidence that pulse pressure is a key endpoint for trials aimed at preventing or delaying the onset of cognitive decline.NEW & NOTEWORTHY Arterial stiffness partially mediates the association between age and processing speed in the presence of low microvascular function, as demarcated by maximum tissue oxygenation following ischemia. Central and peripheral pulse pressure remained associated with processing speed even after controlling for age. Our findings were derived from a sample that was determined to be cognitively healthy, which highlights the potential for these outcomes to be considered during trials aimed at the prevention of cognitive decline.
Collapse
Affiliation(s)
- Kyndall V Ransom
- Integrative Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, United States
- Chemistry Department, College of Arts and Sciences, University of South Alabama, Mobile, Alabama, United States
| | - Miranda K Traylor
- Integrative Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, United States
| | - Genevieve B Batman
- Integrative Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, United States
| | - Madhuri S Mulekar
- Department of Mathematics and Statistics, College of Arts and Sciences, University of South Alabama, Mobile, Alabama, United States
| | - Benjamin D Hill
- Psychology Department, College of Arts and Sciences, University of South Alabama, Mobile, Alabama, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States
- Gulf Coast Alzheimer's Disease Research Center, College of Medicine, University of South Alabama, Alabama, United States
| | - Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, United States
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States
- Gulf Coast Alzheimer's Disease Research Center, College of Medicine, University of South Alabama, Alabama, United States
| |
Collapse
|
11
|
Behringer EJ. Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am J Physiol Heart Circ Physiol 2023; 325:H1012-H1038. [PMID: 37624095 PMCID: PMC10908410 DOI: 10.1152/ajpheart.00288.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.
Collapse
Affiliation(s)
- Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
12
|
Sanjana F, Delgorio PL, DeConne TM, Hiscox LV, Pohlig RT, Johnson CL, Martens CR. Vascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespan. J Cereb Blood Flow Metab 2023; 43:1931-1941. [PMID: 37395479 PMCID: PMC10676145 DOI: 10.1177/0271678x231186571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Arterial stiffness and cerebrovascular pulsatility are non-traditional risk factors of Alzheimer's disease. However, there is a gap in understanding the earliest mechanisms that link these vascular determinants to brain aging. Changes to mechanical tissue properties of the hippocampus (HC), a brain structure essential for memory encoding, may reflect the impact of vascular dysfunction on brain aging. We tested the hypothesis that arterial stiffness and cerebrovascular pulsatility are related to HC tissue properties in healthy adults across the lifespan. Twenty-five adults underwent measurements of brachial blood pressure (BP), large elastic artery stiffness, middle cerebral artery pulsatility index (MCAv PI), and magnetic resonance elastography (MRE), a sensitive measure of HC viscoelasticity. Individuals with higher carotid pulse pressure (PP) exhibited lower HC stiffness (β = -0.39, r = -0.41, p = 0.05), independent of age and sex. Collectively, carotid PP and MCAv PI significantly explained a large portion of the total variance in HC stiffness (adjusted R2 = 0.41, p = 0.005) in the absence of associations with HC volumes. These cross-sectional findings suggest that the earliest reductions in HC tissue properties are associated with alterations in vascular function.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Ryan T Pohlig
- Department of Epidemiology, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
13
|
Abstract
eNOS (endothelial nitric oxide synthase) is critically important enzyme responsible for regulation of cardiovascular homeostasis. Under physiological conditions, constitutive eNOS activity and production of endothelial nitric oxide (NO) exert essential neurovascular protective functions. In this review, we first discuss the roles of endothelial NO in prevention of neuronal amyloid accumulation and formation of neurofibrillary tangles, hallmarks of Alzheimer disease pathology. Next, we review existing evidence suggesting that NO released from endothelium prevents activation of microglia, stimulates glycolysis in astrocytes, and increases biogenesis of mitochondria. We also address major risk factors for cognitive impairment including aging and ApoE4 (apolipoprotein 4) genotype with focus on their detrimental effects on eNOS/NO signaling. Relevant to this review, recent studies suggested that aged eNOS heterozygous mice are unique model of spontaneous cerebral small vessel disease. In this regard, we review contribution of dysfunctional eNOS to deposition of Aβ (amyloid-β) into blood vessel wall leading to development of cerebral amyloid angiopathy. We conclude that endothelial dysfunction manifested by the loss of neurovascular protective functions of NO may significantly contribute to development of cognitive impairment.
Collapse
Affiliation(s)
- Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Tongrong He
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
14
|
Reeve EH, Kronquist EK, Wolf JR, Lee B, Khurana A, Pham H, Cullen AE, Peterson JA, Meza A, Colton Bramwell R, Villasana L, Machin DR, Henson GD, Walker AE. Pyridoxamine treatment ameliorates large artery stiffening and cerebral artery endothelial dysfunction in old mice. J Cereb Blood Flow Metab 2023; 43:281-295. [PMID: 36189840 PMCID: PMC9903220 DOI: 10.1177/0271678x221130124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Age-related increases in large artery stiffness are associated with cerebrovascular dysfunction and cognitive impairment. Pyridoxamine treatment prevents large artery stiffening with advancing age, but the effects of pyridoxamine treatment on the cerebral vasculature or cognition is unknown. The purpose of this study was to investigate the effects of pyridoxamine on blood pressure, large artery stiffness, cerebral artery function, and cognitive function in old mice. Old male C57BL/6 mice consumed either pyridoxamine (2 g/L) or vehicle control in drinking water for ∼7.5 months and were compared with young male C57BL/6 mice. From pre- to post-treatment, systolic blood pressure increased in old control mice, but was maintained in pyridoxamine treated mice. Large artery stiffness decreased in pyridoxamine-treated mice but was unaffected in control mice. Pyridoxamine-treated mice had greater cerebral artery endothelium-dependent dilation compared with old control mice, and not different from young mice. Old control mice had impaired cognitive function; however, pyridoxamine only partially preserved cognitive function in old mice. In summary, pyridoxamine treatment in old mice prevented age-related increases in blood pressure, reduced large artery stiffness, preserved cerebral artery endothelial function, and partially preserved cognitive function. Taken together, these results suggest that pyridoxamine treatment may limit vascular aging.
Collapse
Affiliation(s)
- Emily H Reeve
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Elise K Kronquist
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Julia R Wolf
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Byron Lee
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Aleena Khurana
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Hanson Pham
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Abigail E Cullen
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Jessica A Peterson
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Antonio Meza
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - R Colton Bramwell
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, 7823, Florida State University, Tallahassee, FL, USA
| | - Grant D Henson
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Ashley E Walker
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Blood pressure variability and plasma Alzheimer's disease biomarkers in older adults. Sci Rep 2022; 12:17197. [PMID: 36229634 PMCID: PMC9561652 DOI: 10.1038/s41598-022-20627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/15/2022] [Indexed: 01/06/2023] Open
Abstract
Blood pressure variability is an emerging risk factor for Alzheimer's disease in older adults, independent of average blood pressure levels. Growing evidence suggests increased blood pressure variability is linked to Alzheimer's disease pathophysiology indexed by cerebrospinal fluid and positron emission tomography markers, but relationships with plasma Alzheimer's disease markers have not been investigated. In this cross-sectional study of 54 community-dwelling older adults (aged 55-88, mean age 69.9 [8.2 SD]), elevated blood pressure variability over 5 min was associated with lower levels of plasma Aβ1-42 (standardized ß = - 0.36 [95% CI - 0.61, - 0.12]; p = 0.005; adjusted R2 = 0.28) and Aβ1-42: Aβ1-40 ratio (ß = - 0.49 [95% CI - 0.71, - 0.22]; p < 0.001; adjusted R2 = 0.28), and higher levels of total tau (ß = 0.27 [95% CI 0.01, 0.54]; p = 0.04; adjusted R2 = 0.19) and Ptau181:Aβ1-42 ratio (ß = 0.26 [95% CI 0.02, 0.51]; p = 0.04; adjusted R2 = 0.22). Findings suggest higher blood pressure variability is linked to plasma biomarkers of increased Alzheimer's disease pathophysiology.
Collapse
|
16
|
Traylor MK, Bauman AJ, Saiyasit N, Frizell CA, Hill BD, Nelson AR, Keller JL. An examination of the relationship among plasma brain derived neurotropic factor, peripheral vascular function, and body composition with cognition in midlife African Americans/Black individuals. Front Aging Neurosci 2022; 14:980561. [PMID: 36092801 PMCID: PMC9453229 DOI: 10.3389/fnagi.2022.980561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
African American/Black individuals have been excluded from several lines of prominent neuroscience research, despite exhibiting disproportionately higher risk factors associated with the onset and magnitude of neurodegeneration. Therefore, the objective of the current investigation was to examine potential relationships among brain derived neurotropic factor (BDNF), peripheral vascular function, and body composition with cognition in a sample of midlife, African American/Black individuals. Midlife adults (men: n = 3, 60 ± 4 years; women: n = 9, 58 ± 5 years) were invited to complete two baseline visits separated by 4 weeks. Peripheral vascular function was determined by venous occlusion plethysmography, a dual-energy X-ray absorptiometry was used to determine body composition, and plasma was collected to quantify BDNF levels. The CNS Vital Signs computer-based test was used to provide scores on numerous cognitive domains. The principal results included that complex attention (r = 0.629) and processing speed (r = 0.734) were significantly (p < 0.05) related to the plasma BDNF values. However, there was no significant (p > 0.05) relationship between any vascular measure and any cognitive domain or BDNF value. Secondary findings included the relationship between lean mass and peak hyperemia (r = 0.758) as well as total hyperemia (r = 0.855). The major conclusion derived from these results was that there is rationale for future clinical trials to use interventions targeting increasing BDNF to potentially improve cognition. Additionally, these results strongly suggest that clinicians aiming to improve cognitive health via improvements in the known risk factor of vascular function should consider interventions capable of promoting the size and function of skeletal muscle, especially in the African American/Black population.
Collapse
Affiliation(s)
- Miranda K. Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| | - Allison J. Bauman
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Physician Assistant Sciences Program, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Benjamin D. Hill
- Department of Psychology, College of Arts and Sciences, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
17
|
Angoff R, Himali JJ, Maillard P, Aparicio HJ, Vasan RS, Seshadri S, Beiser AS, Tsao CW. Relations of Metabolic Health and Obesity to Brain Aging in Young to Middle-Aged Adults. J Am Heart Assoc 2022; 11:e022107. [PMID: 35229662 PMCID: PMC9075324 DOI: 10.1161/jaha.121.022107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
Background We aimed to evaluate the association between metabolic health and obesity and brain health measured via magnetic resonance imaging and neurocognitive testing in community dwelling adults. Methods and Results Framingham Heart Study Third Generation Cohort members (n=2170, 46±9 years of age, 54% women) without prevalent diabetes, stroke, dementia, or other neurologic conditions were grouped by metabolic unhealthiness (≥2 criteria for metabolic syndrome) and obesity (body mass index ≥30 kg/m2): metabolically healthy (MH) nonobese, MH obese, metabolically unhealthy (MU) nonobese, and MU obese. We evaluated the relationships of these groups with brain structure (magnetic resonance imaging) and function (neurocognitive tests). In multivariable-adjusted analyses, metabolically unhealthy individuals (MU nonobese and MU obese) had lower total cerebral brain volume compared with the MH nonobese referent group (both P<0.05). Additionally, the MU obese group had greater white matter hyperintensity volume (P=0.004), whereas no association was noted between white matter hyperintensity volume and either groups of metabolic health or obesity alone. Obese individuals had less favorable cognitive scores: MH obese had lower scores on global cognition, Logical Memory-Delayed Recall and Similarities tests, and MU obese had lower scores on Similarities and Visual Reproductions-Delayed tests (all P≤0.04). MU and obese groups had higher free water content and lower fractional anisotropy in several brain regions, consistent with loss of white matter integrity. Conclusions In this cross-sectional cohort study of younger to middle-aged adults, poor metabolic health and obesity were associated with structural and functional evidence of brain aging. Improvement in metabolic health and obesity may present opportunities to improve long-term brain health.
Collapse
Affiliation(s)
- Rebecca Angoff
- Cardiovascular DivisionBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMA
| | - Jayandra J. Himali
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Department of BiostatisticsBoston UniversityBostonMA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- The Framingham Heart StudyFraminghamMA
| | - Pauline Maillard
- Department of Neurology and Center for NeuroscienceUniversity of California at DavisDavisCA
| | - Hugo J. Aparicio
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Ramachandran S. Vasan
- Department of MedicineSchool of MedicineBoston UniversityBostonMA
- Department of EpidemiologyBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Sudha Seshadri
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- Department of Population Health SciencesUniversity of Texas Health Science CenterSan AntonioTX
- The Framingham Heart StudyFraminghamMA
| | - Alexa S. Beiser
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Department of BiostatisticsBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Connie W. Tsao
- Cardiovascular DivisionBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMA
- The Framingham Heart StudyFraminghamMA
| |
Collapse
|
18
|
Sible IJ, Nation DA. Visit-to-Visit Blood Pressure Variability and Longitudinal Tau Accumulation in Older Adults. Hypertension 2022; 79:629-637. [PMID: 34967222 PMCID: PMC8979412 DOI: 10.1161/hypertensionaha.121.18479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elevated blood pressure variability (BPV) is predictive of dementia, independent of average blood pressure levels, but neuropathological mechanisms remain unclear. We examined whether BPV in older adults is related to tau accumulation in brain regions vulnerable to Alzheimer disease and whether relationships are modified by apoϵ4 carrier status. METHODS Two hundred eighty-six Alzheimer's Disease Neuroimaging Initiative participants without history of dementia underwent 3 to 4 blood pressure measurements over 12 months and ≥1 tau positron emission tomography thereafter. BPV was calculated as variability independent of mean. Each scan determined tau burden (standardized uptake value ratio) for a temporal meta-region of interest, including burden from entorhinal cortex, amygdala, parahippocampus, fusiform, inferior temporal, and middle temporal. Bayesian linear growth modeling examined the role of BPV, apolipoprotein ϵ4 carrier status, and time on regional tau accumulation after controlling for several variables, including baseline hypertension. RESULTS Elevated BPV was related to tau accumulation at follow-up in a temporal meta-region, independent of average blood pressure levels (ß, 0.89 [95% credible interval, 0.86-0.92]) and especially in entorhinal cortex (ß, 2.57 [95% credible interval, 2.15-2.99]). Apoϵ4 carriers with elevated BPV had the fastest tau accumulation at follow-up (ß, 1.73 [95% credible interval, 0.47-3.03]). CONCLUSIONS BPV is related to tau accumulation in brain regions vulnerable to Alzheimer disease, independent of average blood pressure. APOEϵ4 modified this relationship. Bidirectionality of findings is possible. BPV may represent a marker of vascular dysfunction related to early-stage tau pathology contributing to Alzheimer disease.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA 90007, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
19
|
Sible IJ, Yew B, Dutt S, Li Y, Blanken AE, Jang JY, Ho JK, Marshall AJ, Kapoor A, Gaubert A, Bangen KJ, Sturm VE, Shao X, Wang DJ, Nation DA. Selective vulnerability of medial temporal regions to short-term blood pressure variability and cerebral hypoperfusion in older adults. NEUROIMAGE. REPORTS 2022; 2:100080. [PMID: 35784272 PMCID: PMC9249026 DOI: 10.1016/j.ynirp.2022.100080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood pressure variability is an emerging risk factor for stroke, cognitive impairment, and dementia, possibly through links with cerebral hypoperfusion. Recent evidence suggests visit-to-visit (e.g., over months, years) blood pressure variability is related to cerebral perfusion decline in brain regions vulnerable to Alzheimer's disease. However, less is known about relationships between short-term (e.g., < 24 hours) blood pressure variability and regional cerebral perfusion, and whether these relationships may differ by age. We investigated short-term blood pressure variability and concurrent regional cerebral microvascular perfusion in a sample of community-dwelling older adults without history of dementia or stroke and healthy younger adults. Blood pressure was collected continuously during perfusion MRI. Cerebral blood flow was determined for several brain regions implicated in cerebrovascular dysfunction in Alzheimer's disease. Elevated systolic blood pressure variability was related to lower levels of concurrent cerebral perfusion in medial temporal regions: hippocampus (β = -.60 [95% CI -.90, -.30]; p < .001), parahippocampal gyrus (β = -.57 [95% CI -.89, -.25]; p = .001), entorhinal cortex (β = -.42 [95% CI -.73, -.12]; p = .009), and perirhinal cortex (β = -.37 [95% CI -.72, -.03]; p = .04), and not in other regions, and in older adults only. Findings suggest a possible age-related selective vulnerability of the medial temporal lobes to hypoperfusion in the context of short-term blood pressure fluctuations, independent of average blood pressure, white matter hyperintensities, and gray matter volume, which may underpin the increased risk for dementia associated with elevated BPV.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA,Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Katherine J. Bangen
- Research Service, Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA,Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Virginia E. Sturm
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Xingfeng Shao
- Laboratory of Functional MRI Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Danny J. Wang
- Laboratory of Functional MRI Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA,Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA,Corresponding Author: Daniel A. Nation, Ph.D., Associate Professor, University of California Irvine, Department of Psychological Science, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7085, Phone: (949) 824-9339,
| |
Collapse
|
20
|
Rahmani F, Nguyen M, Chen CD, McKay N, Dincer A, Joseph-Mathurin N, Chen G, Liu J, Orlowski HLP, Morris JC, Benzinger TLS. Intracranial internal carotid artery calcification is not predictive of future cognitive decline. Alzheimers Res Ther 2022; 14:32. [PMID: 35148796 PMCID: PMC8832765 DOI: 10.1186/s13195-022-00972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
Abstract
Background Intracranial internal carotid artery (ICA) calcification is a common incidental finding in non-contrast head CT. We evaluated the predictive value of ICAC (ICAC) for future risk of cognitive decline and compared the results with conventional imaging biomarkers of dementia. Methods In a retrospective observational cohort, we included 230 participants with a PET-CT scan within 18 months of a baseline clinical assessment and longitudinal imaging assessments. Intracranial ICAC was quantified on baseline CT scans using the Agatson calcium score, and the association between baseline ICA calcium scores and the risk of conversion from a CDR of zero in baseline to a persistent CDR > 0 at any follow-up visit, as well as longitudinal changes in cognitive scores, were evaluated through linear and mixed regression models. We also evaluated the association of conventional imaging biomarkers of dementia with longitudinal changes in cognitive scores and a potential indirect effect of ICAC on cognition through these biomarkers. Results Baseline ICA calcium score could not distinguish participants who converted to CDR > 0. ICA calcium score was also unable to predict longitudinal changes in cognitive scores, imaging biomarkers of small vessel disease such as white matter hyperintensities (WMH) volume, or AD such as hippocampal volume, AD cortical signature thickness, and amyloid burden. Severity of intracranial ICAC increased with age and in men. Higher WMH volume and amyloid burden as well as lower hippocampal volume and AD cortical signature thickness at baseline predicted lower Mini-Mental State Exam scores at longitudinal follow-up. Baseline ICAC was indirectly associated with longitudinal cognitive decline, fully mediated through WMH volume. Conclusions In elderly and preclinical AD populations, atherosclerosis of large intracranial vessels as demonstrated through ICAC is not directly associated with a future risk of cognitive impairment, or progression of imaging biomarkers of AD or small vessel disease.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Marina Nguyen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Charles D Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Nicole McKay
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Aylin Dincer
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Gengsheng Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA.,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Jingxia Liu
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA.,Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine (WUSM), St. Louis, MO, USA
| | - Hilary L P Orlowski
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA
| | - John C Morris
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA.,Department of Neurology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO, 63110, USA. .,Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA.
| |
Collapse
|
21
|
Noriega de la Colina A, Badji A, Lamarre-Cliche M, Bherer L, Girouard H, Kaushal N. Arterial stiffness and age moderate the association between physical activity and global cognition in older adults. J Hypertens 2022; 40:245-253. [PMID: 34751535 DOI: 10.1097/hjh.0000000000003000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence supports that time spent on physical activity has beneficial effects on cognition in older adults. Nevertheless, whether these beneficial effects are still present at the intersection of different levels of arterial stiffness and age is uncertain. METHODS One hundred and ten healthy older adults aged 60-75 years were examined for arterial stiffness [carotid-femoral pulse wave velocity (cf-PWV)], global cognition (composite score of Montreal Cognitive Assessment, and Mini-Mental State Examination), and self-reported physical activity (PACED diary). Using PROCESS macro for SPSS, we evaluated if cf-PWV (moderator 1), and age (moderator 2) moderate the relationship between physical activity (X) and global cognition (Y). The threshold for high stiffness was set at 8.5 m/s based on previous studies that reported this cut-off as more appropriate for classifying cerebrovascular risk groups. RESULTS Physical activity had a positive effect on cognition in young-elderly adults (<68.5 years) with a cf-PWV of at least 8.5 m/s (β = 0.48, SE = 0.193, P = 0.014, 95% CI = 0.100--0.868) and in elderly adults (≥68.5 years) with a cf-PWV of less than 8.5 m/s (β = 0.56, SE = 0.230, P = 0.017, 95% CI = 0.104-1.018). This was not the case in elderly adults with a cf-PWV of at least 8.5 m/s (β = 0.00, SE = 0.193, P = 0.998, 95% CI = -0.362 to 361), or in young-elderly adults with a cf-PWV of less than 8.5 m/s (β = 0.16, SE = 0.247, P = 0.501, 95% CI = -0.326 to 656). CONCLUSION The interaction between arterial stiffness and age moderated the effect of physical activity on global cognition. Time spent on physical activity alone might not be sufficient to achieve cognitive benefit over a specific threshold of arterial stiffness and age.
Collapse
Affiliation(s)
- Adrián Noriega de la Colina
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal
- Research Centre of the, Institut Universitaire de Gériatrie de Montréal
- Montreal Heart Institute
- Groupe de Recherche sur le Système Nerveux Central
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage
| | - Atef Badji
- Research Centre of the, Institut Universitaire de Gériatrie de Montréal
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal
- Department of Neurosciences, Faculty of Medicine
- Groupe de Recherche sur le Système Nerveux Central
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage
| | | | - Louis Bherer
- Research Centre of the, Institut Universitaire de Gériatrie de Montréal
- Department of Medicine, Faculty of Medicine, Université de Montréal
- Montreal Heart Institute
| | - Hélène Girouard
- Research Centre of the, Institut Universitaire de Gériatrie de Montréal
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage
| | - Navin Kaushal
- Department of Health Sciences, School of Health and Human Sciences, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Chum PP, Hakim MA, Behringer EJ. Cerebrovascular microRNA Expression Profile During Early Development of Alzheimer's Disease in a Mouse Model. J Alzheimers Dis 2021; 85:91-113. [PMID: 34776451 DOI: 10.3233/jad-215223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Emerging evidence demonstrates association of Alzheimer's disease (AD) with impaired delivery of blood oxygen and nutrients to and throughout the brain. The cerebral circulation plays multiple roles underscoring optimal brain perfusion and cognition entailing moment-to-moment blood flow control, vascular permeability, and angiogenesis. With currently no effective treatment to prevent or delay the progression of AD, cerebrovascular microRNA (miRNA) markers corresponding to post-transcriptional regulation may distinguish phases of AD. OBJECTIVE We tested the hypothesis that cerebrovascular miRNA expression profiles indicate developmental stages of AD pathology. METHODS Total RNA was isolated from total brain vessel segments of male and female 3xTg-AD mice [young, 1-2 mo; cognitive impairment (CI), 4-5 mo; extracellular amyloid-β plaques (Aβ), 6-8 mo; plaques+neurofibrillary tangles (AβT), 12-15 mo]. NanoString technology nCounter miRNA Expression panel for mouse was used to screen for 599 miRNAs. RESULTS Significant (p < 0.05) downregulation of various miRNAs indicated transitions from young to CI (e.g., let-7g & miR-1944, males; miR-133a & miR-2140, females) and CI to Aβ (e.g., miR-99a, males) but not from Aβ to AβT. In addition, altered expression of select miRNAs from overall Pre-AD (young + CI) versus AD (Aβ+ AβT) were detected in both males (let-7d, let-7i, miR-23a, miR-34b-3p, miR-99a, miR-126-3p, miR-132, miR-150, miR-151-5p, miR-181a) and females (miR-150, miR-539). Altogether, at least 20 cerebrovascular miRNAs effectively delineate AD versus Pre-AD pathology. CONCLUSION Using the 3xTg-AD mouse model, these data demonstrate that cerebrovascular miRNAs pertaining to endothelial function, vascular permeability, angiogenesis, inflammation, and Aβ/tau metabolism can track early development of AD.
Collapse
Affiliation(s)
- Phoebe P Chum
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
23
|
Blood pressure variability and medial temporal atrophy in apolipoprotein ϵ4 carriers. Brain Imaging Behav 2021; 16:792-801. [PMID: 34581957 PMCID: PMC9009865 DOI: 10.1007/s11682-021-00553-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Blood pressure variability is an emerging risk factor for dementia but relationships with markers of neurodegeneration and Alzheimer's disease risk are understudied. We investigated blood pressure variability over one year and follow-up medial temporal brain volume change in apolipoprotein ϵ4 carriers and non-carriers, and in those with and without Alzheimer's disease biomarker abnormality. 1051 Alzheimer's Disease Neuroimaging Initiative participants without history of dementia or stroke underwent 3-4 blood pressure measurements over 12 months and ≥ 1 MRI thereafter. A subset (n = 252) underwent lumbar puncture to determine Alzheimer's disease cerebral spinal fluid amyloid-beta and phosphorylated tau biomarker abnormality. Blood pressure variability over 12 months was calculated as variability independent of mean. Longitudinal hippocampal and entorhinal cortex volume data were extracted from serial brain MRI scans obtained after the final blood pressure measurement. Apolipoprotein ϵ4 carrier status was defined as at least one ϵ4 allele. Bayesian growth modelling revealed a significant interaction of blood pressure variability by ϵ4 by time on hippocampal (ß: -2.61 [95% credible interval -3.02, -2.12]) and entorhinal cortex (ß: -1.47 [95% credible interval -1.71, -1.17]) volume decline. A similar pattern emerged in subsets with Alzheimer's disease pathophysiology (i.e., abnormal levels of both amyloid-beta and phosphorylated tau). Findings suggest that elevated blood pressure variability is related to medial temporal volume loss specifically in ϵ4 carriers, and in those with Alzheimer's disease biomarker abnormality. Findings could implicate blood pressure variability in medial temporal neurodegeneration observed in older ϵ4 carriers and those with prodromal Alzheimer's disease.
Collapse
|
24
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
25
|
Zimmerman B, Kundu P, Rooney WD, Raber J. The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules 2021; 26:3406. [PMID: 34199898 PMCID: PMC8200075 DOI: 10.3390/molecules26113406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023] Open
Abstract
In both humans and animal models, consumption of a high-saturated-fat diet has been linked to vascular dysfunction and cognitive impairments. Laboratory animals provide excellent models for more invasive high-fat-diet-related research. However, the physiological differences between humans and common animal models in terms of how they react metabolically to high-fat diets need to be considered. Here, we review the factors that may affect the translatability of mechanistic research in animal models, paying special attention to the effects of a high-fat diet on vascular outcomes. We draw attention to the dissociation between metabolic syndrome and dyslipidemia in rodents, unlike the state in humans, where the two commonly occur. We also discuss the differential vulnerability between species to the metabolic and vascular effects of macronutrients in the diet. Findings from animal studies are better interpreted as modeling specific aspects of dysfunction. We conclude that the differences between species provide an opportunity to explore why some species are protected from the detrimental aspects of high-fat-diet-induced dysfunction, and to translate these findings into benefits for human health.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
| | - William D. Rooney
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (B.Z.); (P.K.); (W.D.R.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|