1
|
Lambert M, Miquel G, Villeneuve L, Thorin-Trescases N, Thorin E. The senolytic ABT-263 improves cognitive functions in middle-aged male, but not female, atherosclerotic LDLr -/-;hApoB 100+/+ mice. GeroScience 2025:10.1007/s11357-025-01563-3. [PMID: 39982668 DOI: 10.1007/s11357-025-01563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Accumulation of cerebral senescent cells may compromise the continuum between vascular and neuronal function, leading to damage and cognitive decline. Elimination of senescent cells might therefore preserve vascular and neuronal functions. To test this hypothesis, we used male and female atherosclerotic LDLr-/-;hApoB100+/+ mice (ATX-mice), a model of vascular cognitive impairment (VCI), treated with the senolytic ABT-263 for 3 months (3- to 6-month or 9- to 12-month old). In young male ATX mice, prevention with ABT-263 improved spatial retention memory, in association with a higher endothelial sensitivity to shear stress and a higher hippocampal CD31+ endothelial cell density, lower activation of both astrocytes and glial cells. In young females, ABT-263 tended to improve delayed memory; however, atherosclerotic plaque was magnified by ABT-263, endothelial function was unaffected, hippocampal astrocyte activation increased and expression of CD31+ cells decreased. Hence, unlike in males, ABT-263 appears deleterious in young ATX females. In middle-aged males, the curative treatment improved the learning process and memory. Although no change in endothelial function was observed, the benefits of ABT-263 were associated with a decreased expression of several inflammaging markers, a higher density of CD31+ cells and a lower activation of glial cells. In middle-aged females, ABT-263 induced a surge of inflammaging markers, associated with a slower learning process. Altogether, our data demonstrate that ABT-263 differentially affects VCI, improving cognition in male while being deleterious in female ATX mice. More studies are needed to understand the mechanisms at the basis of the sexual dimorphic effects of the senolytic ABT-263.
Collapse
Affiliation(s)
- Mélanie Lambert
- Faculty of Medicine, Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada.
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada.
| | - Géraldine Miquel
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada
| | | | - Eric Thorin
- Montreal Heart Institute, Research Center, 5000 Rue Belanger, Montreal, Quebec, H1T 1C8, Canada
- Faculty of Medicine, Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
3
|
Chen Q, Fan L, Xu Y. Efficacy of metoprolol plus atorvastatin for carotid atherosclerosis and its influence on carotid intima-media thickness and homocysteine level. Am J Transl Res 2022; 14:5511-5519. [PMID: 36105018 PMCID: PMC9452315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To analyze the effects of metoprolol (MET) plus atorvastatin (ATO) on carotid intima-media thickness (IMT) and homocysteine (Hcy) level in carotid atherosclerosis (CAS) patients. METHODS In this retrospective study, 90 patients with CAS admitted to the Hangzhou Ninth People's Hospital between January 2019 and July 2021 were enrolled, including 40 cases (control group, the Con) treated with MET and 50 cases treated with the combination therapy of MET plus ATO (Research group, the Res). The efficacy and related influencing factors were observed and compared. The clinical effects (IMT, plaque score), Hcy level, inflammatory cytokines (ICs; matrix metalloproteinase-9 [MMP-9], high-sensitivity C-reactive protein [hs-CRP]), blood lipid indices (low-/high- density lipoprotein cholesterol [LDL-C/HDL-C], total cholesterol [TC], triglyceride [TG]) and coagulation markers (thrombin time [TT], prothrombin time [PT], activated partial thromboplastin time [APTT], fibrinogen [FIB]) of the two groups were observed and compared. RESULTS The results identified a statistically higher overall response rate in the Res group. Age, coronary heart disease, cerebral infarction and plaque score were confirmed to be closely related to the efficacy of CAS. In addition, statistically lower post-treatment IMT, plaque score, MMP-9, hs-CRP, LDL-C, TG, TC and FIB while higher PT, TT and APTT were determined in the Res group compared with the pre-treatment values and the Con group. CONCLUSIONS MET plus ATO can significantly improve efficacy, reduce IMT and plaque score of patients with CAS, as well as improve inflammatory factors, blood lipid indices and coagulation markers, for which it deserves clinical promotion.
Collapse
Affiliation(s)
- Qiuping Chen
- Department of Cardiology, Hangzhou Ninth People's Hospital Hangzhou 310000, Zhejiang, China
| | - Linglong Fan
- Department of Cardiology, Hangzhou Ninth People's Hospital Hangzhou 310000, Zhejiang, China
| | - Yunshu Xu
- Department of Cardiology, Hangzhou Ninth People's Hospital Hangzhou 310000, Zhejiang, China
| |
Collapse
|
4
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Tesoro L, Ramirez-Carracedo R, Hernandez I, Diez-Mata J, Pascual M, Saura M, Sanmartin M, Zamorano JL, Zaragoza C. La ivabradina induce cardioprotección previniendo la degradación de la matriz extracelular inducida por shock cardiogénico. Rev Esp Cardiol 2021. [DOI: 10.1016/j.recesp.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Lee JD, Kuo YW, Lee CP, Huang YC, Lee M, Lee TH. Initial in-hospital heart rate is associated with long-term survival in patients with acute ischemic stroke. Clin Res Cardiol 2021; 111:651-662. [PMID: 34687320 PMCID: PMC9151537 DOI: 10.1007/s00392-021-01953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022]
Abstract
Aims Increased heart rate has been associated with stroke risk and outcomes. The purpose of this study was to explore the long-term prognostic value of initial in-hospital heart rate in patients with acute ischemic stroke (AIS). Methods We analyzed data from 21,655 patients with AIS enrolled (January 2010–September 2018) in the Chang Gung Research Database. Mean initial in-hospital heart rates were averaged and categorized into 10-beat-per-minute (bpm) increments. The primary and secondary outcomes were all-cause mortality and cardiovascular death. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using multivariable adjusted Cox proportional hazard models, using the heart rate < 60 bpm subgroup as the reference. Results The adjusted HRs for all-cause mortality were 1.23 (95% CI 1.08–1.41) for heart rate 60–69 bpm, 1.74 (95% CI 1.53–1.97) for heart rate 70–79 bpm, 2.16 (95% CI 1.89–2.46) for heart rate 80–89 bpm, and 2.83 (95% CI 2.46–3.25) for heart rate ≥ 90 bpm compared with the reference group. Likewise, heart rate ≥ 60 bpm was also associated with an increased risk of cardiovascular death (adjusted HR 1.18 [95% CI 0.95–1.46] for heart rate 60–69 bpm, 1.57 [95% CI 1.28–1.93] for heart rate 70–79 bpm, 1.98 [95% CI 1.60–2.45] for heart rate 80–89 bpm, and 2.36 [95% CI 1.89–2.95] for heart rate ≥ 90 bpm). Conclusions High initial in-hospital heart rate is an independent predictor of all-cause mortality and cardiovascular death in patients with AIS. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00392-021-01953-5.
Collapse
Affiliation(s)
- Jiann-Der Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, Chiayi, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Wen Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Chu Huang
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, Chiayi, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, Chiayi, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Tesoro L, Ramirez-Carracedo R, Hernandez I, Diez-Mata J, Pascual M, Saura M, Sanmartin M, Zamorano JL, Zaragoza C. Ivabradine induces cardiac protection by preventing cardiogenic shock-induced extracellular matrix degradation. ACTA ACUST UNITED AC 2020; 74:1062-1071. [PMID: 33132099 DOI: 10.1016/j.rec.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Ivabradine reduces heart rate by blocking the I(f) current and preserves blood pressure and stroke volume through unknown mechanisms. Caveolin-3 protects the heart by forming protein complexes with several proteins, including extracellular matrix (ECM)-metalloproteinase-inducer (EMMPRIN) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HN4), a target of ivabradine. We hypothesized that ivabradine might also exert cardioprotective effects through inhibition of ECM degradation. METHODS In a porcine model of cardiogenic shock, we studied the effects of ivabradine on heart integrity, the levels of MMP-9 and EMMPRIN, and the stability of caveolin-3/HCN4 protein complexes with EMMPRIN. RESULTS Administration of 0.3 mg/kg ivabradine significantly reduced cardiogenic shock-induced ventricular necrosis and expression of MMP-9 without affecting EMMPRIN mRNA, protein, or protein glycosylation (required for MMP activation). However, ivabradine increased the levels of the caveolin-3/LG-EMMPRIN (low-glycosylated EMMPRIN) and caveolin-3/HCN4 protein complexes and decreased that of a new complex between HCN4 and high-glycosylated EMMPRIN formed in response to cardiogenic shock. We next tested whether caveolin-3 can bind to HCN4 and EMMPRIN and found that the HCN4/EMMPRIN complex was preserved when we silenced caveolin-3 expression, indicating a direct interaction between these 2 proteins. Similarly, EMMPRIN-silenced cells showed a significant reduction in the binding of caveolin-3/HCN4, which regulates the I(f) current, suggesting that, rather than a direct interaction, both proteins bind to EMMPRIN. CONCLUSIONS In addition to inhibition of the I(f) current, ivabradine may induce cardiac protection by inhibiting ECM degradation through preservation of the caveolin-3/LG-EMMPRIN complex and control heart rate by stabilizing the caveolin-3/HCN4 complex.
Collapse
Affiliation(s)
- Laura Tesoro
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | | | - Ignacio Hernandez
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Javier Diez-Mata
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marina Pascual
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Saura
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS). Alcalá de Henares, Madrid, Spain
| | - Marcelo Sanmartin
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - José Luis Zamorano
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
8
|
Muhire G, Iulita MF, Vallerand D, Youwakim J, Gratuze M, Petry FR, Planel E, Ferland G, Girouard H. Arterial Stiffness Due to Carotid Calcification Disrupts Cerebral Blood Flow Regulation and Leads to Cognitive Deficits. J Am Heart Assoc 2020; 8:e011630. [PMID: 31057061 PMCID: PMC6512142 DOI: 10.1161/jaha.118.011630] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Arterial stiffness is associated with cognitive decline and dementia; however, the precise mechanisms by which it affects the brain remain unclear. Methods and Results Using a mouse model based on carotid calcification this study characterized mechanisms that could contribute to brain degeneration due to arterial stiffness. At 2 weeks postcalcification, carotid stiffness attenuated resting cerebral blood flow in several brain regions including the perirhinal/entorhinal cortex, hippocampus, and thalamus, determined by autoradiography (P<0.05). Carotid calcification impaired cerebral autoregulation and diminished cerebral blood flow responses to neuronal activity and to acetylcholine, examined by laser Doppler flowmetry (P<0.05, P<0.01). Carotid stiffness significantly affected spatial memory at 3 weeks (P<0.05), but not at 2 weeks, suggesting that cerebrovascular impairments precede cognitive dysfunction. In line with the endothelial deficits, carotid stiffness led to increased blood‐brain barrier permeability in the hippocampus (P<0.01). This region also exhibited reductions in vessel number containing collagen IV (P<0.01), as did the somatosensory cortex (P<0.05). No evidence of cerebral microhemorrhages was present. Carotid stiffness did not affect the production of mouse amyloid‐β (Aβ) or tau phosphorylation, although it led to a modest increase in the Aβ40/Aβ42 ratio in frontal cortex (P<0.01). Conclusions These findings suggest that carotid stiffness alters brain microcirculation and increases blood‐brain barrier permeability associated with cognitive impairments. Therefore, arterial stiffness should be considered a relevant target to protect the brain and prevent cognitive dysfunctions.
Collapse
Affiliation(s)
- Gervais Muhire
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada
| | - M Florencia Iulita
- 2 Groupe de Recherche sur le Système Nerveux Central Université de Montréal Québec Canada.,3 Département de Neurosciences Université de Montréal Québec Canada
| | - Diane Vallerand
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada
| | - Jessica Youwakim
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada
| | - Maud Gratuze
- 4 Département de Psychiatrie et Neurosciences Université Laval Québec Québec Canada
| | - Franck R Petry
- 4 Département de Psychiatrie et Neurosciences Université Laval Québec Québec Canada
| | - Emmanuel Planel
- 4 Département de Psychiatrie et Neurosciences Université Laval Québec Québec Canada.,5 Centre de Recherche du CHU de Québec Québec Canada
| | - Guylaine Ferland
- 6 Département de Nutrition Université de Montréal Québec Canada.,7 Centre de Recherche de l'Institut de Cardiologie de Montréal Montréal Québec Canada
| | - Hélène Girouard
- 1 Département de Pharmacologie et Physiologie Université de Montréal Québec Canada.,2 Groupe de Recherche sur le Système Nerveux Central Université de Montréal Québec Canada.,8 Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal Montréal Québec Canada
| |
Collapse
|
9
|
Effects of heart rate reduction with ivabradine on vascular stiffness and endothelial function in chronic stable coronary artery disease. J Hypertens 2020; 37:1023-1031. [PMID: 30672832 DOI: 10.1097/hjh.0000000000001984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Epidemiological and clinical studies have shown a relevant association between heart rate and cardiovascular mortality. Experimental studies identified vascular effects of heart rate reduction with the If channel inhibitor ivabradine. Therefore, the effects of heart rate reduction on endothelial function and indices of arterial stiffness were examined in patients with stable coronary artery disease in a prospective, placebo-controlled clinical crossover study. METHODS AND RESULTS Twenty-three patients (18 men and 5 women) with a resting heart rate (HR) of at least 70 beats per minute (bpm) and stable coronary artery disease were enrolled in this study. In a cross-over design, all patients were treated with ivabradine (Iva, 7.5 mg b.i.d.) and placebo for 6 months each. Iva reduced heart rate by 11.4 bpm (Iva 58.8 ± 8.2 bpm vs. placebo 70.2 ± 8.3 bpm, P < 0.0001). Augmentation index (AIx75), carotid-femoral pulse wave velocity (cfPWV) and central aortic blood pressure were measured using applanation tonometry (SphygmoCor). HRR by Iva increased AIx75 by 12.4% (Iva 24.3 ± 10.5% vs. placebo 21.3 ± 10.1%, P < 0.05) and reduced cfPWV by 14.1% (Iva 6.3 ± 1.7 m/s vs. placebo 7.3 ± 1.4 m/s, P < 0.01). Iva increased mean central blood pressure by 7.8% (Iva 107.5 ± 15.4 mmHg vs. placebo 99.1 ± 12.2 mmHg, P < 0.001). Endothelial function was determined measuring the flow-mediated vasodilation (FMD) of the brachial artery. HRR by Iva increased FMD by 18.5% (Iva 7.3 ± 2.2% vs. placebo 6.0 ± 2.0%, P < 0.001). Aortic distensibility was characterized by MRI. HRR by Iva increased aortic distensibility by 33.3% (Iva 0.003 ± 0.001/mmHg vs. placebo 0.002 ± 0.010/mmHg, P < 0.01) and circumferential cyclic strain by 37.1% (Iva 0.062 ± 0.027 vs. placebo 0.039 ± 0.018, P < 0.0001). CONCLUSION Heart rate reduction with Iva increased endothelium-dependent vasodilation and reduced arterial stiffness in patients with stable CAD. These findings corroborate and expand the results collected in experimental studies and indicate the importance of heart rate as a determinant of vascular function.
Collapse
|
10
|
de Montgolfier O, Thorin-Trescases N, Thorin E. Pathological Continuum From the Rise in Pulse Pressure to Impaired Neurovascular Coupling and Cognitive Decline. Am J Hypertens 2020; 33:375-390. [PMID: 32202623 PMCID: PMC7188799 DOI: 10.1093/ajh/hpaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Correspondence: Eric Thorin ()
| |
Collapse
|
11
|
Lu Y, Zhang C, Lu X, Moeini M, Thorin E, Lesage F. Impact of atherosclerotic disease on cerebral microvasculature and tissue oxygenation in awake LDLR-/-hApoB+/+ transgenic mice. NEUROPHOTONICS 2019; 6:045003. [PMID: 31673566 PMCID: PMC6811703 DOI: 10.1117/1.nph.6.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/17/2019] [Indexed: 05/17/2023]
Abstract
We explore cortical microvasculature changes during the progression of atherosclerosis using young and old transgenic atherosclerotic (ATX) mice with thinned-skull cranial window. In awake animals, exploiting intrinsic signal optical imaging, Doppler optical coherence tomography, and two-photon microscopy, we investigate how the progression of atherosclerotic disease affects the morphology and function of cortical microvasculature as well as baseline cerebral tissue oxygenation. Results show that aged ATX mice exhibited weaker hemodynamic response in the somatosensory cortex to whisker stimulation and that the diameter of their descending arterioles and associated mean blood flow decreased significantly compared with the young ATX group. Data from two-photon phosphorescence lifetime microscopy indicate that old ATX mice had lower and more heterogeneous partial pressure of oxygen ( PO 2 ) in cortical tissue than young ATX mice. In addition, hypoxic micropockets in cortical tissue were found in old, but not young, ATX mice. Capillary red blood cell (RBC) flux, RBC velocity, RBC velocity heterogeneity, hematocrit, and diameter were also measured using line scans with two-photon fluorescence microscopy. When compared with the young group, RBC flux, velocity, and hematocrit decreased and RBC velocity heterogeneity increased in old ATX mice, presumably due to disturbed blood supply from arterioles that were affected by atherosclerosis. Finally, dilation of capillaries in old ATX mice was observed, which suggests that capillaries play an active role in compensating for an oxygen deficit in brain tissue.
Collapse
Affiliation(s)
- Yuankang Lu
- École Polytechnique de Montréal, Laboratoire d’Imagerie optique et moléculaire, Montréal, Québec, Canada
| | - Cong Zhang
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
| | - Xuecong Lu
- École Polytechnique de Montréal, Laboratoire d’Imagerie optique et moléculaire, Montréal, Québec, Canada
| | - Mohammad Moeini
- Amirkabir University of Technology (Tehran Polytechnic), Biomedical Engineering Department, Tehran, Iran
| | - Eric Thorin
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
- Université de Montréal, Department of Pharmacology and Physiology, Faculty of Medicine, Montréal, Québec, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Laboratoire d’Imagerie optique et moléculaire, Montréal, Québec, Canada
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
- Address all correspondence to Frédéric Lesage, E-mail:
| |
Collapse
|
12
|
Atherosclerosis is associated with a decrease in cerebral microvascular blood flow and tissue oxygenation. PLoS One 2019; 14:e0221547. [PMID: 31469849 PMCID: PMC6716780 DOI: 10.1371/journal.pone.0221547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic atherosclerosis may cause cerebral hypoperfusion and inadequate brain oxygenation, contributing to the progression of cognitive decline. In this study, we exploited two-photon phosphorescence lifetime microscopy to measure the absolute partial pressure of oxygen (PO2) in cortical tissue in both young and old LDLR-/-, hApoB100+/+ mice, spontaneously developing atherosclerosis with age. Capillary red-blood-cell (RBC) speed, flux, hematocrit and capillary diameter were also measured by two-photon imaging of FITC-labelled blood plasma. Our results show positive correlations between RBC speed, flux, diameter and capillary-adjacent tissue PO2. When compared to the young mice, we observed lower tissue PO2, lower RBC speed and flux, and smaller capillary diameter in the old atherosclerotic mice. The old mice also exhibited a higher spatial heterogeneity of tissue PO2, and RBC speed and flux, suggesting a less efficient oxygen extraction.
Collapse
|
13
|
Papaioannou TG, Oikonomou E, Lazaros G, Christoforatou E, Vogiatzi G, Tsalamandris S, Chasikidis C, Kalambogias A, Mystakidi VX, Galiatsatos N, Santouri M, Latsios G, Deftereos S, Tousoulis D. The influence of resting heart rate on pulse wave velocity measurement is mediated by blood pressure and depends on aortic stiffness levels: insights from the Corinthia study. Physiol Meas 2019; 40:055005. [PMID: 30952147 DOI: 10.1088/1361-6579/ab165f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
de Montgolfier O, Pouliot P, Gillis MA, Ferland G, Lesage F, Thorin-Trescases N, Thorin É. Systolic hypertension-induced neurovascular unit disruption magnifies vascular cognitive impairment in middle-age atherosclerotic LDLr -/-:hApoB +/+ mice. GeroScience 2019; 41:511-532. [PMID: 31093829 DOI: 10.1007/s11357-019-00070-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Cognitive functions are dependent upon intercommunications between the cellular components of the neurovascular unit (NVU). Vascular risk factors are associated with a more rapid rate of cognitive decline with aging and cerebrovascular diseases magnify both the incidence and the rate of cognitive decline. The causal relationship between vascular risk factors and injury to the NVU is, however, lacking. We hypothesized that vascular risk factors, such as hypertension and dyslipidemia, promote disruption of the NVU leading to early cognitive impairment. We compared brain structure and cerebrovascular functions of 1-year old (middle-aged) male wild-type (WT) and atherosclerotic hypertensive (LDLr-/-:hApoB+/+, ATX) mice. In addition, mice were subjected, or not, to a transverse aortic constriction (TAC) for 6 weeks to assess the acute impact of an increase in systolic blood pressure on the NVU and cognitive functions. Compared with WT mice, ATX mice prematurely developed cognitive decline associated with cerebral micro-hemorrhages, loss of microvessel density and brain atrophy, cerebral endothelial cell senescence and dysfunction, brain inflammation, and oxidative stress associated with blood-brain barrier leakage and brain hypoperfusion. These data suggest functional disturbances in both vascular and parenchymal components of the NVU. Exposure to TAC-induced systolic hypertension promoted cerebrovascular damage and cognitive decline in WT mice, similar to those observed in sham-operated ATX mice; TAC exacerbated the existing cerebrovascular dysfunctions and cognitive failure in ATX mice. Thus, a hemodynamic stress such as systolic hypertension could initiate the cascade involving cerebrovascular injury and NVU deregulation and lead to cognitive decline, a process accelerated in atherosclerotic mice.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of pharmacology and physiology, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, 5000 rue Bélanger Est, Montreal, QC, H1T 1C8, Canada
| | - Philippe Pouliot
- Research Center, Montreal Heart Institute, 5000 rue Bélanger Est, Montreal, QC, H1T 1C8, Canada
- Ecole Polytechnique de Montréal, Montreal, QC, Canada
| | - Marc-Antoine Gillis
- Research Center, Montreal Heart Institute, 5000 rue Bélanger Est, Montreal, QC, H1T 1C8, Canada
| | - Guylaine Ferland
- Research Center, Montreal Heart Institute, 5000 rue Bélanger Est, Montreal, QC, H1T 1C8, Canada
- Faculty of Medicine, Department of nutrition, Université de Montréal, Montreal, QC, Canada
| | - Frédéric Lesage
- Research Center, Montreal Heart Institute, 5000 rue Bélanger Est, Montreal, QC, H1T 1C8, Canada
- Ecole Polytechnique de Montréal, Montreal, QC, Canada
| | | | - Éric Thorin
- Faculty of Medicine, Department of pharmacology and physiology, Université de Montréal, Montreal, QC, Canada.
- Research Center, Montreal Heart Institute, 5000 rue Bélanger Est, Montreal, QC, H1T 1C8, Canada.
- Faculty of Medicine, Department of surgery, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
15
|
Xing R, Moerman AM, Ridwan RY, Gaalen KV, Meester EJ, van der Steen AFW, Evans PC, Gijsen FJH, Van der Heiden K. The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice. Sci Rep 2018; 8:14014. [PMID: 30228313 PMCID: PMC6143553 DOI: 10.1038/s41598-018-32458-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
The heart rate lowering drug Ivabradine was shown to improve cardiac outcome in patients with previous heart failure. However, in patients without heart failure, no beneficial effect of Ivabradine was observed. Animal studies suggested a preventive effect of Ivabradine on atherosclerosis which was due to an increase in wall shear stress (WSS), the blood flow-induced frictional force exerted on the endothelium, triggering anti-inflammatory responses. However, data on the effect of Ivabradine on WSS is sparse. We aim to study the effect of Ivabradine on (i) the 3D WSS distribution over a growing plaque and (ii) plaque composition. We induced atherosclerosis in ApoE-/- mice by placing a tapered cast around the right common carotid artery (RCCA). Five weeks after cast placement, Ivabradine was administered via drinking water (15 mg/kg/day) for 2 weeks, after which the RCCA was excised for histology analyses. Before and after Ivabradine treatment, animals were imaged with Doppler Ultrasound to measure blood velocity. Vessel geometry was obtained using contrast-enhanced micro-CT. Time-averaged WSS during systole, diastole and peak WSS was subsequently computed. Ivabradine significantly decreased heart rate (459 ± 28 bpm vs. 567 ± 32 bpm, p < 0.001). Normalized peak flow significantly increased in the Ivabradine group (124.2% ± 40.5% vs. 87.3% ± 25.4%, p < 0.05), reflected by an increased normalized WSS level during systole (110.7% ± 18.4% vs. 75.4% ± 24.6%, p < 0.05). However, plaque size or composition including plaque area, relative necrotic core area and macrophage content were not altered in mice treated with Ivabradine compared to controls. We conclude that increased WSS in response to Ivabradine treatment did not affect plaque progression in a murine model.
Collapse
Affiliation(s)
- R Xing
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A M Moerman
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R Y Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K van Gaalen
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E J Meester
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A F W van der Steen
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - F J H Gijsen
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K Van der Heiden
- Department of Biomedical Engineering, Thorax center, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Thorin-Trescases N, de Montgolfier O, Pinçon A, Raignault A, Caland L, Labbé P, Thorin E. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. Am J Physiol Heart Circ Physiol 2018; 314:H1214-H1224. [PMID: 29451817 DOI: 10.1152/ajpheart.00637.2017] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is a modern concept: human life expectancy has more than doubled in less than 150 yr in Western countries. Longer life span, however, reveals age-related diseases, including cerebrovascular diseases. The vascular system is a prime target of aging: the "wear and tear" of large elastic arteries exposed to a lifelong pulsatile pressure causes arterial stiffening by fragmentation of elastin fibers and replacement by stiffer collagen. This arterial stiffening increases in return the amplitude of the pulse pressure (PP), its wave penetrating deeper into the microcirculation of low-resistance, high-flow organs such as the brain. Several studies have associated peripheral arterial stiffness responsible for the sustained increase in PP, with brain microvascular diseases such as cerebral small vessel disease, cortical gray matter thinning, white matter atrophy, and cognitive dysfunction in older individuals and prematurely in hypertensive and diabetic patients. The rarefaction of white matter is also associated with middle cerebral artery pulsatility that is strongly dependent on PP and artery stiffness. PP and brain damage are likely associated, but the sequence of mechanistic events has not been established. Elevated PP promotes endothelial dysfunction that may slowly develop in parallel with the accumulation of proinflammatory senescent cells and oxidative stress, generating cerebrovascular damage and remodeling, as well as brain structural changes. Here, we review data suggesting that age-related increased peripheral artery stiffness may promote the penetration of a high PP to cerebral microvessels, likely causing functional, structural, metabolic, and hemodynamic alterations that could ultimately promote neuronal dysfunction and cognitive decline.
Collapse
Affiliation(s)
| | - Olivia de Montgolfier
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Anthony Pinçon
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Adeline Raignault
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada
| | - Laurie Caland
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Pauline Labbé
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| | - Eric Thorin
- Montreal Heart Institute, Research Center , Montreal, Quebec , Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada.,Department of Surgery, Faculty of Medicine, Université de Montréal , Montreal, Quebec , Canada
| |
Collapse
|
17
|
Raignault A, Bolduc V, Lesage F, Thorin E. Pulse pressure-dependent cerebrovascular eNOS regulation in mice. J Cereb Blood Flow Metab 2017; 37:413-424. [PMID: 26823473 PMCID: PMC5381440 DOI: 10.1177/0271678x16629155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arterial blood pressure is oscillatory; whether pulse pressure (PP) regulates cerebral artery myogenic tone (MT) and endothelial function is currently unknown. To test the impact of PP on MT and dilation to flow (FMD) or to acetylcholine (Ach), isolated pressurized mouse posterior cerebral arteries were subjected to either static pressure (SP) or a physiological PP (amplitude: 30 mm Hg; frequency: 550 bpm). Under PP, MT was significantly higher than in SP conditions ( p < 0.05) and was not affected by eNOS inhibition. In contrast, under SP, eNOS inhibition increased ( p < 0.05) MT to levels observed under PP, suggesting that PP may inhibit eNOS. At a shear stress of 20 dyn/cm2, FMD was lower ( p < 0.05) under SP than PP. Under SP, eNOS-dependent [Formula: see text] production contributed to FMD, while under PP, eNOS-dependent NO was responsible for FMD, indicating that PP favours eNOS coupling. Differences in FMD between pressure conditions were abolished after NOX2 inhibition. In contrast to FMD, Ach-induced dilations were higher ( p < 0.05) under SP than PP. Reactive oxygen species scavenging reduced ( p < 0.05) Ach-dependent dilations under SP, but increased ( p < 0.05) them under PP; hence, under PP, Ach promotes ROS production and limits eNOS-derived NO activity. In conclusion, PP finely regulates eNOS, controlling cerebral artery reactivity.
Collapse
Affiliation(s)
- Adeline Raignault
- 1 Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Virginie Bolduc
- 1 Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Frédéric Lesage
- 2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada.,3 Ecole Polytechnique de Montréal, Montreal, Quebec, Canada
| | - Eric Thorin
- 1 Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.,2 Montreal Heart Institute Research Center, Montreal, Quebec, Canada.,4 Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Vaillant F, Lauzier B, Ruiz M, Shi Y, Lachance D, Rivard ME, Bolduc V, Thorin E, Tardif JC, Des Rosiers C. Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia. Am J Physiol Heart Circ Physiol 2016; 311:H991-H1003. [PMID: 27496881 DOI: 10.1152/ajpheart.00789.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/30/2016] [Indexed: 01/30/2023]
Abstract
While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker If current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB+/+;LDLR-/-). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression.
Collapse
Affiliation(s)
- Fanny Vaillant
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Lauzier
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Yanfen Shi
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Dominic Lachance
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Eve Rivard
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Virginie Bolduc
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Surgery, Université de Montréal, Montreal, Quebec, Canada; and
| | - Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Surgery, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada;
| |
Collapse
|
19
|
Milasan A, Dallaire F, Mayer G, Martel C. Effects of LDL Receptor Modulation on Lymphatic Function. Sci Rep 2016; 6:27862. [PMID: 27279328 PMCID: PMC4899717 DOI: 10.1038/srep27862] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is driven by the accumulation of immune cells and cholesterol in the arterial wall. Although recent studies have shown that lymphatic vessels play an important role in macrophage reverse cholesterol transport, the specific underlying mechanisms of this physiological feature remain unknown. In the current report, we sought to better characterize the lymphatic dysfunction that is associated with atherosclerosis by studying the physiological and temporal origins of this impairment. First, we assessed that athero-protected Pcsk9−/− mice exhibited improved collecting lymphatic vessel function throughout age when compared to WT mice for up to six months, while displaying enhanced expression of LDLR on lymphatic endothelial cells. Lymphatic dysfunction was present before the atherosclerotic lesion formation in a mouse model that is predisposed to develop atherosclerosis (Ldlr−/−; hApoB100+/+). This dysfunction was presumably associated with a defect in the collecting lymphatic vessels in a non-specific cholesterol- but LDLR-dependent manner. Treatment with a selective VEGFR-3 agonist rescued this impairment observed early in the onset of this arterial disease. We suggest that LDLR modulation is associated with early atherosclerosis-related lymphatic dysfunction, and bring forth a pleiotropic role for PCSK9 in lymphatic function. Our study unveils new potential therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Gaétan Mayer
- Laboratory of Molecular Cell Biology, Montreal Heart Institute Research Center, Quebec, Canada.,Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Luong L, Duckles H, Schenkel T, Mahmoud M, Tremoleda JL, Wylezinska-Arridge M, Ali M, Bowden NP, Villa-Uriol MC, van der Heiden K, Xing R, Gijsen FJ, Wentzel J, Lawrie A, Feng S, Arnold N, Gsell W, Lungu A, Hose R, Spencer T, Halliday I, Ridger V, Evans PC. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thromb Haemost 2016; 116:181-90. [PMID: 27075869 DOI: 10.1160/th16-03-0214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 01/24/2023]
Abstract
Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Paul C Evans
- Prof. Paul Evans, Department of Cardiovascular Science, Faculty of Medicine, Dentistry & Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Tel.: +44 114 271 2591, Fax: +44 114 271 1863, E-mail:
| |
Collapse
|
21
|
Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic Regulatory Effect of Exercise on Glutathione Peroxidase 1 Expression in the Skeletal Muscle of Severely Dyslipidemic Mice. PLoS One 2016; 11:e0151526. [PMID: 27010651 PMCID: PMC4806847 DOI: 10.1371/journal.pone.0151526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022] Open
Abstract
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.
Collapse
Affiliation(s)
- Albert Nguyen
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Natacha Duquette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Maya Mamarbachi
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Eric Thorin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Thorin-Trescases N, Thorin E. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure. Can J Cardiol 2015; 32:624-33. [PMID: 26961664 DOI: 10.1016/j.cjca.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches.
Collapse
Affiliation(s)
| | - Eric Thorin
- Montreal Heart Institute, Research Center, Montreal, Quebéc, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebéc, Canada.
| |
Collapse
|
23
|
Su JB. Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol 2015; 7:719-741. [PMID: 26635921 PMCID: PMC4660468 DOI: 10.4330/wjc.v7.i11.719] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.
Collapse
|
24
|
Koniari I, Mavrilas D, Apostolakis E, Papadimitriou E, Papadaki H, Papalois A, Poimenidi E, Xanthopoulou I, Hahalis G, Alexopoulos D. Inhibition of Atherosclerosis Progression, Intimal Hyperplasia, and Oxidative Stress by Simvastatin and Ivabradine May Reduce Thoracic Aorta's Stiffness in Hypercholesterolemic Rabbits. J Cardiovasc Pharmacol Ther 2015; 21:412-22. [PMID: 26612090 DOI: 10.1177/1074248415617289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/25/2015] [Indexed: 11/16/2022]
Abstract
AIMS This study aims to evaluate atherosclerosis, oxidative stress, and arterial stiffness attenuation by simvastatin and ivabradine in hyperlipidemic rabbits. METHODS AND RESULTS Forty rabbits were randomly divided into 4 groups: atherogenic diet (group C), atherogenic diet plus simvastatin (group S), atherogenic diet plus ivabradine (group I), and atherogenic diet plus simvastatin and ivabradine (group S + I). After 9 weeks, rabbits were euthanized and descending aortas excised for mechanical testing. Atherogenic diet induced the development of significant atherosclerotic lesions in group C animals but in none of groups S, I, and S + I. RAM-11 and HHF-35-positive cells were significantly reduced in groups S, I, and S + I compared with group C (P < .001). A significant neointimal hyperplasia and intima-media ratio reduction was demonstrated in groups S (P = .015 and P < .001), I (P = .021 and P < .001), and S + I (P = .019 and P < .001) compared with group C. Protein nitrotyrosine levels were significantly decreased in group S compared with group C (P = .009), and reactive oxygen species levels were decreased in group I compared with group C (P = .011). Aortic stiffness was significantly reduced in groups S, I, and S + I compared with group C (P = .003, P = .011, and P = .029). CONCLUSION Simvastatin and ivabradine significantly inhibited intimal hyperplasia and oxidative stress contributing to aortic stiffness reduction in hyperlipidemic rabbits.
Collapse
Affiliation(s)
- Ioanna Koniari
- Department of Cardiology, Patras University Hospital, Rion Patras, Greece
| | - Dimosthenis Mavrilas
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rion Patras, Greece
| | | | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, School of Medicine, University of Patras, Rion Patras, Greece
| | | | - Evangelia Poimenidi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | | | - George Hahalis
- Department of Cardiology, Patras University Hospital, Rion Patras, Greece
| | | |
Collapse
|
25
|
|
26
|
Langbein H, Hofmann A, Brunssen C, Goettsch W, Morawietz H. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice. ATHEROSCLEROSIS SUPP 2015; 18:59-66. [DOI: 10.1016/j.atherosclerosissup.2015.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Desjardins M, Berti R, Lefebvre J, Dubeau S, Lesage F. Aging-related differences in cerebral capillary blood flow in anesthetized rats. Neurobiol Aging 2014; 35:1947-55. [PMID: 24612672 DOI: 10.1016/j.neurobiolaging.2014.01.136] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/09/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Age-related decreases in baseline cerebral blood flow have been measured with various imaging modalities, however, the contribution of capillary flow to this phenomenon remain to elucidate. This study used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell speed, and flux in individual capillaries in the sensory-motor cortex of 12 adult (3-month-old) and 12 old (24-month-old) male Long-Evans rats under isoflurane anesthesia. The average (± standard deviation) diameter and speed over 921 capillaries were 6.4 ± 1.4 μm and 1.3 ± 1.1 mm/s, respectively. Red blood cell speed and flux were significantly higher, by 48% and 15%, respectively, in old compared with young animals (p < 5%). The diameter also showed a similar tendency (7% higher, p = 5.7%). Furthermore, capillary hematocrit and density were significantly lower in the older group (p < 5%), by 32% and 20%, respectively.
Collapse
Affiliation(s)
- Michèle Desjardins
- Department de Génie Électrique, Institut de Génie Biomédical, École Polytechnique de Montréal, Montréal, Quebec, Canada; Montreal Heart Institute, Montréal, Quebec, Canada.
| | - Romain Berti
- Department de Génie Électrique, Institut de Génie Biomédical, École Polytechnique de Montréal, Montréal, Quebec, Canada; Montreal Heart Institute, Montréal, Quebec, Canada
| | - Joël Lefebvre
- Department de Génie Électrique, Institut de Génie Biomédical, École Polytechnique de Montréal, Montréal, Quebec, Canada; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Simon Dubeau
- Department de Génie Électrique, Institut de Génie Biomédical, École Polytechnique de Montréal, Montréal, Quebec, Canada; Montreal Heart Institute, Montréal, Quebec, Canada
| | - Frédéric Lesage
- Department de Génie Électrique, Institut de Génie Biomédical, École Polytechnique de Montréal, Montréal, Quebec, Canada; Montreal Heart Institute, Montréal, Quebec, Canada; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
28
|
Desjardins M, Berti R, Pouliot P, Dubeau S, Lesage F. Multimodal study of the hemodynamic response to hypercapnia in anesthetized aged rats. Neurosci Lett 2014; 563:33-7. [PMID: 24480251 DOI: 10.1016/j.neulet.2014.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
With aging, the brain undergoes changes in metabolism and perfusion, both of which influence the widely used blood-oxygenation-level-dependent (BOLD) MRI signal. To isolate the vascular effects associated with age, this study measured the response to a hypercapnic challenge using different imaging modalities in 19 young (3 months-old) and 13 old (24 months-old) Long-Evans rats. Intrinsic optical imaging was used to measure oxy (HbO), deoxy (HbR) and total (HbT) hemoglobin concentration changes, laser speckle for cerebral blood flow (CBF) changes, and MRI for the BOLD signal. Older rats had smaller HbO (41% smaller), HbT (50%) and CBF (34%) responses, but the temporal dynamics did not exhibit significant age differences. The ratio of CBV to CBF responses was also smaller in older adults, potentially indicating a change in the compliance of vessels.
Collapse
Affiliation(s)
- Michèle Desjardins
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada.
| | - Romain Berti
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Philippe Pouliot
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Simon Dubeau
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| | - Frédéric Lesage
- Institut de Génie Biomédical, Dpt. de Génie Électrique, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7, Canada; Montreal Heart Institute, 5000 rue Bélanger, Montréal, QC, H1T 1C8, Canada
| |
Collapse
|
29
|
Bink DI, Ritz K, Aronica E, van der Weerd L, Daemen MJAP. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J Cereb Blood Flow Metab 2013; 33:1666-84. [PMID: 23963364 PMCID: PMC3824184 DOI: 10.1038/jcbfm.2013.140] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Recent clinical data indicates that hemodynamic changes caused by cardiovascular diseases such as atherosclerosis, heart failure, and hypertension affect cognition. Yet, the underlying mechanisms of the resulting vascular cognitive impairment (VCI) are poorly understood. One reason for the lack of mechanistic insights in VCI is that research in dementia primarily focused on Alzheimer's disease models. To fill in this gap, we critically reviewed the published data and various models of VCI. Typical findings in VCI include reduced cerebral perfusion, blood-brain barrier alterations, white matter lesions, and cognitive deficits, which have also been reported in different cardiovascular mouse models. However, the tests performed are incomplete and differ between models, hampering a direct comparison between models and studies. Nevertheless, from the currently available data we conclude that a few existing surgical animal models show the key features of vascular cognitive decline, with the bilateral common carotid artery stenosis hypoperfusion mouse model as the most promising model. The transverse aortic constriction and myocardial infarction models may be good alternatives, but these models are as yet less characterized regarding the possible cerebral changes. Mixed models could be used to study the combined effects of different cardiovascular diseases on the deterioration of cognition during aging.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Ritz
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- SEIN—Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mat JAP Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Custodis F, Reil JC, Laufs U, Böhm M. Heart rate: A global target for cardiovascular disease and therapy along the cardiovascular disease continuum. J Cardiol 2013; 62:183-7. [DOI: 10.1016/j.jjcc.2013.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 12/11/2022]
|
31
|
Roubille F, Lattuca B, Busseuil D, Leclercq F, Davy JM, Rhéaume E, Tardif JC. Is ivabradine suitable to control undesirable tachycardia induced by dobutamine in cardiogenic shock treatment? Med Hypotheses 2013; 81:202-6. [DOI: 10.1016/j.mehy.2013.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
|
32
|
Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol 2013; 305:H620-33. [PMID: 23792680 DOI: 10.1152/ajpheart.00624.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.
Collapse
Affiliation(s)
- Virginie Bolduc
- Departments of Surgery and Pharmacology, Université de Montréal, and Centre de recherche, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
33
|
Sadekova N, Vallerand D, Guevara E, Lesage F, Girouard H. Carotid calcification in mice: a new model to study the effects of arterial stiffness on the brain. J Am Heart Assoc 2013; 2:e000224. [PMID: 23782921 PMCID: PMC3698789 DOI: 10.1161/jaha.113.000224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arterial stiffness has been identified as an important risk factor for cognitive decline. However, its effects on the brain's health are unknown, and there is no animal model available to study the precise impact of arterial stiffness on the brain. Therefore, the objective of the study was to develop and characterize a new model specific to arterial stiffness in order to study its effects on the brain. METHODS AND RESULTS Calcium chloride (CaCl2) was applied to carotid arteries of mice, inducing an increase in collagen distribution and intima-media thickness, a fragmentation of elastin, a decrease in arterial compliance and distensibility, and an increase in cerebral blood flow pulsatility (n=3 to 11). Calcium deposits were only present at the site of CaCl2 application, and there was no increase in systemic blood pressure or change in vessel radius making this model specific for arterial stiffness. The effects of carotid stiffness were then assessed in the brain. Carotid calcification induced an increase in the production of cerebral superoxide anion and neurodegeneration, detected with Fluoro-Jade B staining, in the hippocampus (n=3 to 5), a key region for memory and cognition. CONCLUSIONS A new model of arterial stiffness based on carotid calcification was developed and characterized. This new model meets all the characteristics of arterial stiffness, and its specificity allows the study of the effects of arterial stiffness on the brain.
Collapse
Affiliation(s)
- Nataliya Sadekova
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
34
|
Farhat N, Thorin-Trescases N, Mamarbachi M, Villeneuve L, Yu C, Martel C, Duquette N, Gayda M, Nigam A, Juneau M, Allen BG, Thorin E. Angiopoietin-like 2 promotes atherogenesis in mice. J Am Heart Assoc 2013; 2:e000201. [PMID: 23666461 PMCID: PMC3698785 DOI: 10.1161/jaha.113.000201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Angiopoietin like-2 (angptl2), a proinflammatory protein, is overexpressed in endothelial cells (ECs) from patients with coronary artery disease (CAD). Whether angptl2 contributes to atherogenesis is unknown. We tested the hypothesis that angptl2 promotes inflammation and leukocyte adhesion onto ECs, thereby accelerating atherogenesis in preatherosclerotic dyslipidemic mice. METHODS AND RESULTS In ECs freshly isolated from the aorta, basal expression of TNF-α and IL-6 mRNA was higher in 3-month-old severely dyslipidemic mice (LDLr(-/-); hApoB100(+/+) [ATX]) than in control healthy wild-type (WT) mice (P<0.05) and was increased in both groups by exogenous angptl2 (100 nmol/L). Angptl2 stimulated the adhesion of leukocytes ex vivo on the native aortic endothelium of ATX, but not WT mice, in association with higher expression of ICAM-1 and P-selectin in ECs (P<0.05). Antibodies against these endothelial adhesion molecules prevented leukocyte adhesion. Intravenous administration of angptl2 for 1 month in preatherosclerotic 3-month-old ATX mice increased (P<0.05) total cholesterol and LDL-cholesterol levels, strongly induced (P<0.05) the expression of endothelial proinflammatory cytokines and adhesion molecules while accelerating atherosclerotic lesion formation by 10-fold (P<0.05). Plasma and aortic tissue levels of angptl2 increased (P<0.05) with age and were higher in 6- and 12-month-old ATX mice than in age-matched WT mice. Angptl2 accumulated to high levels in the atherosclerotic lesions (P<0.05). Finally, angptl2 was greatly expressed (P<0.05) in ECs cultured from CAD patients, and circulating angptl2 levels were 6-fold higher in CAD patients compared with age-matched healthy volunteers. CONCLUSIONS Angptl2 contributes to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Nada Farhat
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leblond F, Nguyen A, Bolduc V, Lambert J, Yu C, Duquette N, Thorin E. Postnatal exposure to voluntary exercise but not the antioxidant catechin protects the vasculature after a switch to an atherogenic environment in middle-age mice. Pflugers Arch 2013; 465:197-208. [PMID: 23291710 DOI: 10.1007/s00424-012-1206-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
We aimed to evaluate the lasting functional imprinting of exercise (EX) and catechin (CAT) on the vascular function of middle-age mice switched to a proatherogenic environment. C57BL/6J mice (n = 10-15 in each group) fed a regular diet (RD) were exposed from the age of 1 to 9 months either to EX (voluntary running; 2.7 ± 0.2 km/day), to the polyphenol CAT (30 mg/kg/day in drinking water), or to physical inactivity (PI). At 9 months of age, EX and CAT were stopped and mice either remained on the RD or were fed a Western diet (WD) for an additional 3 months. At 12 months of age, mice from all groups fed a WD had similar body mass, systolic blood pressure, and plasma total cholesterol, glucose, insulin, and isoprostane. Compared to the RD, the WD induced an indomethacin-sensitive aortic endothelium-dependent and independent dysfunction in PI mice (p < 0.05) that was prevented by both EX and CAT; this benefit was associated with a higher (p < 0.05) non-nitric oxide/non-prostacyclin endothelium-dependent relaxation. While EX, but not PI or CAT, prevented vascular dysfunction induced by the WD in cerebral arteries, it had no effect in femoral arteries. The profiles of activity of antioxidant enzymes and of proinflammatory gene expression in the aorta suggest a better adaptation of EX > CAT > PI mice to stress. In conclusion, our data suggest that a postnatal exposure to EX, but not to CAT, imprints an adaptive defense capacity in the vasculature against a deleterious change in lifestyle.
Collapse
Affiliation(s)
- Francois Leblond
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Custodis F, Fries P, Müller A, Stamm C, Grube M, Kroemer HK, Böhm M, Laufs U. Heart rate reduction by ivabradine improves aortic compliance in apolipoprotein E-deficient mice. J Vasc Res 2012; 49:432-40. [PMID: 22759927 DOI: 10.1159/000339547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 05/14/2012] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Impaired vascular compliance is associated with cardiovascular mortality. The effects of heart rate on vascular compliance are unclear. Therefore, we characterized effects of heart rate reduction (HRR) by I(f) current inhibition on aortic compliance and underlying molecular mechanisms in apolipoprotein E-deficient (ApoE(-)/(-)) mice. METHODS ApoE(-)/(-) mice fed a high-cholesterol diet and wild-type (WT) mice were treated with ivabradine (20 mg/kg/d) or vehicle for 6 weeks. Compliance of the ascending aorta was evaluated by MRI. RESULTS Ivabradine reduced heart rate by 113 ± 31 bpm (~19%) in WT mice and by 133 ± 6 bpm (~23%) in ApoE(-)/(-) mice. Compared to WT controls, ApoE(-)/(-) mice exhibited reduced distensibility and circumferential strain. HRR by ivabradine increased distensibility and circumferential strain in ApoE(-)/(-) mice but did not affect both parameters in WT mice. Ivabradine reduced aortic protein and mRNA expression of the angiotensin II type 1 (AT1) receptor and reduced rac1-GTPase activity in ApoE(-)/(-) mice. Moreover, membrane translocation of p47(phox) was inhibited. In ApoE(-)/(-) mice, HRR induced anti-inflammatory effects by reduction of aortic mRNA expression of IL-6, TNF-alpha and TGF-beta. CONCLUSION HRR by ivabradine improves vascular compliance in ApoE(-)/(-) mice. Contributing mechanisms include downregulation of the AT1 receptor, attenuation of oxidative stress and modulation of inflammatory cytokine expression.
Collapse
Affiliation(s)
- Florian Custodis
- Kliniken für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Bolduc V, Baraghis E, Duquette N, Thorin-Trescases N, Lambert J, Lesage F, Thorin E. Catechin prevents severe dyslipidemia-associated changes in wall biomechanics of cerebral arteries in LDLr-/-:hApoB+/+ mice and improves cerebral blood flow. Am J Physiol Heart Circ Physiol 2012; 302:H1330-9. [PMID: 22268108 DOI: 10.1152/ajpheart.01044.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Endothelial dysfunction and oxidative stress contribute to the atherosclerotic process that includes stiffening of large peripheral arteries. In contrast, our laboratory previously reported a paradoxical increase in cerebrovascular compliance in LDLr(-/-):hApoB(+/+) atherosclerotic (ATX) mice (7). We hypothesized that prevention of cerebral artery endothelial dysfunction with a chronic dietary antioxidant intake would normalize the changes in cerebral artery wall structure and biomechanics and prevent the decline in basal cerebral blood flow associated with atherosclerosis. Three-month-old ATX mice were treated, or not, for 3 mo with the polyphenol (+)-catechin (CAT; 30 mg·kg(-1)·day(-1)) and compared with wild-type controls. In isolated, pressurized cerebral arteries from ATX mice, CAT prevented endothelial dysfunction (deterioration of endothelium-dependent, flow-mediated dilations; P < 0.05), the inward hypertrophic structural remodeling (increase in the wall-to-lumen ratio; P < 0.05), and the rise in cerebrovascular compliance (rightward shift of the stress-strain curve measured in passive conditions, reflecting mechanical properties of the arterial wall; P < 0.05). Doppler optical coherence tomography imaging in vivo confirmed these findings, showing that cerebral compliance was higher in ATX mice and normalized by CAT (P < 0.05). CAT also prevented basal cerebral hypoperfusion in ATX mice (P < 0.05). Active remodeling of the cerebrovascular wall in ATX mice was further suggested by the increase (P < 0.05) in pro-metalloproteinase-9 activity, which was normalized by CAT. We conclude that, by preserving the endothelial function, a chronic treatment with CAT prevents the deleterious effect of severe dyslipidemia on cerebral artery wall structure and biomechanical properties, contributing to preserving resting cerebral blood flow.
Collapse
Affiliation(s)
- Virginie Bolduc
- Université de Montréal, Faculty of Medicine, Departments of Pharmacology, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Baraghis E, Bolduc V, Lefebvre J, Srinivasan VJ, Boudoux C, Thorin E, Lesage F. Measurement of cerebral microvascular compliance in a model of atherosclerosis with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2011; 2:3079-3093. [PMID: 22076269 PMCID: PMC3207377 DOI: 10.1364/boe.2.003079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
Optical coherence tomography (OCT) has recently been used to produce 3D angiography of microvasculature and blood flow maps of large vessels in the rodent brain in-vivo. However, use of this optical method for the study of cerebrovascular disease has not been fully explored. Recent developments in neurodegenerative diseases has linked common cardiovascular risk factors to neurodegenerative risk factors hinting at a vascular hypothesis for the development of the latter. Tools for studying cerebral blood flow and the myogenic tone of cerebral vasculature have thus far been either highly invasive or required ex-vivo preparations therefore not preserving the delicate in-vivo conditions. We propose a novel technique for reconstructing the flow profile over a single cardiac cycle in order to evaluate flow pulsatility and vessel compliance. A vascular model is used to simulate changes in vascular compliance and interpret OCT results. Comparison between atherosclerotic and wild type mice show a trend towards increased compliance in the smaller arterioles of the brain (diameter < 80μm) in the disease model. These results are consistent with previously published ex-vivo work confirming the ability of OCT to investigate vascular dysfunction.
Collapse
Affiliation(s)
- E. Baraghis
- Ecole Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, Qc, H3C 3A7,
Canada
| | - V. Bolduc
- Research Center, Montreal Heart Institute, 5000 Belanger Est, Montreal, Qc, H3T 1J4,
Canada
| | - J. Lefebvre
- Ecole Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, Qc, H3C 3A7,
Canada
| | - V. J. Srinivasan
- Optics Division, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129,
USA
| | - C. Boudoux
- Ecole Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, Qc, H3C 3A7,
Canada
| | - E. Thorin
- Research Center, Montreal Heart Institute, 5000 Belanger Est, Montreal, Qc, H3T 1J4,
Canada
| | - F. Lesage
- Ecole Polytechnique Montreal, 2500 Chemin de Polytechnique, Montreal, Qc, H3C 3A7,
Canada
- Research Center, Montreal Heart Institute, 5000 Belanger Est, Montreal, Qc, H3T 1J4,
Canada
| |
Collapse
|