1
|
Yue L, Yan Y. Metabolic Regulation in Acute Respiratory Distress Syndrome: Implications for Inflammation and Oxidative Stress. Int J Chron Obstruct Pulmon Dis 2025; 20:373-388. [PMID: 39991071 PMCID: PMC11846517 DOI: 10.2147/copd.s491687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe and life-threatening pulmonary condition characterized by intense inflammation and disrupted oxygen exchange, which can lead to multiorgan failure. Recent findings have established ARDS as a systemic inflammatory disorder involving complex interactions between lung injury, systemic inflammation, and oxidative stress. This review examines the pivotal role of metabolic disturbances in the pathogenesis of ARDS, emphasizing their influence on inflammatory responses and oxidative stress. Common metabolic abnormalities in ARDS patients, including disruptions in carbohydrate, amino acid, and lipid metabolism, contribute significantly to the disease's severity. These metabolic dysfunctions interplay with systemic inflammation and oxidative stress, further exacerbating lung injury and worsening patient outcomes. By analyzing the regulatory mechanisms of various metabolites implicated in ARDS, we underscore the potential of targeting metabolic pathways as a therapeutic approach. Such interventions could help attenuate inflammation and oxidative stress, presenting a promising strategy for ARDS treatment. Additionally, we review potential drugs that modulate metabolic pathways, providing valuable insights into the etiology of ARDS and potential therapeutic directions. This comprehensive analysis enhances our understanding of ARDS and highlights the importance of metabolic regulation in the development of effective treatment strategies. Key findings from this review demonstrate that metabolic disturbances, particularly those affecting carbohydrate, amino acid, and lipid metabolism, play critical roles in amplifying inflammation and oxidative stress, underscoring the potential of metabolic-targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Lixia Yue
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| | - Yihe Yan
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| |
Collapse
|
2
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
3
|
Heuser SK, Li J, Pudewell S, LoBue A, Li Z, Cortese-Krott MM. Biochemistry, pharmacology, and in vivo function of arginases. Pharmacol Rev 2025; 77:100015. [PMID: 39952693 DOI: 10.1124/pharmrev.124.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
The enzyme arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea. The 2 existing isoforms Arg1 and Arg2 exhibit different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide (NO) production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell type-specific, species-specific, and profoundly different in mice and humans. The main differences are in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of l-ornithine, polyamine, and l-proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginases, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. SIGNIFICANCE STATEMENT: Further basic and translational research is needed to deepen our understanding of the regulation of Arg1 and Arg2 in different cell types in consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This will lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infectious diseases, and cancer.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
6
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
7
|
Danylovych HV, Danylovych YV, Pavliuk MR, Kosterin SO. Products of oxidative and non-oxidative metabolism of L-arginine as potential regulators of Ca 2+ transport in mitochondria of uterine smooth muscle. Biochim Biophys Acta Gen Subj 2024; 1868:130652. [PMID: 38857773 DOI: 10.1016/j.bbagen.2024.130652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Mitochondria play a crucial role in maintaining Ca2+ homeostasis in cells. Due to the critical regulatory role of the products of oxidative and non-oxidative metabolism of L-arginine, it is essential to clarify their effect on Ca2+ transport in smooth muscle mitochondria. Experiments were performed on the uterine myocytes of rats and isolated mitochondria. The possibility of NO synthesis by mitochondria was demonstrated by confocal microscopy and spectrofluorimetry methods using the NO-sensitive fluorescent probe DAF-FM and Mitotracker Orange CM-H2TMRos. It was shown that 50 μM L-arginine stimulates the energy-dependent accumulation of Ca2+ in mitochondria using the fluorescent probe Fluo-4 AM. A similar effect occurred when using nitric oxide donors 100 μM SNP, SNAP, and sodium nitrite (SN) directly. The stimulating effect was eliminated in the presence of the NO scavenger C-PTIO. Nitric oxide reduces the electrical potential in mitochondria without causing them to swell. The stimulatory effect of spermine on the accumulation of Ca2+ by mitochondria is attributed to the enhancement of NO synthesis, which was demonstrated with the use of C-PTIO, NO-synthase inhibitors (100 μM NA and L-NAME), as well as by direct monitoring of NO synthesis fluorescent probe DAF-FM. A conclusion was drawn about the potential regulatory effect of the product of the oxidative metabolism of L-arginine - NO on the transport of Ca2+ in the mitochondria of the myometrium, as well as the corresponding effect of the product of non-oxidative metabolism -spermine by increasing the synthesis of NO in these subcellular structures.
Collapse
Affiliation(s)
- Hanna V Danylovych
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Yuriy V Danylovych
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Maksym R Pavliuk
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Sergiy O Kosterin
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Barros CDS, Coutinho A, Tengan CH. Arginine Supplementation in MELAS Syndrome: What Do We Know about the Mechanisms? Int J Mol Sci 2024; 25:3629. [PMID: 38612442 PMCID: PMC11011289 DOI: 10.3390/ijms25073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
MELAS syndrome, characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, represents a devastating mitochondrial disease, with the stroke-like episodes being its primary manifestation. Arginine supplementation has been used and recommended as a treatment for these acute attacks; however, insufficient evidence exists to support this treatment for MELAS. The mechanisms underlying the effect of arginine on MELAS pathophysiology remain unclear, although it is hypothesized that arginine could increase nitric oxide availability and, consequently, enhance blood supply to the brain. A more comprehensive understanding of these mechanisms is necessary to improve treatment strategies, such as dose and regimen adjustments; identify which patients could benefit the most; and establish potential markers for follow-up. This review aims to analyze the existing evidence concerning the mechanisms through which arginine supplementation impacts MELAS pathophysiology and provide the current scenario and perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Celia H. Tengan
- Division of Neurology, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (C.D.S.B.); (A.C.)
| |
Collapse
|
9
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
10
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
11
|
Belinskaia DA, Voronina PA, Popova PI, Voitenko NG, Shmurak VI, Vovk MA, Baranova TI, Batalova AA, Korf EA, Avdonin PV, Jenkins RO, Goncharov NV. Albumin Is a Component of the Esterase Status of Human Blood Plasma. Int J Mol Sci 2023; 24:10383. [PMID: 37373530 PMCID: PMC10299176 DOI: 10.3390/ijms241210383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The esterase status of blood plasma can claim to be one of the universal markers of various diseases; therefore, it deserves attention when searching for markers of the severity of COVID-19 and other infectious and non-infectious pathologies. When analyzing the esterase status of blood plasma, the esterase activity of serum albumin, which is the major protein in the blood of mammals, should not be ignored. The purpose of this study is to expand understanding of the esterase status of blood plasma and to evaluate the relationship of the esterase status, which includes information on the amount and enzymatic activity of human serum albumin (HSA), with other biochemical parameters of human blood, using the example of surviving and deceased patients with confirmed COVID-19. In experiments in vitro and in silico, the activity of human plasma and pure HSA towards various substrates was studied, and the effect of various inhibitors on this activity was tested. Then, a comparative analysis of the esterase status and a number of basic biochemical parameters of the blood plasma of healthy subjects and patients with confirmed COVID-19 was performed. Statistically significant differences have been found in esterase status and biochemical indices (including albumin levels) between healthy subjects and patients with COVID-19, as well as between surviving and deceased patients. Additional evidence has been obtained for the importance of albumin as a diagnostic marker. Of particular interest is a new index, [Urea] × [MDA] × 1000/(BChEb × [ALB]), which in the group of deceased patients was 10 times higher than in the group of survivors and 26 times higher than the value in the group of apparently healthy elderly subjects.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina I. Popova
- City Polyclinic No. 112, 25 Academician Baykov Str., 195427 St. Petersburg, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Mikhail A. Vovk
- Centre for Magnetic Resonance, St. Petersburg State University, Universitetskij pr., 26, Peterhof, 198504 St. Petersburg, Russia
| | - Tatiana I. Baranova
- Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| |
Collapse
|
12
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
13
|
Wang W, Wang K, Zhong X. Effect of electroacupuncture on haemodynamic changes during intubation for general anaesthesia is mediated by nitric oxide synthase‑3 via the regulation of microRNA‑155, microRNA‑335 and microRNA‑383. Mol Med Rep 2023; 27:83. [PMID: 36866732 PMCID: PMC10018266 DOI: 10.3892/mmr.2023.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/25/2021] [Indexed: 03/04/2023] Open
Abstract
Intubation for general anaesthesia is a life‑threatening risk because it can cause haemodynamic changes. Electroacupuncture (EA) has been reported to alleviate the risk of intubation. In the present study, haemodynamic changes were measured at different time points before and after EA. Reverse transcription‑quantitative PCR was performed to measure the expression of micro (mi)RNAs and endothelial NO synthase (eNOS) mRNA. Western blotting was performed to evaluate the expression of eNOS protein. A luciferase assay was used to explore the inhibitory role of miRNAs in eNOS expression. The transfection of miRNA precursors and antagomirs was performed to assess their effect on eNOS expression. The systolic blood pressure, diastolic blood pressure and mean arterial pressure of patients were significantly decreased by EA, while the heart rate of patients was markedly increased. The expression of micro RNA (miR)‑155, miR‑335 and miR‑383 was effectively inhibited by EA in the plasma and peripheral blood monocytes of patients, whereas eNOS expression and NOS production were markedly elevated by EA. The luciferase activity of the eNOS vector was significantly inhibited by miR‑155, miR‑335 and miR‑383 mimics but activated by miR‑155, miR‑335 and miR‑383 antagomirs. miR‑155, miR‑335 and miR‑383 precursors suppressed the expression of eNOS, while miR‑155, miR‑335 and miR‑383 antagomirs enhanced the expression of eNOS. The present study demonstrated that EA may exert a vasodilative effect during intubation for general anaesthesia by promoting NO production and upregulating eNOS expression. The effect of EA on upregulating eNOS expression may be mediated by its inhibitory effect on the expression of miRNA‑155, miRNA‑335 and miRNA‑383.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Kang Wang
- Office of Construction, Sun Yat‑Sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Xing Zhong
- Department of Ultrasound, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
14
|
Dowsett L, Duluc L, Higgins E, Alghamdi F, Fast W, Salt IP, Leiper J. Asymmetric dimethylarginine positively modulates calcium-sensing receptor signalling to promote lipid accumulation. Cell Signal 2023; 107:110676. [PMID: 37028778 DOI: 10.1016/j.cellsig.2023.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Asymmetric dimethylarginine (ADMA) is generated through the irreversible methylation of arginine residues. It is an independent risk factor for cardiovascular disease, currently thought to be due to its ability to act as a competitive inhibitor of the nitric oxide (NO) synthase enzymes. Plasma ADMA concentrations increase with obesity and fall following weight loss; however, it is unknown whether they play an active role in adipose pathology. Here, we demonstrate that ADMA drives lipid accumulation through a newly identified NO-independent pathway via the amino-acid sensitive calcium-sensing receptor (CaSR). ADMA treatment of 3 T3-L1 and HepG2 cells upregulates a suite of lipogenic genes with an associated increase in triglyceride content. Pharmacological activation of CaSR mimics ADMA while negative modulation of CaSR inhibits ADMA driven lipid accumulation. Further investigation using CaSR overexpressing HEK293 cells demonstrated that ADMA potentiates CaSR signalling via Gq intracellular Ca2+ mobilisation. This study identifies a signalling mechanism for ADMA as an endogenous ligand of the G protein-coupled receptor CaSR that potentially contributes to the impact of ADMA in cardiometabolic disease.
Collapse
Affiliation(s)
- Laura Dowsett
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK.
| | - Lucie Duluc
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Erin Higgins
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fatmah Alghamdi
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ian P Salt
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - James Leiper
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
15
|
Momma TY, Ottaviani JI. There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine. Nitric Oxide 2022; 129:16-24. [PMID: 36126859 DOI: 10.1016/j.niox.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
AIMS Extrahepatic arginases are postulated to be involved in cardiovascular-related pathologies by competing with nitric oxide synthase (NOS) for the common substrate l-arginine, subsequently decreasing nitric oxide production. However, previous models used to study arginase and NOS competition did not account for steady state level of l-arginine pool, which is dependent on conditions of l-arginine supply and utilization pathways. This work aimed at revisiting the concept of NOS and arginase competition while considering different conditions of l-arginine supply and l-arginine utilization pathways. METHODS AND RESULTS Mouse macrophage-like RAW cells and human vascular endothelial cells co-expressing NOS and arginase were used to reevaluate the concept of substrate competition between arginase and NOS under conditions of l-arginine supply that mimicked either a continuous (similar to in vivo conditions) or a limited supply (similar to previous in vitro models). Enzyme kinetics simulation models were used to gain mechanistic insight and to evaluate the tenability of a substrate competition between the two enzymes. In addition to arginase and NOS, other l-arginine pathways such as transporters and utilization towards protein synthesis were considered to understand the intricacies of l-arginine metabolism. Our results indicate that when there is a continuous supply of l-arginine, as is the case for most cells in vivo, arginase does not affect NOS activity by a substrate competition. Furthermore, we demonstrate that l-arginine pathways such as transporters and protein synthesis are more likely to affect NOS activity than arginase. CONCLUSIONS Arginase does not outcompete NOS for the common substrate l-arginine. Findings from this study should be considered to better understand the role of arginase in certain pathologies and for the interpretation of in vivo studies with arginase inhibitors.
Collapse
Affiliation(s)
- Tony Y Momma
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| | - Javier I Ottaviani
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA; Mars Inc., McLean, VA, 22101, USA
| |
Collapse
|
16
|
Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolites 2022; 12:metabo12030240. [PMID: 35323682 PMCID: PMC8953281 DOI: 10.3390/metabo12030240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents a major public health crisis that has caused the death of nearly six million people worldwide. Emerging data have identified a deficiency of circulating arginine in patients with COVID-19. Arginine is a semi-essential amino acid that serves as key regulator of immune and vascular cell function. Arginine is metabolized by nitric oxide (NO) synthase to NO which plays a pivotal role in host defense and vascular health, whereas the catabolism of arginine by arginase to ornithine contributes to immune suppression and vascular disease. Notably, arginase activity is upregulated in COVID-19 patients in a disease-dependent fashion, favoring the production of ornithine and its metabolites from arginine over the synthesis of NO. This rewiring of arginine metabolism in COVID-19 promotes immune and endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, inflammation, vasoconstriction, thrombosis, and arterial thickening, fibrosis, and stiffening, which can lead to vascular occlusion, muti-organ failure, and death. Strategies that restore the plasma concentration of arginine, inhibit arginase activity, and/or enhance the bioavailability and potency of NO represent promising therapeutic approaches that may preserve immune function and prevent the development of severe vascular disease in patients with COVID-19.
Collapse
|
17
|
Kumar G, Saini M, Kundu S. Therapeutic enzymes as non-conventional targets in cardiovascular impairments:A Comprehensive Review. Can J Physiol Pharmacol 2021; 100:197-209. [PMID: 34932415 DOI: 10.1139/cjpp-2020-0732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.
Collapse
Affiliation(s)
- Gaurav Kumar
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Manisha Saini
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| | - Suman Kundu
- University of Delhi - South Campus, 93081, Biochemistry, New Delhi, Delhi, India;
| |
Collapse
|
18
|
Wijnands KAP, Meesters DM, Vandendriessche B, Briedé JJ, van Eijk HMH, Brouckaert P, Cauwels A, Lamers WH, Poeze M. Microcirculatory Function during Endotoxemia-A Functional Citrulline-Arginine-NO Pathway and NOS3 Complex Is Essential to Maintain the Microcirculation. Int J Mol Sci 2021; 22:ijms222111940. [PMID: 34769369 PMCID: PMC8584871 DOI: 10.3390/ijms222111940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 μg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3−/− compared to Nos2−/− mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2−/− mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3−/− or Nos2−/−/Nos3−/− mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2−/− mice), as this beneficial effect was absent in Nos3−/− or Nos2−/−/Nos3−/− mice.
Collapse
Affiliation(s)
- Karolina A. P. Wijnands
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Correspondence: ; Tel.: +31-650-513-913
| | - Dennis M. Meesters
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
- Department of Genetics & Cell Biology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Benjamin Vandendriessche
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Byteflies, 2600 Antwerp, Belgium
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob J. Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Hans M. H. van Eijk
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| | - Peter Brouckaert
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Anje Cauwels
- VIB Inflammation Research Center, 9052 Ghent, Belgium; (B.V.); (P.B.); (A.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences, 9052 Ghent, Belgium
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Martijn Poeze
- Department of Surgery, NUTRIM School of Nutrition, Translational Research in Metabolism, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (D.M.M.); (H.M.H.v.E.); (M.P.)
| |
Collapse
|
19
|
Fetal oxygen supply can be improved by an effective cross-talk between fetal erythrocytes and vascular endothelium. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166243. [PMID: 34371111 DOI: 10.1016/j.bbadis.2021.166243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
In twin/multiple pregnancy, siblings experience an adverse intrauterine environment which forms the major etiological factor leading to pathological conditions. The status of the developing fetus is highly determined by the nitric oxide (NO) level, that facilitates vasodilation which in turn modulates the oxygen and nutrition supply. As the umbilical cord (UC) lacks innervation, activation of the endothelial nitric oxide synthase (NOS3) is fundamental to maintain adequate NO production. Recent ground breaking fact showed that under stress conditions, circulating red blood cells (RBCs) can actively produces NO as a "rescue mechanism". Therefore, this study majorly focused on the molecular mechanisms that affected the redox environment by altering NOS3 activation - both in the UC arteries and vein endothelium and RBCs - that have impacts on developmental parameters, like birth weight. In connection to that, we pursued the communication efficiency between the vessels' endothelium and the circulating RBCs in demand of bioavailable NO. Our results indicated that twinning itself at stage 33-35 weeks, does not reduce the NOS3 level and its phosphorylation status in the cord vessels. However, RBC-NOS3 activation is highly upregulated during this period - providing additional evidence for the active regulatory role of fetal RBCs in the rate of blood flow - and this functional activity highly correlates with the birth weight of the fetuses. Detailed analysis on NOS3 signalling at different time points of gestation could establish a benchmark in understanding of the pathophysiological mechanisms involved in the process of developing neonatal vascular diseases.
Collapse
|
20
|
Sevrin T, Sirvins C, David A, Aguesse A, Gandon A, Castellano B, Darmaun D, Boquien CY, Alexandre-Gouabau MC. Dietary Arginine Supplementation during Gestation and Lactation Increases Milk Yield and Mammary Lipogenesis in Rats. J Nutr 2021; 151:2188-2198. [PMID: 34091672 DOI: 10.1093/jn/nxab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arginine, an essential amino acid during the reproductive period, has been shown to enhance lactation performances in livestock. Whether it could help mothers with breastfeeding difficulties is not known. OBJECTIVES This study aimed to determine whether dietary arginine supplementation would enhance milk production in rat dams nursing large 12-pup litters and, if so, what mechanisms are involved. METHODS In 3 series of experiments, differing in dam killing timing, 59 primiparous, pregnant Sprague-Dawley rats (mean ± SD weight: 254 ± 24.7 g) were randomly assigned to receive either 1) an AIN-93G diet supplemented with l-arginine at 2.0% (ARG diet), through lactation and gestation (AGL group); 2) a control AIN-93G diet including at 3.5% an isonitrogenous mix of amino acids that are not essential for lactation (MA diet), during gestation and lactation (MA group); or 3) the MA diet during gestation and the ARG diet during lactation (AL group). Milk flow was measured using deuterated water enrichment between days 11 and 18. Plasma hormones and mammary expression of genes involved in lactation were measured using ELISA and qRT-PCR, respectively, at lactation days 12, 18, or 21 in the 3 experiments. Data were analyzed by ANOVA. RESULTS Dam food intake, pup weight gain, milk flow normalized to dam weight, and milk fat concentration were 17%, 9%, 20%, and 20% greater in the AGL group than in the MA group, respectively (P < 0.05). Genes involved in lipogenesis and lipid regulation were overexpressed ≤2.76-fold in the mammary gland of AGL dams compared with MA dams (P < 0.05) and plasma leptin concentration was 39% higher (P = 0.008). Milk flow and composition and mammary gene expression of the AL group did not differ from those of the MA group, whereas milk fat concentration and flow were 26% and 37% lower than in the AGL group, respectively. CONCLUSIONS Arginine supplementation during gestation and lactation enhances milk flow and mammary lipogenesis in rats nursing large litters.
Collapse
Affiliation(s)
- Thomas Sevrin
- Laboratoire FRANCE Bébé Nutrition, Laval, France
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Charlène Sirvins
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Agnès David
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Audrey Aguesse
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Alexis Gandon
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Blandine Castellano
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | - Dominique Darmaun
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
- University Hospital of Nantes, Nantes, France
| | - Clair-Yves Boquien
- UMR 1280-Pathophysiology of Nutritional Adaptations (PhAN), Nantes University, INRAE, IMAD, CRNH-Ouest, Nantes, France
| | | |
Collapse
|
21
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
22
|
Shosha E, Fouda AY, Lemtalsi T, Haigh S, Fulton D, Ibrahim A, Al-Shabrawey M, Caldwell RW, Caldwell RB. Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction. Mol Metab 2021; 53:101273. [PMID: 34139341 PMCID: PMC8274341 DOI: 10.1016/j.molmet.2021.101273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Retinal ischemic disease is a major cause of vision loss. Current treatment options are limited to late-stage diseases, and the molecular mechanisms of the initial insult are not fully understood. We have previously shown that the deletion of the mitochondrial arginase isoform, arginase 2 (A2), limits neurovascular injury in models of ischemic retinopathy. Here, we investigated the involvement of A2-mediated alterations in mitochondrial dynamics and function in the pathology. Methods We used wild-type (WT), global A2 knockout (A2KO-) mice, cell-specific A2 knockout mice subjected to retinal ischemia/reperfusion (I/R), and bovine retinal endothelial cells (BRECs) subjected to an oxygen-glucose deprivation/reperfusion (OGD/R) insult. We used western blotting to measure levels of cell stress and death markers and the mitochondrial fragmentation protein, dynamin related protein 1 (Drp1). We also used live cell mitochondrial labeling and Seahorse XF analysis to evaluate mitochondrial fragmentation and function, respectively. Results We found that the global deletion of A2 limited the I/R-induced disruption of retinal layers, fundus abnormalities, and albumin extravasation. The specific deletion of A2 in endothelial cells was protective against I/R-induced neurodegeneration. The OGD/R insult in BRECs increased A2 expression and induced cell stress and cell death, along with decreased mitochondrial respiration, increased Drp1 expression, and mitochondrial fragmentation. The overexpression of A2 in BREC also decreased mitochondrial respiration, promoted increases in the expression of Drp1, mitochondrial fragmentation, and cell stress and resulted in decreased cell survival. In contrast, the overexpression of the cytosolic isoform, arginase 1 (A1), did not affect these parameters. Conclusions This study is the first to show that A2 in endothelial cells mediates retinal ischemic injury through a mechanism involving alterations in mitochondrial dynamics and function. Ischemic retinopathy is a common feature of blinding eye disease. Arginase 2 overexpression in endothelial cells induces mitochondrial dysfunction. Endothelial-specific arginase 2 deletion improves neuronal survival after ischemia. Endothelial cell arginase 2 plays a crucial role in ischemic retinal injury.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Abdelrahman Y Fouda
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Stephen Haigh
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - David Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Ahmed Ibrahim
- Vision Discovery Institute, Augusta University, Augusta, GA, USA; Wayne State University, Department of Ophthalmology, Visual, and Anatomical Sciences, Department of Pharmacology, Detroit, MI, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Al-Shabrawey
- Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Oral Biology, Dental College of Georgia, Augusta, GA, USA
| | - R William Caldwell
- Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Vision Discovery Institute, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
23
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
24
|
Mahdi A, Cortese-Krott MM, Kelm M, Li N, Pernow J. Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic Biol Med 2021; 168:95-109. [PMID: 33789125 DOI: 10.1016/j.freeradbiomed.2021.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
The fundamental physiology of circulating red blood cells (RBCs) and platelets involving regulation of oxygen transport and hemostasis, respectively, are well-described in the literature. Their abundance in the circulation and their interaction with the vascular wall and each other have attracted the attention of other putative physiological and pathophysiological effects of these cells. RBCs and platelets are both important regulators of redox balance harboring powerful pro-oxidant and anti-oxidant (enzymatic and non-enzymatic) capacities. They are also involved in the regulation of vascular tone mainly via export of nitric oxide bioactivity and adenosine triphosphate. Of further importance are emerging observations that these cells undergo functional alterations when exposed to risk factors for cardiovascular disease and during developed cardiometabolic diseases. Under these conditions, the RBCs and platelets contribute to increased oxidative stress by their formation of reactive species including superoxide anion radical, hydrogen peroxide and peroxynitrite. These alterations trigger key changes in the vascular wall characterized by enhanced oxidative stress, reduced nitric oxide bioavailability and endothelial dysfunction. Additional pathophysiological effects are triggered in the heart resulting in increased susceptibility to ischemia-reperfusion injury with impairment in cardiac function. Pharmacological interventions aiming at restoring circulating cell function has been shown to exert marked beneficial effects on cardiovascular function. In this review, we summarize the current knowledge of RBC and platelet biology with special focus on redox biology, their roles in the development of cardiovascular disease and potential therapeutic strategies targeting RBC and platelet dysfunction. Finally, the complex and scarcely understood interaction between RBCs and platelets is discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam M Cortese-Krott
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Nailin Li
- Department of Medicine, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation in mice. Biomed Pharmacother 2021; 139:111562. [PMID: 33839492 DOI: 10.1016/j.biopha.2021.111562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Periplocymarin is an effective component of Periplocae Cortex, which was wildly used as an ingredient in Traditional Chinese Medicine. Our group previously reported that periplocymarin exerted cardiotonic role via promoting calcium influx. However, its exact role in the pathogenesis of myocardial fibrosis has not been elucidated yet. The present study was aimed at determining the potential effect and underlying mechanism of periplocymarin in isoproterenol (ISO)-induced myocardial fibrosis. C57BL/6 mice were subcutaneously injected with ISO (5 mg/kg/day) or saline for 1 week. The early-to-atrial wave ratio (E/A ratio) measured by echocardiography revealed that ISO-induced heart stiffness was remarkably reversed by administration of periplocymarin (5 mg/kg/day). Masson trichrome staining exhibited that treatment of periplocymarin reduced the excessive deposition of extracellular matrix (ECM). Further investigations employing real-time PCR and western blot demonstrated that periplocymarin suppressed the expression of fibrosis related genes (Col1a1, Col3a1, Acta2 and Tgfb1) and proteins (Collagen I, Collagen III, α-SMA and TGF-β1) induced by ISO. Metabolomics analysis demonstrated that periplocymarin ameliorated the disorders triggered by ISO and many of the differential metabolic substances were involved in amino acid, glucose and lipid metabolism. Further analysis using network pharmacology revealed that three key genes, namely NOS2, NOS3 and Ptgs2, may be the potential targets of periplocymarin and responsible for the disorders. Validation using heart tissues showed that the mRNA expression of NOS3 was decreased while Ptgs2 was increased upon ISO treatment, which were reversed by periplocymarin. Moreover, the expression of COX-2 (Ptgs2 encoded protein) was consistent with the aspect of Ptgs2 mRNA, while eNOS (NOS3 encoded protein) expression was unchanged. In vitro studies exhibited that periplocymarin exerts anti-fibrotic function via regulating at least eNOS and COX-2 in cardiomyocyte. Taken together, periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation, the potential mechanism was that periplocymarin targeted on, at least eNOS and COX-2, to improve the metabolic processes of cardiomyocyte and thus attenuated the myocardial fibrosis. Our study highlighted that periplocymarin is a potential therapeutic agent for the prevention of myocardial fibrosis.
Collapse
Affiliation(s)
- Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
26
|
L-Arginine Reduces Nitro-Oxidative Stress in Cultured Cells with Mitochondrial Deficiency. Nutrients 2021; 13:nu13020534. [PMID: 33562042 PMCID: PMC7914615 DOI: 10.3390/nu13020534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
L-Arginine (L-ARG) supplementation has been suggested as a therapeutic option in several diseases, including Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like syndrome (MELAS), arguably the most common mitochondrial disease. It is suggested that L-ARG, a nitric oxide (NO) precursor, can restore NO levels in blood vessels, improving cerebral blood flow. However, NO also participates in mitochondrial processes, such as mitochondrial biogenesis, the regulation of the respiratory chain, and oxidative stress. This study investigated the effects of L-ARG on mitochondrial function, nitric oxide synthesis, and nitro-oxidative stress in cell lines harboring the MELAS mitochondrial DNA (mtDNA) mutation (m.3243A>G). We evaluated mitochondrial enzyme activity, mitochondrial mass, NO concentration, and nitro-oxidative stress. Our results showed that m.3243A>G cells had increased NO levels and protein nitration at basal conditions. Treatment with L-ARG did not affect the mitochondrial function and mass but reduced the intracellular NO concentration and nitrated proteins in m.3243A>G cells. The same treatment led to opposite effects in control cells. In conclusion, we showed that the main effect of L-ARG was on protein nitration. Lowering protein nitration is probably involved in the mechanism related to L-ARG supplementation benefits in MELAS patients.
Collapse
|
27
|
Lobos M, Figueroa M, Martínez-Oyanedel J, López V, García-Robles MDLÁ, Tarifeño-Saldivia E, Carvajal N, Uribe E. Insights on the participation of Glu256 and Asp204 in the oligomeric structure and cooperative effects of human arginase type I. J Struct Biol 2020; 211:107533. [PMID: 32450233 DOI: 10.1016/j.jsb.2020.107533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022]
Abstract
Arginase (EC 3.5.3.1) catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and requires a bivalent cation, especially Mn2+ for its catalytic activity. It is a component of the urea cycle and regulates the intracellular levels of l-arginine, which makes the arginase a target for treatment of vascular diseases and asthma. Mammalian arginases contain an unusual S-shaped motif located at the intermonomeric interface. Until now, the studies were limited to structural role of the motif. Then, our interest was focused on functional aspects and our hypothesis has been that the motif is essential for maintain the oligomeric state, having Arg308 as a central axis. Previously, we have shown that the R308A mutant is monomeric and re-associates to the trimeric-cooperative state in the presence of low concentrations of guanidine chloride. We have now mutated Asp204 that interacts with Arg308 in the neighbor subunit, and also we mutated Glu256, proposed as important for oligomerization. Concretely, the human arginase I mutants D204A, D204E, E256A, E256Q and E256D were generated and examined. No differences were observed in the kinetic parameters at pH 9.5 or in tryptophan fluorescence. However, the D204A and E256Q variants were monomeric. On the other hand, D204E and E256D proved to be trimeric and kinetically cooperative at pH 7.5, whereas hyperbolic kinetics was exhibited by E256A, also trimeric. The results obtained strongly support the importance of the interaction between Arg255 and Glu256 in the cooperative properties of arginase, and Asp204 would be relevant to maintain the oligomeric state through salt bridges with Arg255 and Arg308.
Collapse
Affiliation(s)
- Marcela Lobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Vasthi López
- Departamento de Ciencias Biomédicas. Universidad Católica del Norte, Coquimbo, Chile
| | | | - Estefanía Tarifeño-Saldivia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nelson Carvajal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
28
|
Rojas S, Basualto E, Valdivia L, Vallejos N, Ceballos K, Peña E, Rivas C, Nualart F, Guzmán-Gutiérrez E, Escudero C, Toledo F, Sobrevia L, Cid M, González M. The activity of IKCa and BKCa channels contributes to insulin-mediated NO synthesis and vascular tone regulation in human umbilical vein. Nitric Oxide 2020; 99:7-16. [PMID: 32165314 DOI: 10.1016/j.niox.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 01/16/2023]
Abstract
Insulin regulates the l-arginine/nitric oxide (NO) pathway in human umbilical vein endothelial cells (HUVECs), increasing the plasma membrane expression of the l-arginine transporter hCAT-1 and inducing vasodilation in umbilical and placental veins. Placental vascular relaxation induced by insulin is dependent of large conductance calcium-activated potassium channels (BKCa), but the role of KCa channels on l-arginine transport and NO synthesis is still unknown. The aim of this study was to determine the contribution of KCa channels in both insulin-induced l-arginine transport and NO synthesis, and its relationship with placental vascular relaxation. HUVECs, human placental vein endothelial cells (HPVECs) and placental veins were freshly isolated from umbilical cords and placenta from normal pregnancies. Cells or tissue were incubated in absence or presence of insulin and/or tetraethylammonium, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole, iberiotoxin or NG-nitro-l-arginine methyl ester. l-Arginine uptake, plasma membrane polarity, NO levels, hCAT-1 expression and placenta vascular reactivity were analyzed. The inhibition of intermediate-conductance KCa (IKCa) and BKCa increases l-arginine uptake, which was related with protein abundance of hCAT-1 in HUVECs. IKCa and BKCa activities contribute to NO-synthesis induced by insulin but are not directly involved in insulin-stimulated l-arginine uptake. Long term incubation (8 h) with insulin increases the plasma membrane hyperpolarization and hCAT-1 expression in HUVECs and HPVECs. Insulin-induced relaxation in placental vasculature was reversed by KCa inhibition. The results show that the activity of IKCa and BKCa channels are relevant for both physiological regulations of NO synthesis and vascular tone regulation in the human placenta, acting as a part of negative feedback mechanism for autoregulation of l-arginine transport in HUVECs.
Collapse
Affiliation(s)
- Susana Rojas
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Emerita Basualto
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Luz Valdivia
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile
| | - Natalia Vallejos
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile; Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karen Ceballos
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departmento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia Rivas
- Departmento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Laboratorio de Neurobiología y Células Madres Neuro-CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Enrique Guzmán-Gutiérrez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile; Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD, Queensland, Australia
| | - Marcela Cid
- Departmento de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad deConcepción, Concepción, Chile; Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS), Chillán, Chile.
| |
Collapse
|
29
|
Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? J Clin Med 2020; 9:jcm9020425. [PMID: 32033258 PMCID: PMC7073619 DOI: 10.3390/jcm9020425] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working age Americans. Clinicians diagnose DR based on its characteristic vascular pathology, which is evident upon clinical exam. However, extensive research has shown that diabetes causes significant neurovascular dysfunction prior to the development of clinically apparent vascular damage. While laser photocoagulation and/or anti-vascular endothelial growth factor (VEGF) therapies are often effective for limiting the late-stage vascular pathology, we still do not have an effective treatment to limit the neurovascular dysfunction or promote repair during the early stages of DR. This review addresses the role of arginase as a mediator of retinal neurovascular injury and therapeutic target for early stage DR. Arginase is the ureohydrolase enzyme that catalyzes the production of L-ornithine and urea from L-arginine. Arginase upregulation has been associated with inflammation, oxidative stress, and peripheral vascular dysfunction in models of both types of diabetes. The arginase enzyme has been identified as a therapeutic target in cardiovascular disease and central nervous system disease including stroke and ischemic retinopathies. Here, we discuss and review the literature on arginase-induced retinal neurovascular dysfunction in models of DR. We also speculate on the therapeutic potential of arginase in DR and its related underlying mechanisms.
Collapse
|
30
|
Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces. Q Rev Biophys 2019; 52:e13. [PMID: 31771669 DOI: 10.1017/s0033583519000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the 'endothelial surface layer' or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a 'lung' in miniature. This interpretation may have far-reaching consequences for physiology.
Collapse
|
31
|
Tran NT, Sommermann T, Graf R, Trombke J, Pempe J, Petsch K, Kühn R, Rajewsky K, Chu VT. Efficient CRISPR/Cas9-Mediated Gene Knockin in Mouse Hematopoietic Stem and Progenitor Cells. Cell Rep 2019; 28:3510-3522.e5. [PMID: 31553918 PMCID: PMC6899516 DOI: 10.1016/j.celrep.2019.08.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations accumulating in hematopoietic stem and progenitor cells (HSPCs) during development can cause severe hematological disorders. Modeling these mutations in mice is essential for understanding their functional consequences. Here, we describe an efficient CRISPR/Cas9-based system to knock in and repair genes in mouse HSPCs. CRISPR/Cas9 ribonucleoproteins, in combination with recombinant adeno-associated virus (rAAV)-DJ donor templates, led to gene knockin efficiencies of up to 30% in the Lmnb1 and Actb loci of mouse HSPCs in vitro. The targeted HSPCs engraft and reconstitute all immune cell lineages in the recipient mice. Using this approach, we corrected a neomycin-disrupted Rag2 gene. The Rag2-corrected HSPCs restore B and T cell development in vivo, confirming the functionality of the approach. Our method provides an efficient strategy to study gene function in the hematopoietic system and model hematological disorders in vivo, without the need for germline mutagenesis.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Robin Graf
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Janine Trombke
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Kerstin Petsch
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Van Trung Chu
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
32
|
Metabolomics as a tool to study the mechanism of action of bioactive protein hydrolysates and peptides: A review of current literature. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta. Anesthesiology 2019; 128:564-573. [PMID: 29251642 DOI: 10.1097/aln.0000000000002032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. METHODS Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. RESULTS Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). CONCLUSIONS These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.
Collapse
|
34
|
Palani CD, Fouda AY, Liu F, Xu Z, Mohamed E, Giri S, Smith SB, Caldwell RB, Narayanan SP. Deletion of Arginase 2 Ameliorates Retinal Neurodegeneration in a Mouse Model of Multiple Sclerosis. Mol Neurobiol 2019; 56:8589-8602. [PMID: 31280447 DOI: 10.1007/s12035-019-01691-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Optic neuritis is a major clinical feature of multiple sclerosis (MS) and can lead to temporary or permanent vision loss. Previous studies from our laboratory have demonstrated the critical involvement of arginase 2 (A2) in retinal neurodegeneration in models of ischemic retinopathy. The current study was undertaken to investigate the role of A2 in MS-mediated retinal neuronal damage and degeneration. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2-/-) mice. EAE-induced motor deficits, loss of retinal ganglion cells, retinal thinning, inflammatory signaling, and glial activation were studied in EAE-treated WT and A2-/- mice and their respective controls. Increased expression of A2 was observed in WT retinas in response to EAE induction. EAE-induced motor deficits were markedly reduced in A2-/- mice compared with WT controls. Retinal flat mount studies demonstrated a significant reduction in the number of RGCs in WT EAE retinas in comparison with normal control mice. A significant improvement in neuronal survival was evident in retinas of EAE-induced A2-/- mice compared with WT. RNA levels of the proinflammatory molecules CCL2, COX2, IL-1α, and IL-12α were significantly reduced in the A2-/- EAE retinas compared with WT EAE. EAE-induced activation of glia (microglia and Müller cells) was markedly reduced in A2-/- retinas compared with WT. Western blot analyses showed increased levels of phospho-ERK1/2 and reduced levels of phospho-BAD in the WT EAE retina, while these changes were prevented in A2-/- mice. In conclusion, our studies establish EAE as an excellent model to study MS-mediated retinal neuronal damage and suggest the potential value of targeting A2 as a therapy to prevent MS-mediated retinal neuronal injury.
Collapse
Affiliation(s)
- Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
| | - Abdelrahman Y Fouda
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA
| | - Eslam Mohamed
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Shailedra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Sylvia B Smith
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Ruth B Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA.
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA.
- Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
35
|
Guo X, Chen Y, Seto CT. Rational design of novel irreversible inhibitors for human arginase. Bioorg Med Chem 2018; 26:3939-3946. [PMID: 29914772 DOI: 10.1016/j.bmc.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023]
Abstract
Parasites have developed a variety of strategies for invading hosts and escaping their immune response. A common mechanism by which parasites escape nitric oxide (NO) toxicity is the activation of host arginase. This activation leads to a depletion of l-arginine, which is the substrate for NO synthase, resulting in lower levels of NO and increased production of polyamines that are necessary for parasite growth and differentiation. For this reason, small molecule inhibitors for arginase show promise as new anti-parasitic chemotherapeutics. However, few arginase inhibitors have been reported. Here, we describe the discovery of novel irreversible arginase inhibitors, and their characterization using biochemical, kinetic, and structural studies. Importantly, we determined the site on human arginase that is labeled by one of the small molecule inhibitors. The tandem mass spectra data show that the inhibitor occupies the enzyme active site and forms a covalent bond with Thr135 of arginase. These findings pave the way for the development of more potent and selective irreversible arginase inhibitors.
Collapse
Affiliation(s)
- Xuefeng Guo
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yiming Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Christopher T Seto
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
| |
Collapse
|
36
|
Shosha E, Xu Z, Narayanan SP, Lemtalsi T, Fouda AY, Rojas M, Xing J, Fulton D, Caldwell RW, Caldwell RB. Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1. Int J Mol Sci 2018; 19:ijms19041215. [PMID: 29673160 PMCID: PMC5979610 DOI: 10.3390/ijms19041215] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022] Open
Abstract
We have recently found that diabetes-induced premature senescence of retinal endothelial cells is accompanied by NOX2-NADPH oxidase-induced increases in the ureohydrolase enzyme arginase 1 (A1). Here, we used genetic strategies to determine the specific involvement of A1 in diabetes-induced endothelial cell senescence. We used A1 knockout mice and wild type mice that were rendered diabetic with streptozotocin and retinal endothelial cells (ECs) exposed to high glucose or transduced with adenovirus to overexpress A1 for these experiments. ABH [2(S)-Amino-6-boronohexanoic acid] was used to inhibit arginase activity. We used Western blotting, immunolabeling, quantitative PCR, and senescence associated β-galactosidase (SA β-Gal) activity to evaluate senescence. Analyses of retinal tissue extracts from diabetic mice showed significant increases in mRNA expression of the senescence-related proteins p16INK4a, p21, and p53 when compared with non-diabetic mice. SA β-Gal activity and p16INK4a immunoreactivity were also increased in retinal vessels from diabetic mice. A1 gene deletion or pharmacological inhibition protected against the induction of premature senescence. A1 overexpression or high glucose treatment increased SA β-Gal activity in cultured ECs. These results demonstrate that A1 is critically involved in diabetes-induced senescence of retinal ECs. Inhibition of arginase activity may therefore be an effective therapeutic strategy to alleviate diabetic retinopathy by preventing premature senescence.
Collapse
Affiliation(s)
- Esraa Shosha
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - S Priya Narayanan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
- Department of Occupational Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Abdelrahman Y Fouda
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Modesto Rojas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Ji Xing
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
37
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
38
|
Kim K, Hurr C, Patik JC, Matthew Brothers R. Attenuated cutaneous microvascular function in healthy young African Americans: Role of intradermal l-arginine supplementation. Microvasc Res 2018; 118:1-6. [PMID: 29408444 DOI: 10.1016/j.mvr.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022]
Abstract
It has been established that endothelial function in conduit vessels is reduced in young African Americans (AA) relative to Caucasian Americans (CA). However, less is known regarding endothelial function in microvasculature of young AA. We hypothesized that microvascular function in response to local heating of skin is attenuated in young AA relative to age-matched CA due largely to the lack of NO bioavailability, which is in turn improved by intradermal l-arginine supplementation and/or inhibition of arginase. Nine AA and nine CA adults participated in this study. Participants were instrumented with four microdialysis membranes in the cutaneous vasculature of one forearm and were randomly assigned to receive 1) lactated Ringer's solution as a control site; 2) 20 mM NG-nitro-l-arginine (l-NAME) to inhibit NO synthase activity; 3) 10 mM l-arginine to local supplement l-arginine; or 4) a combination of 5.0 mM (S)-(2‑boronoethyl)-l-cysteine-HCL (BEC) and 5.0 mM Nω-hydroxy-nor-l-arginine (nor-NOHA) at a rate of 2.0 μl/min to locally inhibit arginase activity. Cutaneous vascular conductance (CVC) was calculated as red blood cell flux divided by mean arterial pressure. All CVC data were presented as a percentage of maximal CVC (%CVCmax) that was determined by maximal cutaneous vasodilation induced by 44 °C heating plus sodium nitroprusside administration. The response during the 42 °C local heating plateau was blunted in the AA at the control site (CA: 84 ± 12 vs. AA: 62 ± 6 vs. %CVCmax; P < 0.001). This response was improved in AA at the l-arginine site (Control: 62 ± 6 vs. l-arginine: 70 ± 18%CVCmax; P < 0.05) but not in the arginase inhibited site (Control: 62 ± 6 vs. Arginase inhibited: 62 ± 13%CVCmax; P = 0.91). In addition, the AA group had an attenuated NO contribution to the plateau phase during 42 °C local heating relative to the CA group (CA: 56 ± 14 vs. AA: 44 ± 6 Δ %CVCmax; P < 0.001). These findings suggest that 1) cutaneous microvascular function in response to local heating is blunted in young AA when compared to age-matched young CA; 2) this attenuated response is partly related to decrease in NO bioavailability in young AA; and 3) a local infusion of l-arginine, but not arginase inhibition, improves cutaneous microvascular responses to local heating in young AA relative to CA.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pathology, The University of Alabama at Birmingham, United States
| | - Chansol Hurr
- Department of Pharmacology and Physiology, George Washington University, United States
| | - Jordan C Patik
- Department of Kinesiology, The University of Texas at Arlington, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, United States.
| |
Collapse
|
39
|
Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Front Immunol 2017; 8:93. [PMID: 28223985 PMCID: PMC5293781 DOI: 10.3389/fimmu.2017.00093] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.
Collapse
Affiliation(s)
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amir A Al-Khami
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
40
|
Moretto J, Guglielmetti AS, Tournier-Nappey M, Martin H, Prigent-Tessier A, Marie C, Demougeot C. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats. Exp Gerontol 2017; 90:52-60. [PMID: 28132871 DOI: 10.1016/j.exger.2017.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/05/2023]
Abstract
While ageing is frequently associated with l-arginine deficiency, clinical and experimental studies provided controversial data on the interest of a chronic l-arginine supplementation with beneficial, no or even deleterious effects. It was hypothesized that these discrepancies might relate to a deviation of l-arginine metabolism towards production of l-ornithine rather than nitric oxide as a result of age-induced increase in arginase activity. This study investigated the effect of ageing on arginase activity/expression in target tissues and determined whether l-arginine supplementation modulated the effect of ageing on arginase activity. Arginase activity and expression were measured in the heart, vessel, brain, lung, kidney and liver in young rats (3-months old) and aged Wistar rats (22-24-months-old) with or without l-arginine supplementation (2.25% in drinking water for 6weeks). Plasma levels of l-arginine and l-ornithine were quantified in order to calculate the plasma l-arginine/l-ornithine ratio, considered as a reflection of arginase activity. Cardiovascular parameters (blood pressure, heart rate) and aortic vascular reactivity were also studied. Ageing dramatically reduced plasma l-arginine and l-arginine/l-ornithine ratio, decreased liver and kidney arginase activities but did not change activities in other tissues. l-Arginine supplementation normalized plasma l-arginine and l-arginine/l-ornithine ratio, improved endothelial function and decreased systolic blood pressure. These effects were associated with decreased arginase activity in aorta along with no change in the other tissues except in the lung in which activity was increased. A strong mismatch was therefore observed between arginase activity and expression in analyzed tissues. The present study reveals that ageing selectively changes arginase activity in clearance tissues, but does not support a role of the arginase pathway in the potential deleterious effect of the l-arginine supplementation in aged patients. Moreover, our data argue against the use of the measurement of plasma l-arginine/l-ornithine ratio to estimate arginase activity in aged patients.
Collapse
Affiliation(s)
- Johnny Moretto
- PEPITE EA4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | | | - Maude Tournier-Nappey
- PEPITE EA4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Hélène Martin
- PEPITE EA4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France
| | | | - Christine Marie
- INSERM U1093, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
41
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
42
|
Chen F, Li X, Aquadro E, Haigh S, Zhou J, Stepp DW, Weintraub NL, Barman SA, Fulton DJR. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic Biol Med 2016; 99:167-178. [PMID: 27498117 PMCID: PMC5240036 DOI: 10.1016/j.freeradbiomed.2016.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Excessive levels of reactive oxygen species (ROS) and increased expression of NADPH oxidases (Nox) have been proposed to contribute to pulmonary artery hypertension (PAH) and other cardiovascular diseases (CVD). Nox enzymes are major sources of ROS but the mechanisms regulating changes in Nox expression in disease states remain poorly understood. Epigenetics encompasses a number of mechanisms that cells employ to regulate the ability to read and transcribe DNA. Histone acetylation is a prominent example of an epigenetic mechanism regulating the expression of numerous genes by altering chromatin accessibility. The goal of this study was to determine whether inhibition of histone deacetylases (HDAC) affects the expression of Nox isoforms and reduces pulmonary hypertension. In immune cells, we found that multiple HDAC inhibitors robustly decreased Nox2 mRNA and protein expression in a dose-dependent manner concomitant with reduced superoxide production. This effect was not restricted to Nox2 as expression of Nox1, Nox4 and Nox5 was also reduced by HDAC inhibition. Surprisingly, Nox promoter-luciferase activity was unchanged in the presence of HDAC inhibitors. In macrophages and lung fibroblasts, ChIP experiments revealed that HDAC inhibitors block the binding of RNA polymerase II and the histone acetyltransferase p300 to the Nox2, Nox4 and Nox5 promoter regions and decrease histones activation marks (H3K4me3 and H3K9ac) at these promoter sites. We further show that the ability of CRISPR-ON to drive transcription of Nox1, Nox2, Nox4 and Nox5 genes is blocked by HDAC inhibitors. In a monocrotaline (MCT) rat model of PAH, multiple HDAC isoforms are upregulated in isolated pulmonary arteries, and HDAC inhibitors attenuate Nox expression in isolated pulmonary arteries and reduce indices of PAH. In conclusion, HDAC inhibitors potently suppress Nox gene expression both in vitro and in vivo via epigenetically regulating chromatin accessibility.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029 China; Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.
| | - Xueyi Li
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Emily Aquadro
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Stephen Haigh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology, Augusta University, Augusta, GA 30912, USA
| | - David W Stepp
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Scott A Barman
- Department of Pharmacology, Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
43
|
Ogino K, Obase Y, Ito T, Fujimura M, Eguchi E, Kubo M, Nagaoka K, Nakamura H. Relationship between serum arginase I and l-arginine or exhaled nitric oxide in asthma. Free Radic Res 2016; 50:1165-1172. [PMID: 27328636 DOI: 10.1080/10715762.2016.1202407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The relationship between serum arginase I and serum l-arginine or fractional exhaled nitric oxide (FENO) was evaluated cross-sectionally in asthmatic patients. No sex difference was observed in the serum mean levels of arginase I and l-arginine or FENO. Arginase I and FENO were higher in patients 60 or younger years than in those over 60 years. Asthmatic patients were divided into three groups: no steroid therapy, inhalation steroid therapy, and oral steroid therapy. Arginase I, FENO and high-sensitivity-C-reactive protein (hs-CRP) were significantly lower in the inhalation steroid therapy group than in the no steroid therapy group. Correlations were observed between arginase I and FENO, l-arginine, hs-CRP, WBC, and age, and also between FENO and IgE, WBC, and age. A logistic regression analysis revealed the positive association of arginase I with FENO, and the negative association of l-arginine. FENO was positively associated with arginase I and IgE. These results indicated that serum arginase I might influence serum levels of l-arginine and FENO, and that IgE might influence FENO in asthmatic patients.
Collapse
Affiliation(s)
- Keiki Ogino
- a Department of Public Health , Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasushi Obase
- b Division of Respiratory Diseases, Department of Medicine , Kawasaki Medical School , Okayama , Japan.,c Second Department of Internal Medicine , Nagasaki University School of Medicine , Nagasaki , Japan
| | - Tatsuo Ito
- d Department of Molecular Pathology , Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Masaki Fujimura
- e Respiratory Medicine, National Hospital Organization Nanao Hospital , Nanao , Japan
| | - Eri Eguchi
- a Department of Public Health , Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masayuki Kubo
- a Department of Public Health , Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kenjiro Nagaoka
- a Department of Public Health , Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroyuki Nakamura
- f Department of Environmental and Preventive Medicine , Graduate School of Medical Science, Kanazawa University , Kanazawa , Japan
| |
Collapse
|
44
|
Transcriptional and Posttranslational Regulation of eNOS in the Endothelium. ADVANCES IN PHARMACOLOGY 2016; 77:29-64. [PMID: 27451094 DOI: 10.1016/bs.apha.2016.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a highly reactive free radical gas and these unique properties have been adapted for a surprising number of biological roles. In neurons, NO functions as a neurotransmitter; in immune cells, NO contributes to host defense; and in endothelial cells, NO is a major regulator of blood vessel homeostasis. In the vasculature, NO is synthesized on demand by a specific enzyme, endothelial nitric oxide synthase (eNOS) that is uniquely expressed in the endothelial cells that form the interface between the circulating blood and the various tissues of the body. NO regulates endothelial and blood vessel function via two distinct pathways, the activation of soluble guanylate cyclase and cGMP-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The chemical properties of NO also serve to reduce oxidation and regulate mitochondrial function. Reduced synthesis and/or compromised biological activity of NO precede the development of cardiovascular disease and this has generated a high level of interest in the mechanisms controlling the synthesis and fate of NO in the endothelium. The amount of NO produced results from the expression level of eNOS, which is regulated at the transcriptional and posttranscriptional levels as well as the acute posttranslational regulation of eNOS. The goal of this chapter is to highlight and integrate past and current knowledge of the mechanisms regulating eNOS expression in the endothelium and the posttranslational mechanisms regulating eNOS activity in both health and disease.
Collapse
|
45
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
A metabolomics approach for investigating urinary and plasma changes in spontaneously hypertensive rats (SHR) fed with chicken skin protein hydrolysates diets. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
47
|
Puga GM, de P Novais I, Katsanos CS, Zanesco A. Combined effects of aerobic exercise and l-arginine ingestion on blood pressure in normotensive postmenopausal women: A crossover study. Life Sci 2016; 151:323-329. [PMID: 26972606 DOI: 10.1016/j.lfs.2016.02.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
Abstract
After menopause the incidence of cardiovascular diseases increases in women. A decrease in nitric oxide (NO) bioavailability has been pointed out to play a major role in this phenomenon. Since it is believed that l-arginine administration could improve NO bioavailability, the aim of this study was to examine the effects of acute l-arginine administration associated with aerobic exercise on blood pressure (BP), redox state and inflammatory biomarkers in normotensive postmenopausal women (NPW). Sixteen volunteers (57±6yr) were subjected to four experimental sessions (crossover design): arginine+exercise (A-E); arginine (ARG); exercise+placebo (EXE); control (CON). Each session was initiated with either 9g of l-arginine ingestion (ARG or A-E days), placebo (EXE day), or nothing (CON day). The participants performed 30min of aerobic exercise (A-E and EXE days) or sitting rest (CON and ARG days). Blood samples were collected before each session and 45min after the intervention. Office BP and ambulatory blood pressure monitoring (ABPM) were evaluated. NO/cGMP pathway, redox state and inflammatory biomarkers were measured. Systolic BP decreased during the 24-hour in A-E and EXE sessions. However, diastolic BP reduced only in A-E session. No changes were found in the biomarkers concentrations. In conclusion, the association was effective in lowering diastolic BP in NPW. Additionally, physical exercise alone promoted a long lasting effect on systolic BP measured by ABPM in this population, although this beneficial effect was not associated with changes in the cardio-inflammatory biomarkers. Possibly, other factors such as neural influences could be mediating this effect.
Collapse
Affiliation(s)
- Guilherme M Puga
- Laboratory of Cardiovascular Physiology and Exercise Science, Institute of Biosciences, UNESP, Rio Claro, SP, Brazil; Department of Physical Education, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil.
| | - Iane de P Novais
- Laboratory of Cardiovascular Physiology and Exercise Science, Institute of Biosciences, UNESP, Rio Claro, SP, Brazil.
| | | | - Angelina Zanesco
- Laboratory of Cardiovascular Physiology and Exercise Science, Institute of Biosciences, UNESP, Rio Claro, SP, Brazil.
| |
Collapse
|
48
|
Rafikova O, Meadows ML, Kinchen JM, Mohney RP, Maltepe E, Desai AA, Yuan JXJ, Garcia JGN, Fineman JR, Rafikov R, Black SM. Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS One 2016; 11:e0150480. [PMID: 26937637 PMCID: PMC4777490 DOI: 10.1371/journal.pone.0150480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/14/2016] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Mary L. Meadows
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | | | | | - Emin Maltepe
- Division of Neonatology, University of California San Francisco, San Francisco, California, United States of America
| | - Ankit A. Desai
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Ruslan Rafikov
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Stephen M. Black
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
49
|
Bhatta A, Sangani R, Kolhe R, Toque HA, Cain M, Wong A, Howie N, Shinde R, Elsalanty M, Yao L, Chutkan N, Hunter M, Caldwell RB, Isales C, Caldwell RW, Fulzele S. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model. Mol Cell Endocrinol 2016; 422:211-220. [PMID: 26704078 PMCID: PMC4824063 DOI: 10.1016/j.mce.2015.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/21/2023]
Abstract
A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases.
Collapse
Affiliation(s)
- Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Rajnikumar Sangani
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Departments of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Michael Cain
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Abby Wong
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Nicole Howie
- School of Dentistry, Georgia Regents University, Augusta, GA 30912, Augusta, GA 30912, USA
| | - Rahul Shinde
- Departments of Pathology, Georgia Regents University, Augusta, GA 30912, USA
| | - Mohammed Elsalanty
- School of Dentistry, Georgia Regents University, Augusta, GA 30912, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Monty Hunter
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA
| | - Ruth B Caldwell
- Cell Biology and Anatomy and Vascular Biology Center, Georgia Regents University; Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Carlos Isales
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| | - Sadanand Fulzele
- Departments of Orthopaedic Surgery, Georgia Regents University, Augusta, GA 30912, USA; Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
50
|
Zhou R, Kang X, Tang B, Mohan C, Wu T, Peng A, Liu JY. Ornithine is a key mediator in hyperphosphatemia-mediated human umbilical vein endothelial cell apoptosis: Insights gained from metabolomics. Life Sci 2016; 146:73-80. [PMID: 26773858 DOI: 10.1016/j.lfs.2016.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
AIMS Hyperphosphatemia is associated with accelerated vascular endothelial dysfunction in patients with chronic kidney disease (CKD). The purpose of this study is to investigate the molecular mechanisms underlying hyperphosphatemia-caused endothelial dysfunction. MAIN METHODS The metabolic fingerprinting of human umbilical vein endothelial cells (HUVECs) subjected to hyperphosphatemia was characterized using an integrated metabolomics approach. HUVECs cultured in physiologically simulated hyperphosphatemia with or without phosphonoformic acid, a sodium-dependent phosphate transporter inhibitor (N=6) were collected for metabolomics analysis. Multivariate principle component analysis and partial least squares discriminant analysis were applied to analyze the metabolic data. The key metabolites were confirmed by quantitative analysis using liquid chromatography coupled with tandem mass spectrometer (LC-MS/MS). KEY FINDINGS 36 metabolites were significantly altered in HUVECs following the challenges of hyperphosphatemia mimic, involving several metabolic pathways (all P<0.05). Among them, ornithine increased significantly in the HUVECs mediated by hyperphosphatemia mimic, and its levels positively correlated with cell apoptosis rate (r=0.674, P=0.002), and several additional metabolites in multiple metabolic pathways. The changes in the levels of ornithine and other several metabolites were supported by subsequent quantitative analyses using LC-MS/MS. Further study demonstrated that the increase in ornithine level may result from the increased expression of arginase 2 in HUVECs, which mediates the hydrolysis of arginine to form ornithine. SIGNIFICANCE This is the first study demonstrating ornithine a key molecule mediating hyperphosphatemia-induced apoptosis of ECs. Arginase 2 may be a therapeutic target for hyperphosphatemia-associated cardiovascular events.
Collapse
Affiliation(s)
- Rong Zhou
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Department of nephrology, Tongji University School of Medicine, Shanghai, PR China
| | - Xin Kang
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Bo Tang
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, TX, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, TX, USA
| | - Ai Peng
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Jun-Yan Liu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|