1
|
Li Z, Liang L, Zhang J, Fan X, Yang Y, Yang H, Wang Q, An J, Xue R, Zhuo Y, Qian H, Zhang Z. Res-Net-Based Modeling and Morphologic Analysis of Deep Medullary Veins Using Multi-Echo GRE at 7 T MRI. NMR IN BIOMEDICINE 2025; 38:e70042. [PMID: 40242874 DOI: 10.1002/nbm.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
The pathological changes in deep medullary veins (DMVs) have been reported in various diseases. However, accurate modeling and quantification of DMVs remain challenging. We aim to propose and assess an automated approach for modeling and quantifying DMVs at 7 Tesla (7 T) MRI. A multi-echo-input Res-Net was developed for vascular segmentation, and a minimum path loss function was used for modeling and quantifying the geometric parameter of DMVs. Twenty-one patients diagnosed as subcortical vascular dementia (SVaD) and 20 condition matched controls were included in this study. The amplitude and phase images of gradient echo with five echoes were acquired at 7 T. Ten GRE images were manually labeled by two neurologists and compared with the results obtained by our proposed method. Independent samples t test and Pearson correlation were used for statistical analysis in our study, and p value < 0.05 was considered significant. No significant offset was found in centerlines obtained by human labeling and our algorithm (p = 0.734). The length difference between the proposed method and manual labeling was smaller than the error between different clinicians (p < 0.001). Patients with SVaD exhibited fewer DMVs (mean difference = -60.710 ± 21.810, p = 0.011) and higher curvature (mean difference = 0.12 ± 0.022, p < 0.0001), corresponding to their higher Vascular Dementia Assessment Scale-Cog (VaDAS-Cog) scores (mean difference = 4.332 ± 1.992, p = 0.036) and lower Mini-Mental State Examination (MMSE) (mean difference = -3.071 ± 1.443, p = 0.047). The MMSE scores were positively correlated with the numbers of DMVs (r = 0.437, p = 0.037) and were negatively correlated with the curvature (r = -0.426, p = 0.042). In summary, we proposed a novel framework for automated quantifying the morphologic parameters of DMVs. These characteristics of DMVs are expected to help the research and diagnosis of cerebral small vessel diseases with DMV lesions.
Collapse
Affiliation(s)
- Zhixin Li
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Liang
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jinyuan Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyi Fan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yishuang Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Yang
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Qianyao Wang
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Rong Xue
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Qian
- Navy Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Neurology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zihao Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Yang T, Peng P, Jiang S, Yan Y, Hu Y, Wang H, Ye C, Pan R, Sun J, Wu B. Multiple Hypointense Vessels are Associated with Cognitive Impairment in Patients with Single Subcortical Infarction. Transl Stroke Res 2025; 16:227-237. [PMID: 38051469 PMCID: PMC11976792 DOI: 10.1007/s12975-023-01206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
We aimed to explore the relationship between multiple hypointense vessels and cognitive function in patients with single subcortical infarction (SSI) and the role of SSI with different etiological mechanisms in the above relationship. Multiple hypointense vessels were measured by the number of deep medullary veins (DMVs), DMVs score, and cortical veins (CVs) score. The Montreal Cognitive Assessment (MoCA), the Shape Trail Test (STT), and the Stroop Color and Word Test (SCWT) were assessed to evaluate cognitive function. SSI was dichotomized as branch atheromatous disease (BAD) and cerebral small vessel disease (CSVD)-related SSI by whole-brain vessel-wall magnetic resonance imaging. We included a total of 103 acute SSI patients. After adjustments were made for related risk factors of cognitive function, the SSI patients with higher DMVs score were more likely to have longer STT-B (P = 0.001) and smaller STT-B-1 min (P = 0.014), and the SSI patients with higher CVs score were more likely to have shorter STT-A (P = 0.049). In subgroup analysis, we found that the negative relationship between DMVs scores and cognitive function and the positive relationship between CVs scores and cognitive function were significantly stronger in BAD patients. We provided valuable insights into the associations between DMVs, CVs, and multi-domain cognitive impairment in SSI patients, which underscored the necessity to further study the dynamic alterations of venules and their specific influence on post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Tang Yang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Pengfei Peng
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Shuai Jiang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Yuying Yan
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Yi Hu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Hang Wang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Ruosu Pan
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China.
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
3
|
Xu Z, Yan M, Chen S, Zhu J, Zhao P, Yang J, Yu X. Association of decreased visibility on deep medullary vein gray-matter volume mediated by increased extracellular fluid in the white matter of patients with cerebral small vessel disease. Quant Imaging Med Surg 2025; 15:1371-1382. [PMID: 39995713 PMCID: PMC11847188 DOI: 10.21037/qims-24-957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/03/2024] [Indexed: 02/26/2025]
Abstract
Background The visibility and signal continuity of deep medullary veins (DMVs) play an important role in cerebral small vessel disease (CSVD). However, the relationship between DMV and gray-matter atrophy remains unclear. This study sought to investigate the link between DMV scores, extracellular fluid, and gray-matter atrophy in patients with CSVD. Methods We reviewed the clinical and multimodal magnetic resonance imaging data from 123 patients diagnosed with CSVD between January and December 2022. The DMV score was assessed using a scoring system (0 to 3 points) based on DMV visibility on susceptibility-weighted images across six anatomical regions, yielding a final score from 0 to 18. Extracellular fluid was assessed through the metric of free water (FW) in normal-appearing white matter (NAWM). Normalized gray-matter volume (GM_N) was used to quantify the gray-matter volume, defined as the ratio of gray-matter volume to intracranial volume. Spearman correlation, general linear model, and mediation analyses were employed to evaluate the relationships among variables. Results Spearman correlation analysis revealed a positive correlation between DMV score and FW in NAWM (r=0.603; P<0.001). General linear model analysis confirmed this association as independent [β=0.656, 95% confidence interval (CI) 0.521-0.790; P<0.001]. Conversely, FW in NAWM showed a negative correlation with GM_N (r=-0.485; P<0.001), with an independent association confirmed by general linear model analysis (β=-0.630, 95% CI: -0.769 to -0.491; P<0.001). Additionally, the DMV score was negatively correlated with GM_N (r=-0.390; P<0.001), as supported by a significant association in general linear model analysis (β=-0.502, 95% CI: -0.657 to 0.348; P<0.001). Mediation analysis indicated a significant indirect effect of FW in NAWM on the relationship between DMV score and GM_N (β=-0.346, 95% CI: -0.534 to -0.187; P<0.001). All associations were remained significant after adjustments were made for age, gender, vascular risk factors, normalized white-matter hyperintensity volume, and CSVD burden. Conclusions The observed link between DMV disruption and FW in NAWM-GM_N suggests that DMV dysfunction may contribute to gray-matter atrophy in CSVD by increasing extracellular fluid. This identifies DMV changes as a key factor in CSVD pathology and supports the potential of targeting extracellular fluid as a therapeutic strategy to mitigate gray-matter loss.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Miaomiao Yan
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Songkuan Chen
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jieling Zhu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Panliang Zhao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiujiu Yang
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinjie Yu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Harmon JN, Chandran P, Chandrasekaran A, Hyde JE, Hernandez GJ, Reed MJ, Bruce MF, Khaing ZZ. Contrast-Enhanced Ultrasound Imaging Detects Anatomical and Functional Changes in Rat Cervical Spine Microvasculature With Normal Aging. J Gerontol A Biol Sci Med Sci 2024; 80:glae215. [PMID: 39188137 PMCID: PMC11701746 DOI: 10.1093/gerona/glae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 08/28/2024] Open
Abstract
Normal aging is associated with significant deleterious cerebrovascular changes; these have been implicated in disease pathogenesis and increased susceptibility to ischemic injury. Although these changes are well documented in the brain, few studies have been conducted in the spinal cord. Here, we utilize specialized contrast-enhanced ultrasound (CEUS) imaging to investigate age-related changes in cervical spinal vascular anatomy and hemodynamics in male Fisher 344 rats, a common strain in aging research. Aged rats (24-26 months, N = 6) exhibited significant tortuosity in the anterior spinal artery and elevated vascular resistance compared to adults (4-6 months, N = 6; tortuosity index 2.20 ± 0.15 vs 4.74 ± 0.45, p < .05). Baseline blood volume was lower in both larger vessels and the microcirculation in the aged cohort, specifically in white matter (4.44e14 ± 1.37e13 vs 3.66e14 ± 2.64e13 CEUS bolus area under the curve, p < .05). To elucidate functional differences, animals were exposed to a hypoxia challenge, whereas adult rats exhibited significant functional hyperemia in both gray matter (GM) and white matter (WM) (GM: 1.13 ± 0.10-fold change from normoxia, p < .05; WM: 1.16 ± 0.13, p < .05), aged rats showed no response. Immunohistochemistry revealed reduced pericyte coverage and activated microglia behavior in aged rats, which may partially explain the lack of vascular response. This study provides the first in vivo description of age-related hemodynamic differences in the cervical spinal cord.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Preeja Chandran
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Gustavo J Hernandez
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Hayden MR. Brain endothelial cell activation and dysfunction associate with and contribute to the development of enlarged perivascular spaces and cerebral small vessel disease. Histol Histopathol 2024; 39:1565-1586. [PMID: 39051093 DOI: 10.14670/hh-18-792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multiple injurious stimuli to the brain's endothelium results in brain endothelial cell activation and dysfunction (BECact/dys) with upregulation of inflammatory signaling cascades and a decrease in bioavailable nitric oxide respectively. These injurious stimuli initiate a brain injury and a response to injury wound healing genetically programed cascade of events, which result in cellular remodeling of the neurovascular unit and blood-brain barrier with increased inflammation and permeability. These remodeling changes also include the perivascular spaces that become dilated to form enlarged perivascular spaces (EPVS) that may be identified noninvasively by magnetic resonance imaging. These EPVS are associated with and considered to be a biomarker for cerebral small vessel disease (SVD) and a dysfunctional glymphatic system with impaired removal of neurotoxic waste, which ultimately results in neurodegeneration with impaired cognition and dementia. The penultimate section discusses the understudied role of venous cerebral circulation in relation to EPVS, SVD, and the vascular contribution to cognitive impairment (VCID). The focus of this review will be primarily on BECact/dys that associates with and contributes to the development of EPVS, SVD, and impaired glymphatic system efflux. Importantly, BECact/dys may be a key piece of the puzzle to unlock this complicated story of EPVS and SVD. Multiple transmission electron micrographs and illustrations will be utilized to depict anatomical ultrastructure and allow for the discussion of multiple functional molecular cascades.
Collapse
Affiliation(s)
- Melvin Ray Hayden
- University of Missouri, School of Medicine, Columbia, Missouri, USA.
| |
Collapse
|
6
|
Chen X, Zhang J, Wang B, Jiang C. The "Hand as Foot" teaching method in the cerebral veins. Asian J Surg 2024; 47:4930-4931. [PMID: 38845312 DOI: 10.1016/j.asjsur.2024.05.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/23/2024] [Indexed: 11/09/2024] Open
Affiliation(s)
- Xianpeng Chen
- Baotou Clinical Medical College, Inner Mongolia Medical University, Inner Mongolia, 014040, China
| | - Jinfeng Zhang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, 014040, China.
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, 014040, China
| | - Changchun Jiang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, 014040, China
| |
Collapse
|
7
|
Lan H, Qiu W, Lei X, Xu Z, Yu J, Wang H. Deep medullary vein abnormalities impact white matter hyperintensity volume through increases in interstitial free water. BMC Neurol 2024; 24:405. [PMID: 39433983 PMCID: PMC11492461 DOI: 10.1186/s12883-024-03921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Our intent was to explore the mediating role of interstitial free water (FW) linking deep medullary vein (DMV) score to white matter hyperintensity (WMH) volume. METHODS Our research team conducted a forward-looking analysis of initial clinical and imaging information gathered from 125 patients with cerebral small vessel disease. We identified six anatomic DMV regions on susceptibility weighted imaging (SWI) studies. Each region earned a score of 0-3, determined by the visual conditions of vessels, summing all six to generate a DMV score. We utilized fluid-attenuated inversion recovery (FLAIR) sequences to measure the volume of WMH. Additionally, we employed diffusion tensor imaging (DTI) to assess FW value. RESULTS DMV score significantly positively correlated with FW value and with WMH volume (p < 0.05), and value of FW positively correlated with WMH volume (p < 0.05). The indirect effect of DMV score on WMH volume was mediated by FW (β = 0.281, 95% confidence interval [CI]: 0.178-0.388), whether adjusted for age and gender (β = 0.142, 95% CI: 0.058-0.240) or for age, gender and vascular risk factors (β = 0.141, 95% CI: 0.054-0.249). CONCLUSION DMV score correlate with WMH volume by virtue of FW increases in white matter.
Collapse
Affiliation(s)
- Haiyuan Lan
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Weiwen Qiu
- Department of Neurology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Xinjun Lei
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310000, China
| | - Jie Yu
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, 323000, China
| | - Huimei Wang
- Department of Neurology, Lishui People's Hospital, Lishui, 323000, China.
| |
Collapse
|
8
|
Zhao Q, Zhu X, Wan X, Wu J, Shen F, Bian F, Yang F, Cao X. Mapping research on cognitive impairment in heart failure patients: A bibliometric analysis from 2013 to 2022. Heliyon 2024; 10:e38955. [PMID: 39430440 PMCID: PMC11490794 DOI: 10.1016/j.heliyon.2024.e38955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Background Cognitive impairment is a common concern among individuals with heart failure, and the intersection of these conditions poses significant challenges for scholarly investigation. This study aims to conduct a comprehensive bibliometric analysis to visually depict the current state and emerging trends regarding cognitive impairment among heart failure patients. Methods Articles focusing on cognitive impairment in heart failure patients published between 2013 and 2022 were retrieved from the Web of Science Core Collection on February 3, 2023. Analysis of publication trends was conducted using Microsoft Excel 2016. The bibliometric analysis,involving identification of the leading countries, institutions, and authors, as well as the analysis of keywords co-occurrence and burst-detection, was performed using CiteSpace and VOSviewer. Results A total of 260 original articles were included. The data showed a stable pattern of annual publications on cognitive impairment in heart failure patients over the last ten years. The United States stood out with 129 publications, Kent State University in the USA led in institutional output with 32 articles, and Gunstad John was identified as the most influential author with 32 articles and 572 citations. Analysis of keyword co-occurrence network revealed core research themes encompassing risk factors, interventions, assessment, and underlying mechanisms of cognitive impairment in heart failure patients. Conclusions This study presents the first bibliometric analysis of research on cognitive impairment in heart failure patients over the past decade, offering valuable insights for exploring future research frontiers in this domain. The findings provide researchers, clinicians, and policymakers with key information to advance understanding and interventions for cognitive impairment in heart failure patients.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Cardiac Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Xuefen Zhu
- Department of Critic Care, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Xia Wan
- Department of Geriatrics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Jun Wu
- Department of Cardiac Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Fei Shen
- Department of Cardiac Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Fengli Bian
- Department of Cardiac Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Fang Yang
- Department of Cardiac Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| | - Xiaodong Cao
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi, 214023, China
| |
Collapse
|
9
|
Bennett HC, Zhang Q, Wu YT, Manjila SB, Chon U, Shin D, Vanselow DJ, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat Commun 2024; 15:6398. [PMID: 39080289 PMCID: PMC11289283 DOI: 10.1038/s41467-024-50559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Neurosurgery, Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Steffy B Manjila
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Donghui Shin
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Daniel J Vanselow
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Hayden MR. Cerebral Microbleeds Associate with Brain Endothelial Cell Activation-Dysfunction and Blood-Brain Barrier Dysfunction/Disruption with Increased Risk of Hemorrhagic and Ischemic Stroke. Biomedicines 2024; 12:1463. [PMID: 39062035 PMCID: PMC11274519 DOI: 10.3390/biomedicines12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, cerebral microbleeds (CMBs) are increasingly being viewed not only as a marker for cerebral small vessel disease (SVD) but also as having an increased risk for the development of stroke (hemorrhagic/ischemic) and aging-related dementia. Recently, brain endothelial cell activation and dysfunction and blood-brain barrier dysfunction and/or disruption have been shown to be associated with SVD, enlarged perivascular spaces, and the development and evolution of CMBs. CMBs are a known disorder of cerebral microvessels that are visualized as 3-5 mm, smooth, round, or oval, and hypointense (black) lesions seen only on T2*-weighted gradient recall echo or susceptibility-weighted sequences MRI images. CMBs are known to occur with high prevalence in community-dwelling older individuals. Since our current global population is the oldest recorded in history and is only expected to continue to grow, we can expect the healthcare burdens associated with CMBs to also grow. Increased numbers (≥10) of CMBs should raise a red flag regarding the increased risk of large symptomatic neurologic intracerebral hemorrhages. Importantly, CMBs are also currently regarded as markers of diffuse vascular and neurodegenerative brain damage. Herein author highlights that it is essential to learn as much as we can about CMB development, evolution, and their relation to impaired cognition, dementia, and the exacerbation of neurodegeneration.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Karabulut M, Uslu HS. Effect of sleeping position on cardiac output, pulmonary pressure, and superior vena cava flow in healthy term infants. Pediatr Neonatol 2024; 65:229-236. [PMID: 37973502 DOI: 10.1016/j.pedneo.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Although the mechanism of action in newborns is unknown, sleep positioning is associated with many pathophysiological events. This study aimed to compare the effects of supine and prone sleeping positions on cardiac output (CO), systolic pulmonary arterial pressure (SPAP), and superior vena cava (SVC) flow in healthy newborns. METHODS In the first 24-72 h of life, 40 healthy term newborns born in the same hospital were included in this prospective, cross-sectional, observational study. CO, SVC flow, and SPAP values of newborns in the supine and prone sleeping positions were calculated using echocardiographic examination. The measurements were statistically compared. RESULTS In the supine sleeping position, CO, SVC flow, and SPAP were 235.00 (193.07-283.30) ml/kg/min, 92.80 (77.82-121.87) ml/kg/min, and 27.85 (24.70-30.48) mmHg. In the prone sleeping position, CO, SVC flow, and SPAP were measured as 195.35 (166.00-229.40) ml/kg/min, 67.25 (51.82-96.66) ml/kg/min, 31.60 (28.45-37.20) mmHg, respectively. Depending on sleeping position, these variables were significantly different between the groups. CONCLUSION SVC flow and CO decreased in the prone sleeping position compared to the supine sleeping position in healthy newborns, whereas SPAP increased. The different hemodynamic effects of sleeping position on the cardiac, pulmonary, and nervous systems should be considered as flow and pressure changes are important in newborns.
Collapse
Affiliation(s)
- Muhammed Karabulut
- Department of Paediatric Cardiology, Clinical of Paediatric Health and Diseases, Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey.
| | - Hasan Sinan Uslu
- Department of Neonatal İntensive Care, Clinical of Paediatric Health and Diseases, Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
12
|
Liu S, Wang M, Xiao H, Ye J, Cao L, Li W, Sun G. Advancements in research on the effects of panax notoginseng saponin constituents in ameliorating learning and memory disorders. Heliyon 2024; 10:e28581. [PMID: 38586351 PMCID: PMC10998096 DOI: 10.1016/j.heliyon.2024.e28581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, β-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.
Collapse
Affiliation(s)
- Shusen Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
13
|
Wei H, Jiang H, Zhou Y, Liu L, Ma W, Ni S, Zhou C, Ji X. Cerebral venous congestion alters CNS homeostatic plasticity, evoking tinnitus-like behavior. Cell Biosci 2024; 14:47. [PMID: 38594782 PMCID: PMC11003147 DOI: 10.1186/s13578-024-01221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Brain function and neuronal activity depend on a constant supply of blood from the cerebral circulation. The cerebral venous system (CVS) contains approximately 70% of the total cerebral blood volume; similar to the cerebral arterial system, the CVS plays a prominent role in the maintenance of central nervous system (CNS) homeostasis. Impaired venous autoregulation, which can appear in forms such as cerebral venous congestion, may lead to metabolic abnormalities in the brain, causing severe cerebral functional defects and even chronic tinnitus. However, the role of cerebral venous congestion in the progression of tinnitus is underrecognized, and its pathophysiology is still incompletely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in the onset and persistence of tinnitus and the possible neurophysiological mechanisms. RESULTS We found that a rat model of cerebral venous congestion exhibited tinnitus-like behavioral manifestations at 14 days postoperatively; from that point onward, they showed signs of persistent tinnitus without significant hearing impairment. Subsequent neuroimaging and neurochemical findings showed CNS homeostatic plasticity disturbance in rats with cerebral venous congestion, reflected in increased neural metabolic activity, ultrastructural synaptic changes, upregulated synaptic efficacy, reduced inhibitory synaptic transmission (due to GABA deficiency), and elevated expression of neuroplasticity-related proteins in central auditory and extra-auditory pathways. CONCLUSION Collectively, our data suggest that alternations in CNS homeostatic plasticity may play a vital role in tinnitus pathology caused by cerebral venous congestion. These findings provide a new perspective on tinnitus related to cerebral venous congestion and may facilitate the development of precise interventions to interrupt its pathogenesis.
Collapse
Affiliation(s)
- Huimin Wei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yifan Zhou
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Ma
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Shanshan Ni
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Neurology, Wuqing Hospital of Traditional Chinese Medicine Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 301700, China.
| | - Chen Zhou
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Ministry of Science and Technology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
14
|
Liao M, Wang M, Li H, Li J, Yi M, Lan L, Ouyang F, Shi L, Fan Y. Discontinuity of deep medullary veins in SWI is associated with deep white matter hyperintensity volume and cognitive impairment in cerebral small vessel disease. J Affect Disord 2024; 350:600-607. [PMID: 38253134 DOI: 10.1016/j.jad.2024.01.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Discontinuation of the deep medullary veins (DMVs) may be an early imaging marker for identifying cognitive impairment caused by cerebral small vessel disease (CSVD). However, this method lacks mechanistic exploration. We aimed to investigate whether the DMV score is related to CSVD imaging markers and cognitive impairment in patients with CSVD. METHODS This retrospective study included patients with CSVD who completed DMV score and cognition (e.g., MMSE, MoCA) assessments, and underwent MRI scanning (T2-FLAIR for white matter hyperintensities (WMH) volume, T1-weighted MRI for brain parenchymal fractions (BPF) analysis, and SWI for assessment of DMV score). The CSVD imaging markers were quantitatively assessed using the AccuBrain® system. We assessed the diagnostic value of neuroimaging biomarkers for detecting CSVD-related cognitive impairment. In addition, we explored the relationship between the DMV score, CSVD imaging markers, and cognition using mediation analysis. RESULTS Ninety-four patients with CSVD were divided into a cognitive impairment group (n = 39) and a non-cognitive impairment group (n = 55). Higher DMV scores, larger WMH volumes, and smaller BPF were observed in the cognitive impairment group than those in the non-cognitive impairment group. Receiver operating characteristics (ROC) analysis revealed that the discovery value of the integration of patient age, BPF, whole WMH volume, and DMV score for cognitive impairment was 0.742, with a sensitivity and specificity of 79.5 % and 61.5 %, respectively. Mediation analysis showed mediation by WMH and BPF in the relationship between DMV score and cognitive impairment (all P < 0.05). LIMITATIONS This study did not evaluate the DMV score in subregions according to DMV anatomy. CONCLUSIONS The DMV score is significantly associated with cognitive impairment in patients with CSVD, and this association is mediated through WMH and BPF.
Collapse
Affiliation(s)
- Mengshi Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinbiao Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Yi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linfang Lan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fubing Ouyang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Harmon JN, Chandran P, Chandrasekaran A, Hyde JE, Hernandez GJ, Reed MJ, Bruce MF, Khaing ZZ. Contrast-enhanced ultrasound imaging detects anatomical and functional changes in rat cervical spine microvasculature with normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584672. [PMID: 38559128 PMCID: PMC10980054 DOI: 10.1101/2024.03.12.584672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Normal aging is associated with significant deleterious cerebrovascular changes; these have been implicated in disease pathogenesis and increased susceptibility to ischemic injury. While these changes are well documented in the brain, few studies have been conducted in the spinal cord. Here, we utilize specialized contrast-enhanced ultrasound (CEUS) imaging to investigate age-related changes in cervical spinal vascular anatomy and hemodynamics in male Fisher 344 rats, a common strain in aging research. Aged rats (24-26 mo., N=6) exhibited significant tortuosity in the anterior spinal artery and elevated vascular resistance compared to adults (4-6 mo., N=6; tortuosity index 2.20±0.15 vs 4.74±0.45, p<0.05). Baseline blood volume was lower in both larger vessels and the microcirculation in the aged cohort, specifically in white matter (4.44e14±1.37e13 vs 3.66e14±2.64e13 CEUS bolus AUC, p<0.05). To elucidate functional differences, animals were exposed to a hypoxia challenge; whereas adult rats exhibited significant functional hyperemia in both gray and white matter (GM: 1.13±0.10-fold change from normoxia, p<0.05; WM: 1.16±0.13, p<0.05), aged rats showed no response. Immunohistochemistry revealed reduced pericyte coverage and activated microglia behavior in aged rats, which may partially explain the lack of vascular response. This study provides the first in vivo description of age-related hemodynamic differences in the cervical spinal cord.
Collapse
Affiliation(s)
- Jennifer N. Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Preeja Chandran
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | | | - Jeffrey E. Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Gustavo J. Hernandez
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - May J. Reed
- Department of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Matthew F. Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| |
Collapse
|
16
|
Hong H, Hong L, Luo X, Zeng Q, Li K, Wang S, Jiaerken Y, Zhang R, Yu X, Zhang Y, Lei C, Liu Z, Chen Y, Huang P, Zhang M. The relationship between amyloid pathology, cerebral small vessel disease, glymphatic dysfunction, and cognition: a study based on Alzheimer's disease continuum participants. Alzheimers Res Ther 2024; 16:43. [PMID: 38378607 PMCID: PMC10877805 DOI: 10.1186/s13195-024-01407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Glymphatic dysfunction is a crucial pathway for dementia. Alzheimer's disease (AD) pathologies co-existing with cerebral small vessel disease (CSVD) is the most common pathogenesis for dementia. We hypothesize that AD pathologies and CSVD could be associated with glymphatic dysfunction, contributing to cognitive impairment. METHOD Participants completed with amyloid PET, diffusion tensor imaging (DTI), and T2 fluid-attenuated inversion-recovery (FLAIR) sequences were included from the Alzheimer's Disease Neuroimaging Initiative (ADNI). White matter hyperintensities (WMH), the most common CSVD marker, was evaluated from T2FLAIR images and represented the burden of CSVD. Amyloid PET was used to assess Aβ aggregation in the brain. We used diffusion tensor image analysis along the perivascular space (DTI-ALPS) index, the burden of enlarged perivascular spaces (PVS), and choroid plexus volume to reflect glymphatic function. The relationships between WMH burden/Aβ aggregation and these glymphatic markers as well as the correlations between glymphatic markers and cognitive function were investigated. Furthermore, we conducted mediation analyses to explore the potential mediating effects of glymphatic markers in the relationship between WMH burden/Aβ aggregation and cognition. RESULTS One hundred and thirty-three participants along the AD continuum were included, consisting of 40 CN - , 48 CN + , 26 MCI + , and 19 AD + participants. Our findings revealed that there were negative associations between whole-brain Aβ aggregation (r = - 0.249, p = 0.022) and WMH burden (r = - 0.458, p < 0.001) with DTI-ALPS. Additionally, Aβ aggregation (r = 0.223, p = 0.041) and WMH burden (r = 0.294, p = 0.006) were both positively associated with choroid plexus volume. However, we did not observe significant correlations with PVS enlargement severity. DTI-ALPS was positively associated with memory (r = 0.470, FDR-p < 0.001), executive function (r = 0.358, FDR-p = 0.001), visual-spatial (r = 0.223, FDR-p < 0.040), and language (r = 0.419, FDR-p < 0.001). Conversely, choroid plexus volume showed negative correlations with memory (r = - 0.315, FDR-p = 0.007), executive function (r = - 0.321, FDR-p = 0.007), visual-spatial (r = - 0.233, FDR-p = 0.031), and language (r = - 0.261, FDR-p = 0.021). There were no significant correlations between PVS enlargement severity and cognitive performance. In the mediation analysis, we found that DTI-ALPS acted as a mediator in the relationship between WMH burden/Aβ accumulation and memory and language performances. CONCLUSION Our study provided evidence that both AD pathology (Aβ) and CSVD were associated with glymphatic dysfunction, which is further related to cognitive impairment. These results may provide a theoretical basis for new targets for treating AD.
Collapse
Affiliation(s)
- Hui Hong
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Cui Lei
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Gulej R, Csik B, Faakye J, Tarantini S, Shanmugarama S, Chandragiri SS, Mukli P, Conley S, Csiszar A, Ungvari Z, Yabluchanskiy A, Nyúl-Tóth Á. Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype. Microcirculation 2024; 31:e12840. [PMID: 38082450 PMCID: PMC10922445 DOI: 10.1111/micc.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Komori T, Hoshide S, Turana Y, Sogunuru GP, Kario K. Cognitive impairment in heart failure patients: association with abnormal circadian blood pressure rhythm: a review from the HOPE Asia Network. Hypertens Res 2024; 47:261-270. [PMID: 37749335 DOI: 10.1038/s41440-023-01423-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023]
Abstract
Cognitive impairment (CI) is frequently a comorbid condition in heart failure (HF) patients, and is associated with increased cardiovascular events and death. Numerous factors contribute to CI in HF patients. Decreased cerebral blood flow, inflammation, and activation of neurohumoral factors are all thought to be factors that exacerbate CI. Hypoperfusion of the brain due to decreased systemic blood flow, cerebral venous congestion, and atherosclerosis are the main mechanism of CI in HF patients. Abnormal circadian BP rhythm is one of the other conditions associated with CI. The conditions in which BP does not decrease sufficiently or increases during the night are called non-dipper or riser BP patterns. Abnormal circadian BP rhythm worsens CI in HF patients through cerebral congestion during sleep and atherosclerosis due to pressure overload. Interventions for CI in HF patients include treatment for HF itself using cardiovascular drugs, and treatment for fluid retention, one of the causes of abnormal circadian rhythms. Proposed pathways of cognitive impairment in heart failure through abnormal circadian blood pressure rhythm.
Collapse
Affiliation(s)
- Takahiro Komori
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Guru Prasad Sogunuru
- Fortis Hospitals, Chennai, Tamil Nadu, India
- College of Medical Sciences, Kathmandu University, Bharatpur, Nepal
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.
| |
Collapse
|
19
|
Wang J, Li Y, Yang GY, Jin K. Age-Related Dysfunction in Balance: A Comprehensive Review of Causes, Consequences, and Interventions. Aging Dis 2024; 16:714-737. [PMID: 38607735 PMCID: PMC11964428 DOI: 10.14336/ad.2024.0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 04/14/2024] Open
Abstract
This review delves into the multifaceted aspects of age-related balance changes, highlighting their prevalence, underlying causes, and the impact they have on the elderly population. Central to this discussion is the exploration of various physiological changes that occur with aging, such as alterations in the vestibular, visual, proprioceptive systems, and musculoskeletal degeneration. We examine the role of neurological disorders, cognitive decline, and medication side effects in exacerbating balance issues. The review underscores the significance of early detection and effective intervention strategies in mitigating the risks associated with balance problems, such as falls and reduced mobility. It discusses the effectiveness of diverse intervention strategies, including exercise programs, rehabilitation techniques, and technological advancements like virtual reality, wearable devices, and telemedicine. Additionally, the review stresses the importance of a holistic approach in managing balance disorders, encompassing medication review, addressing comorbidities, and environmental modifications. The paper also presents future research directions, emphasizing the need for a deeper understanding of the complex mechanisms underlying balance changes with aging and the potential of emerging technologies and interdisciplinary approaches in enhancing assessment and intervention methods. This comprehensive review aims to provide valuable insights for healthcare providers, researchers, and policymakers in developing targeted strategies to improve the quality of life and ensure the well-being of the aging population.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
20
|
Hayden MR. A Closer Look at the Perivascular Unit in the Development of Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus. Biomedicines 2024; 12:96. [PMID: 38255202 PMCID: PMC10813073 DOI: 10.3390/biomedicines12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The recently described perivascular unit (PVU) resides immediately adjacent to the true capillary neurovascular unit (NVU) in the postcapillary venule and contains the normal-benign perivascular spaces (PVS) and pathological enlarged perivascular spaces (EPVS). The PVS are important in that they have recently been identified to be the construct and the conduit responsible for the delivery of metabolic waste from the interstitial fluid to the ventricular cerebrospinal fluid for disposal into the systemic circulation, termed the glymphatic system. Importantly, the outermost boundary of the PVS is lined by protoplasmic perivascular astrocyte endfeet (pvACef) that communicate with regional neurons. As compared to the well-recognized and described neurovascular unit (NVU) and NVU coupling, the PVU is less well understood and remains an emerging concept. The primary focus of this narrative review is to compare the similarities and differences between these two units and discuss each of their structural and functional relationships and how they relate not only to brain homeostasis but also how they may relate to the development of multiple clinical neurological disease states and specifically how they may relate to obesity, metabolic syndrome, and type 2 diabetes mellitus. Additionally, the concept and importance of a perisynaptic astrocyte coupling to the neuronal synapses with pre- and postsynaptic neurons will also be considered as a perisynaptic unit to provide for the creation of the information transfer in the brain via synaptic transmission and brain homeostasis. Multiple electron microscopic images and illustrations will be utilized in order to help explain these complex units.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
21
|
Wei H, Jiang H, Zhou Y, Xiao X, Zhou C, Ji X. Cerebral venous congestion alters brain metabolite profiles, impairing cognitive function. J Cereb Blood Flow Metab 2023; 43:1857-1872. [PMID: 37309740 PMCID: PMC10676144 DOI: 10.1177/0271678x231182244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Vascular cognitive impairment (VCI) represents the second most common cause of dementia after Alzheimer's disease, and pathological changes in cerebral vascular structure and function are pivotal causes of VCI. Cognitive impairment caused by arterial ischemia has been extensively studied the whole time; the influence of cerebral venous congestion on cognitive impairment draws doctors' attention in recent clinical practice, but the underlying neuropathophysiological alterations are not completely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in cognitive-behavioral deterioration and possible electrophysiological mechanisms. Using cerebral venous congestion rat models, we found these rats exhibited decreased long-term potentiation (LTP) in the hippocampal dentate gyrus and impaired spatial learning and memory. Based on untargeted metabolomics, N-acetyl-L-cysteine (NAC) deficiency was detected in cerebral venous congestion rats; supplementation with NAC appeared to ameliorate synaptic deficits, rescue impaired LTP, and mitigate cognitive impairment. In a cohort of cerebral venous congestion patients, NAC levels were decreased; NAC concentration was negatively correlated with subjective cognitive decline (SCD) score but positively correlated with mini-mental state examination (MMSE) score. These findings provide a new perspective on cognitive impairment and support further exploration of NAC as a therapeutic target for the prevention and treatment of VCI.
Collapse
Affiliation(s)
- Huimin Wei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xuechun Xiao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Yu X, Yin X, Hong H, Wang S, Jiaerken Y, Xu D, Zhang F, Zhang R, Yang L, Zhang B, Zhang M, Huang P. Presumed periventricular venous infarction on magnetic resonance imaging and its association with increased white matter edema in CADASIL. Eur Radiol 2023; 33:8057-8066. [PMID: 37284868 DOI: 10.1007/s00330-023-09744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES Venous pathology could contribute to the development of parenchymal lesions in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aim to identify presumed periventricular venous infarction (PPVI) in CADASIL and analyze the associations between PPVI, white matter edema, and microstructural integrity within white matter hyperintensities (WMHs) regions. METHODS We included forty-nine patients with CADASIL from a prospectively enrolled cohort. PPVI was identified according to previously established MRI criteria. White matter edema was evaluated using the free water (FW) index derived from diffusion tensor imaging (DTI), and microstructural integrity was evaluated using FW-corrected DTI parameters. We compared the mean FW values and regional volumes with different levels of FW (ranging from 0.3 to 0.8) in WMHs regions between the PPVI and non-PPVI groups. We used intracranial volume to normalize each volume. We also analyzed the association between FW and microstructural integrity in fiber tracts connected with PPVI. RESULTS We found 16 PPVIs in 10 of 49 CADASIL patients (20.4%). The PPVI group had larger WMHs volume (0.068 versus 0.046, p = 0.036) and higher FW in WMHs (0.55 versus 0.52, p = 0.032) than the non-PPVI group. Larger areas with high FW content were also found in the PPVI group (threshold: 0.7, 0.47 versus 0.37, p = 0.015; threshold: 0.8, 0.33 versus 0.25, p = 0.003). Furthermore, higher FW correlated with decreased microstructural integrity (p = 0.009) in fiber tracts connected with PPVI. CONCLUSIONS PPVI was associated with increased FW content and white matter degeneration in CADASIL patients. CLINICAL RELEVANCE STATEMENT PPVI is an important factor related with WMHs, and therefore, preventing the occurrence of PPVI would be beneficial for patients with CADASIL. KEY POINTS •Presumed periventricular venous infarction is important and occurs in about 20% of patients with CADASIL. •Presumed periventricular venous infarction was associated with increased free water content in the regions of white matter hyperintensities. •Free water correlated with microstructural degenerations in white matter tracts connected with the presumed periventricular venous infarction.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Duo Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Fan Zhang
- University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Heitkamp C, Winkelmeier L, Heit JJ, Flottmann F, Thaler C, Kniep H, Broocks G, Meyer L, Geest V, Albers GW, Lansberg MG, Fiehler J, Faizy TD. The negative effect of aging on cerebral venous outflow in acute ischemic stroke. J Cereb Blood Flow Metab 2023; 43:1648-1655. [PMID: 37254736 PMCID: PMC10581231 DOI: 10.1177/0271678x231179558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Cortical venous outflow (VO) represents an imaging biomarker of increasing interest in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO). We conducted a retrospective multicenter cohort study to investigate the effect of aging on VO. A total of 784 patients met the inclusion criteria. Cortical Vein Opacification Score (COVES) was used to assess VO profiles on admission CT angiography. Cerebral microperfusion was determined using the hypoperfusion intensity ratio (HIR) derived from perfusion imaging. Arterial collaterals were assessed using the Tan scale. Multivariable regression analysis was performed to identify independent determinants of VO, HIR and arterial collaterals. In multivariable regression, higher age correlated with worse VO (adjusted odds ratio [95% CI]; 0.83 [0.73-0.95]; P = 0.006) and poorer HIR (β coefficient [95% CI], 0.014 [0.005-0.024]; P = 0.002). The negative effect of higher age on VO was mediated by the extent of HIR (17.3%). We conclude that higher age was associated with worse VO in AIS-LVO, partially explained by the extent of HIR reflecting cerebral microperfusion. Our study underlines the need to assess collateral blood flow beyond the arterial system and provides valuable insights into deteriorated cerebral blood supply in elderly AIS-LVO patients.
Collapse
Affiliation(s)
- Christian Heitkamp
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurens Winkelmeier
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian Flottmann
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thaler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Kniep
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Meyer
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincent Geest
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregory W Albers
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten G Lansberg
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias D Faizy
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Huck J, Jäger A, Schneider U, Grahl S, Fan AP, Tardif C, Villringer A, Bazin P, Steele CJ, Gauthier CJ. Modeling venous bias in resting state functional MRI metrics. Hum Brain Mapp 2023; 44:4938-4955. [PMID: 37498014 PMCID: PMC10472917 DOI: 10.1002/hbm.26431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 07/28/2023] Open
Abstract
Resting-state (rs) functional magnetic resonance imaging (fMRI) is used to detect low-frequency fluctuations in the blood oxygen-level dependent (BOLD) signal across brain regions. Correlations between temporal BOLD signal fluctuations are commonly used to infer functional connectivity. However, because BOLD is based on the dilution of deoxyhemoglobin, it is sensitive to veins of all sizes, and its amplitude is biased by draining veins. These biases affect local BOLD signal location and amplitude, and may also influence BOLD-derived connectivity measures, but the magnitude of this venous bias and its relation to vein size and proximity is unknown. Here, veins were identified using high-resolution quantitative susceptibility maps and utilized in a biophysical model to investigate systematic venous biases on common local rsfMRI-derived measures. Specifically, we studied the impact of vein diameter and distance to veins on the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), Hurst exponent (HE), regional homogeneity (ReHo), and eigenvector centrality values in the grey matter. Values were higher across all distances in smaller veins, and decreased with increasing vein diameter. Additionally, rsfMRI values associated with larger veins decrease with increasing distance from the veins. ALFF and ReHo were the most biased by veins, while HE and fALFF exhibited the smallest bias. Across all metrics, the amplitude of the bias was limited in voxel-wise data, confirming that venous structure is not the dominant source of contrast in these rsfMRI metrics. Finally, the models presented can be used to correct this venous bias in rsfMRI metrics.
Collapse
Affiliation(s)
- Julia Huck
- Department of PhysicsConcordia UniversityMontrealQuebecCanada
- PERFORM CenterMontrealQuebecCanada
| | - Anna‐Thekla Jäger
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Center for Stroke Research Berlin (CSB)Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Uta Schneider
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Sophia Grahl
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Audrey P. Fan
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Christine Tardif
- Faculty of Medicine and Health Sciences, Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealQuebecCanada
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Center for Stroke Research Berlin (CSB)Charité ‐ Universitätsmedizin BerlinBerlinGermany
- Clinic for Cognitive NeurologyUniversity of LeipzigLeipzigGermany
- IFB Adiposity DiseasesLeipzig University Medical CentreLeipzigGermany
| | - Pierre‐Louis Bazin
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Faculty of Social and Behavioural SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Christopher J. Steele
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
| | - Claudine J. Gauthier
- Department of PhysicsConcordia UniversityMontrealQuebecCanada
- PERFORM CenterMontrealQuebecCanada
- Montreal Heart InstituteMontrealQuebecCanada
| |
Collapse
|
25
|
Moustaka K, Nega C, Beratis IN. Exploring the Impact of Age of Onset of Mild Cognitive Impairment on the Profile of Cognitive and Psychiatric Symptoms. Geriatrics (Basel) 2023; 8:96. [PMID: 37887969 PMCID: PMC10606206 DOI: 10.3390/geriatrics8050096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The present study aims to explore the differences in the manifestation of cognitive decline and psychiatric symptoms across the different ages of MCI onset: early onset (EOMCI: <65 years old), middle onset (MOMCI: 65-75 years old), and late onset (LOMCI: >75 years old). It was hypothesized that individuals with EOMCI will preserve their cognitive functions to a greater extent as compared to individuals with LOMCI, even after adjusting the cognitive performance for age and education through the use of published Greek norms. The level of cognitive decline concerning MOMCI was evaluated for extracting more precise conclusions regarding the impact of the age of onset on the patterns of MCI symptomatology. The analyses of data were conducted in a Greek population of individuals with MCI, who were consecutive visitors of the Outpatient Memory Clinic of Nestor Alzheimer's Centre in Athens, Greece. The sample consisted of 297 participants who fulfilled the following inclusion criteria: MCI diagnosis based on Petersen's criteria, Greek mother language, and absence of a psychiatric history or chronic and incurable organic disease. The overall results support the presence of a cognitive advantage of the EOMCI group compared to the LOMCI group. In the MOMCI group, cognitive performance displayed a tendency to remain intermediate compared to the other two groups. Nonetheless, significant differences were observed when this group was compared with the LOMCI group. The current findings indicate that the age of onset should be taken under consideration in the neuropsychological assessment of individuals with MCI. The specific parameters could have implications in terms of prognosis as well as the design and implementation of tailored interventions.
Collapse
Affiliation(s)
- Kleio Moustaka
- Psychology Department, The American College of Greece, Deree, 6, Gravias Street, 153 42 Athens, Greece; (K.M.); (C.N.)
- Alzheimer’s Center, “Nestor” Greek Psychogeriatric Association, 22, Ioannou Drosopoulou Street, 112 57 Athens, Greece
| | - Chrysanthi Nega
- Psychology Department, The American College of Greece, Deree, 6, Gravias Street, 153 42 Athens, Greece; (K.M.); (C.N.)
| | - Ion N. Beratis
- Psychology Department, The American College of Greece, Deree, 6, Gravias Street, 153 42 Athens, Greece; (K.M.); (C.N.)
- Alzheimer’s Center, “Nestor” Greek Psychogeriatric Association, 22, Ioannou Drosopoulou Street, 112 57 Athens, Greece
- 1st Department of Neurology, Aiginiteio University Hospital, National and Kapodistrian University of Athens, 115 28, Athens, Greece
| |
Collapse
|
26
|
Karabulut M, Yıldırım K. Superior Vena Cava Flow in Children With Attention Deficit Hyperactivity Disorder. Psychiatry Investig 2023; 20:888-895. [PMID: 37794671 PMCID: PMC10555513 DOI: 10.30773/pi.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVE Attention deficit/hyperactivity disorder (ADHD), whose definition, diagnosis and treatment has been the subject of debate in the scientific community for a long time, is the most common neurobehavioral disorder in childhood. There are many studies on the pathophysiology of attention deficit. However, there is no study in the literature based on direct or indirect measurement of cerebral venous circulation in ADHD, and the effect of methylphenidate (MPH) treatment on cerebral venous circulation. Therefore, it was aimed to noninvasively measure superior vena cava (SVC) flow, which is an indirect indicator of cerebral venous flow, by transthoracic echocardiography in patients with ADHD. METHODS In the study, 44 healthy children, and 40 ADHD patients who were planned to start on osmotic-release oral system (OROS)- MPH were included. SVC flows were measured in healthy children and before and after drug therapy of ADHD patients. RESULTS SVC flow was found to be higher in ADHD patients compared to healthy children. A significant decrease was found in SVC flow of ADHD patients after OROS-MPH treatment. There was no decrease in SVC flow of patients who did not respond adequately to MPH treatment. CONCLUSION This first study of SVC flow in children with ADHD showed that ADHD was associated with increased SVC flow and MPH treatment had a reducing effect on this increased SVC flow. We believe that noninvasive, easily measurable, and reproducible SVC flow may be a new focus of interest for future comprehensive studies as a biomarker to support clinical evaluation in the diagnosis and treatment follow-up of ADHD patients.
Collapse
Affiliation(s)
- Muhammed Karabulut
- Department of Paediatric Cardiology, Clinical of Paediatric Health and Diseases, Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Kübra Yıldırım
- Department of Child and Adolescent Psychiatry, Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
27
|
Ang HP, Makpol S, Nasaruddin ML, Ahmad NS, Tan JK, Wan Zaidi WA, Embong H. Lipopolysaccharide-Induced Delirium-like Behaviour in a Rat Model of Chronic Cerebral Hypoperfusion Is Associated with Increased Indoleamine 2,3-Dioxygenase Expression and Endotoxin Tolerance. Int J Mol Sci 2023; 24:12248. [PMID: 37569622 PMCID: PMC10418785 DOI: 10.3390/ijms241512248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 μg/kg, and (3) sham-operated rats treated with i.p. LPS 100 μg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.
Collapse
Affiliation(s)
- Hui Phing Ang
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| |
Collapse
|
28
|
Bennett HC, Zhang Q, Wu YT, Chon U, Pi HJ, Drew PJ, Kim Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541998. [PMID: 37305850 PMCID: PMC10257218 DOI: 10.1101/2023.05.23.541998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.
Collapse
Affiliation(s)
- Hannah C Bennett
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Equal contribution
| | - Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Equal contribution
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Uree Chon
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hyun-Jae Pi
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Biomedical Engineering, Biology, and Neurosurgery, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Lead contact
| |
Collapse
|
29
|
Liu H, Pan F, Lei X, Hui J, Gong R, Feng J, Zheng D. Effect of intracranial pressure on photoplethysmographic waveform in different cerebral perfusion territories: A computational study. Front Physiol 2023; 14:1085871. [PMID: 37007991 PMCID: PMC10060556 DOI: 10.3389/fphys.2023.1085871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Intracranial photoplethysmography (PPG) signals can be measured from extracranial sites using wearable sensors and may enable long-term non-invasive monitoring of intracranial pressure (ICP). However, it is still unknown if ICP changes can lead to waveform changes in intracranial PPG signals.Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG signals of different cerebral perfusion territories.Methods: Based on lump-parameter Windkessel models, we developed a computational model consisting three interactive parts: cardiocerebral artery network, ICP model, and PPG model. We simulated ICP and PPG signals of three perfusion territories [anterior, middle, and posterior cerebral arteries (ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and 75% decrease). We calculated following PPG waveform features: maximum, minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive index (RI), and max-to-mean ratio (MMR).Results: The simulated mean ICPs in normal condition were in the normal range (8.87–11.35 mm Hg), with larger PPG fluctuations in older subject and ACA/PCA territories. When intracranial capacitance decreased, the mean ICP increased above normal threshold (>20 mm Hg), with significant decreases in maximum, minimum, and mean; a minor decrease in amplitude; and no consistent change in min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG signals of all perfusion territories. There were significant effects of age and territory on all waveform features except age on mean.Conclusion: ICP values could significantly change the value-relevant (maximum, minimum, and amplitude) waveform features of PPG signals measured from different cerebral perfusion territories, with negligible effect on shape-relevant features (min-to-max time, PI, RI, and MMR). Age and measurement site could also significantly influence intracranial PPG waveform.
Collapse
Affiliation(s)
- Haipeng Liu
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Fan Pan
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
| | - Xinyue Lei
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
| | - Jiyuan Hui
- Brain Injury Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Gong
- Brain Injury Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Junfeng Feng, ; Dingchang Zheng,
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
- *Correspondence: Junfeng Feng, ; Dingchang Zheng,
| |
Collapse
|
30
|
Chen X, Luo Y, Zhang S, Yang X, Dong Z, Wang Y, Wu D. Deep medullary veins: a promising neuroimaging marker for mild cognitive impairment in outpatients. BMC Neurol 2023; 23:3. [PMID: 36604624 PMCID: PMC9814341 DOI: 10.1186/s12883-022-03037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Mild cognitive impairment is an age-dependent pre-dementia state caused by varied reasons. Early detection of MCI helps handle dementia. Vascular factors are vital for the occurrence of MCI. This study investigates the correlation between deep medullary veins and multi-dimensional cognitive outcomes. MATERIALS AND METHODS A total of 73 participants with MCI and 32 controls were enrolled. Minimum Mental State Examination and Montreal Cognitive Assessment were used to examine the global cognitive function, and different cognitive domains were measured by specific neuropsychological tests. MRI was used to assess the visibility of the DMV and other neuroimage markers. RESULTS DMV score was statistically significantly higher in the MCI group compared with the control group (P = 0.009) and independently related to MCI (P = 0.007). Linear regression analysis verified that DMV score was linearly related to global cognition, memory, attention, and executive function after adjusting for cerebrovascular risk factors. CONCLUSION DMV score was independently related to the onset of MCI, and correlates with overall cognition, memory, attention, and executive function in outpatients.
Collapse
Affiliation(s)
- Xiuqi Chen
- grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, No.801, He Qing Road, Minhang District, Shanghai, China
| | - Yufan Luo
- grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, No.801, He Qing Road, Minhang District, Shanghai, China
| | - Shufan Zhang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, No.801, He Qing Road, Minhang District, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai, China
| | - Xiaoli Yang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, No.801, He Qing Road, Minhang District, Shanghai, China
| | - Zhiyuan Dong
- grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, No.801, He Qing Road, Minhang District, Shanghai, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda, MD Washington, USA
| | - Danhong Wu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Shanghai Fifth People’s Hospital, Fudan University, No.801, He Qing Road, Minhang District, Shanghai, China
| |
Collapse
|
31
|
Negri S, Sanford M, Shi H, Tarantini S. The role of endothelial TRP channels in age-related vascular cognitive impairment and dementia. Front Aging Neurosci 2023; 15:1149820. [PMID: 37020858 PMCID: PMC10067599 DOI: 10.3389/fnagi.2023.1149820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Transient receptor potential (TRP) proteins are part of a superfamily of polymodal cation channels that can be activated by mechanical, physical, and chemical stimuli. In the vascular endothelium, TRP channels regulate two fundamental parameters: the membrane potential and the intracellular Ca2+ concentration [(Ca2+)i]. TRP channels are widely expressed in the cerebrovascular endothelium, and are emerging as important mediators of several brain microvascular functions (e.g., neurovascular coupling, endothelial function, and blood-brain barrier permeability), which become impaired with aging. Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the coming decades. Yet, there are currently no preventative or therapeutic treatments available against the development and progression of VCI. In this review, we discuss the involvement of endothelial TRP channels in diverse physiological processes in the brain as well as in the pathogenesis of age-related VCI to explore future potential neuroprotective strategies.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Madison Sanford
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Stefano Tarantini,
| |
Collapse
|
32
|
Adachi U, Toi S, Hosoya M, Hoshino T, Seki M, Yoshizawa H, Tsutsumi Y, Maruyama K, Kitagawa K. Association of Age-Related Spontaneous Internal Jugular Vein Reflux with Cognitive Impairment and Incident Dementia. J Alzheimers Dis 2023; 96:1221-1230. [PMID: 37927264 DOI: 10.3233/jad-230771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND It remains unclear whether changes in the venous circulation contribute to cognitive decline. OBJECTIVE This study aimed to clarify whether the spontaneous jugular vein reflux (JVR) is associated with cognitive impairment and incident dementia. METHODS Patients with any evidence of cerebral vessel disease on magnetic resonance imaging (MRI) were consecutively enrolled between October 2015 to July 2019. We employed carotid duplex sonography to measure the internal jugular vein (IJV). The subjects were classified into two groups based on the degree of JVR on either side: none, mild (JVR(-) group) and moderate, severe (JVR (+) group) JVR. They underwent both the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment-Japanese (MoCA-J) global tests. Their cognitive status was prospectively assessed until March 2023. RESULTS 302 patients with an MMSE score ≥24 underwent duplex sonography of the IJV. Among them, 91 had spontaneous JVR on either side. Both MMSE and MoCA-J were significantly lower in patients with JVR (+) group than in the JVR (-) group. After the adjustment for risk factors and MRI findings, intergroup differences in MoCA-J remained significant. Among the cognitive subdomains, median executive function and memory scores were significantly lower in the JVR (+) group than in the JVR (-) group. During the median 5.2-year follow-up, 11 patients with incident dementia were diagnosed. Patients with severe JVR were significantly more likely to be diagnosed with dementia (log-rank test, p = 0.031). CONCLUSIONS Spontaneous IJV reflux especially severe JVR, was associated with global cognitive function, and potentially with incident dementia.
Collapse
Affiliation(s)
- Utako Adachi
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Neurology, Toda General Hospital, Toda, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Megumi Hosoya
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Misa Seki
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Hiroshi Yoshizawa
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | | | - Kenji Maruyama
- Department of Neurology, Toda General Hospital, Toda, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| |
Collapse
|
33
|
Laganà MM, Pirastru A, Ferrari F, Di Tella S, Cazzoli M, Pelizzari L, Jin N, Zacà D, Alperin N, Baselli G, Baglio F. Cardiac and Respiratory Influences on Intracranial and Neck Venous Flow, Estimated Using Real-Time Phase-Contrast MRI. BIOSENSORS 2022; 12:612. [PMID: 36005008 PMCID: PMC9405895 DOI: 10.3390/bios12080612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
The study of brain venous drainage has gained attention due to its hypothesized link with various neurological conditions. Intracranial and neck venous flow rate may be estimated using cardiac-gated cine phase-contrast (PC)-MRI. Although previous studies showed that breathing influences the neck's venous flow, this aspect could not be studied using the conventional segmented PC-MRI since it reconstructs a single cardiac cycle. The advent of real-time PC-MRI has overcome these limitations. Using this technique, we measured the internal jugular veins and superior sagittal sinus flow rates in a group of 16 healthy subjects (12 females, median age of 23 years). Comparing forced-breathing and free-breathing, the average flow rate decreased and the respiratory modulation increased. The flow rate decrement may be due to a vasoreactive response to deep breathing. The respiratory modulation increment is due to the thoracic pump's greater effect during forced breathing compared to free breathing. These results showed that the breathing mode influences the average blood flow and its pulsations. Since effective drainage is fundamental for brain health, rehabilitative studies might use the current setup to investigate if respiratory exercises positively affect clinical variables and venous drainage.
Collapse
Affiliation(s)
| | - Alice Pirastru
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Ferrari
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Sonia Di Tella
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123 Milan, Italy
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Laura Pelizzari
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ning Jin
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cleveland, OH 44106, USA
| | | | - Noam Alperin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Giuseppe Baselli
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | |
Collapse
|
34
|
Imai R, Mizutani K, Akiyama T, Horiguchi T, Takatsume Y, Toda M. Imaging of the venous plexus of Rektorzik using CT-digital subtraction venography: a retrospective study. Neuroradiology 2022; 64:1961-1968. [PMID: 35449478 DOI: 10.1007/s00234-022-02962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The venous plexus of Rektorzik (VPR), first described by Rektorzik in 1858, is a venous plexus around the internal carotid artery in the carotid canal. However, the VPR has never been investigated using the recently developed imaging modalities. In this study, we analyzed the VPR using computed tomography-digital subtraction venography (CT-DSV). METHODS This study included 253 patients who had undergone head CT-DSV. The presence or absence of the right and left VPRs and their connecting veins were visually examined by two researchers. RESULTS The VPR was observed in 60 patients (24%), 39 of which showed VPR only on the right side, 10 only on the left side, and 11 on both sides. VPR was significantly more common on the right side (p = 0.0002) and was observed more frequently around the horizontal segment of the internal carotid artery than around the vertical segment. The most common veins identified as distal and proximal VPR connections were the cavernous sinus (63/71, 89%) and the anterior condylar confluence (27/71, 38%), respectively. The mean age was significantly lower in patients with the VPR than in those without (53 vs. 57 years, p = 0.02). CONCLUSION The VPR was significantly more frequent on the right side and in younger patients but was not a radiographically constant structure. In most cases, the VPR connected the cavernous sinus and anterior condylar confluence. Preoperative evaluation of VPR may lead to refined surgical procedures.
Collapse
Affiliation(s)
- Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiro Mizutani
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| | - Takenori Akiyama
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takashi Horiguchi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoshifumi Takatsume
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
35
|
Nyul-Toth A, Fulop GA, Tarantini S, Kiss T, Ahire C, Faakye JA, Ungvari A, Toth P, Toth A, Csiszar A, Ungvari Z. Cerebral venous congestion exacerbates cerebral microhemorrhages in mice. GeroScience 2022; 44:805-816. [PMID: 34989944 PMCID: PMC9135950 DOI: 10.1007/s11357-021-00504-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral microhemorrhages (CMHs; microbleeds), which are small focal intracerebral hemorrhages, importantly contribute to the pathogenesis of cognitive decline and dementia in older adults. Although recently it has been increasingly recognized that the venous side of the cerebral circulation likely plays a fundamental role in the pathogenesis of a wide spectrum of cerebrovascular and brain disorders, its role in the pathogenesis of CMHs has never been studied. The present study was designed to experimentally test the hypothesis that venous congestion can exacerbate the genesis of CMHs. Increased cerebral venous pressure was induced by internal and external jugular vein ligation (JVL) in C57BL/6 mice in which systemic hypertension was induced by treatment with angiotensin II plus L-NAME. Histological analysis (diaminobenzidine staining) showed that mice with JVL developed multiple CMHs. CMHs in mice with JVL were often localized adjacent to veins and venules and their morphology was consistent with venous origin of the bleeds. In brains of mice with JVL, a higher total count of CMHs was observed compared to control mice. CMHs were distributed widely in the brain of mice with JVL, including the cortical gray matter, brain stem, the basal ganglia, subcortical white matter, cerebellum, and the hippocampi. In mice with JVL, there were more CMHs predominantly in cerebral cortex, brain stem, and cerebellum than in control mice. CMH burden, defined as total CMH volume, also significantly increased in mice with JVL. Thus, cerebral venous congestion can exacerbate CMHs. These observations have relevance to the pathogenesis of cognitive impairment associated with right heart failure as well as elevated cerebral venous pressure due to jugular venous reflux in older adults.
Collapse
Affiliation(s)
- Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology / Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- First Department of Pediatrics, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
| | - Janet A Faakye
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Attila Toth
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology / Doctoral School of Kálmán Laki, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Theoretical Medicine Doctoral School, International Training Program in Geroscience, University of Szeged, Szeged, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10thStreet, BRC 1313, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Theoretical Medicine Doctoral School, International Training Program in Geroscience, University of Szeged, Szeged, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Fang X, Crumpler RF, Thomas KN, Mazique JN, Roman RJ, Fan F. Contribution of cerebral microvascular mechanisms to age-related cognitive impairment and dementia. Physiol Int 2022; 109:10.1556/2060.2022.00020. [PMID: 35238800 PMCID: PMC10710737 DOI: 10.1556/2060.2022.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022]
Abstract
Cognitive impairment and dementia are significant health burdens worldwide. Aging, hypertension, and diabetes are the primary risk factors for Alzheimer's disease and Alzheimer's disease and related dementias (AD/ADRD). There are no effective treatments for AD/ADRD to date. An emerging body of evidence indicates that cerebral vascular dysfunction and hypoperfusion precedes the development of other AD pathological phenotypes and cognitive impairment. However, vascular contribution to dementia is not currently well understood. This commentary highlights the emerging concepts and mechanisms underlying the microvascular contribution to AD/ADRD, including hypotheses targeting the anterograde and retrograde cerebral vascular pathways, as well as the cerebral capillaries and the venous system. We also briefly discuss vascular endothelial dysfunction, oxidative stress, inflammation, and cellular senescence that may contribute to impaired cerebral blood flow autoregulation, neurovascular uncoupling, and dysfunction of cerebral capillaries and the venous system.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Reece F. Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kirby N. Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jena’ N. Mazique
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
37
|
Birch AA, El-Bouri WK, Marchbanks RJ, Moore LA, Campbell-Bell CM, Kipps CM, Bulters DO. Pulsatile tympanic membrane displacement is associated with cognitive score in healthy subjects. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100132. [PMID: 36324393 PMCID: PMC9616339 DOI: 10.1016/j.cccb.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/16/2023]
Abstract
To test the hypothesis that pulsing of intracranial pressure has an association with cognition, we measured cognitive score and pulsing of the tympanic membrane in 290 healthy subjects. This hypothesis was formed on the assumptions that large intracranial pressure pulses impair cognitive performance and tympanic membrane pulses reflect intracranial pressure pulses. 290 healthy subjects, aged 20-80 years, completed the Montreal Cognitive Assessment Test. Spontaneous tympanic membrane displacement during a heart cycle was measured from both ears in the sitting and supine position. We applied multiple linear regression, correcting for age, heart rate, and height, to test for an association between cognitive score and spontaneous tympanic membrane displacement. Significance was set at P < 0.0125 (Bonferroni correction.) A significant association was seen in the left supine position (p = 0.0076.) The association was not significant in the right ear supine (p = 0.28) or in either ear while sitting. Sub-domains of the cognitive assessment revealed that executive function, language and memory have been primarily responsible for this association. In conclusion, we have found that spontaneous pulses of the tympanic membrane are associated with cognitive performance and believe this reflects an association between cognitive performance and intracranial pressure pulses.
Collapse
Affiliation(s)
- Anthony A. Birch
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
| | - Wahbi K. El-Bouri
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- University of Southampton, Faculty of Engineering and Physical Sciences, Southampton, SO17 1BJ, UK
- Liverpool Centre for Cardiovascular Sciences, Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
| | - Robert J. Marchbanks
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
| | - Laura A. Moore
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Cherith M. Campbell-Bell
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Christopher M. Kipps
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
- Department of Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Diederik O. Bulters
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
38
|
Ventoulis I, Arfaras-Melainis A, Parissis J, Polyzogopoulou E. Cognitive Impairment in Acute Heart Failure: Narrative Review. J Cardiovasc Dev Dis 2021; 8:jcdd8120184. [PMID: 34940539 PMCID: PMC8703678 DOI: 10.3390/jcdd8120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/03/2022] Open
Abstract
Cognitive impairment (CI) represents a common but often veiled comorbidity in patients with acute heart failure (AHF) that deserves more clinical attention. In the AHF setting, it manifests as varying degrees of deficits in one or more cognitive domains across a wide spectrum ranging from mild CI to severe global neurocognitive disorder. On the basis of the significant negative implications of CI on quality of life and its overwhelming association with poor outcomes, there is a compelling need for establishment of detailed consensus guidelines on cognitive screening methods to be systematically implemented in the population of patients with heart failure (HF). Since limited attention has been drawn exclusively on the field of CI in AHF thus far, the present narrative review aims to shed further light on the topic. The underlying pathophysiological mechanisms of CI in AHF remain poorly understood and seem to be multifactorial. Different pathophysiological pathways may come into play, depending on the clinical phenotype of AHF. There is some evidence that cognitive decline closely follows the perturbations incurred across the long-term disease trajectory of HF, both along the time course of stable chronic HF as well as during episodes of HF exacerbation. CI in AHF remains a rather under recognized scientific field that poses many challenges, since there are still many unresolved issues regarding cognitive changes in patients hospitalized with AHF that need to be thoroughly addressed.
Collapse
Affiliation(s)
- Ioannis Ventoulis
- Department of Occupational Therapy, University of Western Macedonia, 50200 Ptolemaida, Greece
- Correspondence: or (I.V.); (A.A.-M.); Tel.: +30-6973018788 (I.V.); +1-347-920-8875 (A.A.-M.)
| | - Angelos Arfaras-Melainis
- Heart Failure Unit and University Clinic of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece; (J.P.); (E.P.)
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: or (I.V.); (A.A.-M.); Tel.: +30-6973018788 (I.V.); +1-347-920-8875 (A.A.-M.)
| | - John Parissis
- Heart Failure Unit and University Clinic of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece; (J.P.); (E.P.)
| | - Eftihia Polyzogopoulou
- Heart Failure Unit and University Clinic of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece; (J.P.); (E.P.)
| |
Collapse
|
39
|
Molnár AÁ, Nádasy GL, Dörnyei G, Patai BB, Delfavero J, Fülöp GÁ, Kirkpatrick AC, Ungvári Z, Merkely B. The aging venous system: from varicosities to vascular cognitive impairment. GeroScience 2021; 43:2761-2784. [PMID: 34762274 PMCID: PMC8602591 DOI: 10.1007/s11357-021-00475-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022] Open
Abstract
Aging-induced pathological alterations of the circulatory system play a critical role in morbidity and mortality of older adults. While the importance of cellular and molecular mechanisms of arterial aging for increased cardiovascular risk in older adults is increasingly appreciated, aging processes of veins are much less studied and understood than those of arteries. In this review, age-related cellular and morphological alterations in the venous system are presented. Similarities and dissimilarities between arterial and venous aging are highlighted, and shared molecular mechanisms of arterial and venous aging are considered. The pathogenesis of venous diseases affecting older adults, including varicose veins, chronic venous insufficiency, and deep vein thrombosis, is discussed, and the potential contribution of venous pathologies to the onset of vascular cognitive impairment and neurodegenerative diseases is emphasized. It is our hope that a greater appreciation of the cellular and molecular processes of vascular aging will stimulate further investigation into strategies aimed at preventing or retarding age-related venous pathologies.
Collapse
Affiliation(s)
- Andrea Ágnes Molnár
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary.
| | | | - Gabriella Dörnyei
- Department of Morphology and Physiology, Health Sciences Faculty, Semmelweis University, Budapest, Hungary
| | | | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor Áron Fülöp
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| | - Angelia C Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| |
Collapse
|
40
|
Xu Z, Li F, Xing D, Song H, Chen J, Duan Y, Yang B. A Novel Imaging Biomarker for Cerebral Small Vessel Disease Associated With Cognitive Impairment: The Deep-Medullary-Veins Score. Front Aging Neurosci 2021; 13:720481. [PMID: 34759812 PMCID: PMC8572877 DOI: 10.3389/fnagi.2021.720481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the biomarkers of cerebral small vessel disease (CSVD) associated with cognitive impairment. Methods: A total of 69 patients with CSVD were enrolled in the study, and baseline clinical and imaging data were reviewed retrospectively. The following neuroimaging biomarkers of CSVD were identified: high-grade white matter hyperintensity (HWMH), cerebral microbleeds (CMB), enlarged perivascular space (PVS), and lacunar infarct (LI). A total score for CSVD was calculated. The deep medullary veins (DMVs) were divided into six segments according to the regional anatomy. The total DMV score (0–18) was derived from the sum of the scores of the six individual segments, the scores of which ranged from 0 to 3, for a semiquantitative assessment of the DMV that was based on segmental continuity and visibility. Results: The DMV score, patient age, and total CSVD score were independently associated with the presence or absence of cognitive impairment in patients with CSVD (P < 0.05). By integrating patient age and the total CSVD and DMV scores, the area under the curve of the receiver operating characteristic curve (AUROC) for predicting CSVD associated with cognitive impairment was 0.885, and the sensitivity and specificity were 64.71 and 94.23%, respectively. Conclusions: The DMV score may be a novel imaging biomarker for CSVD associated with cognitive impairment. The integration of the DMV score with age and total CSVD score should increase the predictive value of the DMV score for CSVD associated with cognitive impairment.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Fangfei Li
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China
| | - Dengxiang Xing
- Center for Medical Data, General Hospital of Northern Theater Command, Shenyang, China
| | - Hongyan Song
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jingshu Chen
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Duan
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China
| | - Benqiang Yang
- General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China.,Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
41
|
Caruso G, Torrisi SA, Mogavero MP, Currenti W, Castellano S, Godos J, Ferri R, Galvano F, Leggio GM, Grosso G, Caraci F. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2021; 232:108013. [PMID: 34624428 DOI: 10.1016/j.pharmthera.2021.108013] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 02/09/2023]
Abstract
Dietary polyphenols have been the focus of major interest for their potential benefits on human health. Several preclinical studies have been conducted to provide a rationale for their potential use as therapeutic agents in preventing or ameliorating cognitive decline. However, results from human studies are scarce and poorly documented. The aim of this review was to discuss the potential mechanisms involved in age-related cognitive decline or early stage cognitive impairment and current evidence from clinical human studies conducted on polyphenols and the aforementioned outcomes. The evidence published so far is encouraging but contrasting findings are to be taken into account. Most studies on anthocyanins showed a consistent positive effect on various cognitive aspects related to aging or early stages of cognitive impairment. Studies on cocoa flavanols, resveratrol, and isoflavones provided substantial contrasting results and further research is needed to clarify the therapeutic potential of these compounds. Results from other studies on quercetin, green tea flavanols, hydroxycinnamic acids (such as chlorogenic acid), curcumin, and olive oil tyrosol and derivatives are rather promising but still too few to provide any real conclusions. Future translational studies are needed to address issues related to dosage, optimal formulations to improve bioavailability, as well as better control for the overall diet, and correct target population.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
42
|
Cerebrovascular alterations in NAFLD: Is it increasing our risk of Alzheimer's disease? Anal Biochem 2021; 636:114387. [PMID: 34537182 DOI: 10.1016/j.ab.2021.114387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease, which has been classified as an emerging epidemic not only confined to liver-related morbidity and mortality. It is also becoming apparent that NAFLD is associated with moderate cerebral dysfunction and cognitive decline. A possible link between NAFLD and Alzheimer's disease (AD) has only recently been proposed due to the multiple shared genes and pathological mechanisms contributing to the development of these conditions. Although AD is a progressive neurodegenerative disease, the exact pathophysiological mechanism remains ambiguous and similarly to NAFLD, currently available pharmacological therapies have mostly failed in clinical trials. In addition to the usual suspects (inflammation, oxidative stress, blood-brain barrier alterations and ageing) that could contribute to the NAFLD-induced development and progression of AD, changes in the vasculature, cerebral perfusion and waste clearance could be the missing link between these two diseases. Here, we review the most recent literature linking NAFLD and AD, focusing on cerebrovascular alterations and the brain's clearance system as risk factors involved in the development and progression of AD, with the aim of promoting further research using neuroimaging techniques and new mechanism-based therapeutic interventions.
Collapse
|
43
|
Choi S, Baudot M, Vivas O, Moreno CM. Slowing down as we age: aging of the cardiac pacemaker's neural control. GeroScience 2021; 44:1-17. [PMID: 34292477 PMCID: PMC8811107 DOI: 10.1007/s11357-021-00420-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
The cardiac pacemaker ignites and coordinates the contraction of the whole heart, uninterruptedly, throughout our entire life. Pacemaker rate is constantly tuned by the autonomous nervous system to maintain body homeostasis. Sympathetic and parasympathetic terminals act over the pacemaker cells as the accelerator and the brake pedals, increasing or reducing the firing rate of pacemaker cells to match physiological demands. Despite the remarkable reliability of this tissue, the pacemaker is not exempt from the detrimental effects of aging. Mammals experience a natural and continuous decrease in the pacemaker rate throughout the entire lifespan. Why the pacemaker rhythm slows with age is poorly understood. Neural control of the pacemaker is remodeled from birth to adulthood, with strong evidence of age-related dysfunction that leads to a downshift of the pacemaker. Such evidence includes remodeling of pacemaker tissue architecture, alterations in the innervation, changes in the sympathetic acceleration and the parasympathetic deceleration, and alterations in the responsiveness of pacemaker cells to adrenergic and cholinergic modulation. In this review, we revisit the main evidence on the neural control of the pacemaker at the tissue and cellular level and the effects of aging on shaping this neural control.
Collapse
Affiliation(s)
- Sabrina Choi
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Matthias Baudot
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Oscar Vivas
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Claudia M Moreno
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
44
|
Tarumi T, Yamabe T, Fukuie M, Zhu DC, Zhang R, Ogoh S, Sugawara J. Brain blood and cerebrospinal fluid flow dynamics during rhythmic handgrip exercise in young healthy men and women. J Physiol 2021; 599:1799-1813. [PMID: 33481257 DOI: 10.1113/jp281063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS The cerebral fluid response to exercise, including the arterial and venous cerebral blood flow (CBF) and cerebrospinal fluid (CSF), currently remains unknown. We used time-resolved phase-contrast magnetic resonance imaging to assess changes in CBF and CSF flow dynamics during moderate-intensity rhythmic handgrip (RHG) exercise in young healthy men and women. Our data demonstrated that RHG increases the cerebral arterial inflow and venous outflow while decreasing the pulsatile CSF flow during RHG. Furthermore, changes in blood stroke volume at the measured arteries, veins, and sinuses and CSF stroke volume at the cerebral aqueduct were positively correlated with each other during RHG. Male and female participants exhibited distinct blood pressure responses to RHG, but their cerebral fluid responses were similar. These results collectively suggest that RHG influences both CBF and CSF flow dynamics in a way that is consistent with the Monro-Kellie hypothesis to maintain intracranial volume-pressure homeostasis in young healthy adults. ABSTRACT Cerebral blood flow (CBF) increases during exercise, but its impact on cerebrospinal fluid (CSF) flow remains unknown. This study investigated CBF and CSF flow dynamics during moderate-intensity rhythmic handgrip (RHG) exercise in young healthy men and women. Twenty-six participants (12 women) underwent the RHG and resting control conditions in random order. Participants performed 3 sets of RHG, during which cine phase-contrast magnetic resonance imaging (PC-MRI) was performed to measure blood stroke volume (SV) and flow rate in the internal carotid (ICA) and vertebral (VA) arteries, the internal jugular vein (IJV), the superior sagittal (SSS) and straight sinuses (SRS), and CSF SV and flow rate in the cerebral aqueduct of Sylvius. Blood pressure, end-tidal CO2 (EtCO2 ), heart rate (HR), and respiratory rate were simultaneously measured during cine PC-MRI scans. Compared with control conditions, RHG showed significant elevations of HR, mean arterial pressure, and respiratory rate with a mild reduction of EtCO2 (all P < 0.05). RHG decreased blood SV in the measured arteries, veins, and sinuses and CSF SV in the aqueduct (all P < 0.05). Conversely, RHG increased blood flow in the ICA, VA, and IJV (all P < 0.05). At the aqueduct, RHG decreased the absolute CSF flow rate (P = 0.0307), which was calculated as a sum of the caudal and cranial CSF flow rates. Change in the ICA SV was positively correlated with changes in the IJV, SSS, SRS, and aqueductal SV during RHG (all P < 0.05). These findings demonstrate a close coupling between the CBF and CSF flow dynamics during RHG in young healthy adults.
Collapse
Affiliation(s)
- Takashi Tarumi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA
| | - Takayuki Yamabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Marina Fukuie
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Saitama, Japan
| | - Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
45
|
Tucker T. Arterial stiffness as a vascular contribution to cognitive impairment: a fluid dynamics perspective. Biomed Phys Eng Express 2021; 7. [PMID: 33482655 DOI: 10.1088/2057-1976/abdf36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/22/2021] [Indexed: 11/11/2022]
Abstract
A model of cerebral pulsatile blood through multiple arterial bifurcations is developed, based on the physics of wave propagation in compliant vessels. The model identifies the conditions for the optimum antegrade flow of blood into the arterioles as a function of the areas and stiffnesses of the arteries. The model predicts and quantifies the reduction in vessel diameter which occurs in progressing from the large central arteries into the arterioles. It also predicts and quantifies the change in vessel compliance which occurs in progressing from the large central arteries, through the small arteries, into the arterioles. Physics predicts that the clinically observed compliance changes are consistent with the efficient delivery of blood to the cerebral capillary bed. The model predicts that increasing arterial stiffening with age, reduces pulsatile cerebral blood flow substantially, potentially resulting in ischemia, hypoperfusion and hypoxia, with attendant neurological and cognition consequences. The model predicts that while central pulse pressure increases with aging, small vessel pulse pressure reduces, contrary to the concept of a pressure wave tsunami in the small vessels. The model also predicts that increased luminal diameters with increasing age, mitigate, somewhat the negative consequences of arterial stiffening, a form of adaptive arterial remodelling.
Collapse
Affiliation(s)
- Trevor Tucker
- Independent Researcher, Independent Researcher, Ottawa, Ontario, CANADA
| |
Collapse
|
46
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
47
|
Xu Z, Li F, Wang B, Xing D, Pei Y, Yang B, Duan Y. New Insights in Addressing Cerebral Small Vessel Disease: Association With the Deep Medullary Veins. Front Aging Neurosci 2020; 12:597799. [PMID: 33335483 PMCID: PMC7736107 DOI: 10.3389/fnagi.2020.597799] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Objective To assess the suitability of deep medullary vein visibility in susceptibility weighted imaging-magnetic resonance imaging studies as a method for the diagnosis and evaluation of cerebral small vessel disease progression. Methods A total of 92 patients with CSVD were enrolled and baseline clinical and imaging data were reviewed retrospectively. Neuroimaging biomarkers of CSVD including high-grade white matter hyperintensity (HWMH), cerebral microbleed (CMB), enlarged perivascular space (PVS), and lacunar infarct (LI) were identified and CSVD burden was calculated. Cases were grouped accordingly as mild, moderate, or severe. The DMV was divided into six segments according to the regional anatomy. The total DMV score (0-18) was calculated as the sum of the six individual segmental scores, which ranged from 0 to 3, for a semi-quantitative assessment of the DMV based on segmental continuity and visibility. Results The DMV score was independently associated with the presence of HWMH, PVS, and LI (P < 0.05), but not with presence and absence of CMB (P > 0.05). Correlation between the DMV score and the CSVD burden was significant (P < 0.05) [OR 95% C.I., 1.227 (1.096-1.388)]. Conclusion The DMV score was associated with the presence and severity of CSVD.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Radiology, TongDe Hospital of Zhejiang Province, Hangzhou, China.,Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China
| | - Fangfei Li
- Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China
| | - Bing Wang
- Department of Scientific Research, General Hospital of Northern Theater Command, Shenyang, China
| | - Dengxiang Xing
- Center for Medical Data, General Hospital of Northern Theater Command, Shenyang, China
| | - Yusong Pei
- General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Shenyang, China
| | - Benqiang Yang
- Department of Radiology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Duan
- Department of Radiology, Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China
| |
Collapse
|
48
|
Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathol 2020; 140:793-810. [PMID: 32865691 PMCID: PMC7666276 DOI: 10.1007/s00401-020-02215-w] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Therapies targeting late events in Alzheimer's disease (AD), including aggregation of amyloid beta (Aβ) and hyperphosphorylated tau, have largely failed, probably because they are given after significant neuronal damage has occurred. Biomarkers suggest that the earliest event in AD is a decrease of cerebral blood flow (CBF). This is caused by constriction of capillaries by contractile pericytes, probably evoked by oligomeric Aβ. CBF is also reduced by neutrophil trapping in capillaries and clot formation, perhaps secondary to the capillary constriction. The fall in CBF potentiates neurodegeneration by upregulating the BACE1 enzyme that makes Aβ and by promoting tau hyperphosphorylation. Surprisingly, therefore, CBF reduction may play a crucial role in driving cognitive decline by initiating the amyloid cascade itself, or being caused by and amplifying Aβ production. Here, we review developments in this area that are neglected in current approaches to AD, with the aim of promoting novel mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
49
|
Czakó C, Kovács T, Ungvari Z, Csiszar A, Yabluchanskiy A, Conley S, Csipo T, Lipecz A, Horváth H, Sándor GL, István L, Logan T, Nagy ZZ, Kovács I. Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. GeroScience 2020; 42:1499-1525. [PMID: 33011937 PMCID: PMC7732888 DOI: 10.1007/s11357-020-00252-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment and dementia are major medical, social, and economic public health issues worldwide with significant implications for life quality in older adults. The leading causes are Alzheimer's disease (AD) and vascular cognitive impairment/dementia (VCID). In both conditions, pathological alterations of the cerebral microcirculation play a critical pathogenic role. Currently, the main pathological biomarkers of AD-β-amyloid peptide and hyperphosphorylated tau proteins-are detected either through cerebrospinal fluid (CSF) or PET examination. Nevertheless, given that they are invasive and expensive procedures, their availability is limited. Being part of the central nervous system, the retina offers a unique and easy method to study both neurodegenerative disorders and cerebral small vessel diseases in vivo. Over the past few decades, a number of novel approaches in retinal imaging have been developed that may allow physicians and researchers to gain insights into the genesis and progression of cerebromicrovascular pathologies. Optical coherence tomography (OCT), OCT angiography, fundus photography, and dynamic vessel analyzer (DVA) are new imaging methods providing quantitative assessment of retinal structural and vascular indicators-such as thickness of the inner retinal layers, retinal vessel density, foveal avascular zone area, tortuosity and fractal dimension of retinal vessels, and microvascular dysfunction-for cognitive impairment and dementia. Should further studies need to be conducted, these retinal alterations may prove to be useful biomarkers for screening and monitoring dementia progression in clinical routine. In this review, we seek to highlight recent findings and current knowledge regarding the application of retinal biomarkers in dementia assessment.
Collapse
Affiliation(s)
- Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tibor Kovács
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Hajnalka Horváth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Lilla István
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Trevor Logan
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
50
|
Wang Z, Ding J, Bai C, Ding Y, Ji X, Meng R. Clinical Classification and Collateral Circulation in Chronic Cerebrospinal Venous Insufficiency. Front Neurol 2020; 11:913. [PMID: 33071925 PMCID: PMC7538781 DOI: 10.3389/fneur.2020.00913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background: As an indispensable part of the cerebral venous system, the extracranial cerebrospinal venous system is not fully recognized. This study aimed to analyze the clinical classification and imaging characteristics of chronic cerebrospinal venous insufficiency (CCSVI) quantitatively. Methods: A total of 128 patients, who were diagnosed as CCSVI by jugular ultrasound and contrast-enhanced magnetic resonance venography (CE-MRV), were enrolled from May 2018 through May 2019. For the patients with possible extraluminal compression, computed tomography venography (CTV) was applied to estimate the degree of internal jugular venous stenosis (IJVS) and rank the vertebral venous collateral circulation. Results: The causes of extraluminal compression induced IJVS included osseous compression (78.95%), carotid artery (24.21%), sternocleidomastoid muscle (5.79%), swollen lymph node (1.05%), and unknown reasons (5.26%). The subtypes of non-compression CCSVI included the high jugular bulb (77.27%), fenestration of the internal jugular vein (IJV) (7.27%), internal jugular phlebectasia (2.73%), tortuous IJV (0.91%), IJV thrombosis (14.55%), and elongated venous valves with/without erythrocyte aggregation (13.64%). For extraluminal compression induced IJVS, the ratio of severe vertebral venous expansion was higher in the severe IJVS group than that in the mild IJVS group (p < 0.001). The IJVS degree was higher in the severe vertebral venous expansion group than in the mild vertebral venous expansion group (p < 0.001). Conclusions: A multimodal diagnostic system is necessary to improve the diagnostic accuracy of CCSVI. The vertebral venous system is an important collateral circulation for CCSVI, which may be a promising indicator for evaluating IJVS degree.
Collapse
Affiliation(s)
- Zhongao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chaobo Bai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|