1
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
2
|
Pituitary adenylate cyclase-activating polypeptide type 1 receptor within the nucleus accumbens core mediates excessive alcohol drinking in alcohol-preferring rats. Neuropharmacology 2022; 212:109063. [PMID: 35460713 DOI: 10.1016/j.neuropharm.2022.109063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Alcohol use disorders (AUD) have a strong component of heritability; however, the neurobiological mechanisms mediating the propensity to consume excessive amounts of alcohol are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide which exerts its effects mainly through the PAC1 receptor (PAC1R), has been suggested to be one of the mediators of the effects of drugs of abuse and alcohol. Here, we investigated the role of the PACAP/PAC1R system in excessive alcohol drinking in alcohol-preferring rats, an established animal model of AUD. Intracerebroventricular (i.c.v.) administration of the PAC1R antagonist PACAP(6-38) blocked excessive alcohol drinking and motivation to drink in Sardinian alcohol-preferring (Scr:sP) rats, without affecting water, saccharin, or sucrose intake. Notably, PACAP(6-38) did not affect ethanol responding in outbred Wistar rats. PACAP(6-38) also significantly reduced alcohol-seeking behavior under a second-order schedule of reinforcement. Using immunohistochemistry, a significant increase in the number of PAC1R positive cells was observed selectively in the nucleus accumbens (NAcc) Core of Scr:sP rats, compared to Wistar rats following alcohol drinking. Finally, excessive drinking in Scr:sP rats was suppressed by intra-NAcc Core, but not intra-NAcc Shell, PACAP(6-38), as well as by virally-mediated PAC1R knockdown in the NAcc Core. The present study shows that hyperactivity of the PACAP/PAC1R system specifically in the NAcc Core mediates excessive drinking of alcohol-preferring rats, and indicates that this system may represent a novel target for the treatment of AUD.
Collapse
|
3
|
Minnig MA, Park T, Echeveste Sanchez M, Cottone P, Sabino V. Viral-Mediated Knockdown of Nucleus Accumbens Shell PAC1 Receptor Promotes Excessive Alcohol Drinking in Alcohol-Preferring Rats. Front Behav Neurosci 2021; 15:787362. [PMID: 34924973 PMCID: PMC8678417 DOI: 10.3389/fnbeh.2021.787362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder whose genetic and environmental susceptibility components are not fully understood. Neuropeptidergic signaling has been repeatedly implicated in modulating excessive alcohol drinking, especially within sub-regions of the striatum. Here, we investigated the potential involvement of the selective receptor for pituitary adenylate cyclase-activating polypeptide (PACAP), PAC1R, in the nucleus accumbens shell (NAcc Shell) in excessive alcohol drinking in alcohol-preferring rats, an established animal model of the genetic propensity for alcoholism. Scr:sP alcohol-preferring rats were trained to operantly self-administer alcohol and then either an AAV virus short-hairpin RNA (shRNA) targeted to knockdown PAC1R, or an AAV control virus were microinfused into the NAcc Shell. NAcc Shell PAC1R shRNA knockdown virus was confirmed to significantly decrease PAC1R levels in the NAcc Shell. The effects of NAcc Shell PAC1R shRNA knockdown on ethanol self-administration were investigated using a Fixed Ratio (FR) 1 and a Progressive Ratio (PR) schedule of reinforcement. The effect of PAC1R knockdown on self-administration of an alternative reinforcer, saccharin, was also assessed. The results showed that the reduction in PAC1R in the NAcc Shell led to excessive ethanol drinking, increased preference for ethanol, and higher motivation to drink. NAcc Shell PAC1R shRNA knockdown did not comparably increase saccharin self-administration, suggesting selectivity of action. These data suggest that NAcc Shell PAC1R may serves as a "brake" on alcohol drinking, and thereby the loss of function of PAC1R leads to excessive alcohol consumption. Therefore, the PACAP/PAC1R system may represent a novel target for the treatment of AUD.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
McMillan TR, Forster MAM, Short LI, Rudecki AP, Cline DL, Gray SL. Melanotan II, a melanocortin agonist, partially rescues the impaired thermogenic capacity of pituitary adenylate cyclase-activating polypeptide deficient mice. Exp Physiol 2020; 106:427-437. [PMID: 33332767 DOI: 10.1113/ep088838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can chronic treatment of pituitary adenylate cyclase-activating polypeptide (PACAP) deficient mice with the melanocortin agonist melanotan II during cold acclimation rescue the impaired thermogenic capacity previously observed in PACAP deficient mice? What is the main finding and its importance? Using a genetic model of PACAP deficiency, this study provides evidence that PACAP acts upstream of the melanocortin system in regulating sympathetic nerve activity to brown adipose tissue in mice. ABSTRACT Impaired adipose tissue function in obesity, including reduced thermogenic potential, has detrimental consequences for metabolic health. Hormonal regulation of adaptive thermogenesis is being explored as a potential therapeutic target for human obesity. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide expressed in nuclei of the hypothalamus known to regulate energy expenditure, and functional studies reveal a role for PACAP in the central regulation of thermogenesis, although mechanisms are not well understood. We hypothesized that PACAP acts upstream of the melanocortin system to regulate sympathetic nerve activity to stimulate thermogenesis. To assess this, female PACAP-/- and PACAP+/+ mice were given daily peripheral injections of a melanocortin receptor agonist, melanotan II (MTII), for 3 weeks during cold acclimation, and the effect of MTII on thermogenic capacity and adipose tissue remodelling was examined by physiological and histological analyses. MTII partially rescued the impaired thermogenic capacity in PACAP-/- mice as compared to PACAP+/+ mice as determined by measuring noradrenaline-induced metabolic rate. In addition, MTII treatment during cold acclimation corrected the previously identified deficit in lipid utilization in response to adrenergic stimulation in PACAP-/- null mice, suggesting impaired lipid mobilization may contribute to the impaired thermogenic capacity of PACAP-/- mice. Results presented here provide physiological evidence to suggest that PACAP acts upstream of melanocortin receptors to facilitate sympathetically induced mechanisms of adaptive thermogenesis in response to cold acclimation.
Collapse
Affiliation(s)
- Thecla Rae McMillan
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Alexander P Rudecki
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
5
|
Fang Y, Ren R, Shi H, Huang L, Lenahan C, Lu Q, Tang L, Huang Y, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke. Aging Dis 2020; 11:1496-1512. [PMID: 33269103 PMCID: PMC7673855 DOI: 10.14336/ad.2020.0626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.
Collapse
Affiliation(s)
- Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reng Ren
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- 2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Qin Lu
- 6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Lihui Tang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Huang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
6
|
Circulating PACAP peptide and PAC1R genotype as possible transdiagnostic biomarkers for anxiety disorders in women: a preliminary study. Neuropsychopharmacology 2020; 45:1125-1133. [PMID: 31910434 PMCID: PMC7235237 DOI: 10.1038/s41386-020-0604-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, gene Adcyap1) is a neuropeptide and hormone thought to play a critical role in stress response (Stroth et al., Ann NY Acad Sci 1220:49-59, 2011; Hashimoto et al., Curr Pharm Des 17:985-989, 2011). Research in humans implicates PACAP as a useful biomarker for the severity of psychiatric symptoms in response to psychological stressors, and work in rodent models suggests that PACAP manipulation exerts downstream effects on peripheral hormones and behaviors linked to the stress response, providing a potential therapeutic target. Prior work has also suggested a potential sex difference in PACAP effects due to differential estrogen regulation of this pathway. Therefore, we examined serum PACAP and associated PAC1R genotype in a cohort of males and females with a primary diagnosis of generalized anxiety disorder (GAD) and nonpsychiatric controls. We found that, while circulating hormone levels were not associated with a GAD diagnosis overall (p = 0.19, g = 0.25), PACAP may be associated with GAD in females (p = 0.04, g = 0.33). Additionally, among patients with GAD, the risk genotype identified in the PTSD literature (rs2267735, CC genotype) was associated with higher somatic anxiety symptom severity in females but lower somatic anxiety symptom severity in males (-3.27, 95%CI [-5.76, -0.77], adjusted p = 0.03). Taken together, the associations between the risk genotype, circulating PACAP, and somatic anxiety severity were stronger among females than males. These results indicate a potential underlying biological etiology for sex differences in stress-related anxiety disorders that warrants further study.
Collapse
|
7
|
Farnham MMJ, Tallapragada VJ, O'Connor ET, Nedoboy PE, Dempsey B, Mohammed S, Fong AY, Lung MSY, Derakhshan F, Wilson RJA, Pilowsky PM. PACAP-PAC1 Receptor Activation Is Necessary for the Sympathetic Response to Acute Intermittent Hypoxia. Front Neurosci 2019; 13:881. [PMID: 31496933 PMCID: PMC6712064 DOI: 10.3389/fnins.2019.00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 01/29/2023] Open
Abstract
Repetitive hypoxia is a key feature of obstructive sleep apnoea (OSA), a condition characterized by intermittent airways obstruction. Patients with OSA present with persistent increases in sympathetic activity and commonly develop hypertension. The objectives of this study were to determine if the persistent increases in sympathetic nerve activity, known to be induced by acute intermittent hypoxia (AIH), are mediated through activation of the pituitary adenylate cyclase activating polypeptide (PACAP) signaling system. Here, we show that the excitatory neuropeptide PACAP, acting in the spinal cord, is important for generating the sympathetic response seen following AIH. Using PACAP receptor knockout mice, and pharmacological agents in Sprague Dawley rats, we measured blood pressure, heart rate, pH, PaCO2, and splanchnic sympathetic nerve activity, under anaesthesia, to demonstrate that the sympathetic response to AIH is mediated via the PAC1 receptor, in a cAMP-dependent manner. We also report that both intermittent microinjection of glutamate into the rostroventrolateral medulla (RVLM) and intermittent infusion of a sub-threshold dose of PACAP into the subarachnoid space can mimic the sympathetic response to AIH. All the sympathetic responses are independent of blood pressure, pH or PaCO2 changes. Our results show that in AIH, PACAP signaling in the spinal cord helps drive persistent increases in sympathetic nerve activity. This mechanism may be a precursor to the development of hypertension in conditions of chronic intermittent hypoxia, such as OSA.
Collapse
Affiliation(s)
- Melissa M J Farnham
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | - Edward T O'Connor
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Polina E Nedoboy
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bowen Dempsey
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Suja Mohammed
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Angelina Y Fong
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mandy S Y Lung
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Paul M Pilowsky
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired neonatal cardiorespiratory responses to hypoxia in mice lacking PAC1 or VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2019; 316:R594-R606. [PMID: 30758978 DOI: 10.1152/ajpregu.00250.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its specific receptor PACAP type 1 receptor (PAC1) have been implicated in sudden infant death syndrome (SIDS). PACAP is also critical to the neonatal cardiorespiratory response to homeostatic stressors identified in SIDS, including hypoxia. However, which of PACAP's three receptors, PAC1, vasoactive intestinal peptide receptor type 1 (VPAC1), and/or vasoactive intestinal peptide receptor type 2 (VPAC2), are involved is unknown. In this study, we hypothesized that PAC1, but not VPAC2, is involved in mediating the cardiorespiratory response to hypoxia during neonatal development. To test this hypothesis, head-out plethysmography and surface ECG electrodes were used to assess the cardiorespiratory variables of unanesthetized postnatal day 4 PAC1 and VPAC2-knockout (KO) and wild-type (WT) mice in response to a 10% hypoxic challenge. Our results demonstrate that compared with WT pups, the early and late hypoxic rate of expired CO2 (V̇co2), V̇co2 and ventilatory responses were blunted in PAC1-KO neonates, and during the posthypoxic period, minute ventilation (V̇e), V̇co2 and heart rate were increased, while the increase in apneas normally associated with the posthypoxic period was reduced. Consistent with impaired cardiorespiratory control in these animals, the V̇e/V̇co2 slope was reduced in PAC1-KO pups, suggesting that breathing was inappropriately matched to metabolism. In contrast, VPAC2-KO pups exhibited elevated heart rate variability during hypoxia compared with WT littermates, but the effects of the VPAC2-KO genotype on breathing were minimal. These findings suggest that PAC1 plays the principal role in mediating the cardiorespiratory effects of PACAP in response to hypoxic stress during neonatal development and that defective PACAP signaling via PAC1 may contribute to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
9
|
Adipose Tissue Expression of PACAP, VIP, and Their Receptors in Response to Cold Stress. J Mol Neurosci 2018; 68:427-438. [PMID: 29982965 PMCID: PMC6581916 DOI: 10.1007/s12031-018-1099-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Obesity arises from disrupted energy balance and is caused by chronically higher energy intake compared to expenditure via basal metabolic rate, exercise, and thermogenesis. The brown adipose tissue (BAT), the primary thermogenic organ, has received considerable attention as a potential therapeutic target due to its ability to burn lipids in the production of heat. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been identified as a key regulator of the physiological stress response both centrally and peripherally. While PACAP has been shown to increase thermogenesis by acting at the hypothalamus to increase sympathetic output to BAT, a peripheral role for PACAP-activated thermogenesis has not been studied. We identified PACAP receptor (PAC1, VPAC1/2) expression for the first time in murine BAT and confirmed their expression in white adipose tissues. PAC1 receptor expression was significantly altered in all three adipose tissues studied in response to 3.5-week cold acclimation, with expression patterns differing by depot type. In primary cell culture, VPAC1 was increased in differentiated compared to non-differentiated brown adipocytes, and the same trend was observed for the PACAP-specific receptor PAC1 in gonadal white fat primary cultures. The primary PAC1R mRNA splice variant in interscapular BAT was determined as isoform 2 by RNA-Seq. These results show that PACAP receptors are present in adipose tissues and may have important functional roles in adipocyte differentiation, lipid metabolism, or adipose sensitization to sympathetic signaling in response to thermogenic stimuli.
Collapse
|
10
|
Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:281-303. [PMID: 30454595 DOI: 10.1016/b978-0-444-63912-7.00017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental central neural circuits for thermoregulation orchestrate behavioral and autonomic repertoires that maintain body core temperature during thermal challenges that arise from either the ambient or the internal environment. This review summarizes our understanding of the neural pathways within the fundamental thermoregulatory reflex circuitry that comprise the efferent (i.e., beyond thermosensory) control of brown adipose tissue (BAT) and shivering thermogenesis: the motor neuron systems consisting of the BAT sympathetic preganglionic neurons and BAT sympathetic ganglion cells, and the alpha- and gamma-motoneurons; the premotor neurons in the region of the rostral raphe pallidus, and the thermogenesis-promoting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area. Also included are inputs to, and neurochemical modulators of, these efferent neuronal populations that could influence their activity during thermoregulatory responses. Signals of metabolic status can be particularly significant for the energy-hungry thermoeffectors for heat production.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
11
|
Barrett KT, Daubenspeck JA, Wilson RJA. Pituitary adenylate cyclase-activating polypeptide drives cardiorespiratory responses to heat stress in neonatal mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R385-R394. [DOI: 10.1152/ajpregu.00118.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has emerged as a principal and rate-limiting regulator of physiological stress responses in adult rodents and has been implicated in sudden infant death syndrome (SIDS). Recent studies show that PACAP plays a role in neonatal cardiorespiratory responses to hypoxia, hypercapnia, and hypothermia, but not hyperthermia, which is often associated with SIDS. Here we tested the hypothesis that, consistent with a role in SIDS, PACAP is involved in regulating the neonatal cardiorespiratory responses to severe heat. To address this, we used head-out plethysmography and surface ECG electrodes to study the cardiorespiratory physiology of conscious neonatal PACAP-null and wild-type mice at ambient temperatures of 32°C (baseline) and 40°C (heat stress). We also assessed body surface temperature as an indicator of cutaneous heat loss. Our results show that wild-type neonatal mice respond to heat stress by increasing ventilation ( P = 0.007) and associated expired CO2 ( P = 0.041), heart rate ( P < 0.001), and cutaneous heat loss ( P < 0.001). In PACAP-null neonates, this heat response is impaired, as indicated by a decrease in ventilation ( P = 0.04) and associated expired CO2 ( P = 0.006) and a blunted increase in heart rate ( P = 0.001) and cutaneous heat loss ( P = 0.0002). In addition, heart rate variability at baseline was lower in PACAP-null neonates than wild-type controls ( P < 0.01). These results suggest that, during heat stress, PACAP is important for neonatal cardiorespiratory responses that help regulate body temperature. Abnormal PACAP regulation could, therefore, contribute to neonatal disorders in which the autonomic response to stress is impaired, such as SIDS.
Collapse
Affiliation(s)
- Karlene T. Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and
| | - John A. Daubenspeck
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
12
|
Rudecki AP, Gray SL. PACAP in the Defense of Energy Homeostasis. Trends Endocrinol Metab 2016; 27:620-632. [PMID: 27166671 DOI: 10.1016/j.tem.2016.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/23/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates diverse physiology from neuroprotection to thermoregulation. PACAP is well established as a master regulator of the stress response, regulating psychological and physiological equilibrium via the autonomic nervous system. Neuroanatomical and functional evidence support a role for PACAP in energy metabolism, including thermogenesis, activity, mobilization of energy stores, and appetite. Through integration of this evidence we suggest PACAP be included in the growing list of neuropeptides that mediate energy homeostasis. Future work to uncover the intricacies of PACAP expression and the molecular pathways responsible for PACAP signaling may show potential for this neuropeptide as a therapeutic target as well as further elucidate the complex neuroanatomical networks involved in defending energy balance.
Collapse
Affiliation(s)
- Alexander P Rudecki
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George BC, V2N 4Z9, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George BC, V2N 4Z9, Canada.
| |
Collapse
|
13
|
Alerted microglia and the sympathetic nervous system: A novel form of microglia in the development of hypertension. Respir Physiol Neurobiol 2016; 226:51-62. [DOI: 10.1016/j.resp.2015.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
|
14
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
15
|
Bisschop PH, Fliers E, Kalsbeek A. Autonomic Regulation of Hepatic Glucose Production. Compr Physiol 2014; 5:147-65. [DOI: 10.1002/cphy.c140009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Diané A, Nikolic N, Rudecki AP, King SM, Bowie DJ, Gray SL. PACAP is essential for the adaptive thermogenic response of brown adipose tissue to cold exposure. J Endocrinol 2014; 222:327-39. [PMID: 25056115 DOI: 10.1530/joe-14-0316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue, and neurohormone. Owing to its pleiotropic biological actions, knockout of Pacap (Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposed Pacap null mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response of Pacap null mice during cold exposure. We compared the adaptive thermogenic capacity of Pacap(-/-) to Pacap(+/+) mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposed Pacap(-/-) mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar (Adrb3)) and hormone-sensitive lipase (Hsl (Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly, Pacap(-/-) mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis in Pacap null mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation.
Collapse
MESH Headings
- Acclimatization/genetics
- Acclimatization/physiology
- Adipocytes, Brown/metabolism
- Adipose Tissue, Brown/anatomy & histology
- Adipose Tissue, Brown/blood supply
- Adipose Tissue, Brown/physiology
- Adipose Tissue, White/anatomy & histology
- Adipose Tissue, White/physiology
- Animals
- Basal Metabolism/genetics
- Basal Metabolism/physiology
- Cold Climate
- Female
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Gene Expression
- Ion Channels/genetics
- Ion Channels/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Neovascularization, Physiologic
- Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/physiology
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Sterol Esterase/genetics
- Sterol Esterase/metabolism
- Thermogenesis/genetics
- Thermogenesis/physiology
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Abdoulaye Diané
- Northern Medical ProgramUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| | - Nikolina Nikolic
- Northern Medical ProgramUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| | - Alexander P Rudecki
- Northern Medical ProgramUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| | - Shannon M King
- Northern Medical ProgramUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| | - Drew J Bowie
- Northern Medical ProgramUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| | - Sarah L Gray
- Northern Medical ProgramUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
17
|
Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PRP, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A. Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 2014; 54:543-54. [PMID: 24994541 DOI: 10.1007/s12031-014-0361-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/23/2014] [Indexed: 12/19/2022]
Abstract
Administration of the long form (38 amino acids) of pituitary adenylate cyclase-activating polypeptide (PACAP38) into the central nervous system causes hyperthermia, suggesting that PACAP38 plays a role in the regulation of deep body temperature (T b). In this study, we investigated the thermoregulatory role of PACAP38 in details. First, we infused PACAP38 intracerebroventricularly to rats and measured their T b and autonomic thermoeffector responses. We found that central PACAP38 infusion caused dose-dependent hyperthermia, which was brought about by increased thermogenesis and tail skin vasoconstriction. Compared to intracerebroventricular administration, systemic (intravenous) infusion of the same dose of PACAP38 caused significantly smaller hyperthermia, indicating a central site of action. We then investigated the thermoregulatory phenotype of mice lacking the Pacap gene (Pacap (-/-)). Freely moving Pacap (-/-) mice had higher locomotor activity throughout the day and elevated deep T b during the light phase. When the Pacap (-/-) mice were loosely restrained, their metabolic rate and T b were lower compared to their wild-type littermates. We conclude that PACAP38 causes hyperthermia via activation of the autonomic cold-defense thermoeffectors through central targets. Pacap (-/-) mice express hyperkinesis, which is presumably a compensatory mechanism, because under restrained conditions, these mice are hypometabolic and hypothermic compared to controls.
Collapse
Affiliation(s)
- Eszter Banki
- Department of Anatomy PTE-MTA "Lendulet" PACAP Research Team, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koga M, Mizuno Y, Watanabe I, Kawakami H, Goto T. Role of VPAC2 receptor in monocrotaline-induced pulmonary hypertension in rats. J Appl Physiol (1985) 2014; 117:383-91. [PMID: 24947028 DOI: 10.1152/japplphysiol.00861.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is associated with significant morbidity and mortality. Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP) have pulmonary vasodilatory and positive inotropic effects via receptors VPAC1 and VPAC2, which possess a similar affinity for both peptides, and PAC1, a PACAP-preferring receptor. VIP is a promising option for PH treatment; however, various physiological effects of VIP have limited its clinical use. We investigated the effects of VPAC1 and VPAC2 selective agonists VIP and PACAP to explore more appropriate means of treatment for PH. We examined hemodynamic changes in right ventricular systolic pressure (RVSP), systemic blood pressure (SBP), total pulmonary resistance index (TPRI), total systemic resistance index, and cardiac index (CI) in response to their agonists with monocrotaline (MCT)-induced PH and explored involvement of VIP/PACAP expression and receptors in PH. Sprague-Dawley rats were divided into the MCT group (administered MCT 60 mg/kg) and control group. In MCT-induced PH, decreased VIP and PACAP were associated with upregulation of VPAC1, VPAC2, and PAC1 in lung tissues. Intravenous injection of VPAC2-selective agonist BAY 55-9837 and VIP, but not [Ala(11,22,28)]VIP, improved the CI. The decrease in SBP with VPAC2 agonist was significantly less than that in the control. Although they decreased SBP, these agonists hardly affected RVSP in the control. Activation of VPAC2 receptor with BAY 55-9837 effectively improved RVSP, TPRI, and CI in MCT-induced PH, suggesting a VPAC2 agonist as a possible promising treatment for PH.
Collapse
Affiliation(s)
- Motokazu Koga
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yusuke Mizuno
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Watanabe
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromasa Kawakami
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Division of Bio-Functional Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
19
|
Maejima Y, Shimomura K, Sakuma K, Yang Y, Arai T, Mori M, Yada T. Paraventricular nucleus nesfatin-1 neurons are regulated by pituitary adenylate cyclase-activating polypeptide (PACAP). Neurosci Lett 2013; 551:39-42. [DOI: 10.1016/j.neulet.2013.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/19/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
20
|
Inglott MA, Lerner EA, Pilowsky PM, Farnham MMJ. Activation of PAC(1) and VPAC receptor subtypes elicits differential physiological responses from sympathetic preganglionic neurons in the anaesthetized rat. Br J Pharmacol 2013; 167:1089-98. [PMID: 22612450 DOI: 10.1111/j.1476-5381.2012.02045.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuropeptide with central and peripheral cardiovascular actions. Intrathecal PACAP increases splanchnic sympathetic nerve activity and heart rate, but not mean arterial pressure (MAP). We hypothesize that the three PACAP receptors (PAC(1) , VPAC(1) and VPAC(2) ) have different actions in central cardiovascular control, and that their summed effect results in the lack of MAP response observed following intrathecal PACAP injection. EXPERIMENTAL APPROACH The effects of the PACAP receptors on baseline cardiovascular parameters were investigated using selective agonists and antagonists administered into the intrathecal space of urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats. KEY RESULTS Selective activation of the PACAP receptors had different effects on MAP. When activated by maxadilan, PAC(1) receptors increased MAP. The VPAC receptors decreased MAP when both were activated with vasoactive intestinal polypeptide or when only VPAC(1) receptors were activated. The PAC(1) and VPAC(2) receptor antagonist PACAP(6-38) had no cardiovascular effects, suggesting that PACAP is not tonically released. CONCLUSIONS AND IMPLICATIONS PACAP neurotransmission was not responsible for the moment-to-moment tonic regulation of central cardiovascular control mechanisms. Nevertheless, PACAP release within the spinal cord may have pleiotropic effects on sympathetic outflow depending on the postsynaptic receptor type. PAC(1) and VPAC receptor subtypes produced opposing changes in blood pressure when activated by intrathecal PACAP-38 in the anaesthetized Sprague-Dawley rat, resulting in no net change in MAP.
Collapse
Affiliation(s)
- Melissa A Inglott
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
21
|
Tanida M, Hayata A, Shintani N, Yamamoto N, Kurata Y, Shibamoto T, Morgan DA, Rahmouni K, Hashimoto H. Central PACAP mediates the sympathetic effects of leptin in a tissue-specific manner. Neuroscience 2013; 238:297-304. [PMID: 23454538 DOI: 10.1016/j.neuroscience.2013.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/01/2013] [Accepted: 02/09/2013] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that the peptidergic neurotransmitter pituitary adenylate cyclase-activating polypeptide (PACAP) affects the autonomic system and contributes to the control of metabolic and cardiovascular functions. Previous studies have demonstrated the importance of centrally-mediated sympathetic effects of leptin for obesity-related hypertension. Here we tested whether PACAP signaling in the brain is implicated in leptin-induced sympathetic excitation and appetite suppression. In anesthetized mice, intracerebroventricular (ICV) pre-treatment with PACAP6-38, an antagonist of the PACAP receptors (PAC1-R and VPAC2), inhibited the increase in white adipose tissue sympathetic nerve activity (WAT-SNA) produced by ICV leptin (2μg). In contrast, leptin-induced stimulation of renal sympathetic nerve activity (RSNA) was not affected by ICV pre-treatment with PACAP6-38. Moreover, in PACAP-deficient (Adcyap1-/-) mice, ICV leptin-induced WAT-SNA increase was impaired, whereas RSNA response was preserved. The reductions in food intake and body weight evoked by ICV leptin were attenuated in Adcyap1-/- mice. Our data suggest that hypothalamic PACAP signaling plays a key role in the control by leptin of feeding behavior and lipocatabolic sympathetic outflow, but spares the renal sympathetic traffic.
Collapse
Affiliation(s)
- M Tanida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fiamma MN, O'Connor ET, Roy A, Zuna I, Wilson RJA. The essential role of peripheral respiratory chemoreceptor inputs in maintaining breathing revealed when CO2 stimulation of central chemoreceptors is diminished. J Physiol 2013; 591:1507-21. [PMID: 23359670 DOI: 10.1113/jphysiol.2012.247304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Central sleep apnoea is a condition characterized by oscillations between apnoea and hyperpnoea during sleep. Studies in sleeping dogs suggest that withdrawal of peripheral chemoreceptor (carotid body) activation following transient ventilatory overshoots plays an essential role in causing apnoea, raising the possibility that sustaining carotid body activity during ventilatory overshoots may prevent apnoea. To test whether sustained peripheral chemoreceptor activation is sufficient to drive breathing, even in the absence of central chemoreceptor stimulation and vagal feedback, we used a vagotomized, decerebrate dual-perfused in situ rat preparation in which the central and peripheral chemoreceptors are independently and artificially perfused with gas-equilibrated medium. At varying levels of carotid body stimulation (CB PO2/PCO2: 40/60, 100/40, 200/15, 500/15 Torr), we decreased the brainstem perfusate PCO2 in 5 Torr steps while recording phrenic nerve activity to determine the central apnoeic thresholds. The central apnoeic thresholds decreased with increased carotid body stimulation. When the carotid bodies were strongly stimulated (CB 40/60), the apnoeic threshold was 3.6 ± 1.4 Torr PCO2 (mean ± SEM, n = 7). Stimulating carotid body afferent activity with either hypercapnia (60 Torr PCO2) or the neuropeptide pituitary adenylate cyclase-activating peptide restored phrenic activity during central apnoea. We conclude that peripheral stimulation shifts the central apnoeic threshold to very hypocapnic levels that would likely increase the CO2 reserve and have a protective effect on breathing. These data demonstrate that peripheral respiratory chemoreceptors are sufficient to stave off central apnoeas when the brainstem is perfused with low to no CO2.
Collapse
Affiliation(s)
- Marie-Noëlle Fiamma
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
23
|
Farnham MMJ, Lung MSY, Tallapragada VJ, Pilowsky PM. PACAP causes PAC1/VPAC2 receptor mediated hypertension and sympathoexcitation in normal and hypertensive rats. Am J Physiol Heart Circ Physiol 2012; 303:H910-7. [PMID: 22886412 DOI: 10.1152/ajpheart.00464.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuropeptide that plays an important role in hypertension and stress responses. PACAP acts at three G protein-coupled receptors [PACAP type 1 receptor (PAC(1)) and vasoactive intestinal peptide receptor types 1 and 2 (VPAC(1) and VPAC(2))] and is localized to sites involved in cardiovascular control, most significantly the rostral ventrolateral medulla (RVLM). The RVLM is crucial for the tonic and reflex control of efferent sympathetic activity. Increases in sympathetic activity are observed in most types of hypertension and heart failure. PACAP delivered intrathecally also causes massive sympathoexcitation. We aimed to determine the presence and abundance of the three PACAP receptors in the RVLM, the role, in vivo, of PACAP in the RVLM on tonic and reflex cardiovascular control, and the contribution of PACAP to hypertension in the spontaneously hypertensive rat (SHR). Data were obtained using quantitative PCR and microinjection of PACAP and its antagonist, PACAP(6-38), into the RVLM of anesthetized artificially ventilated normotensive rats or SHRs. All three receptors were present in the RVLM. PACAP microinjection into the RVLM caused sustained sympathoexcitation and tachycardia with a transient hypertension but did not affect homeostatic reflexes. The responses were partially mediated through PAC(1)/VPAC(2) receptors since the effect of PACAP was attenuated (∼50%) by PACAP(6-38). PACAP was not tonically active in the RVLM in this preparation because PACAP(6-38) on its own had no inhibitory effect. PACAP has long-lasting cardiovascular effects, but altered PACAP signaling within the RVLM is not a cause of hypertension in the SHR.
Collapse
Affiliation(s)
- M M J Farnham
- Macquarie University, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
24
|
Gaede AH, Inglott MA, Farnham MMJ, Pilowsky PM. Catestatin has an unexpected effect on the intrathecal actions of PACAP dramatically reducing blood pressure. Am J Physiol Regul Integr Comp Physiol 2012; 303:R719-26. [PMID: 22874427 DOI: 10.1152/ajpregu.00202.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study focuses on presympathetic neurons of the rostral ventrolateral medulla (RVLM) that regulate sympathetic vasomotor tone. Many neurotransmitters are colocalized in RVLM neurons and are released under specific conditions to modulate efferent homeostatic responses. Of particular interest here are two peptides colocalized in catecholaminergic RVLM neurons: catestatin and pituitary adenylate cyclase-activating polypeptide (PACAP). Chromogranin A-derived catestatin is a potent endogenous noncompetitive nicotinic and adrenoreceptor antagonist. Catestatin impairs adenylate cyclase and phospholipase C action: mechanisms engaged by PACAP. Although PACAP and catestatin are likely coreleased, the possible effects of this are unknown. We aimed to determine whether catestatin affects the normal sympathoexcitatory but isotensive responses to intrathecal PACAP. Urethane-anesthetized, vagotomized, ventilated Sprague-Dawley rats (n = 22) were given an intrathecal injection of catestatin at different times prior to intrathecal administration of PACAP-38. Arterial pressure, splanchnic sympathetic nerve activity, heart rate, and reflex responses to baroreceptor and chemoreceptor activation were recorded. The key findings of this study are that pretreatment with catestatin time dependently enhances the PACAP-38 effect on mean arterial pressure and enhances sympathetic barosensitivity and chemosensitivity. The time-scale of the effect of catestatin on the response to PACAP-38 strongly suggests that catestatin is either causing changes in gene expression to exert its effects, or modifying intracellular mechanisms normally engaged by PAC(1) receptors. The ability of catestatin pretreatment to enhance barosensitivity and chemosensitivity after PACAP-38 injection supports the hypothesis that catestatin manipulates the intracellular environment within sympathetic neurons in a way that increases responses to PACAP.
Collapse
Affiliation(s)
- Andrea H Gaede
- The Australian School of Advanced Medicine, Macquarie Univ., Macquarie Park, NSW, Australia
| | | | | | | |
Collapse
|