1
|
Afzal S, Sattar MA, Albokhadaim I, Attiq A, Kandeel M, Manap ASA, Alhojaily SM. Interaction between Nuclear Receptor and Alpha-Adrenergic Agonist Subtypes in Metabolism and Systemic Hemodynamics of Spontaneously Hypertensive Rats. PPAR Res 2024; 2024:5868010. [PMID: 38899161 PMCID: PMC11186691 DOI: 10.1155/2024/5868010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/22/2023] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
Partial and full PPAR-γ agonists have shown promising effects and antihypertensive and antidiabetic agents through increased plasma adiponectin concentration. This study is aimed at examining the role of PPAR-γ, alpha-adrenoceptors, and adiponectin receptors in the modulation of vasopressor responses to angiotensin II (Ang II) and adrenergic agonists, after a subset treatment of partial and full PPAR-γ agonists, each individually, and also when coupled with adiponectin in SHRs. The antioxidant potential and metabolic indices for these animals were also determined. Group I (WKY) and group II (SHR) were designated as normotensive control and hypertensive control, respectively. Groups III (SHR) and IV (SHR) received irbesartan (30 mg/kg) and pioglitazone (10 mg/kg) orally for 28 days, and groups V (SHR), VI (SHR), and VII (SHR) were treated with adiponectin (2.5 μg/kg) intraperitoneally alone, in combination with irbesartan, and in combination with pioglitazone, respectively, from days 21 to 28 only. On day 29, sodium pentobarbitone (60 mg/kg) was used to anesthetize all test animals, and systemic hemodynamic and plasma adiponectin concentrations and in vitro and in vivo antioxidant potential were measured. As compared to the WKY control, the SHR control group's noninvasive blood pressure and basal mean arterial pressure were significantly greater, along with increased arterial stiffness, lower plasma nitric oxide, adiponectin concentration, and antioxidant enzyme levels (all P < 0.05). However, they were gradually normalized by single drug treatments in all groups, and to a greater extent in the SHR + Irb + Adp group (P < 0.05). In the acute study, the dose dependant mean arterial pressure responses to intravenously administered adrenergic agonists and angiotensin-II were significantly larger in SHRs as compared to WKY by 20-25%. Adiponectin alone and in combination significantly blunted vasopressor responses to these alpha-adrenergic agonists in the SHR + Pio + Adp group by 63%, whereas attenuated responses to ANG-II administration to 70% in SHR + Irb + Adp. In conclusion, the combined treatment of adiponectin with PPAR-agonists reduced the systemic vascular responses to adrenergic agonists and improved arterial stiffness. This an evidence of the interaction of adiponectin receptors, PPAR-γ, alpha-adrenoceptors, and ANG-II in the systemic vasculature of SHRs. A significant level of synergism has also been proved among full PPAR-γ agonists and adiponectin receptors.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Munavvar Abdul Sattar
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Ali Attiq
- Discipline of PharmacologySchool of Pharmaceutical SciencesUniversiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| | - Sameer M. Alhojaily
- Department of Biomedical ScienceCollege of Veterinary MedicineKing Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
2
|
Iftikhar N, Hussain AI, Fatima T, Alsuwayt B, Althaiban AK. Bioactivity-Guided Isolation and Antihypertensive Activity of Citrullus colocynthis Polyphenols in Rats with Genetic Model of Hypertension. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1880. [PMID: 37893598 PMCID: PMC10608828 DOI: 10.3390/medicina59101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Citrullus colocynthis belongs to the Cucurbitaceae family and is a wild medicinal plant used in folk literature to treat various diseases. The purpose of the current study was to explore the antihypertensive and antioxidant potentials of Citrullus colocynthis (CC) polyphenol-rich fractions using a spontaneous hypertensive rat (SHR) model. Materials and Methods: The concentrated aqueous ethanol extract of CC fruit was successively fractioned using solvents of increasing polarity, i.e., hexane, chloroform, ethyl acetate and n-butanol. The obtained extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC) and total flavonol content (TOF). Moreover, the CC extracts were further evaluated for radical scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays and antioxidant activity using inhibition of linoleic acid peroxidation and determination of reducing potential protocols. The phytochemical components were characterized by HPLC-MWD-ESI-MS in positive ionization mode. Results: The results showed that ethyl acetate fraction (EAF) exhibited a higher content of phenolic compounds in term of TPC (289 mg/g), TFC (7.6 mg/g) and TOF (35.7 mg/g). EAF showed higher antioxidant and DPPH and ABTS scavenging activities with SC50 values of 6.2 and 79.5 µg/mL, respectively. LCMS analysis revealed that twenty polyphenol compounds were identified in the EAF, including phenolic acids and flavonoids, mainly myricetin and quercetin derivatives. The in vivo antihypertensive activity of EAF of CC on SHR revealed that it significantly decreased the mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressures (DBP) and pulse pressure (PP) as compared to normal and hypertensive control groups. Moreover, EAF of CC significantly reduced the oxidative stress in the animals in a dose-dependent manner by normalizing the levels of superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NOx) and total antioxidant capacity (TAC). Furthermore, the treatment groups, especially the 500 mg of EAF per kg body weight (EA-500) group, significantly (p ≤ 0.05) improved the electrocardiogram (ECG) pattern and pulse wave velocity (PWV). Conclusion: It was concluded that the EAF of CC is a rich source of polyphenols and showed the best antioxidant activity and antihypertensive potential in SHR.
Collapse
Affiliation(s)
- Neelam Iftikhar
- Natural Product and Synthetic Chemistry Laboratory, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Abdullah Ijaz Hussain
- Natural Product and Synthetic Chemistry Laboratory, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Central Hi-Tech Laboratory, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tabinda Fatima
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia;
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia; (B.A.); (A.K.A.)
| | - Abdullah K. Althaiban
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia; (B.A.); (A.K.A.)
| |
Collapse
|
3
|
Buonfiglio F, Xia N, Yüksel C, Manicam C, Jiang S, Zadeh JK, Musayeva A, Elksne E, Pfeiffer N, Patzak A, Li H, Gericke A. Studies on the Effects of Hypercholesterolemia on Mouse Ophthalmic Artery Reactivity. Diseases 2023; 11:124. [PMID: 37873768 PMCID: PMC10594501 DOI: 10.3390/diseases11040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
Atherogenic lipoproteins may impair vascular reactivity, leading to tissue damage in various organs, including the eye. This study aimed to investigate whether ophthalmic artery reactivity is affected in mice lacking the apolipoprotein E gene (ApoE-/-), a model for hypercholesterolemia and atherosclerosis. Twelve-month-old male ApoE-/- mice and age-matched wild-type controls were used to assess vascular reactivity using videomicroscopy. Moreover, the vascular mechanics, lipid content, levels of reactive oxygen species (ROS), and expression of pro-oxidant redox enzymes and the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) were determined in vascular tissue. Unlike the aorta, the ophthalmic artery of ApoE-/- mice developed no signs of endothelial dysfunction and no signs of excessive lipid deposition. Remarkably, the levels of ROS, nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NOX2, NOX4, and LOX-1 were increased in the aorta but not in the ophthalmic artery of ApoE-/- mice. Our findings suggest that ApoE-/- mice develop endothelial dysfunction in the aorta by increased oxidative stress via the involvement of LOX-1, NOX1, and NOX2, whereas NOX4 may participate in media remodeling. In contrast, the ophthalmic artery appears to be resistant to chronic apolipoprotein E deficiency. A lack of LOX-1 expression/overexpression in response to increased oxidized low-density lipoprotein levels may be a possible mechanism of action.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Can Yüksel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eva Elksne
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
4
|
Doué M, Okwieka A, Berquand A, Gorisse L, Maurice P, Velard F, Terryn C, Molinari M, Duca L, Piétrement C, Gillery P, Jaisson S. Carbamylation of elastic fibers is a molecular substratum of aortic stiffness. Sci Rep 2021; 11:17827. [PMID: 34497312 PMCID: PMC8426361 DOI: 10.1038/s41598-021-97293-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Because of their long lifespan, matrix proteins of the vascular wall, such as elastin, are subjected to molecular aging characterized by non-enzymatic post-translational modifications, like carbamylation which results from the binding of cyanate (mainly derived from the dissociation of urea) to protein amino groups. While several studies have demonstrated a relationship between increased plasma concentrations of carbamylated proteins and the development of cardiovascular diseases, molecular mechanisms explaining the involvement of protein carbamylation in these pathological contexts remain to be fully elucidated. The aim of this work was to determine whether vascular elastic fibers could be carbamylated, and if so, what impact this phenomenon would have on the mechanical properties of the vascular wall. Our experiments showed that vascular elastin was carbamylated in vivo. Fiber morphology was unchanged after in vitro carbamylation, as well as its sensitivity to elastase degradation. In mice fed with cyanate-supplemented water in order to increase protein carbamylation within the aortic wall, an increased stiffness in elastic fibers was evidenced by atomic force microscopy, whereas no fragmentation of elastic fiber was observed. In addition, this increased stiffness was also associated with an increase in aortic pulse wave velocity in ApoE-/- mice. These results provide evidence for the carbamylation of elastic fibers which results in an increase in their stiffness at the molecular level. These alterations of vessel wall mechanical properties may contribute to aortic stiffness, suggesting a new role for carbamylation in cardiovascular diseases.
Collapse
Affiliation(s)
- Manon Doué
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Anaïs Okwieka
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Alexandre Berquand
- LRN EA 4682 Laboratoire de Recherche en Nanosciences and NanoMat' Platform, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Pascal Maurice
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Frédéric Velard
- BIOS EA 4691 Biomatériaux et Inflammation en site osseux, University of Reims Champagne-Ardenne, Reims, France
| | - Christine Terryn
- PICT Platform, University of Reims Champagne-Ardenne, Reims, France
| | - Michaël Molinari
- IPB, CNRS UMR N°5248 CBMN Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, Bordeaux, France
| | - Laurent Duca
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
| | - Christine Piétrement
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
- Department of Pediatrics (Nephrology Unit), University Hospital of Reims, Reims, France
| | - Philippe Gillery
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France
| | - Stéphane Jaisson
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS/URCA UMR N° 7369 MEDyC Matrice Extracellulaire et Dynamique Cellulaire, Team 2 "Matrix Aging and Vascular Remodeling", Faculté de Médecine, University of Reims Champagne-Ardenne, 51 Rue Cognacq-Jay, 51095, Reims, France.
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France.
| |
Collapse
|
5
|
LOXL4 Abrogation Does Not Exaggerate Angiotensin II-Induced Thoracic or Abdominal Aortic Aneurysm in Mice. Genes (Basel) 2021; 12:genes12040513. [PMID: 33807332 PMCID: PMC8066229 DOI: 10.3390/genes12040513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/03/2023] Open
Abstract
It has been shown that thoracic aortic aneurysm and dissection (TAAD) could be a Mendelian trait caused by a single gene mutation. The LOX gene mutation leads to the development of human TAAD. The LOXL4 gene is a member of the lysyl oxidase gene family. We identified seven variants in the LOXL4 gene in 219 unrelated patients with TAAD by whole-exome sequencing (WES). To further investigate whether LOXL4 is a candidate causative gene for human TAAD, a Loxl4 knockout mouse was generated, and the mutant mice were treated by subcutaneous infusion of angiotensin II. We found that abrogation of Loxl4 did not induce a more severe thoracic or abdominal aortic aneurysm compared with the wild-type C57BL/6J mice. Our results suggest that LOXL4 may not play a major role in the development of angiotensin II-induced aortic aneurysm. The functional study using this animal model system is important for the evaluation of candidate genes of TAAD identified by WES.
Collapse
|
6
|
Chia TY, Murugaiyah V, Khan NA, Sattar MA, Abdulla MH, Johns EJ, Ahmad A, Hassan Z, Kaur G, Mei HY, Ahmad FU, Akhtar S. Inhibition of L-NAME-induced hypertension by combined treatment with apocynin and catalase: the role of Nox 4 expression. Physiol Res 2021; 70:13-26. [PMID: 33728924 DOI: 10.33549/physiolres.934497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) such as superoxide (O2-) generated by NAD(P)H oxidases have emerged as important molecules in blood pressure regulation. This study investigated the effect of apocynin and catalase on blood pressure and renal haemodynamic and excretory function in an L-NAME induced hypertension model. Forty Male Wistar-Kyoto (WKY) rats (n=8 per group) were treated with either: vehicle (WKY-C); L-NAME (WKY-L, 15 mg/kg/day in drinking fluid); WKY-L given apocynin to block NAD(P)H oxidase (WKY-LApo, 73 mg/kg/day in drinking water.); WKY-L given catalase to enhance ROS scavenging (WKY-LCat, 10000 U/kg/day i.p.); and WKY-L receiving apocynin plus catalase (WKY-LApoCat) daily for 14 days. L-NAME elevated systolic blood pressure (SBP), 116+/-1 to 181±4 mmHg, reduced creatinine clearance, 1.69+/-0.26 to 0.97+/-0.05 ml/min/kg and fractional sodium excretion, 0.84+/-0.09 to 0.55+/-0.09 % at day 14. Concomitantly, plasma malondialdehyde (MDA) increased six fold, while plasma total superoxide dismutase (T-SOD), plasma nitric oxide (NO) and plasma total antioxidant capacity (T-AOC) were decreased by 60-70 % and Nox 4 mRNA expression was increased 2-fold. Treatment with apocynin and catalase attenuated the increase in SBP and improved renal function, enhanced antioxidative stress capacity and reduced the magnitude of Nox4 mRNAs expression in the L-NAME treated rats. This study demonstrated that apocynin and catalase offset the development of L-NAME induced hypertension, renal dysfunction and reduced oxidative stress status, possibly contributed by a reduction in Nox4 expression during NOS inhibition. These findings would suggest that antioxidant compounds such as apocynin and catalase have potential in treating cardiovascular diseases.
Collapse
Affiliation(s)
- T Y Chia
- Cardiovascular and Renal Physiology Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia. or . Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tsushima H, Yamada K, Miyazawa D, Ohkubo T, Michikawa M, Abe-Dohmae S. Comparison of the Physical Characteristics and Behavior in ABC Transporter A1, A7 or Apolipoprotein E Knockout Mice with Lipid Transport Dysfunction. Biol Pharm Bull 2021; 44:1851-1859. [PMID: 34853267 DOI: 10.1248/bpb.b21-00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physical characteristics and behavior of the ATP-binding cassette (ABC) A1, A7, and apolipoprotein (apo) E knockout (KO) mice with lipid transport dysfunction were investigated. These KO mice exhibited adequate growth, and their body masses increased steadily. No remarkable changes were observed in their blood pressure and heart rate. However, there was a slight increase in the heart rate of the ABCA7 KO mice compared with that of the wild-type (WT) mice. ABCA1 and apoE KO mice showed hypo- and hyper-cholesterol concentrations in the plasma, respectively. With regard to the cerebrum, however, the weight of the ABCA1 KO mice was lighter than those of the other genotypes. Furthermore, the cholesterol, triglyceride and phospholipid concentrations, and fatty acid composition were generally similar. Compared with the WT mice, ABCA1 KO mice stayed for a shorter time in the closed arm of the elevated plus maze, and performed worse in the initial stage of the Morris water maze. To thermal stimuli, the ABCA1 and apoE KO mice showed hyper- and hypo-sensitivities, respectively. Only the response of the ABCA1 KO mice was significantly inhibited by pretreatment with indomethacin. A low concentration of the prostaglandin E metabolites was detected in the plasma of the ABCA1 KO mice. Thus, ABCA1 is thought to play a specific role in the neural function.
Collapse
Affiliation(s)
- Hiromi Tsushima
- Laboratory of Pharmacology, College of Pharmacy, Kinjo Gakuin University
| | - Kazuyo Yamada
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University
| | - Daisuke Miyazawa
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University
| | - Takeshi Ohkubo
- Department of Health and Nutrition, Sendai Shirayuri Women's College
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences
| | - Sumiko Abe-Dohmae
- Department of Food and Nutritional Sciences, Bioscience and Biotechnology, Chubu University
| |
Collapse
|
8
|
Chia T, Murugaiyah V, Sattar M, Khan N, Ahmad A, Abdulla M, Johns E, Mei H, Akhtar S, Ahmad F. The restorative effect of apocynin and catalase in l-arginine induced hypotension on normotensive subjects – the role of oxidative stress. Physiol Res 2020. [DOI: 10.33549//physiolres.934426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
L-arginine is a substrate for nitric oxide synthase (NOS) responsible for the production of NO. This investigation studied the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on L-arginine induced oxidative stress and hypotension. Forty Wistar-Kyoto rats were treated for 14 days with vehicle, L-arginine (12.5mg/ml p.o.), L-arginine+apocynin (2.5mmol/L p.o.), L-arginine+catalase (10000U/kg/day i.p.) and L-arginine plus apocynin+catalase respectively. Weekly renal functional and hemodynamic parameters were measured and kidneys harvested at the end of the study for histopathological and renal NADPH oxidase 4 (Nox4) assessments. L-arginine administration in normotensive rats decreased systolic blood pressure (120±2 vs 91±2mmHg) and heart rate (298±21 vs 254±15b/min), enhanced urinary output (21.5±4.2 vs 32±1.9ml/24h , increased creatinine clearance (1.72±0.56 vs 2.62±0.40ml/min/kg), and fractional sodium excretion (0.88±0.16 vs 1.18±0.16 %), caused proteinuria (28.10±1.93 vs 35.26±1.69mg/kg/day) and a significant decrease in renal cortical blood perfusion (292±3 vs 258±5bpu) and pulse wave velocity (3.72±0.20 vs 2.84±0.13m/s) (all P<0.05). L-arginine increased plasma malondialdehyde (by ~206 % P<0.05) and NO (by ~51 %, P<0.05) but decreased superoxide dismutase (by ~31 %, P<0.05) and total antioxidant capacity (by ~35 %, P<0.05) compared to control. Renal Nox4 mRNA activity was approximately 2.1 fold higher (P<0.05) in the L-arginine treated rats but was normalized by apocynin and apocynin plus catalase treatment. Administration of apocynin and catalase, but not catalase alone to rats fed L-arginine, restored the deranged renal function and structure, prevented hypotension and enhanced the antioxidant capacity and suppressed Nox4 expression. These findings suggest that apocynin and catalase might be used prophylactically in states of oxidative stress.
Collapse
Affiliation(s)
- T.Y. Chia
- Cardiovascular and Renal Physiology Research Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gnyawali SC, Sinha M, El Masry MS, Wulff B, Ghatak S, Soto-Gonzalez F, Wilgus TA, Roy S, Sen CK. High resolution ultrasound imaging for repeated measure of wound tissue morphometry, biomechanics and hemodynamics under fetal, adult and diabetic conditions. PLoS One 2020; 15:e0241831. [PMID: 33227015 PMCID: PMC7682876 DOI: 10.1371/journal.pone.0241831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasive, repeated interrogation of the same wound is necessary to understand the tissue repair continuum. In this work, we sought to test the significance of non-invasive high-frequency high-resolution ultrasound technology for such interrogation. High-frequency high-resolution ultrasound imaging was employed to investigate wound healing under fetal and adult conditions. Quantitative tissue cellularity and elastic strain was obtained for visualization of unresolved inflammation using Vevo strain software. Hemodynamic properties of the blood flow in the artery supplying the wound-site were studied using color Doppler flow imaging. Non-invasive monitoring of fetal and adult wound healing provided unprecedented biomechanical and functional insight. Fetal wounds showed highly accelerated closure with transient perturbation of wound tissue cellularity. Fetal hemodynamics was unique in that sharp fall in arterial pulse pressure (APP) which was rapidly restored within 48h post-wounding. In adults, APP transiently increased post-wounding before returning to the pre-wounding levels by d10 post-wounding. The pattern of change in the elasticity of wound-edge tissue of diabetics was strikingly different. Severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of the non-diabetic group. Wound bed of adult diabetic mice (db/db) showed persistent hypercellularity compared to littermate controls (db/+) indicative of prolonged inflammation. Normal skin strain of db/+ and db/db were asynchronous. In db/db, severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of non-diabetics. This study showcases a versatile clinically relevant imaging platform suitable for real-time analyses of functional wound healing.
Collapse
Affiliation(s)
- Surya C. Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mohamed S. El Masry
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Plastic and Reconstructive Surgery, Zagazig University, Zagazig, Egypt
| | - Brian Wulff
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Fidel Soto-Gonzalez
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Traci A. Wilgus
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Chandan K. Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
10
|
Tan YC, Abdul Sattar M, Ahmeda AF, Abdul Karim Khan N, Murugaiyah V, Ahmad A, Hassan Z, Kaur G, Abdulla MH, Johns EJ. Apocynin and catalase prevent hypertension and kidney injury in Cyclosporine A-induced nephrotoxicity in rats. PLoS One 2020; 15:e0231472. [PMID: 32298299 PMCID: PMC7161975 DOI: 10.1371/journal.pone.0231472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is involved in the pathogenesis of a number of diseases including hypertension and renal failure. There is enhanced expression of nicotinamide adenine dinucleotide (NADPH oxidase) and therefore production of hydrogen peroxide (H2O2) during renal disease progression. This study investigated the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on Cyclosporine A (CsA) nephrotoxicity in Wistar-Kyoto rats. Rats received CsA (25mg/kg/day via gavage) and were assigned to vehicle, apocynin (2.5mmol/L p.o.), catalase (10,000U/kg/day i.p.) or apocynin plus catalase for 14 days. Renal functional and hemodynamic parameters were measured every week, and kidneys were harvested at the end of the study for histological and NADPH oxidase 4 (NOX4) assessment. Oxidative stress markers and blood urea nitrogen (BUN) were measured. CsA rats had higher plasma malondialdehyde (by 340%) and BUN (by 125%), but lower superoxide dismutase and total antioxidant capacity (by 40%, all P<0.05) compared to control. CsA increased blood pressure (by 46mmHg) and decreased creatinine clearance (by 49%, all P<0.05). Treatment of CsA rats with apocynin, catalase, and their combination decreased blood pressure to near control values (all P<0.05). NOX4 mRNA activity was higher in the renal tissue of CsA rats by approximately 63% (P<0.05) compared to controls but was reduced in apocynin (by 64%), catalase (by 33%) and combined treatment with apocynin and catalase (by 84%) compared to untreated CsA rats. Treatment of CsA rats with apocynin, catalase, and their combination prevented hypertension and restored renal functional parameters and tissue Nox4 expression in this model. NADPH inhibition and H2O2 scavenging is an important therapeutic strategy during CsA nephrotoxicity and hypertension.
Collapse
Affiliation(s)
- Yong Chia Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
- * E-mail:
| | - Munavvar Abdul Sattar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Ahmad F. Ahmeda
- Basic Medical Science Department, College of Medicine, Qatar University, Doha, Qatar
| | | | | | - Ashfaq Ahmad
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Virginia, Richmond, United States of America
- Department of Pharmacy, Abasyn University Islamabad Campus, Islamabad, Pakistan
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Gurjeet Kaur
- Institute for Molecular Medicine Research, Universiti Sains Malaysia, Penang, Malaysia
| | | | | |
Collapse
|
11
|
Cahill LS, Pilmeyer J, Yu LX, Steinman J, Hare GMT, Kassner A, Macgowan CK, Sled JG. Ultrasound Detection of Abnormal Cerebrovascular Morphology in a Mouse Model of Sickle Cell Disease Based on Wave Reflection. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3269-3278. [PMID: 31563480 DOI: 10.1016/j.ultrasmedbio.2019.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Sickle cell disease (SCD) is associated with a high risk of stroke, and affected individuals often have focal brain lesions termed silent cerebral infarcts. The mechanisms leading to these types of injuries are at present poorly understood. Our group has recently demonstrated a non-invasive measurement of cerebrovascular impedance and wave reflection in mice using high-frequency ultrasound in the common carotid artery. To better understand the pathophysiology in SCD, we used this approach in combination with micro-computed tomography to investigate changes in cerebrovascular morphology in the Townes mouse model of SCD. Relative to controls, the SCD mice demonstrated the following: (i) increased carotid artery diameter, blood flow and vessel wall thickness; (ii) elevated pulse wave velocity; (iii) increased reflection coefficient; and (iv) an increase in the total number of vessel segments in the brain. This study highlights the potential for wave reflection to aid the non-invasive clinical assessment of vascular pathology in SCD.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Jesper Pilmeyer
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa X Yu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joe Steinman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory M T Hare
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Anesthesia, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Diaz M, Parikh V, Ismail S, Maxamed R, Tye E, Austin C, Dew T, Graf BA, Vanhees L, Degens H, Azzawi M. Differential effects of resveratrol on the dilator responses of femoral arteries, ex vivo. Nitric Oxide 2019; 92:1-10. [DOI: 10.1016/j.niox.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
|
13
|
Di Lascio N, Kusmic C, Rossi C, Solini A, Faita F. Alterations in Carotid Parameters in ApoE-/- Mice Treated with a High-Fat Diet: A Micro-ultrasound Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:980-988. [PMID: 30712947 DOI: 10.1016/j.ultrasmedbio.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Information on the common carotid artery and cerebral microcirculation can be obtained by micro-ultrasound (µUS). The aim of the study described here was to investigate high-fat diet-induced alterations in vascular parameters in ApoE-/- mice. Twenty-two ApoE-/- male mice were examined by µUS and divided into the standard diet (ApoE-/-SD) and high-fat diet (ApoE-/-HF) groups. The µUS examination was repeated after 4 mo (T1). Carotid stiffness, reflection magnitude and reflection index were measured; the amplitudes of the first (W1) and second (W2) local maxima, the local minimum (Wb) and the reflection index (RIWIA = Wb/W1) were assessed with wave intensity analysis. At T1, ApoE-/-HF mice had increased carotid stiffness (1.48 [0.36] vs. 1.88 [0.51]) and reflection magnitude (0.89 [0.07] vs. 0.94 [0.07]) values. Longitudinal comparisons highlighted increases in carotid stiffness for ApoE-/-HF mice (from 1.37 [0.25] to 1.88 [0.51] m/s) but not for ApoE-/-SD mice (from 1.40 [0.62] to 1.48 [0.36] m/s). ApoE-/-HF mice exhibited carotid artery stiffening and increased wave reflections.
Collapse
Affiliation(s)
- Nicole Di Lascio
- Institute of Clinical Physiology, CNR, Pisa, Italy; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | | | - Chiara Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
14
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
16
|
Hori D, Akiyoshi K, Yuri K, Nishi S, Nonaka T, Yamamoto T, Imamura Y, Matsumoto H, Kimura N, Yamaguchi A. Effect of endoskeleton stent graft design on pulse wave velocity in patients undergoing endovascular repair of the aortic arch. Gen Thorac Cardiovasc Surg 2017; 65:506-511. [PMID: 28597335 DOI: 10.1007/s11748-017-0787-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/29/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE Pulse wave velocity (PWV), which measures vascular stiffness, is a powerful predictor of cardiovascular event. Treatment of aneurysms with endovascular prosthesis has been reported to increase PWV. The purpose of this study was to evaluate whether an endoskeleton stent graft design has less effect on PWV than the exoskeleton stent graft design. METHODS Between July 2008 and September 2016, 74 patients underwent endovascular treatment of aortic arch aneurysm in our institution. PWV before and after surgery were compared between those who underwent treatment with Najuta, an endoskeleton stent graft (n = 51), and those treated with other commercially available exoskeleton stent grafts (n = 23). RESULTS Preoperative PWV (endoskeleton: 2004 ± 379.2 cm/s vs. exoskeleton: 2083 ± 454.5 cm/s, p = 0.47) was similar between the two groups. Factors that were associated with preoperative PWV were age (r = 0.37, 95% CI 0.15-0.56, p = 0.002) and mean arterial pressure (r = 0.53, 95% CI 0.34-0.68, p < 0.001). There was a significant increase in PWV in patients treated by exoskeleton stent grafts (before: 2083 ± 454.5 cm/s vs. after: 2305 ± 479.7 cm/s, p = 0.023) while endoskeleton stent graft showed no change in PWV (before: 2003 ± 379.2 vs. after: 2010 ± 521.1, p = 0.56). In a multivariate analysis, mean arterial pressure (coef 17.5, 95% CI 6.48-28.59, p = 0.002) and exoskeleton stent graft (coef 359.4, 95% CI 89.36-629.43, p = 0.010) were independently associated with PWV after surgery. CONCLUSIONS Physiological changes after endovascular treatment should be considered including effect on vascular stiffness. Endoskeleton stent graft may provide aneurysm repair with minimum effect in PWV after surgery.
Collapse
Affiliation(s)
- Daijiro Hori
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan.
| | - Kei Akiyoshi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Koichi Yuri
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Satoshi Nishi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Takao Nonaka
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Takahiro Yamamoto
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Yusuke Imamura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Harunobu Matsumoto
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama, 330-8503, Japan
| |
Collapse
|
17
|
miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling. PLoS One 2017; 12:e0174108. [PMID: 28323879 PMCID: PMC5360327 DOI: 10.1371/journal.pone.0174108] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Endothelial dysfunction and arterial stiffening play major roles in cardiovascular diseases. The critical role for the miR-181 family in vascular inflammation has been documented. Here we tested whether the miR-181 family can influence the pathogenesis of hypertension and vascular stiffening. METHODS AND RESULTS qPCR data showed a significant decrease in miR-181b expression in the aorta of the older mice. Eight miR-181a1/b1-/- mice and wild types (C57BL6J:WT) were followed weekly for pulse wave velocity (PWV) and blood pressure measurements. After 20 weeks, the mice were tested for endothelial function and aortic modulus. There was a progressive increase in PWV and higher systolic blood pressure in miR-181a1/b1-/- mice compared with WTs. At 21 weeks, aortic modulus was significantly greater in the miR-181a1/b1-/- group, and serum TGF-β was found to be elevated at this time. A luciferase reporter assay confirmed miR-181b targets TGF-βi (TGF-β induced) in the aortic VSMCs. In contrast, wire myography revealed unaltered endothelial function along with higher nitric oxide production in the miR-181a1/b1-/- group. Cultured VECs and VSMCs from the mouse aorta showed more secreted TGF-β in VSMCs of the miR-181a1/b1-/- group; whereas, no change was observed from VECs. Circulating levels of angiotensin II were similar in both groups. Treatment with losartan (0.6 g/L) prevented the increase in PWV, blood pressure, and vascular stiffness in miR-181a1/b1-/- mice. Immunohistochemistry and western blot for p-SMAD2/3 validated the inhibitory effect of losartan on TGF-β signaling in miR-181a1/b1-/- mice. CONCLUSIONS Decreased miR-181b with aging plays a critical role in ECM remodeling by removing the brake on the TGF-β, pSMAD2/3 pathway.
Collapse
|
18
|
Di Lascio N, Kusmic C, Stea F, Faita F. Ultrasound-based Pulse Wave Velocity Evaluation in Mice. J Vis Exp 2017:54362. [PMID: 28287528 PMCID: PMC5407600 DOI: 10.3791/54362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Arterial stiffness can be evaluated by calculating pulse wave velocity (PWV), i.e., the speed with which the pulse wave travels in a conduit vessel. This parameter is being increasingly investigated in small rodent models in which it is used for assessing alterations in vascular function related to particular genotypes/treatments or for characterizing cardiovascular disease progression. This protocol describes an image processing algorithm which leads to non-invasive arterial PWV measurement in mice using ultrasound (US) images only. The proposed technique has been used to assess abdominal aorta PWV in mice and evaluate its age-associated changes. Abdominal aorta US scans are obtained from mice under gaseous anesthesia using a specific US device equipped with high-frequency US probes. B-mode and Pulse-Wave Doppler (PW-Doppler) images are analyzed in order to obtain diameter and mean velocity instantaneous values, respectively. For this purpose, edge detection and contour tracking techniques are employed. The single-beat mean diameter and velocity waveforms are time aligned and combined in order to achieve the diameter-velocity (lnD-V) loop. PWV values are obtained from the slope of the linear part of the loop, which corresponds to the early systolic phase. With the present approach, anatomical and functional information about the mouse abdominal aorta can be non-invasively achieved. Requiring the processing of US images only, it may represent a useful tool for the non-invasive characterization of different arterial sites in the mouse in terms of elastic properties. The application of the present technique can be easily extended to other vascular districts, such as the carotid artery, thus providing the possibility to obtain a multi-site arterial stiffness assessment.
Collapse
Affiliation(s)
- Nicole Di Lascio
- Institute of Life Science, Scuola Superiore Sant'Anna; Institute of Clinical Physiology, National Research Council;
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council
| | - Francesco Stea
- Institute of Clinical Physiology, National Research Council; Department of Clinical and Experimental Medicine, University of Pisa
| | | |
Collapse
|
19
|
Wilson C, Saunter CD, Girkin JM, McCarron JG. Advancing Age Decreases Pressure-Sensitive Modulation of Calcium Signaling in the Endothelium of Intact and Pressurized Arteries. J Vasc Res 2017; 53:358-369. [PMID: 28099964 PMCID: PMC5345132 DOI: 10.1159/000454811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/27/2016] [Indexed: 01/21/2023] Open
Abstract
Aging is the summation of many subtle changes which result in altered cardiovascular function. Impaired endothelial function underlies several of these changes and precipitates plaque development in larger arteries. The endothelium transduces chemical and mechanical signals into changes in the cytoplasmic calcium concentration to control vascular function. However, studying endothelial calcium signaling in larger arteries in a physiological configuration is challenging because of the requirement to focus through the artery wall. Here, pressure- and agonist-sensitive endothelial calcium signaling was studied in pressurized carotid arteries from young (3-month-old) and aged (18-month-old) rats by imaging from within the artery using gradient index fluorescence microendoscopy. Endothelial sensitivity to acetylcholine increased with age. The number of cells exhibiting oscillatory calcium signals and the frequency of oscillations were unchanged with age. However, the latency of calcium responses was significantly increased with age. Acetylcholine-evoked endothelial calcium signals were suppressed by increased intraluminal pressure. However, pressure-dependent inhibition of calcium signaling was substantially reduced with age. While each of these changes will increase endothelial calcium signaling with increasing age, decreases in endothelial pressure sensitivity may manifest as a loss of functionality and responsiveness in aging.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
20
|
Lu Q, Jiang X, Zhang C, Zhang W, Zhang W. Noninvasive Regional Aortic Stiffness for Monitoring the Early Stage of Abdominal Aortic Aneurysm in Mice. Heart Lung Circ 2016; 26:395-403. [PMID: 27769755 DOI: 10.1016/j.hlc.2016.06.1218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/09/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) affects more than 5% of the population in developed countries. To study the formation and progression of AAA, we developed a non-invasive method to analyse regional aortic stiffness to monitor the formation and progression of AAA. METHODS Saline or Angiotensin II (AngII) was subcutaneously infused in apolipoprotein E knockout (ApoE-/-) mice for 28 days; a high-resolution imaging system was used to identify changes in arterial stiffness measured by pulse-wave velocity (PWV) and aortic lumen diameter in the suprarenal aorta. RESULTS Both regional PWV and luminal diameter in the suprarenal aorta did not change significantly in saline-treated ApoE-/- mice for 28 days. In contrast, AngII treatment for 28 days rapidly increased both regional PWV and luminal diameter. The difference in luminal diameter could be identified at 14 days. However, regional PWV significantly increased within the first 7 days after AngII perfusion as compared with saline treatment. However, in ApoE-/- diabetic mice, both regional PWV and aortic diameter did not differ between AngII and saline treatment at 7 or 28 days. CONCLUSIONS Regional PWV may be used to monitor AAA development and was improved after AngII infusion in ApoE-/- mice.
Collapse
Affiliation(s)
- Qiulun Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuxin Jiang
- Department of General Surgery, Virtual Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Hohl M, Linz D, Fries P, Müller A, Stroeder J, Urban D, Speer T, Geisel J, Hummel B, Laufs U, Schirmer SH, Böhm M, Mahfoud F. Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats. J Transl Med 2016; 14:167. [PMID: 27277003 PMCID: PMC4898354 DOI: 10.1186/s12967-016-0914-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Apolipoprotein E-deficient (ApoE(-/-)) rodents spontaneously develop severe hypercholesterolemia and increased aortic stiffness, both accepted risk factors for cardiovascular morbidity and mortality in humans. In patients with resistant hypertension renal denervation (RDN) may improve arterial stiffness, however the underlying mechanisms are incompletely understood. This study investigates the impact of RDN on aortic compliance in a novel atherosclerosis prone ApoE(-/-)-rat model. METHODS Normotensive, 8 weeks old ApoE(-/-) and Sprague-Dawley (SD) rats were subjected to bilateral surgical RDN (n = 6 per group) or sham operation (n = 5 per group) and fed with normal chow for 8 weeks. Compliance of the ascending aorta was assessed by magnetic resonance imaging. Vasomotor function was measured by aortic ring tension recordings. Aortic collagen content was quantified histologically and plasma aldosterone levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS After 8 weeks, ApoE(-/-)-sham demonstrated a 58 % decrease in aortic distensibility when compared with SD-sham (0.0051 ± 0.0011 vs. 0.0126 ± 0.0023 1/mmHg; p = 0.02). This was accompanied by an impaired endothelium-dependent relaxation of aortic rings and an increase in aortic medial fibrosis (17.87 ± 1.4 vs. 12.27 ± 1.1 %; p = 0.006). In ApoE(-/-)-rats, RDN prevented the reduction of aortic distensibility (0.0128 ± 0.002 vs. 0.0051 ± 0.0011 1/mmHg; p = 0.01), attenuated endothelial dysfunction, and decreased aortic medial collagen content (12.71 ± 1.3 vs. 17.87 ± 1.4 %; p = 0.01) as well as plasma aldosterone levels (136.33 ± 6.6 vs. 75.52 ± 8.4 pg/ml; p = 0.0003). Cardiac function and metabolic parameters such as hypercholesterolemia were not influenced by RDN. CONCLUSION ApoE(-/-)-rats spontaneously develop impaired vascular compliance. RDN improves aortic distensibility and attenuated endothelial dysfunction in ApoE(-/-)-rats. This was associated with a reduction in aortic fibrosis formation, and plasma aldosterone levels.
Collapse
Affiliation(s)
- Mathias Hohl
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Dominik Linz
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Peter Fries
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Andreas Müller
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jonas Stroeder
- />Klinik für Diagnostische und Interventionelle Radiologie, Universität des Saarlandes, Homburg/Saar, Germany
| | - Daniel Urban
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Thimoteus Speer
- />Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany
| | - Jürgen Geisel
- />Zentrallabor, Klinische Chemie und Laboratorium Medizin, Universität des Saarlandes, Homburg/Saar, Germany
| | - Björn Hummel
- />Institut für Klinische Hämostaseologie und Transfusionsmedizin, Universität des Saarlandes, Homburg/Saar, Germany
| | - Ulrich Laufs
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Stephan H. Schirmer
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Michael Böhm
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | - Felix Mahfoud
- />Klinik für Innere Medizin III, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| |
Collapse
|
22
|
Apostolakis IZ, Nandlall SD, Konofagou EE. Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:13-28. [PMID: 26168432 PMCID: PMC4703464 DOI: 10.1109/tmi.2015.2453194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Atherosclerosis and Abdominal Aortic Aneurysms (AAAs) are two common vascular diseases associated with mechanical changes in the arterial wall. Pulse Wave Imaging (PWI), a technique developed by our group to assess and quantify the mechanical properties of the aortic wall in vivo, may provide valuable diagnostic information. This work implements piecewise PWI (pPWI), an enhanced version of PWI designed for focal vascular diseases. Localized, sub-regional PWVs and PWI moduli ( EPWI ) were estimated within 2-4 mm wall segments of murine normal, atherosclerotic and aneurysmal arteries. Overall, stiffness was found to increase in the atherosclerotic cases. The mean sub-regional PWV was found to be 2.57±0.18 m/s for the normal aortas (n = 7) with a corresponding mean EPWI of 43.82±5.86 kPa. A significant increase ( (p ≤ 0.001)) in the group means of the sub-regional PWVs was found between the normal aortas and the aortas of mice on high-fat diet for 20 ( 3.30±0.36 m/s) and 30 weeks ( 3.56±0.29 m/s). The mean of the sub-regional PWVs ( 1.57±0.78 m/s) and EPWI values ( 19.23±15.47 kPa) decreased significantly in the aneurysmal aortas (p ≤ 0.05) . Furthermore, the mean coefficient of determination (r(2)) of the normal aortas was significantly higher (p ≤ 0.05) than those of the aneurysmal and atherosclerotic cases. These findings demonstrated that pPWI may be able to provide useful biomarkers for monitoring focal vascular diseases.
Collapse
Affiliation(s)
| | - Sacha D. Nandlall
- Department of Biomedical Engineering Columbia University, New York, NY 10027 USA
| | - Elisa E. Konofagou
- Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 USA ()
| |
Collapse
|
23
|
Liu KL, Canaple L, Del Carmine P, Gauthier K, Beylot M, Lo M. Thyroid hormone receptor-α deletion decreases heart function and exercise performance in apolipoprotein E-deficient mice. Physiol Genomics 2015; 48:73-81. [PMID: 26672044 DOI: 10.1152/physiolgenomics.00115.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
The deletion of thyroid hormone receptor-α (TRα) in atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice (ApoE(-/-)TRα(0/0)) accelerates the formation of atherosclerotic plaques without aggravation of hypercholesterolemia. To evaluate other predisposition risk factors to atherosclerosis in this model, we studied blood pressure (BP) and cardiac and vascular functions, as well as exercise tolerance in young adult ApoE(-/-)TRα(0/0) mice before the development of atherosclerotic plaques. Telemetric BP recorded for 4 consecutive days showed that the spontaneous systolic BP was slightly decreased in ApoE(-/-)TRα(0/0) compared with ApoE(-/-) mice associated with a reduced locomotor activity. The percentage of animals that completed endurance (57% vs. 89%) and maximal running (0% vs. 89% at 46 cm/s speed in ApoE(-/-)TRα(0/0) and ApoE(-/-) mice, respectively) tests was lower in ApoE(-/-)TRα(0/0) mice. Moreover, during the maximal running test, both maximal running speed and running distance were significantly reduced in ApoE(-/-)TRα(0/0) mice, associated with a blunted BP response to exercise. Transthoracic echocardiography revealed a decreased interventricular septum thickness and an increased end-systolic left ventricular volume in ApoE(-/-)TRα(0/0) mice. Accordingly, left ventricular fractional shortening, ejection fraction, and stroke volume were all significantly decreased in ApoE(-/-)TRα(0/0) mice with a concomitant blunted cardiac output. No interstrain difference was observed in vascular reactivity, except that ApoE(-/-)TRα(0/0) mice exhibited an enhanced acetylcholine-induced relaxation in mesenteric and distal femoral arteries. In conclusion, the deletion of TRα in ApoE(-/-) mice alters cardiac structure and contractility; both could contribute to blunted BP response to physical exercise and impaired exercise performance.
Collapse
Affiliation(s)
- Kiao Ling Liu
- Neurocardiology Unit - EA 4612, Institute of Pharmaceutical and Biological Sciences, University Claude Bernard Lyon 1, Lyon, France;
| | - Laurence Canaple
- Institute of Functional Genomics of Lyon, University Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; and
| | - Peggy Del Carmine
- Technical Platform ANIPHY, University Claude Bernard Lyon 1, Lyon, France
| | - Karine Gauthier
- Institute of Functional Genomics of Lyon, University Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon, France; and
| | - Michel Beylot
- Neurocardiology Unit - EA 4612, Institute of Pharmaceutical and Biological Sciences, University Claude Bernard Lyon 1, Lyon, France; Technical Platform ANIPHY, University Claude Bernard Lyon 1, Lyon, France
| | - Ming Lo
- Neurocardiology Unit - EA 4612, Institute of Pharmaceutical and Biological Sciences, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
24
|
Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice. Ann Biomed Eng 2015; 44:2202-17. [PMID: 26502169 DOI: 10.1007/s10439-015-1486-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/13/2015] [Indexed: 01/20/2023]
Abstract
This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE(-/-) and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE(-/-) group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE(-/-) on the hyper-lipidic diet and both ApoE(-/-) and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE(-/-) and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE(-/-) on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE(-/-) mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE(-/-) and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis.
Collapse
|
25
|
Du B, Ouyang A, Eng JS, Fleenor BS. Aortic perivascular adipose-derived interleukin-6 contributes to arterial stiffness in low-density lipoprotein receptor deficient mice. Am J Physiol Heart Circ Physiol 2015; 308:H1382-H1390. [PMID: 25840831 PMCID: PMC4451307 DOI: 10.1152/ajpheart.00712.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
Abstract
We tested the hypothesis that aortic perivascular adipose tissue (PVAT) from young low-density lipoprotein receptor-deficient (LDLr(-/-)) mice promotes aortic stiffness and remodeling, which would be mediated by greater PVAT-derived IL-6 secretion. Arterial stiffness was assessed by aortic pulse wave velocity and with ex vivo intrinsic mechanical properties testing in young (4-6 mo old) wild-type (WT) and LDLr(-/-) chow-fed mice. Compared with WT mice, LDLr(-/-) mice had increased aortic pulse wave velocity (407 ± 18 vs. 353 ± 13 cm/s) and intrinsic mechanical stiffness (5,308 ± 623 vs. 3,355 ± 330 kPa) that was associated with greater aortic protein expression of collagen type I and advanced glycation end products (all P < 0.05 vs. WT mice). Aortic segments from LDLr(-/-) compared with WT mice cultured in the presence of PVAT had greater intrinsic mechanical stiffness (6,092 ± 480 vs. 3,710 ± 316 kPa), and this was reversed in LDLr(-/-) mouse arteries cultured without PVAT (3,473 ± 577 kPa, both P < 0.05). Collagen type I and advanced glycation end products were increased in LDLr(-/-) mouse arteries cultured with PVAT (P < 0.05 vs. WT mouse arteries), which was attenuated when arteries were cultured in the absence of PVAT (P < 0.05). PVAT from LDLr(-/-) mice secreted larger amounts of IL-6 (3.4 ± 0.1 vs. 2.3 ± 0.7 ng/ml, P < 0.05), and IL-6 neutralizing antibody decreased intrinsic mechanical stiffness in LDLr(-/-) aortic segments cultured with PVAT (P < 0.05). Collectively, these data provide evidence for a role of PVAT-derived IL-6 in the pathogenesis of aortic stiffness and remodeling in chow-fed LDLr(-/-) mice.
Collapse
Affiliation(s)
- Bing Du
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - An Ouyang
- Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - Jason S Eng
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Bradley S Fleenor
- Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
26
|
Prendergast C, Quayle J, Burdyga T, Wray S. Atherosclerosis differentially affects calcium signalling in endothelial cells from aortic arch and thoracic aorta in Apolipoprotein E knockout mice. Physiol Rep 2014; 2:2/10/e12171. [PMID: 25344475 PMCID: PMC4254096 DOI: 10.14814/phy2.12171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein‐E knockout (ApoE−/−) mice develop hypercholesterolemia and are a useful model of atherosclerosis. Hypercholesterolemia alters intracellular Ca2+ signalling in vascular endothelial cells but our understanding of these changes, especially in the early stages of the disease process, is limited. We therefore determined whether carbachol‐mediated endothelial Ca2+ signals differ in plaque‐prone aortic arch compared to plaque‐resistant thoracic aorta, of wild‐type and ApoE−/− mice, and how this is affected by age and the presence of hypercholesterolemia. The extent of plaque development was determined using en‐face staining with Sudan IV. Tissues were obtained from wild‐type and ApoE−/− mice at 10 weeks (pre‐plaques) and 24 weeks (established plaques). We found that even before development of plaques, significantly increased Ca2+ responses were observed in arch endothelial cells. Even with aging and plaque formation, ApoE−/− thoracic responses were little changed, however a significantly enhanced Ca2+ response was observed in arch, both adjacent to and away from lesions. In wild‐type mice of any age, 1–2% of cells had oscillatory Ca2+ responses. In young ApoE−/− and plaque‐free regions of older ApoE−/−, this is unchanged. However a significant increase in oscillations (~13–15%) occurred in thoracic and arch cells adjacent to lesions in older mice. Our data suggest that Ca2+ signals in endothelial cells show specific changes both before and with plaque formation, that these changes are greatest in plaque‐prone aortic arch cells, and that these changes will contribute to the reported deterioration of endothelium in atherosclerosis. We have investigated aortic endothelial cell calcium signalling changes in the Apolipoprotein E knockout mouse model of atherosclerosis. Our data show that calcium signals in endothelial cells undergo specific changes both before and with plaque formation, that these changes are greater in plaque‐prone aortic arch than in plaque‐resistant thoracic aorta, and that these changes will contribute to the reported deterioration of endothelium in atherosclerosis.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - John Quayle
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Theodor Burdyga
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Susan Wray
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Nandlall SD, GoldKlang MP, Kalashian A, Dangra NA, D’Armiento JM, Konofagou EE. Monitoring and staging abdominal aortic aneurysm disease with pulse wave imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2404-14. [PMID: 25130446 PMCID: PMC4157953 DOI: 10.1016/j.ultrasmedbio.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/31/2014] [Accepted: 04/21/2014] [Indexed: 05/09/2023]
Abstract
The abdominal aortic aneurysm (AAA) is a silent and often deadly vascular disease caused by the localized weakening of the arterial wall. Previous work has indicated that local changes in wall stiffness can be detected with pulse wave imaging (PWI), which is a non-invasive technique for tracking the propagation of pulse waves along the aorta at high spatial and temporal resolutions. The aim of this study was to assess the capability of PWI to monitor and stage AAA progression in a murine model of the disease. ApoE/TIMP-1 knockout mice (N = 18) were given angiotensin II for 30 days via subcutaneously implanted osmotic pumps. The suprarenal sections of the abdominal aortas were imaged every 2-3 d after implantation using a 30-MHz VisualSonics Vevo 770 with 15-μm lateral resolution. Pulse wave propagation was monitored at an effective frame rate of 8 kHz by using retrospective electrocardiogram gating and by performing 1-D cross-correlation on the radiofrequency signals to obtain the displacements induced by the waves. In normal aortas, the pulse waves propagated at constant velocities (2.8 ± 0.9 m/s, r(2) = 0.89 ± 0.11), indicating that the composition of these vessels was relatively homogeneous. In the mice that developed AAAs (N = 10), the wave speeds in the aneurysm sac were 45% lower (1.6 ± 0.6 m/s) and were more variable (r(2) = 0.66 ± 0.23). Moreover, the wave-induced wall displacements were at least 80% lower within the sacs compared with the surrounding vessel. Finally, in mice that developed fissures (N = 5) or ruptures (N = 3) at the sites of their AAA, higher displacements directed out of the lumen and with no discernible wave pattern (r(2) < 0.20) were observed throughout the cardiac cycle. These findings indicate that PWI can be used to distinguish normal murine aortas from aneurysmal, fissured and ruptured ones. Hence, PWI could potentially be used to monitor and stage human aneurysms by providing information complementary to standard B-mode ultrasound.
Collapse
Affiliation(s)
| | | | | | | | | | - Elisa E. Konofagou
- Columbia University, New York, NY, USA
- Corresponding Author: Elisa Konofagou, Department of Biomedical
Engineering, Columbia University, 1210 Amsterdam Ave, ET 351, MC 8904, New York, NY
10027;, ; Phone, +1 212 342 1612
| |
Collapse
|
28
|
Di Lascio N, Stea F, Kusmic C, Sicari R, Faita F. Non-invasive assessment of pulse wave velocity in mice by means of ultrasound images. Atherosclerosis 2014; 237:31-7. [PMID: 25194332 DOI: 10.1016/j.atherosclerosis.2014.08.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 08/14/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pulse wave velocity (PWV) is considered as a surrogate marker of arterial stiffness and could be useful for characterizing cardiovascular disease progression even in mouse models. Aim of this study was to develop an image process algorithm for assessing arterial PWV in mice using ultrasound images only and test it on the evaluation of age-associated differences in abdominal aorta PWV. METHODS Ultrasound scans were obtained from ten adult (mean age: 5.5 months) and nine old (mean age: 15.5 months) wild type male mice (strain C57BL6) under gaseous anesthesia. For each mouse, instantaneous values of diameter and flow velocity were obtained from abdominal aorta B-mode and PW-Doppler, respectively. Single-beat mean diameter and velocity were calculated providing the velocity-diameter (lnD-V) loop. PWV values for both the early systolic phase (aaPWV) and the late systolic one (aaPWVls) were obtained from the slope of the corresponding linear parts of the loop. Relative distension (relD) was calculated from the mean diameter signal. RESULTS aaPWV values for adult mice (1.91 ± 0.44 m/s) were significantly lower (p < 0.01) than those obtained for older ones (2.71 ± 0.63 m/s) and the same result was found for aaPWVls (2.68 ± 0.68 vs 3.67 ± 0.95 m/s; p < 0.05). relD measurements were significantly higher (p < 0.01) in adult (22.7% ± 5.2%) compared with older animal evaluations (15.8% ± 3.9%). CONCLUSIONS The proposed system discriminates well between age groups and supplies a non-invasive evaluation of anatomical and functional parameters of the mouse abdominal aorta. Since it provides a non-invasive PWV assessment from ultrasound (US) images only, it may offer a simple and useful system for evaluation of local vascular stiffness at other arterial site in the mouse, such as the carotid artery.
Collapse
Affiliation(s)
- Nicole Di Lascio
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Francesco Stea
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Rosa Sicari
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
29
|
Eriksen C, Svensson RB, Scheijen J, Hag AMF, Schalkwijk C, Praet SFE, Schjerling P, Kjær M, Magnusson SP, Couppé C. Systemic stiffening of mouse tail tendon is related to dietary advanced glycation end products but not high-fat diet or cholesterol. J Appl Physiol (1985) 2014; 117:840-7. [PMID: 25103969 DOI: 10.1152/japplphysiol.00584.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tendon pathology is related to metabolic disease and mechanical overloading, but the effect of metabolic disease on tendon mechanics is unknown. This study investigated the effect of diet and apolipoprotein E deficiency (ApoE(-/-)) on mechanical properties and advanced glycation end product (AGE) cross-linking of non-weight-bearing mouse tail tendons. Twenty ApoE(-/-) male mice were used as a model for hypercholesterolemia along with 26 wild-type (WT) mice. One-half of the mice from each group was fed a normal diet (ND) and the other half was fed a high-fat diet (HFD) to induce obesity. All were killed at 40 wk, and tail tendon fascicles were mechanically tested to failure and analyzed for AGEs. Diets were also analyzed for AGEs. ApoE(-/-) mice displayed a 14% increase in plateau modulus compared with WT mice (P < 0.05), whereas HFD mice displayed a 13% decrease in plateau modulus (P < 0.05) and a 12% decrease in total modulus (P < 0.05) compared with ND mice. Tail tendons of HFD mice had significantly lower concentrations of AGEs [carboxymethyllysine (CML): 26%, P < 0.0001; methylglyoxal-derived hydroimidazolone 1 (MG-H1): 15%, P < 0.005; pentosidine: 13%, P < 0.0005]. The HFD had ∼44-fold lower content of CML (P < 0.01), ∼29-fold lower content of carboxyethyllysine (P < 0.005), and ∼16-fold lower content of MG-H1 (P < 0.05) compared with ND. ApoE(-/-) increased, whereas HFD decreased mouse tail tendon stiffness. Dietary AGE content may be a crucial determinant for accumulation of AGE cross-links in tendons and for tissue compliance. The results demonstrate how systemic metabolic factors may influence tendon health.
Collapse
Affiliation(s)
- C Eriksen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - R B Svensson
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - J Scheijen
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, The Netherlands
| | - A M F Hag
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - C Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, The Netherlands
| | - S F E Praet
- Department of Rehabilitation Medicine, MOVEFIT- Sports medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands; and
| | - P Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - M Kjær
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - S P Magnusson
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| | - C Couppé
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| |
Collapse
|
30
|
Leloup AJ, Fransen P, Van Hove CE, Demolder M, De Keulenaer GW, Schrijvers DM. Applanation Tonometry in Mice. Hypertension 2014; 64:195-200. [DOI: 10.1161/hypertensionaha.114.03312] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Arthur J.A. Leloup
- From the Laboratories of Physiopharmacology Department of Pharmaceutical Sciences (A.J.A.L., P.F., M.D., G.W.D.K., D.M.S.) and Pharmacology Faculty of Medicine (C.E.V.H.), University of Antwerp, Antwerp, Belgium
| | - Paul Fransen
- From the Laboratories of Physiopharmacology Department of Pharmaceutical Sciences (A.J.A.L., P.F., M.D., G.W.D.K., D.M.S.) and Pharmacology Faculty of Medicine (C.E.V.H.), University of Antwerp, Antwerp, Belgium
| | - Cor E. Van Hove
- From the Laboratories of Physiopharmacology Department of Pharmaceutical Sciences (A.J.A.L., P.F., M.D., G.W.D.K., D.M.S.) and Pharmacology Faculty of Medicine (C.E.V.H.), University of Antwerp, Antwerp, Belgium
| | - Marc Demolder
- From the Laboratories of Physiopharmacology Department of Pharmaceutical Sciences (A.J.A.L., P.F., M.D., G.W.D.K., D.M.S.) and Pharmacology Faculty of Medicine (C.E.V.H.), University of Antwerp, Antwerp, Belgium
| | - Gilles W. De Keulenaer
- From the Laboratories of Physiopharmacology Department of Pharmaceutical Sciences (A.J.A.L., P.F., M.D., G.W.D.K., D.M.S.) and Pharmacology Faculty of Medicine (C.E.V.H.), University of Antwerp, Antwerp, Belgium
| | - Dorien M. Schrijvers
- From the Laboratories of Physiopharmacology Department of Pharmaceutical Sciences (A.J.A.L., P.F., M.D., G.W.D.K., D.M.S.) and Pharmacology Faculty of Medicine (C.E.V.H.), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Collins C, Osborne LD, Guilluy C, Chen Z, O'Brien ET, Reader JS, Burridge K, Superfine R, Tzima E. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat Commun 2014; 5:3984. [PMID: 24917553 PMCID: PMC4068264 DOI: 10.1038/ncomms4984] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force to biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared to ECs on fibronectin. This is due to PKA-dependent serine phosphorylation and inactivation of RhoA. PKA signaling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies a ECM-specific, mechanosensitive signaling pathway that regulates EC compliance and may serve as an atheroprotective mechanism maintains blood vessel integrity in vivo.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lukas D Osborne
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christophe Guilluy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhongming Chen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - E Tim O'Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - John S Reader
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Keith Burridge
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [3] McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ellie Tzima
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [3] McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
32
|
Wang P, Xu TY, Guan YF, Zhao Y, Li ZY, Lan XH, Wang X, Yang PY, Kang ZM, Vanhoutte PM, Miao CY. Vascular smooth muscle cell apoptosis is an early trigger for hypothyroid atherosclerosis. Cardiovasc Res 2014; 102:448-59. [PMID: 24604622 DOI: 10.1093/cvr/cvu056] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Endothelial dysfunction is an initial and vascular smooth muscle cell (VSMC) apoptosis, a later step of atherosclerosis. Hypothyroidism accelerates atherosclerosis. However, the early events responsible for this pro-atherosclerotic effect are unclear. METHODS AND RESULTS Rats were resistant to induction of atherosclerosis by high cholesterol diet alone, but became susceptible in hypothyroid state achieved by administration of propylthiouracil (PTU) for 6 weeks. VSMC dysfunction and apoptosis were obvious within 1 week after PTU treatment, without signs of endothelial dysfunction. This early VSMC damage was caused by hypothyroidism but not the high cholesterol diet. In ApoE knockout mice, PTU-induced hypothyroidism triggered early VSMC apoptosis, increased oxidative stress, and accelerated atherosclerosis development. Thyroid hormone supplementation (T4, 10, or 50 μg/kg) prevented atherogenic phenotypes in hypothyroid rats and mice. In rats, thyroidectomy caused severe hypothyroidism 5 days after operation, which also led to rapid VSMC dysfunction and apoptosis. In vitro studies did not show a direct toxic effect of PTU on VSMCs. In contrast, thyroid hormone (T3, 0.75 μg/L plus T4, 50 nmol/L) exerted a direct protection against VSMC apoptosis, which was reduced by knockdown of TRα1, rather than TRβ1 and TRβ2 receptors. TRα1-mediated inhibition of apoptotic signalling of JNKs and caspase-3 contributed to the anti-apoptotic action of thyroid hormone. CONCLUSION These findings provide an in vivo example for VSMC apoptosis as an early trigger of hypothyroidism-associated atherosclerosis, and reveal activation of TRα1 receptors to prevent VSMC apoptosis as a therapeutic strategy in this disease.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yun-Feng Guan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yan Zhao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhi-Yong Li
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiao-Hong Lan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xia Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Yang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhi-Min Kang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Paul M Vanhoutte
- Department of Pharmacology, Second Military Medical University, Shanghai, China Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
33
|
Babin D, Devos D, Pižurica A, Westenberg J, Vansteenkiste E, Philips W. Robust segmentation methods with an application to aortic pulse wave velocity calculation. Comput Med Imaging Graph 2014; 38:179-89. [PMID: 24405817 DOI: 10.1016/j.compmedimag.2013.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 11/06/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
Aortic stiffness has proven to be an important diagnostic and prognostic factor of many cardiovascular diseases, as well as an estimate of overall cardiovascular health. Pulse wave velocity (PWV) represents a good measure of the aortic stiffness, while the aortic distensibility is used as an aortic elasticity index. Obtaining the PWV and the aortic distensibility from magnetic resonance imaging (MRI) data requires diverse segmentation tasks, namely the extraction of the aortic center line and the segmentation of aortic regions, combined with signal processing methods for the analysis of the pulse wave. In our study non-contrasted MRI images of abdomen were used in healthy volunteers (22 data sets) for the sake of non-invasive analysis and contrasted magnetic resonance (MR) images were used for the aortic examination of Marfan syndrome patients (8 data sets). In this research we present a novel robust segmentation technique for the PWV and aortic distensibility calculation as a complete image processing toolbox. We introduce a novel graph-based method for the centerline extraction of a thoraco-abdominal aorta for the length calculation from 3-D MRI data, robust to artifacts and noise. Moreover, we design a new projection-based segmentation method for transverse aortic region delineation in cardiac magnetic resonance (CMR) images which is robust to high presence of artifacts. Finally, we propose a novel method for analysis of velocity curves in order to obtain pulse wave propagation times. In order to validate the proposed method we compare the obtained results with manually determined aortic centerlines and a region segmentation by an expert, while the results of the PWV measurement were compared to a validated software (LUMC, Leiden, the Netherlands). The obtained results show high correctness and effectiveness of our method for the aortic PWV and distensibility calculation.
Collapse
Affiliation(s)
- Danilo Babin
- Department of Telecommunications and Information Processing - TELIN-IPI-iMinds, Faculty of Sciences, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
| | - Daniel Devos
- Department of Radiology, Cardiovascular MR & CT, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - Aleksandra Pižurica
- Department of Telecommunications and Information Processing - TELIN-IPI-iMinds, Faculty of Sciences, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
| | - Jos Westenberg
- Department of Radiology, LUMC, Leiden University Medical Center, Albinusedreef 2, 2333 ZA Leiden, The Netherlands.
| | - Ewout Vansteenkiste
- Department of Telecommunications and Information Processing - TELIN-IPI-iMinds, Faculty of Sciences, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
| | - Wilfried Philips
- Department of Telecommunications and Information Processing - TELIN-IPI-iMinds, Faculty of Sciences, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
| |
Collapse
|
34
|
Ulasova E, Perez J, Hill BG, Bradley WE, Garber DW, Landar A, Barnes S, Prasain J, Parks DA, Dell'Italia LJ, Darley-Usmar VM. Quercetin prevents left ventricular hypertrophy in the Apo E knockout mouse. Redox Biol 2013; 1:381-6. [PMID: 24024175 PMCID: PMC3757709 DOI: 10.1016/j.redox.2013.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/13/2022] Open
Abstract
Hypercholesterolemia is a risk factor for the development of hypertrophic cardiomyopathy. Nevertheless, there are few studies aimed at determining the effects of dietary compounds on early or mild cardiac hypertrophy associated with dyslipidemia. Here we describe left ventricular (LV) hypertrophy in 12 week-old Apo E−/− hypercholesterolemic mice. The LV end diastolic posterior wall thickness and overall LV mass were significantly increased in Apo E−/− mice compared with wild type (WT) controls. Fractional shortening, LV end diastolic diameter, and hemodynamic parameters were unchanged from WT mice. Oral low dose quercetin (QCN; 0.1 µmol QCN/kg body weight for 6 weeks) significantly reduced total cholesterol and very low density lipoprotein in the plasma of Apo E−/− mice. QCN treatment also significantly decreased LV posterior wall thickness and LV mass in Apo E−/− mice. Myocardial geometry and function were unaffected in WT mice by QCN treatment. These data suggest that dietary polyphenolic compounds such as QCN may be effective modulators of plasma cholesterol and could prevent maladaptive myocardial remodeling. Oral low doses of Quercetin resulted in peak plasma levels of approximately 100 nM. Quercetin had no effect on cholesterol profiles in wild type mice but decreased VLDL in ApoE−/− mice. Quercetin treatment attenuated the cardiac hypertrophy in ApoE−/− mice but had no effects on heart function in wild type mice.
Collapse
Affiliation(s)
- Elena Ulasova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA ; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-2180 USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Self-gated CINE MRI for combined contrast-enhanced imaging and wall-stiffness measurements of murine aortic atherosclerotic lesions. PLoS One 2013; 8:e57299. [PMID: 23472079 PMCID: PMC3589480 DOI: 10.1371/journal.pone.0057299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/22/2013] [Indexed: 01/06/2023] Open
Abstract
Background High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. Methods and Results We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE−/− mice after injection of a contrast agent. The method enabled detection of contrast enhancement in atherosclerotic plaques in the aortic arch after I.V. injection of micelles and iron oxides resulting in reproducible plaque enhancement. Both contrast agents were taken up in the plaque, which was confirmed by histology. Additionally, the retrospective-gated CINE method provided images of the aortic wall throughout the cardiac cycle, from which the vessel wall distensibility could be calculated. Reduction in plaque size by statin treatment resulted in lower contrast enhancement and reduced wall stiffness. Conclusions The retrospective-gated CINE MRI provides a robust and simple way to detect and quantify contrast enhancement in atherosclerotic plaques in the aortic wall of ApoE−/− mice. From the same scan, plaque-related changes in stiffness of the aortic wall can be determined. In this mouse model, a correlation between vessel wall stiffness and atherosclerotic lesions was found.
Collapse
|
36
|
Samouillan V, Dandurand J, Nasarre L, Badimon L, Lacabanne C, Llorente-Cortés V. Lipid loading of human vascular smooth muscle cells induces changes in tropoelastin protein levels and physical structure. Biophys J 2013; 103:532-540. [PMID: 22947869 DOI: 10.1016/j.bpj.2012.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022] Open
Abstract
Aggregated low-density lipoprotein (agLDL), one of the main LDL modifications in the arterial intima, contributes to massive intracellular cholesteryl ester (CE) accumulation in human vascular smooth muscle cells (VSMC), which are major producers of elastin in the vascular wall. Our aim was to analyze the levels, physical structure, and molecular mobility of tropoelastin produced by agLDL-loaded human VSMC (agLDL-VSMC) versus that produced by control VSMC. Western blot analysis demonstrated that agLDL reduced VSMC-tropoelastin protein levels by increasing its degradation rate. Moreover, our results demonstrated increased levels of precursor and mature forms of cathepsin S in agLDL-VSMC. Fourier transform infrared analysis revealed modifications in the secondary structures of tropoelastin produced by lipid-loaded VSMCs. Thermal and dielectric analyses showed that agLDL-VSMC tropoelastin has decreased glass transition temperatures and distinct chain dynamics that, in addition to a loss of thermal stability, lead to strong changes in its mechanical properties. In conclusion, agLDL lipid loading of human vascular cells leads to an increase in cathepsin S production concomitantly with a decrease in cellular tropoelastin protein levels and dramatic changes in secreted tropoelastin physical structure. Therefore, VSMC-lipid loading likely determines alterations in the mechanical properties of the vascular wall and plays a crucial role in elastin loss during atherosclerosis.
Collapse
Affiliation(s)
- Valerie Samouillan
- Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Tolouse, France.
| | - Jany Dandurand
- Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Tolouse, France
| | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Colette Lacabanne
- Physique des Polymères, Institut Carnot, CIRIMAT UMR 5085, Université Paul Sabatier, Tolouse, France
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
37
|
Holobotovskyy V, Manzur M, Tare M, Burchell J, Bolitho E, Viola H, Hool LC, Arnolda LF, McKitrick DJ, Ganss R. Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling. Circ Res 2013; 112:781-91. [PMID: 23303165 DOI: 10.1161/circresaha.111.300142] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regulator of G-protein signaling 5 (RGS5) modulates G-protein-coupled receptor signaling and is prominently expressed in arterial smooth muscle cells. Our group first reported that RGS5 is important in vascular remodeling during tumor angiogenesis. We hypothesized that RGS5 may play an important role in vessel wall remodeling and blood pressure regulation. OBJECTIVE To demonstrate that RGS5 has a unique and nonredundant role in the pathogenesis of hypertension and to identify crucial RGS5-regulated signaling pathways. METHODS AND RESULTS We observed that arterial RGS5 expression is downregulated with chronically elevated blood pressure after angiotensin II infusion. Using a knockout mouse model, radiotelemetry, and pharmacological inhibition, we subsequently showed that loss of RGS5 results in profound hypertension. RGS5 signaling is linked to the renin-angiotensin system and directly controls vascular resistance, vessel contractility, and remodeling. RGS5 deficiency aggravates pathophysiological features of hypertension, such as medial hypertrophy and fibrosis. Moreover, we demonstrate that protein kinase C, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Rho kinase signaling pathways are major effectors of RGS5-mediated hypertension. CONCLUSIONS Loss of RGS5 results in hypertension. Loss of RGS5 signaling also correlates with hyper-responsiveness to vasoconstrictors and vascular stiffening. This establishes a significant, distinct, and causal role of RGS5 in vascular homeostasis. RGS5 modulates signaling through the angiotensin II receptor 1 and major Gαq-coupled downstream pathways, including Rho kinase. So far, activation of RhoA/Rho kinase has not been associated with RGS molecules. Thus, RGS5 is a crucial regulator of blood pressure homeostasis with significant clinical implications for vascular pathologies, such as hypertension.
Collapse
Affiliation(s)
- Vasyl Holobotovskyy
- Western Australian Institute for Medical Research, Rear, 50 Murray St, Perth, WA 6010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, Nyhan SM, Lussman C, Gupta G, White AR, Daher JP, Shoukas AA, Levine BD, Berkowitz DE. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness. Exp Gerontol 2012; 47:565-72. [PMID: 22569357 DOI: 10.1016/j.exger.2012.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 01/06/2023]
Abstract
Advanced glycation end-products (AGEs) initiate cellular inflammation and contribute to cardiovascular disease in the elderly. AGE can be inhibited by Alagebrium (ALT), an AGE cross-link breaker. Moreover, the beneficial effects of exercise on aging are well recognized. Thus, we investigated the effects of ALT and exercise (Ex) on cardiovascular function in a rat aging model. Compared to young (Y) rats, in sedentary old (O) rats, end-systolic elastance (Ees) decreased (0.9±0.2 vs 1.7±0.4mmHg/μL, P<0.05), dP/dt(max) was attenuated (6054±685 vs 9540±939mmHg/s, P<0.05), ventricular compliance (end-diastolic pressure-volume relationship (EDPVR)) was impaired (1.4±0.2 vs 0.5±0.4mmHg/μL, P<0.05) and diastolic relaxation time (tau) was prolonged (21±3 vs 14±2ms, P<0.05). In old rats, combined ALT+Ex (4weeks) increased dP/dt(max) and Ees (8945±665 vs 6054±685mmHg/s, and 1.5±0.2 vs 0.9±0.2 respectively, O with ALT+Ex vs O, P<0.05 for both). Diastolic function (exponential power of EDPVR and tau) was also substantially improved by treatment with Alt+Ex in old rats (0.4±0.1 vs 0.9±0.2 and 16±2 vs 21±3ms, respectively, O with ALT+EX vs O, P<0.05 for both). Pulse wave velocity (PWV) was increased in old rats (7.0±0.7 vs 3.8±0.3ms, O vs Y, P<0.01). Both ALT and Ex alone decreased PWV in old rats but the combination decreased PWV to levels observed in young (4.6±0.5 vs 3.8±0.3ms, O with ALT+Ex vs Y, NS). These results suggest that prevention of the formation of new AGEs (with exercise) and breakdown of already formed AGEs (with ALT) may represent a therapeutic strategy for age-related ventricular and vascular stiffness.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Park SU, Jung WS, Moon SK, Ko CN, Cho KH, Kim YS, Bae HS. Chunghyul-Dan (Qingxie-Dan) Improves Arterial Stiffness in Patients with Increased baPWV. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 34:553-63. [PMID: 16883627 DOI: 10.1142/s0192415x06004090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arterial stiffness is an important, independent determinant of cardiovascular risk. Pulse wave velocity (PWV) has been used as a valuable index of arterial stiffness and as a surrogate marker for atherosclerosis. Chunghyul-dan (CHD) has anti-hyperlipidemic activity, anti-inflammatory activity and anti-atherogenic effects. To determine its clinical effect on increased arterial stiffness, we examined whether CHD improves arterial stiffness in patients with increased brachial-ankle PWV (baPWV). Thirty-five subjects with increased baPWV (> 1400 cm/sec) were recruited and randomized to a treatment group (20 subjects) or a control group (15 subjects). The treatment group was administered CHD at a dose of 600 mg three times a day for 8 weeks, and the control group received no medication (observation only). baPWV was assessed using a pulse pressure analyzer at baseline and after 8 weeks. Blood pressure and serum lipid profile were monitored in the treatment group. Our results indicate that baPWV was lowered significantly in the treatment group after 8 weeks of medication ( p < 0.05), but not in the control group. Moreover, there were no significant changes in blood pressure and serum lipids profile except triglyceride level suggesting that the effect is largely independent of CHD's lipid-lowering effect or a blood pressure change. In conclusion, CHD appears to improve arterial stiffness in patients with increased PWV.
Collapse
Affiliation(s)
- Seong Uk Park
- Department of Cardiovascular and Neurologic Diseases (Stroke Center), College of Oriental Medicine, Kyung-Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Konofagou E, Lee WN, Luo J, Provost J, Vappou J. Physiologic cardiovascular strain and intrinsic wave imaging. Annu Rev Biomed Eng 2012; 13:477-505. [PMID: 21756144 DOI: 10.1146/annurev-bioeng-071910-124721] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiovascular disease remains the primary killer worldwide. The heart, essentially an electrically driven mechanical pump, alters its mechanical and electrical properties to compensate for loss of normal mechanical and electrical function. The same adjustment also is performed in the vessels, which constantly adapt their properties to accommodate mechanical and geometrical changes related to aging or disease. Real-time, quantitative assessment of cardiac contractility, conduction, and vascular function before the specialist can visually detect it could be feasible. This new physiologic data could open up interactive therapy regimens that are currently not considered. The eventual goal of this technology is to provide a specific method for estimating the position and severity of contraction defects in cardiac infarcts or angina. This would improve care and outcomes as well as detect stiffness changes and overcome the current global measurement limitations in the progression of vascular disease, at little more cost or risk than that of a clinical ultrasound.
Collapse
Affiliation(s)
- Elisa Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10023, USA.
| | | | | | | | | |
Collapse
|
41
|
Vasquez EC, Peotta VA, Gava AL, Pereira TM, Meyrelles SS. Cardiac and vascular phenotypes in the apolipoprotein E-deficient mouse. J Biomed Sci 2012; 19:22. [PMID: 22330242 PMCID: PMC3306747 DOI: 10.1186/1423-0127-19-22] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/13/2012] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular death is frequently associated with atherosclerosis, a chronic multifactorial disease and a leading cause of death worldwide. Genetically engineered mouse models have proven useful for the study of the mechanisms underlying cardiovascular diseases. The apolipoprotein E-deficient mouse has been the most widely used animal model of atherosclerosis because it rapidly develops severe hypercholesterolemia and spontaneous atherosclerotic lesions similar to those observed in humans. In this review, we provide an overview of the cardiac and vascular phenotypes and discuss the interplay among nitric oxide, reactive oxygen species, aging and diet in the impairment of cardiovascular function in this mouse model.
Collapse
Affiliation(s)
- Elisardo C Vasquez
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Meyrelles SS, Peotta VA, Pereira TMC, Vasquez EC. Endothelial dysfunction in the apolipoprotein E-deficient mouse: insights into the influence of diet, gender and aging. Lipids Health Dis 2011; 10:211. [PMID: 22082357 PMCID: PMC3247089 DOI: 10.1186/1476-511x-10-211] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023] Open
Abstract
Since the early 1990s, several strains of genetically modified mice have been developed as models for experimental atherosclerosis. Among the available models, the apolipoprotein E-deficient (apoE⁻/⁻) mouse is of particular relevance because of its propensity to spontaneously develop hypercholesterolemia and atherosclerotic lesions that are similar to those found in humans, even when the mice are fed a chow diet. The main purpose of this review is to highlight the key achievements that have contributed to elucidating the mechanisms pertaining to vascular dysfunction in the apoE⁻/⁻ mouse. First, we summarize lipoproteins and atherosclerosis phenotypes in the apoE⁻/⁻ mouse, and then we briefly discuss controversial evidence relative to the influence of gender on the development of atherosclerosis in this murine model. Second, we discuss the main mechanisms underlying the endothelial dysfunction of conducting vessels and resistance vessels and examine how this vascular defect can be influenced by diet, aging and gender in the apoE⁻/⁻ mouse.
Collapse
Affiliation(s)
- Silvana S Meyrelles
- Departament of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
43
|
Anand Swarup KRL, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Rathore HA, Johns EJ. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats. Pharmacognosy Res 2011; 2:31-5. [PMID: 21808536 PMCID: PMC3140125 DOI: 10.4103/0974-8490.60582] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/26/2010] [Accepted: 03/13/2010] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats.
Collapse
Affiliation(s)
- Kolla R L Anand Swarup
- Physiology Research Lab, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden - 11800, Penang
| | | | | | | | | | | | | |
Collapse
|
44
|
Shao JS, Sierra OL, Cohen R, Mecham RP, Kovacs A, Wang J, Distelhorst K, Behrmann A, Halstead LR, Towler DA. Vascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:1821-33. [PMID: 21597007 PMCID: PMC3141097 DOI: 10.1161/atvbaha.111.230011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Calcification and fibrosis reduce vascular compliance in arteriosclerosis. To better understand the role of osteopontin (OPN), a multifunctional protein upregulated in diabetic arteries, we evaluated contributions of OPN in male low-density lipoprotein receptor (LDLR)-/- mice fed a high-fat diet. METHODS AND RESULTS OPN had no impact on high-fat diet-induced hyperglycemia, dyslipidemia, or body composition. However, OPN-/-;LDLR-/- mice exhibited an altered time-course of aortic calcium accrual-reduced during initiation but increased with progression-versus OPN+/+;LDLR-/- controls. Collagen accumulation, chondroid metaplasia, and mural thickness were increased in aortas of OPN-/-;LDLR-/- mice. Aortic compliance was concomitantly reduced. Vascular reexpression of OPN (SM22-OPN transgene) reduced aortic Col2A1 and medial chondroid metaplasia but did not affect atherosclerotic calcification, Col1A1 expression, collagen accumulation, or arterial stiffness. Dosing with the proinflammatory OPN fragment SVVYGLR upregulated aortic Wnt and osteogenic gene expression, increased aortic β-catenin, and restored early-phase aortic calcification in OPN-/-;LDLR-/- mice. CONCLUSIONS OPN exerts stage-specific roles in arteriosclerosis in LDLR-/- mice. Actions phenocopied by the OPN metabolite SVVYGLR promote osteogenic calcification processes with disease initiation. OPN limits vascular chondroid metaplasia, endochondral mineralization, and collagen accumulation with progression. Complete deficiency yields a net increase in arteriosclerotic disease, reducing aortic compliance and conduit vessel function in LDLR-/- mice.
Collapse
Affiliation(s)
- Jian-Su Shao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Oscar L. Sierra
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Richard Cohen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert P. Mecham
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - James Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kathryn Distelhorst
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abraham Behrmann
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Linda R. Halstead
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dwight A. Towler
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
45
|
Ryoo S, Berkowitz DE, Lim HK. Endothelial arginase II and atherosclerosis. Korean J Anesthesiol 2011; 61:3-11. [PMID: 21860744 PMCID: PMC3155133 DOI: 10.4097/kjae.2011.61.1.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 01/11/2023] Open
Abstract
Atherosclerotic vascular disease is the leading cause of morbidity and mortality in developed countries. While it is a complex condition resulting from numerous genetic and environmental factors, it is well recognized that oxidized low-density lipoprotein produces pro-atherogenic effects in endothelial cells (ECs) by inducing the expression of adhesion molecules, stimulating EC apoptosis, inducing superoxide anion formation and impairing protective endothelial nitric oxide (NO) formation. Emerging evidence suggests that the enzyme arginase reciprocally regulates NO synthase and NO production by competing for the common substrate L-arginine. As oxidized LDL (OxLDL) results in arginase activation/upregulation, it appears to be an important contributor to endothelial dysfunction by a mechanism that involves substrate limitation for endothelial NO synthase (eNOS) and NO synthesis. Additionally, arginase enhances production of reactive oxygen species by eNOS. Arginase inhibition in hypercholesterolemic (ApoE-/-) mice or arginase II deletion (ArgII-/-) mice restores endothelial vasorelaxant function, reduces vascular stiffness and markedly reduces atherosclerotic plaque burden. Furthermore, arginase activation contributes to vascular changes including polyamine-dependent vascular smooth muscle cell proliferation and collagen synthesis. Collectively, arginase may play a key role in the prevention and treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Sungwoo Ryoo
- Division of Biology, Kangwon National University, Chuncheon, Korea
| | | | | |
Collapse
|
46
|
Longitudinal common carotid artery wall motion is associated with plaque burden in man and mouse. Atherosclerosis 2011; 217:120-4. [DOI: 10.1016/j.atherosclerosis.2011.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/09/2011] [Accepted: 02/23/2011] [Indexed: 11/22/2022]
|
47
|
Hartley CJ, Reddy AK, Madala S, Entman ML, Michael LH, Taffet GE. Doppler velocity measurements from large and small arteries of mice. Am J Physiol Heart Circ Physiol 2011; 301:H269-78. [PMID: 21572013 DOI: 10.1152/ajpheart.00320.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans.
Collapse
Affiliation(s)
- Craig J Hartley
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, and Methodist DeBakey Heart and Vascular Center, Houston TX, 77030, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Cole LK, Dolinsky VW, Dyck JR, Vance DE. Impaired Phosphatidylcholine Biosynthesis Reduces Atherosclerosis and Prevents Lipotoxic Cardiac Dysfunction in ApoE
−/−
Mice. Circ Res 2011; 108:686-94. [DOI: 10.1161/circresaha.110.238691] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura K. Cole
- From the Molecular and Cell Biology of Lipids and Department of Biochemistry (L.K.C., D.E.V.), School of Molecular and Systems Medicine; and Cardiovascular Research Centre (V.W.D., J.R.B.D.), Faculty of Medicine and Dentistry, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Vernon W. Dolinsky
- From the Molecular and Cell Biology of Lipids and Department of Biochemistry (L.K.C., D.E.V.), School of Molecular and Systems Medicine; and Cardiovascular Research Centre (V.W.D., J.R.B.D.), Faculty of Medicine and Dentistry, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Jason R.B. Dyck
- From the Molecular and Cell Biology of Lipids and Department of Biochemistry (L.K.C., D.E.V.), School of Molecular and Systems Medicine; and Cardiovascular Research Centre (V.W.D., J.R.B.D.), Faculty of Medicine and Dentistry, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Dennis E. Vance
- From the Molecular and Cell Biology of Lipids and Department of Biochemistry (L.K.C., D.E.V.), School of Molecular and Systems Medicine; and Cardiovascular Research Centre (V.W.D., J.R.B.D.), Faculty of Medicine and Dentistry, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
49
|
Goergen CJ, Barr KN, Huynh DT, Eastham-Anderson JR, Choi G, Hedehus M, Dalman RL, Connolly AJ, Taylor CA, Tsao PS, Greve JM. In vivo quantification of murine aortic cyclic strain, motion, and curvature: implications for abdominal aortic aneurysm growth. J Magn Reson Imaging 2011; 32:847-58. [PMID: 20882615 DOI: 10.1002/jmri.22331] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To develop methods to quantify cyclic strain, motion, and curvature of the murine abdominal aorta in vivo. MATERIALS AND METHODS C57BL/6J and apoE(-/-) mice underwent three-dimensional (3D) time-of-flight MR angiography to position cardiac-gated 2D slices at four locations along the abdominal aorta where circumferential cyclic strain and lumen centroid motion were calculated. From the 3D data, a centerline through the aorta was created to quantify geometric curvature at 0.1-mm intervals. Medial elastin content was quantified with histology postmortem. The location and shape of abdominal aortic aneurysms (AAAs), created from angiotensin II infusion, were evaluated qualitatively. RESULTS Strain waveforms were similar at all locations and between groups. Centroid motion was significantly larger and more leftward above the renal vessels than below (P < 0.05). Maximum geometric curvature occurred slightly proximal to the right renal artery. Elastin content was similar around the circumference of the vessel. AAAs developed in the same location as the maximum curvature and grew in the same direction as vessel curvature and motion. CONCLUSION The methods presented provide temporally and spatially resolved data quantifying murine aortic motion and curvature in vivo. This noninvasive methodology will allow serial quantification of how these parameters influence the location and direction of AAA growth.
Collapse
Affiliation(s)
- Craig J Goergen
- Department of Bioengineering, Stanford University, Stanford, California 94305-5431, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Atherosclerosis aggravates ischemia/reperfusion injury in the gut and remote damage in the liver and the lung. Inflamm Res 2011; 60:555-67. [DOI: 10.1007/s00011-010-0304-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 12/13/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022] Open
|