1
|
Coccarelli A, Polydoros I, Drysdale A, Harraz OF, Kadapa C. A computational framework for quantifying blood flow dynamics across myogenically-active cerebral arterial networks. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01958-3. [PMID: 40343574 DOI: 10.1007/s10237-025-01958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/30/2025] [Indexed: 05/11/2025]
Abstract
Cerebral autoregulation plays a key physiological role by limiting blood flow changes in the face of pressure fluctuations. Although the underlying vascular cellular processes are chemo-mechanically driven, estimating the associated haemodynamic forces in vivo remains extremely difficult and uncertain. In this work, we propose a novel computational methodology for evaluating the blood flow dynamics across networks of myogenically-active cerebral arteries, which can modulate their muscular tone to stabilize flow (and perfusion pressure) as well as to limit vascular intramural stress. The introduced framework integrates a continuum mechanics-based, biologically-motivated model of the rat vascular wall with 1D blood flow dynamics. We investigate the time dependency of the vascular wall response to pressure changes at both single vessel and network levels. The dynamical performance of the vessel wall mechanics model was validated against different pressure protocols and conditions (control and absence of extracellular Ca 2 + ). The robustness of the integrated fluid-structure interaction framework was assessed using different types of inlet signals and numerical settings in an idealized vascular network formed by a middle cerebral artery and its three generations. The proposed in-silico methodology aims to quantify how acute changes in upstream luminal pressure propagate and influence blood flow across a network of rat cerebral arteries. Weak coupling ensured accurate results with a lower computational cost for the vessel size and boundary conditions considered. To complete the analysis, we evaluated the effect of an upstream pressure surge on vascular network haemodynamics in the presence and absence of myogenic tone. This provided a clear quantitative picture of how pressure, flow and vascular constriction are re-distributed across each vessel generation upon inlet pressure changes. This work paves the way for future combined experimental-computational studies aiming to decipher cerebral autoregulation.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK.
- Department of Mechanical Engineering, Faculty of Science and Engineering, Swansea University, Swansea University Bay Campus, Fabian Way, Crymlyn Burrows, Skewen, Swansea, SA1 8EN, UK.
| | - Ioannis Polydoros
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Alex Drysdale
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, USA
| | - Chennakesava Kadapa
- School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
2
|
Sequential measurement of the neurosensory retina in hypertensive disorders of pregnancy: a model of microvascular injury in hypertensive emergency. J Hum Hypertens 2023; 37:28-35. [PMID: 34625659 PMCID: PMC9831929 DOI: 10.1038/s41371-021-00617-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 01/31/2023]
Abstract
Optical coherence tomography of the eye suggests the retina thins in normal pregnancy. Our objectives were to confirm and extend these observations to women with hypertensive disorders of pregnancy (HDP). Maternal demographics, clinical/laboratory findings and measurements of macular thickness were repeatedly collected at gestational ages <20 weeks, 20-weeks to delivery, at delivery and postpartum. The primary outcome was the change in macular thickness from non-pregnant dimensions in women with incident HDP compared to non-hypertensive pregnant controls. Secondary outcomes were the relationship(s) between mean arterial pressure (MAP) and macular response. Data show macular thicknesses diminished at <20 weeks gestation in each of 27 pregnancies ending in HDP (mean 3.94 µm; 95% CI 4.66, 3.21) and 11 controls (mean 3.92 µm; 5.05, 2.79; P < 0.001 versus non-pregnant dimensions in both; P = 0.983 HDP versus controls). This thinning response continued to delivery in all controls and in 7 women with HDP superimposed on chronic hypertension. Macular thinning was lost after 20 weeks gestation in the other 20 women with HDP. MAP at loss of macular thinning in women without prior hypertension (n = 12) was identical to MAP at enrollment. However, mean MAP subsequently rose 19 mmHg (15, 22) leading to de novo HDP in all 12 women. Loss of thinning leading to a rise in MAP was also observed in 8 of 15 women with HDP superimposed on chronic hypertension. We conclude the macula thins in most women in early pregnancy. Those who lose this early macular thinning response often develop blood pressure elevations leading to HDP.
Collapse
|
3
|
Bouhrira N, DeOre BJ, Tran KA, Galie PA. Transcriptomic analysis of a 3D blood-brain barrier model exposed to disturbed fluid flow. Fluids Barriers CNS 2022; 19:94. [PMID: 36434717 PMCID: PMC9700938 DOI: 10.1186/s12987-022-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cerebral aneurysms are more likely to form at bifurcations in the vasculature, where disturbed fluid is prevalent due to flow separation at sufficiently high Reynolds numbers. While previous studies have demonstrated that altered shear stress exerted by disturbed flow disrupts endothelial tight junctions, less is known about how these flow regimes alter gene expression in endothelial cells lining the blood-brain barrier. Specifically, the effect of disturbed flow on expression of genes associated with cell-cell and cell-matrix interaction, which likely mediate aneurysm formation, remains unclear. RNA sequencing of immortalized cerebral endothelial cells isolated from the lumen of a 3D blood-brain barrier model reveals distinct transcriptional changes in vessels exposed to fully developed and disturbed flow profiles applied by both steady and physiological waveforms. Differential gene expression, validated by qRT-PCR and western blotting, reveals that lumican, a small leucine-rich proteoglycan, is the most significantly downregulated gene in endothelial cells exposed to steady, disturbed flow. Knocking down lumican expression reduces barrier function in the presence of steady, fully developed flow. Moreover, adding purified lumican into the hydrogel of the 3D blood-brain barrier model recovers barrier function in the region exposed to fully developed flow. Overall, these findings emphasize the importance of flow regimes exhibiting spatial and temporal heterogeneous shear stress profiles on cell-matrix interaction in endothelial cells lining the blood-brain barrier, while also identifying lumican as a contributor to the formation and maintenance of an intact barrier.
Collapse
Affiliation(s)
- Nesrine Bouhrira
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Brandon J. DeOre
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Kiet A. Tran
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| | - Peter A. Galie
- grid.262671.60000 0000 8828 4546Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ USA
| |
Collapse
|
4
|
Morse CJ, Boerman EM, McDonald MW, Padilla J, Olver TD. The role of nitric oxide in flow-induced and myogenic responses in 1A, 2A, and 3A branches of the porcine middle cerebral artery. J Appl Physiol (1985) 2022; 133:1228-1236. [PMID: 36227166 PMCID: PMC9715271 DOI: 10.1152/japplphysiol.00209.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 12/15/2022] Open
Abstract
Myogenic and flow-induced reactivity contribute to cerebral autoregulation, with potentially divergent roles for smaller versus larger arteries. The present study tested the hypotheses that compared with first-order (1A) branches of the middle cerebral artery, second- and third-order branches (2A and 3A, respectively) exhibit greater myogenic reactivity but reduced flow-induced constriction. Furthermore, nitric oxide synthase (NOS) inhibition may amplify myogenic reactivity and abolish instances of flow-induced dilation. Isolated porcine cerebral arteries mounted in a pressure myograph were exposed to incremental increases in intraluminal pressure (40-120 mmHg; n = 41) or flow (1-1,170 µL/min; n = 31). Intraluminal flows were adjusted to achieve 5, 10, 20, and 40 dyn/cm2 of wall shear stress at 60 mmHg. Myogenic tone was greater in 3A versus 1A arteries (P < 0.05). There was an inverse relationship between myogenic reactivity and passive arterial diameter (P < 0.01). NOS inhibition increased basal tone to a lesser extent in 3A versus 1A arteries (P < 0.01) but did not influence myogenic reactivity (P = 0.49). Increasing flow decreased luminal diameter (P ≤ 0.01), with increased vasoconstriction at 10-40 dyn/cm2 of shear stress (P < 0.01). However, relative responses were similar between 1A, 2A, and 3A arteries (P = 0.40) with and without NOS inhibition conditions (P ≥ 0.29). Whereas NOS inhibition increases basal myogenic tone, and myogenic reactivity was less in smaller versus larger arteries (range = ∼100-550 µM), neither NOS inhibition nor luminal diameter influences flow-induced constriction in porcine cerebral arteries.NEW & NOTEWORTHY This study demonstrated size-dependent heterogeneity in myogenic reactivity in porcine cerebral arteries. Smaller branches of the middle cerebral artery exhibited increased myogenic reactivity, but attenuated NOS-dependent increases in myogenic tone compared with larger branches. Flow-dependent regulation does not exhibit the same variation; diameter-independent flow-induced vasoconstrictions occur across all branch orders and are not affected by NOS inhibition. Conceptually, flow-induced vasoconstriction contributes to cerebral autoregulation, particularly in larger arteries with low myogenic tone.
Collapse
Affiliation(s)
- Cameron J Morse
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika M Boerman
- Department Medical Physiology and Pharmacology, University of Missouri, Columbia, Missouri
| | - Matthew W McDonald
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Li Z, Cipolla MJ. Mechanisms of Flow-Mediated Dilation of Pial Collaterals and the Effect of Hypertension. Hypertension 2022; 79:457-467. [PMID: 34856815 PMCID: PMC8755599 DOI: 10.1161/hypertensionaha.121.18602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023]
Abstract
Leptomeningeal anastomoses are small distal anastomotic vessels also known as pial collaterals in the brain. These vessels redirect blood flow during an occlusion and are important for stroke treatment and outcome. Pial collaterals have unique hemodynamic forces and experience significantly increased luminal flow and shear stress after the onset of ischemic stroke. However, there is limited knowledge of how pial collaterals respond to flow and shear stress, and whether this response is altered in chronic hypertension. Using an in vitro system, pial collaterals from normotensive and hypertensive rats (n=6-8/group) were isolated and luminal flow was induced with intravascular pressure maintained at 40 mm Hg. Collateral lumen diameter was measured following each flow rate in the absence or presence of pharmacological inhibitors and activators. Collaterals from male and female Wistar rats dilated similarly to increased flow (2 µL/minute: 58.4±18.7% versus 67.9±7.4%; P=0.275), and this response was prevented by inhibition of the transient receptor potential vanilloid type 4 channel, as well as inhibitors of nitric oxide and intermediate-conductance calcium-activated potassium channels, suggesting shear stress-induced activation of this pathway was involved. However, the vasodilation was significantly impaired in hypertensive rats (2 µL/minute: 17.7±7.7%), which was restored by inhibitors of reactive oxygen species and mimicked by angiotensin II. Thus, flow- and shear stress-induced vasodilation of pial collaterals appears to be an important stimulus for increasing collateral flow during large vessel occlusion. Impairment of this response during chronic hypertension may be related to poorly engaged pial collaterals during ischemic stroke in hypertensive subjects.
Collapse
Affiliation(s)
- Zhaojin Li
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT
| | - Marilyn J. Cipolla
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT
- Department of Pharmacology, University of Vermont Robert Larner College of Medicine, Burlington, VT
| |
Collapse
|
6
|
Aleksandrowicz M, Kozniewska E. Compromised regulation of the rat brain parenchymal arterioles in vasopressin-associated acute hyponatremia. Microcirculation 2020; 27:e12644. [PMID: 32603523 DOI: 10.1111/micc.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In this study, we examined the effect of acute hyponatremia associated with vasopressin (AVP) on the responses of the isolated rat's MCAs and PAs to acidosis, nitric oxide donor (SNAP) and to endothelium-dependent vasodilator ATP. METHODS The studies were performed on isolated, perfused and pressurized MCAs and PAs in control conditions and during AVP-associated hyponatremia. Hyponatremia was induced in vitro by lowering Na+ concentration from 144 to 121 mmol/L in intra- and extravascular fluid in the presence of AVP. RESULTS Parenchymal arterioles showed greater response to an increase in H+ and K+ ions concentration and to ATP in comparison with MCAs in control normonatremic conditions. Both PAs and MCAs constricted in response to acute hyponatremia associated with AVP. Interestingly, disordered regulation of vascular tone was observed in PAs but not in MCAs. The abnormalities in the regulation comprised a significant reduction of PA response to acidosis and the absence of the response to the administration of SNAP or ATP. CONCLUSIONS Arginine vasopressin-associated hyponatremia leads to constriction and dysregulation of PAs which may impair neurovascular coupling.
Collapse
Affiliation(s)
- Marta Aleksandrowicz
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Hodneland E, Hanson E, Sævareid O, Nævdal G, Lundervold A, Šoltészová V, Munthe-Kaas AZ, Deistung A, Reichenbach JR, Nordbotten JM. A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model. PLoS Comput Biol 2019; 15:e1007073. [PMID: 31237876 PMCID: PMC6613711 DOI: 10.1371/journal.pcbi.1007073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/08/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
A large variety of severe medical conditions involve alterations in microvascular circulation. Hence, measurements or simulation of circulation and perfusion has considerable clinical value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical planning. However, the accuracy of traditional tracer kinetic one-compartment models is limited due to scale dependency. As a remedy, we propose a scale invariant mathematical framework for simulating whole brain perfusion. The suggested framework is based on a segmentation of anatomical geometry down to imaging voxel resolution. Large vessels in the arterial and venous network are identified from time-of-flight (ToF) and quantitative susceptibility mapping (QSM). Macro-scale flow in the large-vessel-network is accurately modelled using the Hagen-Poiseuille equation, whereas capillary flow is treated as two-compartment porous media flow. Macro-scale flow is coupled with micro-scale flow by a spatially distributing support function in the terminal endings. Perfusion is defined as the transition of fluid from the arterial to the venous compartment. We demonstrate a whole brain simulation of tracer propagation on a realistic geometric model of the human brain, where the model comprises distinct areas of grey and white matter, as well as large vessels in the arterial and venous vascular network. Our proposed framework is an accurate and viable alternative to traditional compartment models, with high relevance for simulation of brain perfusion and also for restoration of field parameters in clinical brain perfusion applications.
Collapse
Affiliation(s)
- Erlend Hodneland
- Norwegian Research Centre, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland Universitetssykehus, Bergen, Norway
| | - Erik Hanson
- Department of Mathematics, University of Bergen, Bergen, Norway
| | | | | | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland Universitetssykehus, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Antonella Z. Munthe-Kaas
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland Universitetssykehus, Bergen, Norway
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
- Department of Neurology, Essen University Hospital, Essen, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
- Michael Stifel Center Jena for Data-driven and Simulation Science, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
8
|
Guerra G, Lucariello A, Perna A, Botta L, De Luca A, Moccia F. The Role of Endothelial Ca 2+ Signaling in Neurovascular Coupling: A View from the Lumen. Int J Mol Sci 2018; 19:E938. [PMID: 29561829 PMCID: PMC5979341 DOI: 10.3390/ijms19040938] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. METHODS We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. RESULTS We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. CONCLUSIONS It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.
Collapse
Affiliation(s)
- Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via F. De Santis, 86100 Campobasso, Italy.
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", 81100 Naples, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Narata AP, de Moura FS, Larrabide I, Perrault CM, Patat F, Bibi R, Velasco S, Januel AC, Cognard C, Chapot R, Bouakaz A, Sennoga CA, Marzo A. The Role of Hemodynamics in Intracranial Bifurcation Arteries after Aneurysm Treatment with Flow-Diverter Stents. AJNR Am J Neuroradiol 2018; 39:323-330. [PMID: 29170270 DOI: 10.3174/ajnr.a5471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Treatment of intracranial bifurcation aneurysms with flow-diverter stents can lead to caliber changes of the distal vessels in a subacute phase. This study aims to evaluate whether local anatomy and flow disruption induced by flow-diverter stents are associated with vessel caliber changes in intracranial bifurcations. MATERIALS AND METHODS Radiologic images and demographic data were acquired for 25 patients with bifurcation aneurysms treated with flow-diverter stents. Whisker plots and Mann-Whitney rank sum tests were used to evaluate if anatomic data and caliber changes could be linked. Symmetry/asymmetry were defined as diameter ratio 1 = symmetric and diameter ratio <1 = asymmetric. Computational fluid dynamics was performed on idealized and patient-specific anatomies to evaluate flow changes induced by flow-diverter stents in the jailed vessel. RESULTS Statistical analysis identified a marked correspondence between asymmetric bifurcation and caliber change. Symmetry ratios were lower for cases showing narrowing or subacute occlusion (medium daughter vessel diameter ratio = 0.59) compared with cases with posttreatment caliber conservation (medium daughter vessel diameter ratio = 0.95). Computational fluid dynamics analysis in idealized and patient-specific anatomies showed that wall shear stress in the jailed vessel was more affected when flow-diverter stents were deployed in asymmetric bifurcations (diameter ratio <0.65) and less affected when deployed in symmetric anatomies (diameter ratio ∼1.00). CONCLUSIONS Anatomic data analysis showed statistically significant correspondence between caliber changes and bifurcation asymmetry characterized by diameter ratio <0.7 (P < .001). Similarly, computational fluid dynamics results showed the highest impact on hemodynamics when flow-diverter stents are deployed in asymmetric bifurcations (diameter ratio <0.65) with noticeable changes on wall sheer stress fields. Further research and clinical validation are necessary to identify all elements involved in vessel caliber changes after flow-diverter stent procedures.
Collapse
Affiliation(s)
- A P Narata
- From the University Hospital of Tours (A.P.N., R.B.), Tours, France
| | - F S de Moura
- Engineering, Modeling, and Applied Social Sciences Center (F.S.d.M.), Federal University of ABC, Santo André, Brazil
| | - I Larrabide
- PLADEMA-CONICET (I.L.), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - C M Perrault
- Mechanical Engineering Department, INSIGNEO Institute for in Silico Medicine (C.M.P., A.M.), University of Sheffield, Sheffield, United Kingdom
| | - F Patat
- UMR "Imagerie et Cerveau," Inserm U930 (F.P., A.B., C.A.S.), Université Francois Rabelais, Tours, France
| | - R Bibi
- From the University Hospital of Tours (A.P.N., R.B.), Tours, France
| | - S Velasco
- University Hospital of Poitiers (S.V.), Poitiers, France
| | - A-C Januel
- University Hospital of Toulouse (A.-C.J., C.C.), Toulouse, France
| | - C Cognard
- University Hospital of Toulouse (A.-C.J., C.C.), Toulouse, France
| | - R Chapot
- Alfried Krupp Krankenhaus (R.C.), Essen, Germany
| | - A Bouakaz
- UMR "Imagerie et Cerveau," Inserm U930 (F.P., A.B., C.A.S.), Université Francois Rabelais, Tours, France
| | - C A Sennoga
- UMR "Imagerie et Cerveau," Inserm U930 (F.P., A.B., C.A.S.), Université Francois Rabelais, Tours, France
| | - A Marzo
- Mechanical Engineering Department, INSIGNEO Institute for in Silico Medicine (C.M.P., A.M.), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Aleksandrowicz M, Dworakowska B, Dolowy K, Kozniewska E. Restoration of the response of the middle cerebral artery of the rat to acidosis in hyposmotic hyponatremia by the opener of large-conductance calcium sensitive potassium channels (BK Ca). J Cereb Blood Flow Metab 2017; 37:3219-3230. [PMID: 28058990 PMCID: PMC5584697 DOI: 10.1177/0271678x16685575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyposmotic hyponatremia (the decrease of extracellular concentration of sodium ions from 145 to 121 mM and the decrease of hyposmolality from 300 to 250 mOsm/kg H2O) impairs response of the middle cerebral artery (MCA) to acetylcholine and NO donor (S-nitroso-N-acetyl-DL-penicillamine). Since acidosis activates a similar intracellular signaling pathway, the present study was designed to verify the hypothesis that the response of the MCA to acidosis is impaired during acute hyposmotic hyponatremia due to abnormal NO-related signal transduction in vascular smooth muscle cells. Studies performed on isolated, cannulated, and pressurized rat MCA revealed that hyposmotic hyponatremia impaired the response of the MCA to acidosis and this was associated with hyposmolality rather than with decreased sodium ion concentration. Response to acidosis was restored by the BKCa but not by the KATP channel activator. Patch-clamp electrophysiology performed on myocytes freshly isolated from MCAs, demonstrated that hyposmotic hyponatremia does not affect BKCa currents but decreases the voltage-dependency of the activation of the BKCa channels in the presence of a specific opener of these channels. Our study suggests that reduced sensitivity of BKCa channels in the MCA to agonists results in the lack of response of this artery to acidosis during acute hyposmotic hyponatremia.
Collapse
Affiliation(s)
- Marta Aleksandrowicz
- 1 Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dworakowska
- 2 Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Dolowy
- 2 Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Kozniewska
- 1 Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,3 Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312:H1-H20. [PMID: 27793855 PMCID: PMC5283909 DOI: 10.1152/ajpheart.00581.2016] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary; and
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, Vukovic R, Drenjancevic I. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J Physiol 2016; 594:4917-31. [PMID: 27061200 DOI: 10.1113/jp272297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. ABSTRACT The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values.
Collapse
Affiliation(s)
- Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Rosemary Vukovic
- Department of Biology, J. J. Strossmayer University of Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
13
|
Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 2016; 323:96-109. [PMID: 25843438 PMCID: PMC4592693 DOI: 10.1016/j.neuroscience.2015.03.064] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022]
Abstract
The brain possesses two intricate mechanisms that fulfill its continuous metabolic needs: cerebral autoregulation, which ensures constant cerebral blood flow over a wide range of arterial pressures and functional hyperemia, which ensures rapid delivery of oxygen and glucose to active neurons. Over the past decade, a number of important studies have identified astrocytes as key intermediaries in neurovascular coupling (NVC), the mechanism by which active neurons signal blood vessels to change their diameter. Activity-dependent increases in astrocytic Ca(2+) activity are thought to contribute to the release of vasoactive substances that facilitate arteriole vasodilation. A number of vasoactive signals have been identified and their role on vessel caliber assessed both in vitro and in vivo. In this review, we discuss mechanisms implicating astrocytes in NVC-mediated vascular responses, limitations encountered as a result of the challenges in maintaining all the constituents of the neurovascular unit intact and deliberate current controversial findings disputing a main role for astrocytes in NVC. Finally, we briefly discuss the potential role of pericytes and microglia in NVC-mediated processes.
Collapse
Affiliation(s)
- J A Filosa
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States.
| | - H W Morrison
- University of Arizona, 1305 N. Martin Avenue, P.O. Box 210203, Tucson, AZ 85721, United States
| | - J A Iddings
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States
| | - W Du
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States
| | - K J Kim
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States
| |
Collapse
|
14
|
Benyó Z, Ruisanchez É, Leszl-Ishiguro M, Sándor P, Pacher P. Endocannabinoids in cerebrovascular regulation. Am J Physiol Heart Circ Physiol 2016; 310:H785-H801. [PMID: 26825517 PMCID: PMC4865067 DOI: 10.1152/ajpheart.00571.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.
Collapse
Affiliation(s)
- Zoltán Benyó
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Éva Ruisanchez
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Miriam Leszl-Ishiguro
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Péter Sándor
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary; and
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Xu G, Fan X, Ma M, Liu X. Reconfiguration of the Carotid Artery after Angioplasty and Stenting: A Case Report and Review of the Literature. INTERVENTIONAL NEUROLOGY 2015; 4:38-42. [PMID: 26600795 DOI: 10.1159/000438777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe carotid stenosis or occlusion may cause insufficient blood flow and lead to distal artery wall collapse and extensive lumen contraction. Whether this 'adaptive narrowing' can restitute after carotid recanalization is unclear. We report a patient with global ischemia due to occlusions of bilateral carotid and right vertebral arteries. The occluded left carotid was recanalized successfully with angioplasty and stenting. The adaptively narrowed distal carotid did not restitute immediately but regained its morphology 1 week after the procedure. Carotid adaptive narrow distal occlusion or stenosis may not regain its original morphology immediately but several days after recanalization. This knowledge is instructive for treating occlusive carotid diseases.
Collapse
Affiliation(s)
- Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Minmin Ma
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
16
|
Abstract
Basal and activity-dependent cerebral blood flow changes are coordinated by the action of critical processes, including cerebral autoregulation, endothelial-mediated signaling, and neurovascular coupling. The goal of our study was to determine whether astrocytes contribute to the regulation of parenchymal arteriole (PA) tone in response to hemodynamic stimuli (pressure/flow). Cortical PA vascular responses and astrocytic Ca(2+) dynamics were measured using an in vitro rat/mouse brain slice model of perfused/pressurized PAs; studies were supplemented with in vivo astrocytic Ca(2+) imaging. In vitro, astrocytes responded to PA flow/pressure increases with an increase in intracellular Ca(2+). Astrocytic Ca(2+) responses were corroborated in vivo, where acute systemic phenylephrine-induced increases in blood pressure evoked a significant increase in astrocytic Ca(2+). In vitro, flow/pressure-evoked vasoconstriction was blunted when the astrocytic syncytium was loaded with BAPTA (chelating intracellular Ca(2+)) and enhanced when high Ca(2+) or ATP were introduced to the astrocytic syncytium. Bath application of either the TRPV4 channel blocker HC067047 or purinergic receptor antagonist suramin blunted flow/pressure-evoked vasoconstriction, whereas K(+) and 20-HETE signaling blockade showed no effect. Importantly, we found TRPV4 channel expression to be restricted to astrocytes and not the endothelium of PA. We present evidence for a novel role of astrocytes in PA flow/pressure-evoked vasoconstriction. Our data suggest that astrocytic TRPV4 channels are key molecular sensors of hemodynamic stimuli and that a purinergic, glial-derived signal contributes to flow/pressure-induced adjustments in PA tone. Together our results support bidirectional signaling within the neurovascular unit and astrocytes as key modulators of PA tone.
Collapse
|
17
|
Iddings JA, Kim KJ, Zhou Y, Higashimori H, Filosa JA. Enhanced parenchymal arteriole tone and astrocyte signaling protect neurovascular coupling mediated parenchymal arteriole vasodilation in the spontaneously hypertensive rat. J Cereb Blood Flow Metab 2015; 35:1127-36. [PMID: 25757753 PMCID: PMC4640269 DOI: 10.1038/jcbfm.2015.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 01/14/2023]
Abstract
Functional hyperemia is the regional increase in cerebral blood flow upon increases in neuronal activity which ensures that the metabolic demands of the neurons are met. Hypertension is known to impair the hyperemic response; however, the neurovascular coupling mechanisms by which this cerebrovascular dysfunction occurs have yet to be fully elucidated. To determine whether altered cortical parenchymal arteriole function or astrocyte signaling contribute to blunted neurovascular coupling in hypertension, we measured parenchymal arteriole reactivity and vascular smooth muscle cell Ca(2+) dynamics in cortical brain slices from normotensive Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. We found that vasoconstriction in response to the thromboxane A2 receptor agonist U46619 and basal vascular smooth muscle cell Ca(2+) oscillation frequency were significantly increased in parenchymal arterioles from SHR. In perfused and pressurized parenchymal arterioles, myogenic tone was significantly increased in SHR. Although K(+)-induced parenchymal arteriole dilations were similar in WKY and SHR, metabotropic glutamate receptor activation-induced parenchymal arteriole dilations were enhanced in SHR. Further, neuronal stimulation-evoked parenchymal arteriole dilations were similar in SHR and WKY. Our data indicate that neurovascular coupling is not impaired in SHR, at least at the level of the parenchymal arterioles.
Collapse
Affiliation(s)
- Jennifer A Iddings
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Ki Jung Kim
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Yiqiang Zhou
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Haruki Higashimori
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| | - Jessica A Filosa
- Department of Physiology, Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
18
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
19
|
Marmarelis VZ, Shin DC, Orme ME, Zhang R. Model-based physiomarkers of cerebral hemodynamics in patients with mild cognitive impairment. Med Eng Phys 2014; 36:628-37. [PMID: 24698010 PMCID: PMC4076301 DOI: 10.1016/j.medengphy.2014.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/02/2023]
Abstract
In our previous studies, we have introduced model-based "functional biomarkers" or "physiomarkers" of cerebral hemodynamics that hold promise for improved diagnosis of early-stage Alzheimer's disease (AD). The advocated methodology utilizes subject-specific data-based dynamic nonlinear models of cerebral hemodynamics to compute indices (serving as possible diagnostic physiomarkers) that quantify the state of cerebral blood flow autoregulation to pressure-changes (CFAP) and cerebral CO2 vasomotor reactivity (CVMR) in each subject. The model is estimated from beat-to-beat measurements of mean arterial blood pressure, mean cerebral blood flow velocity and end-tidal CO2, which can be made reliably and non-invasively under resting conditions. In a previous study, it was found that a CVMR index quantifying the impairment in CO2 vasomotor reactivity correlates with clinical indications of early AD, offering the prospect of a potentially useful diagnostic tool. In this paper, we explore the use of the same model-based indices for patients with amnestic Mild Cognitive Impairment (MCI), a preclinical stage of AD, relative to a control subjects and clinical cognitive assessments. It was found that the model-based CVMR values were lower for MCI patients relative to the control subjects.
Collapse
Affiliation(s)
- V Z Marmarelis
- Department of Biomedical Engineering & Biomedical Simulations Resource, University of Southern California, United States.
| | - D C Shin
- Department of Biomedical Engineering & Biomedical Simulations Resource, University of Southern California, United States
| | - M E Orme
- Sonovation Imaging & Diagnostics Inc., Los Angeles, CA, United States
| | - R Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
20
|
Abstract
The cerebrovascular regulation involves highly complex mechanisms to assure that the brain is perfused at all times. These mechanisms depend on all components of the neurovascular units: neurons, glia, and vascular cells. All these cell types can produce nitric oxide (NO), a powerful vasodilator through different NO synthases. Many studies underlined the key role of NO in the maintenance of resting cerebral blood flow (CBF) as well as in the mechanisms that control cerebrovascular tone: autoregulation and neurovascular coupling. However, although the role of NO in the control of CBF has been largely investigated, the complexity of the NO system and the lack of specific NO synthase inhibitors led to still unresolved questions such as the origin of NO and the pathways by which it controls the vascular tone. In this chapter, the role of NO in the regulation of CBF is critically reviewed and discussed in the context of the neurovascular unit and the general principles of cerebrovascular regulation.
Collapse
|
21
|
Abstract
Cerebral blood flow is controlled by two crucial processes, cerebral autoregulation (CA) and neurovascular coupling (NVC) or functional hyperemia. Whereas CA ensures constant blood flow over a wide range of systemic pressures, NVC ensures rapid spatial and temporal increases in cerebral blood flow in response to neuronal activation. The focus of this review is to discuss the cellular mechanisms by which astrocytes contribute to the regulation of vascular tone in terms of their participation in NVC and, to a lesser extent, CA. We discuss evidence for the various signaling modalities by which astrocytic activation leads to vasodilation and vasoconstriction of parenchymal arterioles. Moreover, we provide a rationale for the contribution of astrocytes to pressure-induced increases in vascular tone via the vasoconstrictor 20-HETE (a downstream metabolite of arachidonic acid). Along these lines, we highlight the importance of the transient receptor potential channel of the vanilloid family (TRPV4) as a key molecular determinant in the regulation of vascular tone in cerebral arterioles. Finally, we discuss current advances in the technical tools available to study NVC mechanisms in the brain as it relates to the participation of astrocytes.
Collapse
|
22
|
Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol 2013; 305:H620-33. [PMID: 23792680 DOI: 10.1152/ajpheart.00624.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.
Collapse
Affiliation(s)
- Virginie Bolduc
- Departments of Surgery and Pharmacology, Université de Montréal, and Centre de recherche, Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
23
|
Crossland RF, Durgan DJ, Lloyd EE, Phillips SC, Reddy AK, Marrelli SP, Bryan RM. A new rodent model for obstructive sleep apnea: effects on ATP-mediated dilations in cerebral arteries. Am J Physiol Regul Integr Comp Physiol 2013; 305:R334-42. [PMID: 23761641 DOI: 10.1152/ajpregu.00244.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Obstructive sleep apnea (OSA), a condition in which the upper airway collapses during sleep, is strongly associated with metabolic and cardiovascular diseases. Little is known how OSA affects the cerebral circulation. The goals of this study were 1) to develop a rat model of chronic OSA that involved apnea and 2) to test the hypothesis that 4 wk of apneas during the sleep cycle alters endothelium-mediated dilations in middle cerebral arteries (MCAs). An obstruction device, which was chronically implanted into the trachea of rats, inflated to obstruct the airway 30 times/h for 8 h during the sleep cycle. After 4 wk of apneas, MCAs were isolated, pressurized, and exposed to luminally applied ATP, an endothelial P2Y2 receptor agonist that dilates through endothelial-derived nitric oxide (NO) and endothelial-dependent hyperpolarization (EDH). Dilations to ATP were attenuated ~30% in MCAs from rats undergoing apneas compared with those from a sham control group (P < 0.04 group effect; n = 7 and 10, respectively). When the NO component of the dilation was blocked to isolate the EDH component, the response to ATP in MCAs from the sham and apnea groups was similar. This finding suggests that the attenuated dilation to ATP must occur through reduced NO. In summary, we have successfully developed a novel rat model for chronic OSA that incorporates apnea during the sleep cycle. Using this model, we demonstrate that endothelial dysfunction occurred by 4 wk of apnea, likely increasing the vulnerability of the brain to cerebrovascular related accidents.
Collapse
Affiliation(s)
- Randy F Crossland
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
24
|
Craig J, Martin W. Dominance of flow-mediated constriction over flow-mediated dilatation in the rat carotid artery. Br J Pharmacol 2013; 167:527-36. [PMID: 22537086 DOI: 10.1111/j.1476-5381.2012.02006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The shearing forces generated by flow generally evoke dilatation in systemic vessels but constriction in the cerebral circulation. The aim of this study was to determine the effects of flow on the conduit artery delivering blood to the brain in the rat, that is, the carotid artery. EXPERIMENTAL APPROACH Carotid artery segments were mounted in a pressure myograph and pressurized to 100 mmHg. Changes in vessel diameter to flow (0.5-10 mL·min⁻¹ for 2-10 min) at constant pressure were then measured using a video dimension analyser. KEY RESULTS Following the induction of tone, the onset of flow evoked a transient dilatation followed by a powerful constriction that was sustained until the termination of flow. Endothelial denudation or treatment with indomethacin, N(G)-nitro-L-arginine methyl ester, or the combination of apamin and TRAM-34 showed that the initial flow-mediated dilatation arose from the combined actions of endothelium-derived NO and endothelium-derived hyperpolarizing factor (EDHF). The flow-mediated constriction, which increased in magnitude with increasing flow rate and duration of flow, was also endothelium dependent, but was unaffected by treatment with superoxide dismutase, BQ-123, indomethacin, HET0016 or carbenoxolone. Flow-mediated constriction therefore appeared not to involve superoxide anion, endothelin-1, a COX product, 20-HETE or gap-junctional communication. CONCLUSIONS AND IMPLICATIONS Although a weak, transient flow-mediated dilatation is observed in the rat carotid artery, the dominant response to flow is a powerful and sustained constriction. Whether this flow-mediated constriction in the carotid artery serves as an extracranial mechanism to regulate cerebral blood flow remains to be determined.
Collapse
Affiliation(s)
- John Craig
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, UK
| | | |
Collapse
|
25
|
Koller A, Toth P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res 2012; 49:375-89. [PMID: 22739136 PMCID: PMC3586555 DOI: 10.1159/000338747] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/04/2012] [Indexed: 11/19/2022] Open
Abstract
Regulation of cerebral blood flow (CBF) is the result of multilevel mechanisms to maintain the appropriate blood supply to the brain while having to comply with the limited space available in the cranium. The latter requirement is ensured by the autoregulation of CBF, in which the pressure-sensitive myogenic response is known to play a pivotal role. However, in vivo increases in pressure are accompanied by increases in flow; yet the effects of flow on the vasomotor tone of cerebral vessels are less known. Earlier studies showed flow-sensitive dilation and/or constriction or both, but no clear picture emerged. Recently, the important role of flow-sensitive mechanism(s) eliciting the constriction of cerebral vessels has been demonstrated. This review focuses on the effect of hemodynamic forces (especially intraluminal flow) on the vasomotor tone of cerebral vessels and the underlying cellular and molecular mechanisms. A novel concept of autoregulation of CBF is proposed, suggesting that (in certain areas of the cerebrovascular tree) pressure- and flow-induced constrictions together maintain an effective autoregulation, and that alterations in these mechanisms may contribute to the development of cerebrovascular disorders. Future studies are warranted to explore the signals, the details of signaling processes and the in vivo importance of these mechanisms.
Collapse
Affiliation(s)
- Akos Koller
- Department of Pathophysiology and Gerontology, Medical School, University of Pécs, Pécs, Hungary.
| | | |
Collapse
|
26
|
Bryan RM. It matters how you slice it. J Physiol 2012; 590:2547. [PMID: 22787165 DOI: 10.1113/jphysiol.2012.233718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Kim KJ, Filosa JA. Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. J Physiol 2012; 590:1757-70. [PMID: 22310311 DOI: 10.1113/jphysiol.2011.222778] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An understanding of the signalling events underlying neurovascular coupling mechanisms in the brain is a crucial step in the development of novel therapeutic approaches for the treatment of cerebrovascular-associated disorders. In this study we present an enhanced in vitro brain slice preparation from male Wistar rat cortical slices that incorporates haemodynamic variables (flow and pressure) into parenchymal arterioles resulting in the development of myogenic tone (28% from maximum dilatation). Moreover, we characterized flow-induced vascular responses, resulting in various degrees of vasoconstrictions and the response to 10 mM K(+) or astrocytic activation with the mGluR agonist, t-ACPD (100 μM), resulting in vasodilatations of 33.6±4.7% and 38.6±4.6%, respectively. Using fluorescence recovery, we determined perfusate velocity to calculate diameter changes under different experimental pH conditions. Using this approach, we demonstrate no significant differences between diameter changes measured using videomicroscopy or predicted from the velocity values obtained using fluorescence recovery after photobleaching. The model is further validated by demonstrating our ability to cannulate arterioles in two brain regions (cortex and supraoptic nucleus of the hypothalamus). Altogether, we believe this is the first study demonstrating successful cannulation and perfusion of parenchymal arterioles while monitoring/estimating luminal diameter and pressure under conditions where flow rates are controlled.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | |
Collapse
|
28
|
Revel A, Oréa V, Chapuis B, Barrès C, Julien C. Role of the sympathetic nervous system in cerebrovascular responses to air-jet stress in rats. Stress 2012; 15:115-20. [PMID: 21790485 DOI: 10.3109/10253890.2011.597901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined the role of sympathetic nerves in the control of cerebral hemodynamics during air-jet stress. In adult male Sprague-Dawley rats, blood flow velocity (pulsed Doppler) was measured in both internal carotid arteries 1 week after excision of one superior cervical ganglion. Blood pressure (BP) and carotid blood flows (CBFs) were simultaneously recorded during exposure to air-jet stress. In 5 out of 13 rats, stress was applied after β(2)-adrenoceptor blockade with ICI 118551 (0.4 mg/kg, then 0.2 mg/kg/h, i.v). Stress evoked an immediate rise in BP, CBFs, and vascular conductances. Vasodilatation was much larger on the denervated side than on the intact side (mean ± SEM: 78 ± 7 versus 19 ± 4%; P < 0.02) and lasted about 10 s. Thereafter, blood flows returned to or near normal and showed parallel variations while BP remained elevated. There was, therefore, a net vasoconstriction on both sides. In ICI 118551-treated rats, the initial vasodilatation was not significantly reduced on the denervated side (64 ± 4%), but the subsequent vasoconstriction was enhanced (P < 0.05) on both sides. In conclusion, air-jet stress evokes an immediate, short-lasting vasodilatation through a mechanism unrelated to β(2)-adrenoceptor stimulation. Sympathetic nerves powerfully limit this phenomenon, and thus contribute to protect the cerebral circulation from stress-induced BP surges.
Collapse
Affiliation(s)
- Aurélia Revel
- Unité de Neurocardiologie, Faculté de Pharmacie, Université Lyon 1, F-69008 Lyon, France
| | | | | | | | | |
Collapse
|
29
|
Toth P, Rozsa B, Springo Z, Doczi T, Koller A. Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J Cereb Blood Flow Metab 2011; 31:2096-105. [PMID: 21610722 PMCID: PMC3208155 DOI: 10.1038/jcbfm.2011.74] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Elevation of intraluminal pressure increases vasomotor tone, which thought to have a substantial role in regulation of cerebral blood flow (CBF). Interestingly, responses of cerebral vessels to increases in flow varied and have not been studied in human cerebral arteries. We hypothesized that increases in flow elicit constrictions of isolated human and rat cerebral arteries and aimed to elucidate the underlying mechanisms. Human cerebral arteries and rat middle cerebral arteries constricted to increases in flow (P<0.05). Simultaneous increase in intraluminal flow+pressure further reduced the diameter compared with pressure-induced changes (P<0.05), leading to constant estimated CBF. Flow-induced constrictions were abolished by HET0016 (inhibitor of synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) or inhibition of COXs or blocking TP (thromboxane A(2)/prostaglandin H(2), receptors and attenuated by scavenging reactive oxygen species (ROS). Flow-enhanced ROS formation was significantly reduced by HET0016. In conclusion, in human and rat cerebral arteries (1) increases in flow elicit constrictions, (2) signaling mechanism of flow-induced constriction of cerebral arteries involves enhanced production of ROS, COX activity, and mediated by 20-HETE via TP receptors, and (3) we propose that simultaneous operation of pressure- and flow-induced constrictions is necessary to provide an effective autoregulation of CBF.
Collapse
Affiliation(s)
- Peter Toth
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
30
|
Steelman SM, Humphrey JD. Differential remodeling responses of cerebral and skeletal muscle arterioles in a novel organ culture system. Med Biol Eng Comput 2011; 49:1015-23. [PMID: 21786016 DOI: 10.1007/s11517-011-0807-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 07/07/2011] [Indexed: 12/15/2022]
Abstract
Evidence suggests that maladaptive changes in the cerebral microcirculation may contribute to ischemia in numerous diseases. We sought, therefore, to develop an ex vivo organ culture system to study early changes in cerebral arteriolar structure and function, and to compare associated findings to those for non-cerebral arterioles. Pilot studies revealed that rabbit cerebral arterioles maintained contractility longer when cultured in media containing rabbit-specific plasma rather than fetal bovine serum. Cerebral and skeletal muscle arterioles were cultured in a pressure myograph for 5 days; maximum dilatory and contractile responses were measured at 0, 1, 3, and 5 days. Passive properties were preserved in cerebral arterioles over the entire culture period, although skeletal muscle arterioles underwent constrictive remodeling. Cerebral arterioles also maintained a myogenic capability over the entire culture period, albeit at progressively larger diameters, whereas the skeletal muscle arterioles did so only over 3 days. Culture in rabbit serum, which contains numerous growth factors and clotting factors, did not induce or increase inward remodeling in cerebral or skeletal arterioles. These results suggest inherent, organ-specific differences in arteriolar remodeling, and that extensive results in the literature on non-cerebral arterioles should not be extrapolated to predict responses in the cerebral microcirculation.
Collapse
Affiliation(s)
- Samantha M Steelman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, College Station, TX 77843-4458, USA.
| | | |
Collapse
|
31
|
|
32
|
Namiranian K, Lloyd EE, Crossland RF, Marrelli SP, Taffet GE, Reddy AK, Hartley CJ, Bryan RM. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. Am J Physiol Regul Integr Comp Physiol 2010; 299:R461-9. [PMID: 20357027 PMCID: PMC2928619 DOI: 10.1152/ajpregu.00057.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/30/2010] [Indexed: 12/19/2022]
Abstract
We tested the hypothesis that TREK-1, a two-pore domain K channel, is involved with dilations in arteries. Because there are no selective activators or inhibitors of TREK-1, we generated a mouse line deficient in TREK-1. Endothelium-mediated dilations were not different in arteries from wild-type (WT) and TREK-1 knockout (KO) mice. This includes dilations of the middle cerebral artery to ATP, dilations of the basilar artery to ACh, and relaxations of the aorta to carbachol, a cholinergic agonist. The nitric oxide (NO) and endothelium-dependent hyperpolarizing factor components of ATP dilations were identical in the middle cerebral arteries of WT and TREK-1 KO mice. Furthermore, the NO and cyclooxygenase-dependent components were identical in the basilar arteries of the different genotypes. Dilations of the basilar artery to alpha-linolenic acid, an activator of TREK-1, were not affected by the absence of TREK-1. Whole cell currents recorded using patch-clamp techniques were similar in cerebrovascular smooth muscle cells (CVSMCs) from WT and TREK-1 KO mice. alpha-linolenic acid or arachidonic acid increased whole cell currents in CVSMCs from both WT and TREK-1 KO mice. The selective blockers of large-conductance Ca-activated K channels, penitrem A and iberiotoxin, blocked the increased currents elicited by either alpha-linolenic or arachidonic acid. In summary, dilations were similar in arteries from WT and TREK-1 KO mice. There was no sign of TREK-1-like currents in CVSMCs from WT mice, and there were no major differences in currents between the genotypes. We conclude that regulation of arterial diameter is not altered in mice lacking TREK-1.
Collapse
Affiliation(s)
- Khodadad Namiranian
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Coordinated Regulation of Vascular Ca2+ and K+ Channels by Integrin Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:69-79. [DOI: 10.1007/978-1-4419-6066-5_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Claassen JAHR, Levine BD, Zhang R. Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol (1985) 2008; 106:153-60. [PMID: 18974368 DOI: 10.1152/japplphysiol.90822.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer function analysis of spontaneous oscillations in blood pressure (BP) and cerebral blood flow (CBF) can quantify the dynamic relationship between BP and CBF. However, such oscillation amplitudes are often small and of questionable clinical significance, vary substantially, and cannot be controlled. At the very low frequencies (<0.07 Hz), coherence between BP and CBF often is low (<0.50) and their causal relationship is debated. Eight healthy subjects performed repeated squat-stand maneuvers to induce large oscillations in BP at frequencies of 0.025 and 0.05 Hz (very low frequency) and 0.1 Hz (low frequency), respectively. BP (Finapres), CBF velocity (CBFV; transcranial Doppler), and end-tidal CO(2) (capnography) were monitored. Spectral analysis was used to quantify oscillations in BP and CBFV and to estimate transfer function phase, gain, and coherence. Compared with spontaneous oscillations, induced oscillations had higher coherence [mean 0.8 (SD 0.11); >0.5 in all subjects at all frequencies] and lower variability in phase estimates. However, gain estimates remained unchanged. Under both conditions, the "high-pass filter" characteristics of dynamic autoregulation were observed. In conclusion, using repeated squat-stand maneuvers, we were able to study dynamic cerebral autoregulation in the low frequencies under conditions of hemodynamically strong and causally related oscillations in BP and CBFV. This not only enhances the confidence of transfer function analysis as indicated by high coherence and improved phase estimation but also strengthens the clinical relevance of this method as induced oscillations in BP and CBFV mimic those associated with postural changes in daily life.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatric Medicine, Radbound University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
35
|
Kleinstreuer N, David T, Plank MJ, Endre Z. Dynamic myogenic autoregulation in the rat kidney: a whole-organ model. Am J Physiol Renal Physiol 2008; 294:F1453-64. [DOI: 10.1152/ajprenal.00426.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A transient 1D mathematical model of whole-organ renal autoregulation in the rat is presented, examining the myogenic response on multiple levels of the renal vasculature. Morphological data derived from micro-CT imaging were employed to divide the vasculature via a Strahler ordering scheme. A previously published model of the myogenic response based on wall tension is expanded and adapted to fit the response of each level, corresponding to a distally dominant resistance distribution with the highest contributions localized to the afferent arterioles and interlobular arteries. The mathematical model was further developed to include the effects of in vivo viscosity variation and flow-induced dilation via endothelial nitric oxide production. Computer simulations of the autoregulatory response to pressure perturbations were examined and compared with experimental data. The model supports the hypothesis that change in circumferential wall tension is the catalyst for the myogenic response. The model provides a basis for examining the steady state and transient characteristics of the whole-organ renal myogenic response in the rat, as well as the modulatory influences of metabolic and hemodynamic factors.
Collapse
|
36
|
|
37
|
Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B. Glutamatergic Control of Microvascular Tone by Distinct GABA Neurons in the Cerebellum. J Neurosci 2006; 26:6997-7006. [PMID: 16807329 PMCID: PMC6673912 DOI: 10.1523/jneurosci.5515-05.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tight coupling between increased neuronal activity and local cerebral blood flow, known as functional hyperemia, is essential for normal brain function. However, its cellular and molecular mechanisms remain poorly understood. In the cerebellum, functional hyperemia depends almost exclusively on nitric oxide (NO). Here, we investigated the role of different neuronal populations in the control of microvascular tone by in situ amperometric detection of NO and infrared videomicroscopy of microvessel movements in rat cerebellar slices. Bath application of an NO donor induced both NO flux and vasodilation. Surprisingly, endogenous release of NO elicited by glutamate was accompanied by vasoconstriction that was abolished by inhibition of Ca2+-phopholipase A2 and impaired by cyclooxygenase and thromboxane synthase inhibition and endothelin A receptor blockade, indicating a role for prostanoids and endothelin 1 in this response. Interestingly, direct stimulation of single endothelin 1-immunopositive Purkinje cells elicited constriction of neighboring microvessels. In contrast to glutamate, NMDA induced both NO flux and vasodilation that were abolished by treatment with a NO synthase inhibitor or with tetrodotoxin. These findings indicate that NO derived from neuronal origin is necessary for vasodilation induced by NMDA and, furthermore, that NO-producing interneurons mediate this vasomotor response. Correspondingly, electrophysiological stimulation of single nitrergic stellate cells by patch clamp was sufficient to release NO and dilate both intraparenchymal and upstream pial microvessels. These findings demonstrate that cerebellar stellate and Purkinje cells dilate and constrict, respectively, neighboring microvessels and highlight distinct roles for different neurons in neurovascular coupling.
Collapse
|
38
|
Paravicini TM, Miller AA, Drummond GR, Sobey CG. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase. J Cereb Blood Flow Metab 2006; 26:836-45. [PMID: 16222243 DOI: 10.1038/sj.jcbfm.9600235] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) such as superoxide (O2*-) and hydrogen peroxide (H2O2) are known cerebral vasodilators. A major source of vascular ROS is the flavin-containing enzyme nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. Activation of NADPH-oxidase leads to dilatation of the basilar artery in vivo via production of H2O2, but the endogenous stimuli for this unique vasodilator mechanism are unknown. Shear stress is known to activate both NADPH-oxidase and phosphatidylinositol-3 kinase (PI3-K) in cultured cells. Hence, this study used a cranial window preparation in anesthetized rats to investigate whether increased intraluminal blood flow could induce cerebral vasodilatation via the activation of NADPH-oxidase and/or PI3-K. Bilateral occlusion of the common carotid arteries to increase basilar artery blood flow caused reproducible, reversible vasodilatation. Topical treatment of the basilar artery with the NADPH-oxidase inhibitor diphenyleneiodonium (DPI) (0.5 and 5 micromol/L) inhibited flow-induced dilatation by up to 50% without affecting dilator responses to acetylcholine. Treatment with the H2O2 scavenger, catalase similarly attenuated flow-induced dilatation, suggesting a role for NADPH-oxidase-derived H2O2 in this response. The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) partially reduced flow-induced dilatation, and combined treatment with a ROS inhibitor (DPI or catalase) and L-NAME caused a greater reduction in flow-induced dilatation than that seen with any of these inhibitors alone. Flow-induced dilatation was also markedly inhibited by the PI3-K inhibitor, wortmannin. Increased O2*- production in the endothelium of the basilar artery during acute increases in blood flow was confirmed using dihydroethidium. Thus, flow-induced cerebral vasodilatation in vivo involves production of ROS and nitric oxide, and is dependent on PI3-K activation.
Collapse
Affiliation(s)
- Tamara M Paravicini
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
39
|
Abstract
Brain perfusion is tightly coupled to neuronal activity, is commonly used to monitor normal or pathological brain function, and is a direct reflection of the interactions that occur between neuronal signals and blood vessels. Cerebral blood vessels at the surface and within the brain are surrounded by nerve fibers that originate, respectively, from peripheral nerve ganglia and intrinsic brain neurons. Although of different origin and targeting distinct vascular beds, these "perivascular nerves" fulfill similar roles related to cerebrovascular functions, a major one being to regulate their tone and, therein, brain perfusion. This utmost function, which underlies the signals used in functional neuroimaging techniques and which can be jeopardized in pathologies such as Alzheimer's disease, stroke, and migraine headache, is thus regulated at several levels. Recently, new insights into our understanding of how neural input regulate cerebrovascular tone resulted in the rediscovery of the functional "neurovascular unit." These remarkable advances suggest that neuron-driven changes in vascular tone result from interactions that involve all components of the neurovascular unit, transducing neuronal signals into vasomotor responses not only through direct interaction between neurons and vessels but also indirectly via the perivascular astrocytes. Neurovascular coupling is thus determined by chemical signals released from activated perivascular nerves and astrocytes that alter vascular tone to locally adjust perfusion to the spatial and temporal changes in brain activity.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University St., Montréal, QC, Canada, H3A 2B4.
| |
Collapse
|
40
|
Prisby RD, Wilkerson MK, Sokoya EM, Bryan RM, Wilson E, Delp MD. Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms. J Appl Physiol (1985) 2006; 101:348-53. [PMID: 16627679 DOI: 10.1152/japplphysiol.00941.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (10(-5) M) and cyclooxygenase inhibitor indomethacin (10(-5) M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with N(G)-nitro-L-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The cerebrovascular endothelium exerts a profound influence on cerebral vessels and cerebral blood flow. This review summarizes current knowledge of various dilator and constrictor mechanisms intrinsic to the cerebrovascular endothelium. The endothelium contributes to the resting tone of cerebral arteries and arterioles by tonically releasing nitric oxide (NO•). Dilations can occur by stimulated release of NO•, endothelium-derived hyperpolarization factor, or prostanoids. During pathological conditions, the dilator influence of the endothelium can turn to that of constriction by a variety of mechanisms, including decreased NO• bioavailability and release of endothelin-1. The endothelium may participate in neurovascular coupling by conducting local dilations to upstream arteries. Further study of the cerebrovascular endothelium is critical for understanding the pathogenesis of a number of pathological conditions, including stroke, traumatic brain injury, and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jon Andresen
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Suite 434D, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
42
|
Abstract
The construction of a computational model of the human brain circulation is described. We combine an existing model of the biophysics of the circulatory system, a basic model of brain metabolic biochemistry, and a model of the functioning of vascular smooth muscle (VSM) into a single model. This represents a first attempt to understand how the numerous different feedback pathways by which cerebral blood flow is controlled interact with each other. The present work comprises the following: Descriptions of the physiology underlying the model; general comments on the processes by which this physiology is translated into mathematics; comments on parameter setting; and some simulation results. The simulations presented are preliminary, but show qualitative agreement between model behaviour and experimental results.
Collapse
Affiliation(s)
- Murad Banaji
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
43
|
Maeda T, Lee SM, Hovda DA. Restoration of Cerebral Vasoreactivity by an L-Type Calcium Channel Blocker following Fluid Percussion Brain Injury. J Neurotrauma 2005; 22:763-71. [PMID: 16004579 DOI: 10.1089/neu.2005.22.763] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant acute reductions in regional cerebral blood flow (rCBF). However, the mechanisms by which TBI impairs CBF and cerebral vascular reactivity have remained elusive. In the present study, the effect of verapamil, an L-type calcium (Ca(2+)) channel blocker, on post-traumatic vascular reactivity was evaluated following a lateral fluid percussion injury (FPI) in rats. rCBF was measured by [(14)C]-iodoantipyrine autoradiography 1 h after FPI. Following FPI, significant rCBF reductions were documented in all examined cortical areas. These reductions were the most prominent (72.0%) at the primary injury site. Intravenous infusion of verapamil (VE; 200 microg/kg/min), and norepinephrine (NE; 20 microg/mL/min) to maintain normal blood pressure, increased rCBF by 141.5% at the primary injury site when compared to untreated, FPinjured animals. Under stimulated conditions, both the ipsilateral and contralateral hemispheres failed to show any increases in rCBF at 1 h following FPI. In direct contrast, following VE+NE treatment all cortical areas measured showed near normal vascular reactivity to direct cortical stimulation (normal reactivity = 45% increase in rCBF vs. 47% increase in FPI+VE+NE cases). These findings suggest that the majority of post-traumatic hemodynamic depressions are closely related to mechanisms involving vasoconstriction. Furthermore, Ca(2+) may play a causative role in this vasoconstriction and the loss of vasoreactivity.
Collapse
Affiliation(s)
- Takeshi Maeda
- Brain Injury Research Center, Department of Surgery/Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
44
|
Watanabe S, Yashiro Y, Mizuno R, Ohhashi T. Involvement of NO and EDHF in Flow-Induced Vasodilation in Isolated Hamster Cremasteric Arterioles. J Vasc Res 2005; 42:137-47. [PMID: 15677873 DOI: 10.1159/000083652] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 12/12/2004] [Indexed: 11/19/2022] Open
Abstract
Flow-induced vasodilation in hamster cremasteric arterioles was investigated with special reference to the roles of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). Arterioles (approximately 60 microm resting diameter) were cannulated, and suffused with MOPS solution at 37 degrees C (mean intraluminal pressure: 80 cm H(2)O). Step increases in the perfusate flow elicited a dose-dependent vasodilation, which was almost proportional to the increases in calculated wall shear stress (WSS). N(omega)-nitro L-arginine methyl ester (L-NAME, 100 microM) reduced the flow-induced vasodilation by approximately 50%, whereas indomethacin (10 microM) produced no significant effect. In the presence of L-NAME, the residual vasodilation was eliminated by treatment with the cytochrome P-450 monooxygenase inhibitor 17-octadecynoic acid (17-ODYA, 50 microM), sulfaphenazol (10 microM), tetraethylammonium (TEA, 3 mM; a nonselective Ca(2+)-activated K(+) channel inhibitor), or charybdotoxin (ChTX, 0.1 microM; intermediate or large conductance Ca(2+)-activated K(+) channel inhibitor). In the absence of L-NAME, the dilation was also reduced by approximately 50% by treatment with 17-ODYA, TEA, or ChTX. The residual vasodilation was eliminated by additional treatment with L-NAME. The inhibitor of ATP-sensitive K(+) channels (K(ATP)), glibenclamide, also caused a significant, but partial, reduction of the flow-induced vasodilation. The residual vasodilation was completely reduced by additional treatment with 17-ODYA, but not L-NAME. These findings suggest that in hamster cremaster, higher flow rate produces NO, K(ATP), and EDHF vasodilation of the arterioles under physiological conditions.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Department of Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
45
|
Wilkerson MK, Lesniewski LA, Golding EM, Bryan RM, Amin A, Wilson E, Delp MD. Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance through endothelial nitric oxide mechanism. Am J Physiol Heart Circ Physiol 2005; 288:H1652-61. [PMID: 15576439 DOI: 10.1152/ajpheart.00925.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevations in arterial pressure associated with hypertension, microgravity, and prolonged bed rest alter cerebrovascular autoregulation in humans. Using head-down tail suspension (HDT) in rats to induce cephalic fluid shifts and elevate arterial pressure, this study tested the hypothesis that 2-wk HDT enhances cerebral artery vasoconstriction and that an enhanced vasoconstriction described in vitro will alter regional cerebral blood flow (CBF) and vascular resistance (CVR) during standing and head-up tilt. To test this hypothesis, basal tone and vasoconstrictor responses to increases in transmural pressure, shear stress, and K+ were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 10−5 M) and with endothelium removal. Endothelial NOS (eNOS) mRNA and protein expression levels were measured by RT-PCR and immunoblot, respectively. Regional CBF and CVR were determined with a radiolabeled tracer technique and quantitative autoradiography. Basal tone and all vasoconstrictor responses were greater in MCAs from HDT rats. l-NAME and endothelium removal abolished these differences between groups, and HDT was associated with lower levels of MCA eNOS protein. CBF in select regions was lower and CVR higher during standing and head-up tilt in HDT rats. These results indicate that chronic cephalic fluid shifts enhanced basal tone and vasoconstriction through alterations in the eNOS signaling mechanism. The functional consequence of these vascular alterations with HDT is regional elevations in CVR and corresponding reductions in cerebral perfusion.
Collapse
Affiliation(s)
- M Keith Wilkerson
- Dept. of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Effects of chronic isovolaemic haemodilution on regional cerebral blood flow in conscious rats. Eur J Anaesthesiol 2004. [DOI: 10.1097/00003643-200401000-00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
New DI, Chesser AMS, Thuraisingham RC, Yaqoob MM. Cerebral artery responses to pressure and flow in uremic hypertensive and spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2003; 284:H1212-6. [PMID: 12595297 DOI: 10.1152/ajpheart.00644.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 microl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 +/- 2.9%) compared with both WKYC (39 +/- 2.5%, P = 0.035) and SHR (40 +/- 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU (P < 0.001) and WKYC (P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.
Collapse
Affiliation(s)
- D I New
- Anthony Raine Research Laboratories, St. Bartholomew's Hospital, London EC1A 7BE, United Kingdom.
| | | | | | | |
Collapse
|
48
|
Golding EM, Golding RM. Mathematical modelling of responses of cerebral blood vessels to changing intraluminal pressure. Physiol Meas 2001; 22:727-43. [PMID: 11761079 DOI: 10.1088/0967-3334/22/4/307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The authors have designed a mathematical model to investigate the influences of the physical and chemical properties of the cerebral blood vessel resistance on vessel diameter. The model is based on the way the total tension within the blood vessel walls varies due to specific ions interacting and affecting the vascular smooth muscle cells and the vascular walls. In particular, we shall model a series of calcium sites and derive a generalized equation of the diameter as a function of pressure. The model includes the action of the vascular smooth muscle cells and the elasticity of the vascular walls, the pressure exerted on the walls by the blood and the effect of alterations to their properties within the blood vessel. They are formulated in terms of three parameters: the diameter at zero pressure, the myogenic response as the pressure tends to zero and a term associated with the myogenic tone. All three parameters may be reliably extracted from diameter-pressure measurements. The model was successfully used in quantifying diameter oscillations and dynamic myogenic responses that are frequently observed both in vivo and in vitro. Finally, we tested the model on experimental data obtained from the resistance of cerebral vessels that have been isolated from rats. In particular, we have first shown that the blood vessel characteristics are such that the diameter change due to calcium ion variations is at a maximum value. Second, we have shown that blood flow affects the myogenic response and third, we can explain the affect of ATP on the vessel diameter.
Collapse
Affiliation(s)
- E M Golding
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
49
|
Bakker EN, Balt JC, Pfaffendorf M, Spaan JA, VanBavel E. Vasomotor effects of arg-gly-asp (RGD) peptides are limited and not related to endothelium-derived hyperpolarizing factor-mediated relaxation in rat mesenteric arteries. Clin Exp Pharmacol Physiol 2001; 28:873-6. [PMID: 11703386 DOI: 10.1046/j.1440-1681.2001.03537.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present study we tested the effect of arg-gly-asp (RGD) peptides on vasomotor responses in rat isolated mesenteric arteries. More specifically, the hypothesis was tested that RGD interaction with integrins mediates relaxation attributed to endothelium-derived hyperpolarizing factor (EDHF). 2. The presence of the beta3 integrin subunit was shown by western blot analysis. To study its functional role, arteries (355 +/- 11 microm; n = 50) were mounted in a wire myograph set-up to measure isometric force generation. After blockade of nitric oxide synthesis with N(G)-nitro-L-arginine (0.1 mmol/L) and prostaglandin synthesis with indomethacin (10 micromol/L), methacholine (10 micromol/L) induced a transient relaxation within 1 min of 72 +/- 4.0% (as percentage of precontraction with phenylephrine; n = 27). 3. These responses were inhibited by a 60 mmol/L potassium buffer (18 +/- 6.0%; n = 6) or endothelium denudation (12 +/- 3.2%; n = 7), consistent with EDHF. 4. A function-blocking monoclonal antibody against the integrin beta3 chain did not affect relaxation. 5. The RGD peptides gly-arg-gly-asp-thr-pro (GRGDTP), gly-arg-gly-asp-ser (GRGDS) and cyclic RGD, ligands for the RGD binding site of integrins, also did not affect relaxation induced by methacholine. 6. Cyclic RGD increased contraction from 91 +/- 3 to 98 +/- 3% (as percentage of 120 mmol/L potassium). 7. In conclusion, these data show that vasomotor responses related to integrins are small and not involved in hyperpolarization attributed to EDHF in rat mesenteric artery.
Collapse
Affiliation(s)
- E N Bakker
- Department of Medical Physics, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|