1
|
Michel-Flutot P, Vinit S, Mansart A. [Pathophysiology of neuromuscular weakness acquired in intensive care during sepsis]. Med Sci (Paris) 2025; 41:253-259. [PMID: 40117550 DOI: 10.1051/medsci/2025024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Sepsis is a potentially life-threatening condition recognized as a global health priority by the World Health Organization. Survivors who develop intensive care unit-acquired weakness (ICUAW) often face long-term motor and functional deficits that significantly impact their quality of life. Although some studies have investigated the mechanisms underlying ICUAW and its long-term effects, much remains unknown. Further research into ICUAW is therefore essential to gain a comprehensive understanding of this phenomenon, which may guide the development of effective treatments to restore patients' quality of life.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, États-Unis
| | - Stéphane Vinit
- Université Paris-Saclay, UVSQ, Inserm U1179, END-ICAP, Versailles, France
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), Versailles, France
| |
Collapse
|
2
|
Gafurova CR, Tsentsevitsky AN, Fedorov NS, Khaziev AN, Malomouzh AI, Petrov AM. β2-Adrenergic Regulation of the Neuromuscular Transmission and Its Lipid-Dependent Switch. Mol Neurobiol 2024; 61:6805-6821. [PMID: 38353924 DOI: 10.1007/s12035-024-03991-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 08/22/2024]
Abstract
β2-Adrenoceptors (β2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of β2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that β2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. β2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of β2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the β2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on β2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, β2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of β2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the β2-AR signaling on lipid raft integrity in the neuromuscular junctions.
Collapse
Affiliation(s)
- Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
| | - Arthur N Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111
- Kazan National Research Technical University, 10, K. Marx St., Kazan, Russia, 420111
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, RT, Russia, 420111.
- Kazan State Medical University, 49 Butlerova St., Kazan, RT, Russia, 420012.
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, Russia, 420008.
| |
Collapse
|
3
|
Zuo X, Li X, Tang K, Zhao R, Wu M, Wang Y, Li T. Sarcopenia and cardiovascular diseases: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:1183-1198. [PMID: 37002802 PMCID: PMC10235887 DOI: 10.1002/jcsm.13221] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 06/03/2023] Open
Abstract
Sarcopenia is an age-related disease and is often accompanied by other diseases. Now, many studies have shown that cardiovascular diseases (CVDs) may raise the incidence rate of sarcopenia. Therefore, the purpose of this study was to conduct a systematic review and meta-analysis to investigate the prevalence of sarcopenia in patients with CVDs compared with the general population, defined as relatively healthy non-hospitalized subjects. The databases of PubMed, Embase, Medline and Web of Science were searched for eligible studies published up to 12 November 2022. Two assessment tools were used to evaluate study quality and the risk of bias. Statistical analysis was conducted using STATA 14.0 and R Version 4.1.2. Thirty-eight out of the 89 629 articles retrieved were included in our review. The prevalence of sarcopenia ranged from 10.1% to 68.9% in patients with CVDs, and the pooled prevalence was 35% (95% confidence interval [95% CI]: 28-42%). The pooled prevalence of sarcopenia was 32% (95% CI: 23-41%) in patients with chronic heart failure (CHF), 61% (95% CI: 49-72%) in patients with acute decompensated heart failure (ADHF), 43% (95% CI: 2-85%) in patients with coronary artery disease, 30% (95% CI: 25-35%) in patients with cardiac arrhythmia (CA), 35% (95% CI: 10-59%) in patients with congenital heart disease and 12% (95% CI: 7-17%) in patients with unclassed CVDs. However, in the general population, the prevalence of sarcopenia varied from 2.9% to 28.6% and the pooled prevalence was 13% (95% CI: 9-17%), suggesting that the prevalence of sarcopenia in patients with CVDs was about twice compared with the general population. The prevalence of sarcopenia was significantly higher only in patients with ADHF, CHF and CA compared with the general population. There is a positive correlation between CVDs and sarcopenia. The prevalence of sarcopenia is higher in patients with CVDs than that in the general population. With global aging, sarcopenia has brought a heavy burden to individuals and society. Therefore, it is important to identify the populations with high-risk or probable sarcopenia in order to do an early intervention, such as exercise, to counteract or slow down the progress of sarcopenia.
Collapse
Affiliation(s)
- Xinrong Zuo
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Xuehong Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Kuo Tang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Rui Zhao
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Minming Wu
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yang Wang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Tao Li
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Olsson K, Cheng AJ, Al-Ameri M, Tardif N, Melin M, Rooyackers O, Lanner JT, Westerblad H, Gustafsson T, Bruton JD, Rullman E. Sphingomyelinase activity promotes atrophy and attenuates force in human muscle fibres and is elevated in heart failure patients. J Cachexia Sarcopenia Muscle 2022; 13:2551-2561. [PMID: 35852046 PMCID: PMC9530516 DOI: 10.1002/jcsm.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Activation of sphingomyelinase (SMase) as a result of a general inflammatory response has been implicated as a mechanism underlying disease-related loss of skeletal muscle mass and function in several clinical conditions including heart failure. Here, for the first time, we characterize the effects of SMase activity on human muscle fibre contractile function and assess skeletal muscle SMase activity in heart failure patients. METHODS The effects of SMase on force production and intracellular Ca2+ handling were investigated in single intact human muscle fibres. Additional mechanistic studies were performed in single mouse toe muscle fibres. RNA sequencing was performed in human muscle bundles exposed to SMase. Intramuscular SMase activity was measured from heart failure patients (n = 61, age 69 ± 0.8 years, NYHA III-IV, ejection fraction 25 ± 1.0%, peak VO2 14.4 ± 0.6 mL × kg × min) and healthy age-matched control subjects (n = 10, age 71 ± 2.2 years, ejection fraction 60 ± 1.2%, peak VO2 25.8 ± 1.1 mL × kg × min). SMase activity was related to circulatory factors known to be associated with progression and disease severity in heart failure. RESULTS Sphingomyelinase reduced muscle fibre force production (-30%, P < 0.05) by impairing sarcoplasmic reticulum (SR) Ca2+ release (P < 0.05) and reducing myofibrillar Ca2+ sensitivity. In human muscle bundles exposed to SMase, RNA sequencing analysis revealed 180 and 291 genes as up-regulated and down-regulated, respectively, at a FDR of 1%. Gene-set enrichment analysis identified 'proteasome degradation' as an up-regulated pathway (average fold-change 1.1, P = 0.008), while the pathway 'cytoplasmic ribosomal proteins' (average fold-change 0.8, P < 0.0001) and factors involving proliferation of muscle cells (average fold-change 0.8, P = 0.0002) where identified as down-regulated. Intramuscular SMase activity was ~20% higher (P < 0.05) in human heart failure patients than in age-matched healthy controls and was positively correlated with markers of disease severity and progression, and with several circulating inflammatory proteins, including TNF-receptor 1 and 2. In a longitudinal cohort of heart failure patients (n = 6, mean follow-up time 2.5 ± 0.2 years), SMase activity was demonstrated to increase by 30% (P < 0.05) with duration of disease. CONCLUSIONS The present findings implicate activation of skeletal muscle SMase as a mechanism underlying human heart failure-related loss of muscle mass and function. Moreover, our findings strengthen the idea that SMase activation may underpin disease-related loss of muscle mass and function in other clinical conditions, acting as a common patophysiological mechanism for the myopathy often reported in diseases associated with a systemic inflammatory response.
Collapse
Affiliation(s)
- Karl Olsson
- Department of Laboratory Medicine, Section of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden.,Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nicolas Tardif
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Huddinge, Sweden.,Anesthesiology and intensive care, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Michael Melin
- Department of Laboratory Medicine, Section of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Olav Rooyackers
- Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Huddinge, Sweden.,Anesthesiology and intensive care, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Section of Clinical Physiology, Karolinska Institutet and Department of Clinical Physiology Karolinska Univ Hospital, Huddinge, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Section of Clinical Physiology, Karolinska Institutet and Department of Clinical Physiology Karolinska Univ Hospital, Huddinge, Sweden
| |
Collapse
|
5
|
The effect of lipoic acid on the content of SOD-1 and TNF-α in rat striated muscle. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background
The aim of the study was to present the effect of lipoic acid (LA) on oxidative stress induced by lipopolysaccharide (LPS).
Materials/Methods
The studies were conducted on male rats of the Wistar strain. The animals were divided into four groups. I: the controls received saline (0.2 ml); II: LPS, received LPS (Escherichia coli 026: B6) at a dose of 6 mg/kg body weight; III: LA, received LA at a dose of 60 mg/kg body weight; IV: LA + LPS, received LA (60 mg/kg b.w.) and after 30 min received LPS (6 mg/kg b.w.). All compounds were administered to the tail vein. After 5 hours of the experiment, the animals were anesthetized and striated muscle from the thigh was prepared. The isolated muscle was homogenized. Concentrations of superoxide dismutase-1 (SOD-1) and tumor necrosis factor alpha (TNF-α) were determined in the homogenates with the application of ELISA.
Results
The study showed a significant decrease in SOD-1 content and an increase in TNF-α in striated muscle after LPS administration. LA given 30 min before administration of LPS caused a significant increase in the level of SOD-1 and decreased levels of TNF-α in homogenates.
Conclusion
LA reduced the parameters of LPS oxidative stress, thus contributing to an increase in the body's antioxidant defense.
Collapse
|
6
|
Supinski GS, Schroder EA, Wang L, Morris AJ, Callahan LAP. Mitoquinone mesylate (MitoQ) prevents sepsis-induced diaphragm dysfunction. J Appl Physiol (1985) 2021; 131:778-787. [PMID: 34197233 DOI: 10.1152/japplphysiol.01053.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. There are no pharmacological treatments for this syndrome, but studies suggest that diaphragm weakness is linked to mitochondrial free radical generation. We hypothesized that administration of mitoquinone mesylate (MitoQ), a mitochondrially targeted free radical scavenger, would prevent sepsis-induced diaphragm dysfunction. We compared diaphragm function in 4 groups of male mice: 1) sham-operated controls treated with saline (0.3 mL ip), 2) sham-operated treated with MitoQ (3.5 mg/kg/day given intraperitoneally in saline), 3) cecal ligation puncture (CLP) mice treated with saline, and 4) CLP mice treated with MitoQ. Forty-eight hours after surgery, we assessed diaphragm force generation, myosin heavy chain content, state 3 mitochondrial oxygen consumption (OCR), and aconitase activity. We also determined effects of MitoQ in female mice with CLP sepsis and in mice with endotoxin-induced sepsis. CLP decreased diaphragm specific force generation and MitoQ prevented these decrements (e.g. maximal force averaged 30.2 ± 1.3, 28.0 ± 1.3, 12.8 ± 1.9, and 30.0 ± 1.0 N/cm2 for sham, sham + MitoQ, CLP, and CLP + MitoQ groups, respectively, P < 0.001). CLP also reduced diaphragm mitochondrial OCR and aconitase activity; MitoQ blocked both effects. Similar responses were observed in female mice and in endotoxin-induced sepsis. Moreover, delayed MitoQ treatment (by 6 h) was as effective as immediate treatment. These data indicate that MitoQ prevents sepsis-induced diaphragm dysfunction, preserving force generation. MitoQ may be a useful therapeutic agent to preserve diaphragm function in critically ill patients with sepsis.NEW & NOTEWORTHY This is the first study to show that mitoquinone mesylate (MitoQ), a mitochondrially targeted antioxidant, treats sepsis-induced skeletal muscle dysfunction. This biopharmaceutical agent is without known side effects and is currently being used by healthy individuals and in clinical trials in patients with various diseases. When taken together, our results suggest that MitoQ has the potential to be immediately translated into treatment for sepsis-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Andrew J Morris
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky.,Division of Cardiovascular Medicine, Veterans Affairs Medical Center, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
7
|
Schroder EA, Wang L, Wen Y, Callahan LAP, Supinski GS. Skeletal muscle-specific calpastatin overexpression mitigates muscle weakness in aging and extends life span. J Appl Physiol (1985) 2021; 131:630-642. [PMID: 34197232 DOI: 10.1152/japplphysiol.00883.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calpain activation has been postulated as a potential contributor to the loss of muscle mass and function associated with both aging and disease, but limitations of previous experimental approaches have failed to completely examine this issue. We hypothesized that mice overexpressing calpastatin (CalpOX), an endogenous inhibitor of calpain, solely in skeletal muscle would show an amelioration of the aging muscle phenotype. We assessed four groups of mice (age in months): 1) young wild type (WT; 5.71 ± 0.43), 2) young CalpOX (5.6 ± 0.5), 3) old WT (25.81 ± 0.56), and 4) old CalpOX (25.91 ± 0.60) for diaphragm and limb muscle (extensor digitorum longus, EDL) force frequency relations. Aging significantly reduced diaphragm and EDL peak force in old WT mice, and decreased the force-time integral during a fatiguing protocol by 48% and 23% in aged WT diaphragm and EDL, respectively. In contrast, we found that CalpOX mice had significantly increased diaphragm and EDL peak force in old mice, similar to that observed in young mice. The impact of aging on the force-time integral during a fatiguing protocol was abolished in the diaphragm and EDL of old CalpOX animals. Surprisingly, we found that CalpOX had a significant impact on longevity, increasing median survival from 20.55 mo in WT mice to 24 mo in CalpOX mice (P = 0.0006).NEW & NOTEWORTHY This is the first study to investigate the role of calpastatin overexpression on skeletal muscle specific force in aging rodents. Muscle-specific overexpression of calpastatin, the endogenous calpain inhibitor, prevented aging-induced reductions in both EDL and diaphragm specific force and, remarkably, increased life span. These data suggest that diaphragm dysfunction in aging may be a major factor in determining longevity. Targeting the calpain/calpastatin pathway may elucidate novel therapies to combat skeletal muscle weakness in aging.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Gerald S Supinski
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
8
|
Tallon C, Hollinger KR, Pal A, Bell BJ, Rais R, Tsukamoto T, Witwer KW, Haughey NJ, Slusher BS. Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discov Today 2021; 26:1656-1668. [PMID: 33798648 DOI: 10.1016/j.drudis.2021.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are indispensable mediators of intercellular communication, but they can also assume a nefarious role by ferrying pathological cargo that contributes to neurological, oncological, inflammatory, and infectious diseases. The canonical pathway for generating EVs involves the endosomal sorting complexes required for transport (ESCRT) machinery, but an alternative pathway is induced by the enrichment of lipid membrane ceramides generated by neutral sphingomyelinase 2 (nSMase2). Inhibition of nSMase2 has become an attractive therapeutic strategy for inhibiting EV biogenesis, and a growing number of small-molecule nSMase2 inhibitors have shown promising therapeutic activity in preclinical disease models. This review outlines the function of EVs, their potential role in disease, the discovery and efficacy of nSMase2 inhibitors, and the path to translate these findings into therapeutics.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Witwer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
The nSMase2/Smpd3 gene modulates the severity of muscular dystrophy and the emotional stress response in mdx mice. BMC Med 2020; 18:343. [PMID: 33208172 PMCID: PMC7677854 DOI: 10.1186/s12916-020-01805-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.
Collapse
|
10
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. MitoTEMPOL, a mitochondrial targeted antioxidant, prevents sepsis-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L228-L238. [PMID: 32460519 DOI: 10.1152/ajplung.00473.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical studies indicate that sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. Currently there is no drug to treat this form of diaphragm weakness. Sepsis-induced muscle dysfunction is thought to be triggered by excessive mitochondrial free radical generation; we therefore hypothesized that therapies that target mitochondrial free radical production may prevent sepsis-induced diaphragm weakness. The present study determined whether MitoTEMPOL, a mitochondrially targeted free radical scavenger, could reduce sepsis-induced diaphragm dysfunction. Using an animal model of sepsis, we compared four groups of mice: 1) sham-operated controls, 2) animals with sepsis induced by cecal ligation puncture (CLP), 3) sham controls given MitoTEMPOL (10 mg·kg-1·day-1 ip), and 4) CLP animals given MitoTEMPOL. At 48 h after surgery, we measured diaphragm force generation, mitochondrial function, proteolytic enzyme activities, and myosin heavy chain (MHC) content. We also examined the effects of delayed administration of MitoTEMPOL (by 6 h) on CLP-induced diaphragm weakness. The effects of MitoTEMPOL on cytokine-mediated alterations on muscle cell superoxide generation and cell size in vitro were also assessed. Sepsis markedly reduced diaphragm force generation. Both immediate and delayed MitoTEMPOL administration prevented sepsis-induced diaphragm weakness. MitoTEMPOL reversed sepsis-mediated reductions in mitochondrial function, activation of proteolytic pathways, and decreases in MHC content. Cytokines increased muscle cell superoxide generation and decreased cell size, effects that were ablated by MitoTEMPOL. MitoTEMPOL and other compounds that target mitochondrial free radical generation may be useful therapies for sepsis-induced diaphragm weakness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
11
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. SS31, a mitochondrially targeted antioxidant, prevents sepsis-induced reductions in diaphragm strength and endurance. J Appl Physiol (1985) 2020; 128:463-472. [PMID: 31944887 PMCID: PMC7099438 DOI: 10.1152/japplphysiol.00240.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-induced diaphragm dysfunction contributes to respiratory failure and mortality in critical illness. There are no treatments for this form of diaphragm weakness. Studies show that sepsis-induced muscle dysfunction is triggered by enhanced mitochondrial free radical generation. We tested the hypothesis that SS31, a mitochondrially targeted antioxidant, would attenuate sepsis-induced diaphragm dysfunction. Four groups of mice were studied: 1) sham-operated controls, 2) sham-operated+SS31 (10 mg·kg-1·day-1), 3) cecal ligation puncture (CLP), and 4) CLP+SS31. Forty-eight hours postoperatively, diaphragm strips with attached phrenic nerves were isolated, and the following were assessed: muscle-field-stimulated force-frequency curves, nerve-stimulated force-frequency curves, and muscle fatigue. We also measured calpain activity, 20S proteasomal activity, myosin heavy chain (MHC) levels, mitochondrial function, and aconitase activity, an index of mitochondrial superoxide generation. Sepsis markedly reduced diaphragm force generation; SS31 prevented these decrements. Diaphragm-specific force generation averaged 30.2 ± 1.4, 9.4 ± 1.8, 25.5 ± 2.3, and 27.9 ± 0.6 N/cm2 for sham, CLP, sham+SS31, and CLP+SS31 groups (P < 0.001). Similarly, with phrenic nerve stimulation, CLP depressed diaphragm force generation, effects prevented by SS31. During endurance trials, force was significantly reduced with CLP, and SS31 prevented these reductions (P < 0.001). Sepsis also increased diaphragm calpain activity, increased 20S proteasomal activity, decreased MHC levels, reduced mitochondrial function (state 3 rates and ATP generation), and reduced aconitase activity; SS31 prevented each of these sepsis-induced alterations (P ≤ 0.017 for all indices). SS31 prevents sepsis-induced diaphragm dysfunction, preserving force generation, endurance, and mitochondrial function. Compounds with similar mechanisms of action may be useful therapeutically to preserve diaphragm function in patients who are septic and critically ill.NEW & NOTEWORTHY Sepsis-induced diaphragm dysfunction is a major contributor to mortality and morbidity in patients with critical illness in intensive care units. Currently, there is no proven pharmacological treatment for this problem. This study provides the novel finding that administration of SS31, a mitochondrially targeted antioxidant, preserves diaphragm myosin heavy chain content and mitochondrial function, thereby preventing diaphragm weakness and fatigue in sepsis.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats. J Mol Cell Cardiol 2020; 139:238-249. [PMID: 32035137 DOI: 10.1016/j.yjmcc.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Inspiratory dysfunction occurs in patients with heart failure with reduced ejection fraction (HFrEF) in a manner that depends on disease severity and by mechanisms that are not fully understood. In the current study, we tested whether HFrEF effects on diaphragm (inspiratory muscle) depend on disease severity and examined putative mechanisms for diaphragm abnormalities via global and redox proteomics. We allocated male rats into Sham, moderate (mHFrEF), or severe HFrEF (sHFrEF) induced by myocardial infarction and examined the diaphragm muscle. Both mHFrEF and sHFrEF caused atrophy in type IIa and IIb/x fibers. Maximal and twitch specific forces (N/cm2) were decreased by 19 ± 10% and 28 ± 13%, respectively, in sHFrEF (p < .05), but not in mHFrEF. Global proteomics revealed upregulation of sarcomeric proteins and downregulation of ribosomal and glucose metabolism proteins in sHFrEF. Redox proteomics showed that sHFrEF increased reversibly oxidized cysteine in cytoskeletal and thin filament proteins and methionine in skeletal muscle α-actin (range 0.5 to 3.3-fold; p < .05). In conclusion, fiber atrophy plus contractile dysfunction caused diaphragm weakness in HFrEF. Decreased ribosomal proteins and heighted reversible oxidation of protein thiols are candidate mechanisms for atrophy or anabolic resistance as well as loss of specific force in sHFrEF.
Collapse
|
13
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. Taurine administration ablates sepsis induced diaphragm weakness. Respir Physiol Neurobiol 2019; 271:103289. [PMID: 31505275 DOI: 10.1016/j.resp.2019.103289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Infection induced diaphragm weakness is a major contributor to death and prolonged mechanical ventilation in critically ill patients. Infection induced muscle dysfunction is associated with activation of muscle proteolytic enzymes, and taurine is known to suppress proteolysis. We therefore postulated that taurine administration may prevent infection induced diaphragm dysfunction. The purpose of this study was to test this hypothesis using a clinically relevant animal model of infection, i.e. cecal ligation puncture induced sepsis (CLP). Studies were performed on (n = 5-7 mice/group): (a) sham operated controls, (b) animals with sepsis induced by CLP, (c) sham operated animals given taurine (75 mg/kg/d, intraperitoneally), and (d) CLP animals given taurine. At intervals after surgery animals were euthanized, diaphragm force generation measured in vitro, and diaphragm calpain, caspase and proteasomal activity determined. CLP elicited a large reduction in diaphragm specific force generation at 24 h (1-150 Hz, p < 0.001) and taurine significantly attenuated CLP induced diaphragm weakness at all stimulation frequencies (p < 0.001). CLP induced significant increases in diaphragm calpain, caspase and proteasomal activity; taurine administration prevented increases in the activity of all three pathways. In additional time course experiments, diaphragm force generation remained at control levels over 72 h in CLP animals treated with daily taurine administration, while CLP animals demonstrated severe, sustained reductions in diaphragm strength (p < 0.01 for all time points). Our results indicate that taurine administration prevents infection induced diaphragm weakness and reduces activation of three major proteolytic pathways. Because this agent is has been shown to be safe, non-toxic when administered to humans, taurine may have a role in treating infection induced diaphragm weakness. Future clinical studies will be needed to assess this possibility.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
14
|
Coblentz PD, Ahn B, Hayward LF, Yoo JK, Christou DD, Ferreira LF. Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. Am J Physiol Lung Cell Mol Physiol 2019; 316:L679-L690. [PMID: 30702345 DOI: 10.1152/ajplung.00516.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFREF) increases neutral sphingomyelinase (NSMase) activity and mitochondrial reactive oxygen species (ROS) emission and causes diaphragm weakness. We tested whether a systemic pharmacological NSMase inhibitor or short-hairpin RNA (shRNA) targeting NSMase isoform 3 (NSMase3) would prevent diaphragm abnormalities induced by HFREF caused by myocardial infarction. In the pharmacological intervention, we used intraperitoneal injection of GW4869 or vehicle. In the genetic intervention, we injected adeno-associated virus serotype 9 (AAV9) containing shRNA targeting NSMase3 or a scrambled sequence directly into the diaphragm. We also studied acid sphingomyelinase-knockout mice. GW4869 prevented the increase in diaphragm ceramide content, weakness, and tachypnea caused by HFREF. For example, maximal specific forces (in N/cm2) were vehicle [sham 31 ± 2 and HFREF 26 ± 2 ( P < 0.05)] and GW4869 (sham 31 ± 2 and HFREF 31 ± 1). Respiratory rates were (in breaths/min) vehicle [sham 61 ± 3 and HFREF 84 ± 11 ( P < 0.05)] and GW4869 (sham 66 ± 2 and HFREF 72 ± 2). AAV9-NSMase3 shRNA prevented heightening of diaphragm mitochondrial ROS and weakness [in N/cm2, AAV9-scrambled shRNA: sham 31 ± 2 and HFREF 27 ± 2 ( P < 0.05); AAV9-NSMase3 shRNA: sham 30 ± 1 and HFREF 30 ± 1] but displayed tachypnea. Both wild-type and ASMase-knockout mice with HFREF displayed diaphragm weakness. Our study suggests that activation of NSMase3 causes diaphragm weakness in HFREF, presumably through accumulation of ceramide and elevation in mitochondrial ROS. Our data also reveal a novel inhibitory effect of GW4869 on tachypnea in HFREF likely mediated by changes in neural control of breathing.
Collapse
Affiliation(s)
- Philip D Coblentz
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Linda F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| |
Collapse
|
15
|
Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev 2018; 22:191-207. [PMID: 27000754 DOI: 10.1007/s10741-016-9549-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary pathophysiology including: (1) impaired airway clearance and predisposition to pneumonia; (2) inability to sustain ventilation during physical activity; (3) shallow breathing pattern that limits alveolar ventilation and gas exchange; and (4) sympathetic activation that causes cardiac arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle; hence, its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. Mechanistic work within animal and cellular models has revealed specific factors that may be responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, reactive oxygen species, and proteolytic pathways, thus leading to the previously listed abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory muscle dysfunction in CHF and aging.
Collapse
|
16
|
Supinski GS, Morris PE, Dhar S, Callahan LA. Diaphragm Dysfunction in Critical Illness. Chest 2017; 153:1040-1051. [PMID: 28887062 DOI: 10.1016/j.chest.2017.08.1157] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Peter E Morris
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Sanjay Dhar
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY.
| |
Collapse
|
17
|
Lang JK, Young RF, Ashraf H, Canty JM. Inhibiting Extracellular Vesicle Release from Human Cardiosphere Derived Cells with Lentiviral Knockdown of nSMase2 Differentially Effects Proliferation and Apoptosis in Cardiomyocytes, Fibroblasts and Endothelial Cells In Vitro. PLoS One 2016; 11:e0165926. [PMID: 27806113 PMCID: PMC5091915 DOI: 10.1371/journal.pone.0165926] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
Numerous studies have shown a beneficial effect of cardiosphere-derived cell (CDC) therapy on regeneration of injured myocardium. Paracrine signaling by CDC secreted exosomes may contribute to improved cardiac function. However, it has not yet been demonstrated by a genetic approach that exosome release contributes to the therapeutic effect of transplanted CDCs. By employing a lentiviral knockdown (KD) strategy against neutral spingomyelinase 2 (nSMase2), a crucial gene in exosome secretion, we have defined the role of physiologically secreted human CDC-derived exosomes on cardiac fibroblast, endothelial cell and primary cardiomyocyte proliferation, cell death, migration and angiogenesis using a series of in vitro coculture assays. We found that secretion of hCDC-derived exosomes was effectively inhibited by nSMase2 lentiviral KD and shRNAi expression was stable and constitutive. hCDC exosome release contributed to the angiogenic and pro-migratory effects of hCDCs on HUVECs, decreased proliferation of fibroblasts, and decreased apoptosis of cardiomyocytes. These in vitro reactions support a role for exosome secretion as a paracrine mechanism of stem cell-mediated cardiac repair in vivo. Importantly, we have established a novel tool to test constitutive inhibition of exosome secretion in stem cell populations in animal models of cardiac disease.
Collapse
Affiliation(s)
- Jennifer K. Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, N.Y, 14203, United States of America
- * E-mail:
| | - Rebeccah F. Young
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, N.Y, 14203, United States of America
| | - Hashmat Ashraf
- Department of Cardiothoracic Surgery, Kaleida Health, Buffalo, N.Y, 14203, United States of America
| | - John M. Canty
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, N.Y, 14203, United States of America
- VA WNY Healthcare System, Buffalo, N.Y., 14215, United States of America
| |
Collapse
|
18
|
Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Calcium-dependent phospholipase A2 modulates infection-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2016; 310:L975-84. [PMID: 26968769 DOI: 10.1152/ajplung.00312.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/09/2016] [Indexed: 11/22/2022] Open
Abstract
Calpain activation contributes to the development of infection-induced diaphragm weakness, but the mechanisms by which infections activate calpain are poorly understood. We postulated that skeletal muscle calcium-dependent phospholipase A2 (cPLA2) is activated by cytokines and has downstream effects that induce calpain activation and muscle weakness. We determined whether cPLA2 activation mediates cytokine-induced calpain activation in isolated skeletal muscle (C2C12) cells and infection-induced diaphragm weakness in mice. C2C12 cells were treated with the following: 1) vehicle; 2) cytomix (TNF-α 20 ng/ml, IL-1β 50 U/ml, IFN-γ 100 U/ml, LPS 10 μg/ml); 3) cytomix + AACOCF3, a cPLA2 inhibitor (10 μM); or 4) AACOCF3 alone. At 24 h, we assessed cell cPLA2 activity, mitochondrial superoxide generation, calpain activity, and calpastatin activity. We also determined if SS31 (10 μg/ml), a mitochondrial superoxide scavenger, reduced cytomix-mediated calpain activation. Finally, we determined if CDIBA (10 μM), a cPLA2 inhibitor, reduced diaphragm dysfunction due to cecal ligation puncture in mice. Cytomix increased C2C12 cell cPLA2 activity (P < 0.001) and superoxide generation; AACOCF3 and SS31 blocked increases in superoxide generation (P < 0.001). Cytomix also activated calpain (P < 0.001) and inactivated calpastatin (P < 0.01); both AACOCF3 and SS31 prevented these changes. Cecal ligation puncture reduced diaphragm force in mice, and CDIBA prevented this reduction (P < 0.001). cPLA2 modulates cytokine-induced calpain activation in cells and infection-induced diaphragm weakness in animals. We speculate that therapies that inhibit cPLA2 may prevent diaphragm weakness in infected, critically ill patients.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Xiao-Hong Song
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh A Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|