1
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Duan W, Huang J, Wasti B, Chen Z, Yuan Y, He Y, Li D, Jia J, Liu S, Liu Y, Ma L, Zeng Q, Zhu L, Li J, Zhang X, Xiang X. miR-146a-3p as a potential novel therapeutic by targeting MBD2 to mediate Th17 differentiation in Th17 predominant neutrophilic severe asthma. Clin Exp Med 2023; 23:2839-2854. [PMID: 36961677 PMCID: PMC10543568 DOI: 10.1007/s10238-023-01033-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023]
Abstract
Th17 (T-helper 17) cells subtype of non-T2 (non-type 2) asthma is related to neutrophilic infiltration and resistance to inhaled corticosteroids (ICS), so is also known as severe asthma. Methyl-CpG binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, tending to show a therapeutic target in severe asthma. miR-146a-3p is associated with anti-inflammatory characteristics and immunity. Moreover, bioinformatic analysis showed that MBD2 may be a target gene of miR-146a-3p. However, the role of miR-146a-3p in the differentiation of Th17 cells via MBD2 in severe asthma remains unknown. Here, we aimed to explore how miR-146a-3p interacts with MBD2 and affects the differentiation of Th17 cells in severe asthma. First, we recruited 30 eligible healthy people and 30 patients with severe asthma to detect the expression of miR-146a-3p in peripheral blood mononuclear cells (PBMCs) by qRT-PCR. Then, we established a HDM/LPS (house dust mite/lipopolysaccharide) exposure model of bronchial epithelial cells (BECs) to evaluate the expression of miR-146a-3p, the interaction between miR-146a-3p and MBD2 using western blot and luciferase reporter analysis and the effect of miR-146a-3p regulated Th17 cells differentiation by flow cytometry in BECs in vitro. Finally, we constructed a mouse model of Th17 predominant neutrophilic severe asthma to assess the therapeutic potential of miR-146a-3p in severe asthma and the effect of miR-146a-3p regulated Th17 cells differentiation via MBD2 in vivo. Decreased miR-146a-3p expression was noted in severe asthma patients, in the BECs and in the animal severe asthma models. Moreover, we demonstrated that miR-146a-3p suppressed Th17 cells differentiation by targeting the MBD2. miR-146a-3p overexpression significantly reduced airway hyperresponsiveness, airway inflammation and airway mucus secretion, while also inhibiting Th17 cells response in vivo, which relieved severe asthma. By targeting MBD2 to suppress Th17 cells differentiation, miR-146a-3p provides a potential novel therapeutic for Th17 predominant neutrophilic severe asthma.
Collapse
Affiliation(s)
- Wentao Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jin Huang
- Changsha Social Work College, Changsha, 410004, China
| | - Binaya Wasti
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhifeng Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yu Yuan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yi He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Danhong Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jingsi Jia
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle RenminRoad, 410011, Changsha, China
| | - Shaokun Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, Zhuzhou City Central Hospital, Zhuzhou, 412007, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People's Hospital, Longshan, 416800, China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Guhan Road No. 89, Changsha, 410016, China.
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Guhan Road No. 89, Changsha, 410016, China.
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical College University, 570000, Haikou, China.
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, 139 Middle RenminRoad, 410011, Changsha, China.
| |
Collapse
|
3
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
4
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
5
|
Han R, Gao J, Wang L, Hao P, Chen X, Wang Y, Jiang Z, Jiang L, Wang T, Zhu L, Li X. MicroRNA-146a negatively regulates inflammation via the IRAK1/TRAF6/NF-κB signaling pathway in dry eye. Sci Rep 2023; 13:11192. [PMID: 37433841 DOI: 10.1038/s41598-023-38367-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Inflammation is a key factor in the pathogenesis of dry eye disease (DED). We aimed to investigate the role of microRNA-146a (miR-146a) in regulating corneal inflammation in a mouse model of benzalkonium chloride (BAC)-induced dry eye and the TNF-α-induced NF-κB signaling pathway in human corneal epithelial cells (HCECs). A mouse model of dry eye was established by administering with BAC to BALB/c mice, and the expression of TNF-α, IL-1β, IL-6, IL-8, cyclooxygenase 2 (COX2), interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) in the corneas of dry eye model mice was significantly increased; this was accompanied by the upregulation of miR-146a and activation of the NF-κB pathway. In vitro, TNF-α induced miR-146a expression in HCECs, while the NF-κB inhibitor SC-514 reduced the expression of miR-146a. Overexpression of miR-146a decreased the expression of IRAK1 and TRAF6, which have been identified as targets of miR-146a. Furthermore, overexpression of miR-146a suppressed NF-κB p65 translocation from the cytoplasm to the nucleus. Moreover, overexpression of miR-146a attenuated the TNF-α-induced expression of IL-6, IL-8, COX2 and intercellular adhesion molecule 1 (ICAM1), while inhibition of miR-146a exerted the opposite effect. Our results suggest that miR-146a mediates the inflammatory response in DED. MiR-146a negatively regulates inflammation in HCECs through the IRAK1/TRAF6/NF-κB pathway, and this may serve as a potential therapeutic approach for the treatment of DED.
Collapse
Affiliation(s)
- Ruifang Han
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Juan Gao
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Liming Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Peng Hao
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Xi Chen
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Yuchuan Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Zhixin Jiang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Li Jiang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China
| | - Ting Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Lin Zhu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xuan Li
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology of Tianjin Medical University, No.4 Gansu Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
6
|
Xiao B, Li L, Yao D, Mo B. Noncoding RNAs in asthmatic airway smooth muscle cells. Eur Respir Rev 2023; 32:32/168/220184. [PMID: 37076176 PMCID: PMC10113956 DOI: 10.1183/16000617.0184-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023] Open
Abstract
Asthma is a complex and heterogeneous airway disease caused by genetic, environmental and epigenetic factors treated with hormones and biologics. Irreversible pathological changes to airway smooth muscle cells (ASMCs) such as hyperplasia and hypertrophy can occur in asthmatic patients. Determining the mechanisms responsible is vital for preventing such changes. In recent years, noncoding RNAs (ncRNAs), especially microRNAs, long noncoding RNAs and circular RNAs, have been found to be associated with abnormalities of the ASMCs. This review highlights recent ncRNA research into ASMC pathologies. We present a schematic that illustrates the role of ncRNAs in pathophysiological changes to ASMCs that may be useful in future research in diagnostic and treatment strategies for patients with asthma.
Collapse
Affiliation(s)
- Bo Xiao
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- These authors contributed equally to this work
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Dong Yao
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- These authors contributed equally to this work
| | - Biwen Mo
- Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Glucose and Lipid Metabolism Disorders, Guangxi Health Commission, Guilin, China
| |
Collapse
|
7
|
Han P, Sunada-Nara K, Kawashima N, Fujii M, Wang S, Kieu TQ, Yu Z, Okiji T. MicroRNA-146b-5p Suppresses Pro-Inflammatory Mediator Synthesis via Targeting TRAF6, IRAK1, and RELA in Lipopolysaccharide-Stimulated Human Dental Pulp Cells. Int J Mol Sci 2023; 24:7433. [PMID: 37108595 PMCID: PMC10138803 DOI: 10.3390/ijms24087433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNA-146b-5p (miR-146b-5p) is up-regulated during and to suppress the inflammation process, although mechanisms involved in the action of miR-146b-5p have not been fully elucidated. This study examined the anti-inflammation effects of miR-146b-5p in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). An increase in human miR-146b-5p (hsa-miR-146b-5p) expression following the mRNA expression of pro-inflammatory cytokines was observed in LPS-stimulated hDPCs. The expression of hsa-miR-146b-5p and pro-inflammatory cytokines was down-regulated by a nuclear factor-kappa B (NF-κB) inhibitor, and the expression of hsa-miR-146b-5p was also decreased by a JAK1/2 inhibitor. Enforced expression of hsa-miR-146b-5p abolished phosphorylation of NF-κB p65 and down-regulated the expression of pro-inflammatory cytokines and NF-κB signaling components, such as interleukin-1 receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), and REL-associated protein involved in NF-κB (RELA). Expression of rat miR-146b-5p (rno-miR-146b-5p) and pro-inflammatory cytokine mRNA was also up-regulated in experimentally-induced rat pulpal inflammation in vivo, and rno-miR-146b-5p blocked the mRNA expression of pro-inflammatory mediators and NF-κB signaling components in LPS-stimulated ex vivo cultured rat incisor pulp tissues. These findings suggest that the synthesis of miR-146b-5p is controlled via an NF-κB/IL6/STAT3 signaling cascade, and in turn, miR-146b-5p down-regulates the expression of pro-inflammatory mediators by targeting TRAF6, IRAK1, and RELA in LPS-stimulated hDPCs.
Collapse
Affiliation(s)
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.H.); (M.F.); (S.W.); (T.Q.K.); (Z.Y.); (T.O.)
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (P.H.); (M.F.); (S.W.); (T.Q.K.); (Z.Y.); (T.O.)
| | | | | | | | | | | |
Collapse
|
8
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Advances and Highlights of miRNAs in Asthma: Biomarkers for Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24021628. [PMID: 36675145 PMCID: PMC9862966 DOI: 10.3390/ijms24021628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that causes breathing difficulties, episodes of cough and wheezing, and in more severe cases can greatly diminish quality of life. Epigenetic regulation, including post-transcriptional mediation of microRNAs (miRNAs), is one of the mechanisms behind the development of the range of asthma phenotypes and endotypes. As in every other immune-mediated disease, miRNAs regulate the behavior of cells that shape the airway structure as well as those in charge of the defense mechanisms in the bronchi and lungs, controlling cell survival, growth, proliferation, and the ability of cells to synthesize and secrete chemokines and immune mediators. More importantly, miRNAs are molecules with chemical and biological properties that make them appropriate biomarkers for disease, enabling stratification of patients for optimal drug selection and thereby simplifying clinical management and reducing both the economic burden and need for critical care associated with the disease. In this review, we summarize the roles of miRNAs in asthma and describe how they regulate the mechanisms of the disease. We further describe the current state of miRNAs as biomarkers for asthma phenotyping, endotyping, and treatment selection.
Collapse
|
10
|
Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, Monárrez-Espino J, López-Hernández Y. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel) 2022; 13:133. [PMID: 36611425 PMCID: PMC9818442 DOI: 10.3390/diagnostics13010133] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
COVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.
Collapse
Affiliation(s)
- Noemí Gaytán-Pacheco
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Alejandro Ibáñez-Salazar
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | | | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98600, Mexico
| | | | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García 66238, Mexico
| | - Yamilé López-Hernández
- CONACyT-Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
11
|
Hicks SD, Beheshti R, Chandran D, Warren K, Confair A. Infant consumption of microRNA miR-375 in human milk lipids is associated with protection from atopy. Am J Clin Nutr 2022; 116:1654-1662. [PMID: 36166840 DOI: 10.1093/ajcn/nqac266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Human milk is thought to reduce infant atopy risk. The biologic mechanism for this protective effect is not fully understood. OBJECTIVES We tested the hypothesis that infant consumption of 4 microRNAs (miR-146b-5p, miR-148b-3p, miR-21-5p, and miR-375-3p) in human milk would be associated with reduced atopy risk. METHODS The Breast Milk Influence of the Microtranscriptome Profile on Atopy in Children over Time (IMPACT) study involved a cohort of mother-infant dyads who planned to breastfeed beyond 4 mo. Infant consumption of the 4 human milk microRNAs (miRNAs) in the first 6 mo was calculated as the product of milk miRNA concentration and the number of human milk feeds, across 3 lactation stages: early milk (0-4 wk), transitional milk (4-16 wk), and mature milk (16-24 wk). The primary outcome was infant atopy in the first year, defined as atopic dermatitis (AD), food allergies, or wheezing. The final analysis included 432 human milk samples and 7824 wk of longitudinal health data from 163 dyads. RESULTS Seventy-three infants developed atopy. Forty-one were diagnosed with AD (25%), 33 developed food allergy (20%), and 10 had wheezing (6%). Eleven developed >1 condition (7%). Infants who did not develop atopy consumed higher concentrations of miR-375-3p (d = 0.18, P = 0.022, adj P = 0.044) and miR-148b-3p (d = 0.23, P = 0.007, adj P = 0.028). The consumption of miR-375-3p (X2 = 5.7, P = 0.017, OR: 0.92, 95% CI: 0.86, 0.99) was associated with reduced atopy risk. Concentrations of miR-375-3p increased throughout lactation (r = 0.46, F = 132.3, P = 8.4 × 10-34) and were inversely associated with maternal body mass (r = -0.11, t = -2.1, P = 0.032). CONCLUSIONS This study provides evidence that infant consumption of miR-375-3p may reduce atopy risk.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Ramin Beheshti
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Desirae Chandran
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Kaitlyn Warren
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Alexandra Confair
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
12
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
13
|
Reduced miR-146a-5p Is a Biomarker of Infant Respiratory Diseases Contributing to Immune Dysregulation in Small Airway Epithelial Cells. Cells 2022; 11:cells11172746. [PMID: 36078154 PMCID: PMC9454747 DOI: 10.3390/cells11172746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Respiratory diseases such as bronchiolitis, and those with wheezing episodes, are highly important during infancy due to their potential chronicity. Immune response dysregulation is critical in perpetuating lung damage. Epigenetic modifications including microRNA (miRNA) post-transcriptional regulation are among the factors involved in alleviating inflammation. We evaluated the expression of miR-146a-5p, a previously described negative regulator of immunity, in infants with respiratory diseases, in order to study epigenetic regulation of the immune response. Nasopharyngeal aspirate (NPA) was obtained from infants with bronchiolitis (ongoing and post-disease) or with wheezing episodes in addition to healthy controls. Virus presence was determined by nested PCR, while miRNA and gene expression were studied in cells from NPAs using qPCR. Healthy small airway epithelial cells (SAECs) were used as an in vitro model. We observe a reduction in miR-146a-5p expression in infants with either of the two diseases compared to controls, suggesting the potential of this miRNA as a disease biomarker. Post-bronchiolitis, miR-146a-5p expression increases, though without reaching levels of healthy controls. MiR-146a-5p expression correlates inversely with the immune-related gene PTGS2, while its expression correlates directly with TSLP. When heathy donor SAECs are stimulated by poly:IC, we observe an increase in miR-146a-5p, with wounds having a synergistic effect. In conclusion, infants with respiratory diseases present reduced miR-146a-5p expression, possibly affecting immune dysregulation.
Collapse
|
14
|
Huang H, Zhu J, Gu L, Hu J, Feng X, Huang W, Wang S, Yang Y, Cui P, Lin SH, Suen A, Shimada BK, Williams B, Kane MA, Ke Y, Zhang CO, Birukova AA, Birukov KG, Chao W, Zou L. TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular miR-146a. Am J Respir Cell Mol Biol 2022; 67:375-388. [PMID: 35679261 PMCID: PMC9447138 DOI: 10.1165/rcmb.2021-0551oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
TLR7 (Toll-like receptor 7), the sensor for single-stranded RNA, contributes to systemic inflammation and mortality in murine polymicrobial sepsis. Recent studies show that extracellular miR-146a-5p serves as a TLR7 ligand and plays an important role in regulating host innate immunity. However, the role of miR-146a-5p and TLR7 signaling in pulmonary inflammation, endothelial activation, and sepsis-associated acute respiratory distress syndrome remains unclear. Here, we show that intratracheal administration of exogenous miR-146a-5p in mice evokes lung inflammation, activates endothelium, and increases endothelial permeability via TLR7-dependent mechanisms. TLR7 deficiency attenuates pulmonary barrier dysfunction and reduces lung inflammatory response in a murine sepsis model. Moreover, the impact of miR-146a-5p-TLR7 signaling on endothelial activation appears to be a secondary effect because TLR7 is undetectable in the human pulmonary artery and microvascular endothelial cells (ECs), which show no response to direct miR-146a-5p treatment in vitro. Both conditioned media of miR-146a-5p-treated macrophages (Mϕ) and septic sera of wild-type mice induce a marked EC barrier disruption in vitro, whereas Mϕ conditioned media or septic sera of TLR7-/- mice do not exhibit such effect. Cytokine array and pathway enrichment analysis of the Mϕ conditioned media and septic sera identify TNFα (tumor necrosis factor α) as the main downstream effector of miR-146a-5p-TLR7 signaling responsible for the EC barrier dysfunction, which is further supported by neutralizing anti-TNFα antibody intervention. Together, these data demonstrate that TLR7 activation elicits pulmonary inflammation and endothelial barrier disruption by sensing extracellular miR-146a-5p and contributes to sepsis-associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Huang Huang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Jing Zhu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Lili Gu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Jiang Hu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Xiujing Feng
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Sheng Wang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Yang Yang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Ping Cui
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Shao-Hsuan Lin
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Andrew Suen
- Center for Shock, Trauma, and Anesthesiology Research and
| | | | | | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Yunbo Ke
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Chen-ou Zhang
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Konstantin G. Birukov
- Center for Shock, Trauma, and Anesthesiology Research and
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Wei Chao
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Lin Zou
- Center for Shock, Trauma, and Anesthesiology Research and
| |
Collapse
|
15
|
Farmanzadeh A, Qujeq D, Yousefi T. The Interaction Network of MicroRNAs with Cytokines and Signaling Pathways in Allergic Asthma. Microrna 2022; 11:104-117. [PMID: 35507792 DOI: 10.2174/2211536611666220428134324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
Allergic asthma is a complicated disease that is affected by many factors. Numerous cytokines and signaling pathways are attributed to the cause of asthma symptoms. MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNA molecules that are involved in gene silencing and posttranscriptional regulation of gene expression by targeting mRNAs. In pathological conditions, altered expression of microRNAs differentially regulates cytokines and signaling pathways and therefore, can be the underlying reason for the pathogenesis of allergic asthma. Indeed, microRNAs participate in airway inflammation via inducing airway structural cells and activating immune responses by targeting cytokines and signaling pathways. Thus, to make a complete understanding of allergic asthma, it is necessary to investigate the communication network of microRNAs with cytokines and signaling pathways which is contributed to the pathogenesis of allergic asthma. Here, we shed light on this aspect of asthma pathology by Summarizing our current knowledge of this topic.
Collapse
Affiliation(s)
- Ali Farmanzadeh
- Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Durmus S, Atahan E, Avci Kilickiran B, Onal B, Cakatay U, Gelisgen R, Uzun H. Significance of Cyclooxgenase-2 gene polymorphism and related miRNAs in pulmonary arterial hypertension. Clin Biochem 2022; 107:33-39. [PMID: 35724768 DOI: 10.1016/j.clinbiochem.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease with a poor prognosis. The suppression of cyclooxygenase-2 (COX-2) expression has been known to impair vascular function in endothelial cells; however, the epigenetic factors that cause this are largely obscure. Our aim in this study was to examine the polymorphisms in the gene for COX-2 (PTGS2) and related miRNAs regulating its level in a single-center cohort of patients with PAH. METHOD In this study, three SNPs and miRNAs (rs5275, rs689470, rs20417, miR-26b-5p, miR-146a-5p, and miR-101-5p) in the PTGS2 were screened in PAH and controls by qPCR. In addition, the COX-2 level was determined by immunoassay to examine the effects of epigenetic factors on its expression levels. RESULTS The non-dominant genotypes of rs20417 and rs5275 were found to be related to PAH (OR = 8.56, 95% CI = 3.39-21.63, p < 0.0001 and OR = 7.82, 95% CI = 3.30-18.53, p < 0.0001, respectively). We also observed a significant increase in the miR-26b-5p and miR-146a-5p levels in PAH patients (2.18 and 2.35-fold, respectively; for both, p < 0.05). In addition, it was found that SNPs influenced the COX-2, miR-26b-5p, and miR-146a-5p levels in PAH. A negative correlation was also found between COX-2 levels and miR-26b-5p and miR-146a-5p. CONCLUSIONS As conventional drug therapies may cause lower COX-2 levels, the development of new genetic or epigenetic biomarkers is crucially important for early diagnosis and prognosis. The presence of minor alleles for rs5275 and rs689470 might also be considered as a significant risk factor for developing PAH. Furthermore, locus-specific miRNAs, such as miR-26b-5p and miR-146a-5p, seem to play a critical role in the regulation of PTGS2 expression.
Collapse
Affiliation(s)
- Sinem Durmus
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ersan Atahan
- Department of Chest Diseases, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Burcak Avci Kilickiran
- Department of Cardiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Burak Onal
- Department of Medical Pharmacology, Medical Faculty, Biruni University, Istanbul, Turkey
| | - Ufuk Cakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Remise Gelisgen
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Medical Biochemistry, Faculty of Medicine, İstanbul Atlas University, Istanbul, Turkey.
| |
Collapse
|
17
|
miR-155: A Potential Biomarker for Predicting Mortality in COVID-19 Patients. J Pers Med 2022; 12:jpm12020324. [PMID: 35207812 PMCID: PMC8877479 DOI: 10.3390/jpm12020324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, a pandemic of severe acute respiratory syndrome caused by Coronavirus 2 (SARS-CoV-2), continues to pose diagnostic and therapeutic challenges due to its unpredictable clinical course. Prognostic biomarkers may improve care by enabling quick identification of patients who can be safely discharged home versus those who may need careful respiratory monitoring and support. MicroRNAs (miRNAs) have risen to prominence as biomarkers for many disease states and as tools to assist in medical decisions. In the present study, we aimed to examine circulating miRNAs in hospitalized COVID-19 patients and to explore their potential as biomarkers for disease severity. We studied, by quantitative PCR, the expressions of miR-21, miR-146a, miR-146b, miR-155, and miR-499 in peripheral blood. We found that mild COVID-19 patients had 2.5-fold less circulating miR-155 than healthy people, and patients with a severe COVID-19 disease had 5-fold less circulating miR-155 than healthy people. In addition, we found that miR-155 is a good predictor of COVID-19 mortality. We suggest that examining miR-155 levels in patients' blood, upon admission to hospital, will ameliorate the care given to COVID-19 patients.
Collapse
|
18
|
Chronic Inflammation as the Underlying Mechanism of the Development of Lung Diseases in Psoriasis: A Systematic Review. Int J Mol Sci 2022; 23:ijms23031767. [PMID: 35163689 PMCID: PMC8836589 DOI: 10.3390/ijms23031767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease caused by dysfunctional interactions between the innate and adaptive immune responses. The systemic inflammation in psoriasis may be associated with the development of comorbidities, including lung diseases. In this review, we aimed to provide a summary of the evidence regarding the prevalence of lung diseases in patients with psoriasis and the potential underlying mechanisms. Twenty-three articles published between March 2010 and June 2021 were selected from 195 initially identified records. The findings are discussed in terms of the prevalence of asthma, chronic obstructive pulmonary disease, interstitial lung disease, obstructive sleep apnea, pulmonary hypertension, and sarcoidosis in psoriasis. A higher prevalence of lung diseases in psoriasis has been confirmed in asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and pulmonary hypertension. These conditions are important as they are previously unrecognized causes of morbidity and mortality in psoriasis. The development of lung diseases in patients with psoriasis can be explained by several mechanisms, including common risk factors, shared immune and molecular characteristics associated with chronic inflammation, as well as other mechanisms. Understanding the prevalence of lung diseases in psoriasis and their underlying mechanisms can help implement appropriate preventative and therapeutic strategies to address respiratory diseases in patients with psoriasis.
Collapse
|
19
|
Bellio MA, Young KC, Milberg J, Santos I, Abdullah Z, Stewart D, Arango A, Chen P, Huang J, Williams K, Kelly K, Sterling S, Khan A, Xu X, Shapiro GC, Mitrani MI. Amniotic fluid-derived extracellular vesicles: characterization and therapeutic efficacy in an experimental model of bronchopulmonary dysplasia. Cytotherapy 2021; 23:1097-1107. [PMID: 34538718 DOI: 10.1016/j.jcyt.2021.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs) are being tested for their use as novel therapeutics. However, the optimal source of EVs is currently under investigation. Amniotic fluid (AF) is a natural source of EVs that can be easily obtained for use in regenerative medicine, yet AF-EV characterization has not been fully explored. METHODS Here the authors demonstrate AF as a rich source of EVs and identify the microRNA and proteomic cargo. Bioinformatics analysis of this cargo revealed multiple pathway targets, including immunomodulatory, anti-inflammatory and free radical scavenging networks. The authors further demonstrated the therapeutic potential of this EV product as a novel preventative agent for bronchopulmonary dysplasia (BPD). RESULTS Intra-tracheal administration of AF-EVs preserved alveolar development, attenuated vascular remodeling and pulmonary hypertension, decreased lung pro-inflammatory cytokine expression and reduced macrophage infiltration in an experimental BPD model. CONCLUSIONS The authors' results suggest that AF is a viable biological fluid for EV harvest and that AF-EVs have strong therapeutic potential for pulmonary diseases, such as BPD, warranting further development to transition this novel EV product into the clinic.
Collapse
Affiliation(s)
| | - Karen C Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julian Milberg
- Organicell Regenerative Medicine, Inc, Miami, Florida, USA
| | - Ivan Santos
- Organicell Regenerative Medicine, Inc, Miami, Florida, USA
| | - Zanub Abdullah
- Organicell Regenerative Medicine, Inc, Miami, Florida, USA
| | | | - Alissa Arango
- Organicell Regenerative Medicine, Inc, Miami, Florida, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kaitlyn Kelly
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shanique Sterling
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Xiumin Xu
- AssureImmune LLC, Miami, Florida, USA
| | | | | |
Collapse
|
20
|
Azpiroz MA, Orguilia L, Palacio MI, Malpartida A, Mayol S, Mor G, Gutiérrez G. Potential biomarkers of infertility associated with microbiome imbalances. Am J Reprod Immunol 2021; 86:e13438. [PMID: 33960055 PMCID: PMC8464490 DOI: 10.1111/aji.13438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The aim of this study was to investigate the possible relationship between vaginal/rectal microbiome disbalances and miRNA expression with infertility. METHOD OF STUDY Observational, exploratory, preliminary study. A total of 287 multiple IVF failure infertile patients were recruited. Twenty fertile women, not IVF failure, were recruited as the control group. Swab samples were collected from the vagina and rectum. Microbial composition by NGS and miRNA expression by real-time PCR of vaginal and rectal samples was measured. Immunometabolic markers from blood (insulin, vitamin D, LDL-cholesterol, ANA, TPO, Tg, and ASCA antibodies) and saliva (sIgA) were analyzed. RESULT(S) Infertile patients showed a lower bacterial richness and increased Firmicutes/Bacteroidetes ratio at rectal level and an increased Lactobacillus brevis/Lactobacillus iners ratio in vaginal samples regarding the fertile group. In the same rectal swab samples, we found that miR-21-5p, which is associated with tight junction disruption and yeast overgrowth, is upregulated and that miR-155-5p, which is associated with inflammation, is overexpressed in the unexplained infertile group (*p < .05). These deregulated miRNAs were also upregulated in the vaginal samples from the same patients (*p < .05). CONCLUSION miRNAs could be potential biomarkers of the inflammatory impact of microbiome disbalances in unexplained infertile women.
Collapse
Affiliation(s)
| | - Lucila Orguilia
- Inmunogenesis, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | | | | | | | - Gil Mor
- Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
21
|
Zhang K, Feng Y, Liang Y, Wu W, Chang C, Chen D, Chen S, Gao J, Chen G, Yi L, Cheng D, Zhen G. Epithelial miR-206 targets CD39/extracellular ATP to upregulate airway IL-25 and TSLP in type 2-high asthma. JCI Insight 2021; 6:148103. [PMID: 33945508 PMCID: PMC8262281 DOI: 10.1172/jci.insight.148103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
The epithelial cell–derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) initiate type 2 inflammation in allergic diseases, including asthma. However, the signaling pathway regulating these cytokines expression remains elusive. Since microRNAs are pivotal regulators of gene expression, we profiled microRNA expression in bronchial epithelial brushings from type 2–low and type 2–high asthma patients. miR-206 was the most highly expressed epithelial microRNA in type 2–high asthma relative to type 2–low asthma but was downregulated in both subsets compared with healthy controls. CD39, an ectonucleotidase degrading ATP, was a target of miR-206 and upregulated in asthma. Allergen-induced acute extracellular ATP accumulation led to miR-206 downregulation and CD39 upregulation in human bronchial epithelial cells, forming a feedback loop to eliminate excessive ATP. Airway ATP levels were markedly elevated and strongly correlated with IL-25 and TSLP expression in asthma patients. Intriguingly, airway miR-206 antagonism increased Cd39 expression; reduced ATP accumulation; suppressed IL-25, IL-33, and Tslp expression and group 2 innate lymphoid cell expansion; and alleviated type 2 inflammation in a mouse model of allergic airway inflammation. In contrast, airway miR-206 overexpression had opposite effects. Overall, epithelial miR-206 upregulates airway IL-25 and TSLP expression by targeting the CD39–extracellular ATP axis, which represents a potentially novel therapeutic target in type 2–high asthma.
Collapse
Affiliation(s)
- Kan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuxia Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Gongqi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Lingling Yi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dan Cheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, and National Clinical Research Center for Respiratory Diseases, Wuhan, China
| |
Collapse
|
22
|
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt‐Weber CB, Maes T, Rebane A, Krauss‐Etschmann S, Rådinger M. Spotlight on microRNAs in allergy and asthma. Allergy 2021; 76:1661-1678. [PMID: 33128813 PMCID: PMC8246745 DOI: 10.1111/all.14646] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post‐transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Julie Weidner
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Sabine Bartel
- Department of Pathology and Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ayse Kılıç
- Channing Division of Network Medicine Brigham and Women's Hospital Boston MA USA
| | - Ulrich M. Zissler
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Harald Renz
- Institut für Laboratoriumsmedizin und Pathobiochemie Philipps University of Marburg Marburg Germany
| | - Jürgen Schwarze
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Carsten B. Schmidt‐Weber
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Tania Maes
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Susanne Krauss‐Etschmann
- Research Center Borstel Borstel Germany
- Institute of Experimental Medicine Christian‐Albrechts University Kiel Kiel Germany
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
23
|
Su Y, Guo H, Liu Q. Effects of mesenchymal stromal cell-derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. J Leukoc Biol 2021; 110:27-38. [PMID: 33955590 PMCID: PMC8242476 DOI: 10.1002/jlb.3mr0321-545rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating and life‐threatening syndrome that results in high morbidity and mortality. Current pharmacologic treatments and mechanical ventilation have limited value in targeting the underlying pathophysiology of ARDS. Mesenchymal stromal cells (MSCs) have shown potent therapeutic advantages in experimental and clinical trials through direct cell‐to‐cell interaction and paracrine signaling. However, safety concerns and the indeterminate effects of MSCs have resulted in the investigation of MSC‐derived extracellular vesicles (MSC‐EVs) due to their low immunogenicity and tumorigenicity. Over the past decades, soluble proteins, microRNAs, and organelles packaged in EVs have been identified as efficacious molecules to orchestrate nearby immune responses, which attenuate acute lung injury by facilitating pulmonary epithelium repair, reducing acute inflammation, and restoring pulmonary vascular leakage. Even though MSC‐EVs possess similar bio‐functional effects to their parental cells, there remains existing barriers to employing this alternative from bench to bedside. Here, we summarize the current established research in respect of molecular mechanisms of MSC‐EV effects in ARDS and highlight the future challenges of MSC‐EVs for clinical application.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Haiyan Guo
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qinghua Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| |
Collapse
|
24
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
25
|
Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and Epigenetics in Asthma. Int J Mol Sci 2021; 22:ijms22052412. [PMID: 33673725 PMCID: PMC7957649 DOI: 10.3390/ijms22052412] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is one of the most common respiratory disease that affects both children and adults worldwide, with diverse phenotypes and underlying pathogenetic mechanisms poorly understood. As technology in genome sequencing progressed, scientific efforts were made to explain and predict asthma’s complexity and heterogeneity, and genome-wide association studies (GWAS) quickly became the preferred study method. Several gene markers and loci associated with asthma susceptibility, atopic and childhood-onset asthma were identified during the last few decades. Markers near the ORMDL3/GSDMB genes were associated with childhood-onset asthma, interleukin (IL)33 and IL1RL1 SNPs were associated with atopic asthma, and the Thymic Stromal Lymphopoietin (TSLP) gene was identified as protective against the risk to TH2-asthma. The latest efforts and advances in identifying and decoding asthma susceptibility are focused on epigenetics, heritable characteristics that affect gene expression without altering DNA sequence, with DNA methylation being the most described mechanism. Other less studied epigenetic mechanisms include histone modifications and alterations of miR expression. Recent findings suggest that the DNA methylation pattern is tissue and cell-specific. Several studies attempt to describe DNA methylation of different types of cells and tissues of asthmatic patients that regulate airway remodeling, phagocytosis, and other lung functions in asthma. In this review, we attempt to briefly present the latest advancements in the field of genetics and mainly epigenetics concerning asthma susceptibility.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Andreas Photiades
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Eleftherios Zervas
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Konstantinos Samitas
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
- Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-778-1720
| |
Collapse
|
26
|
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, del Pozo V. MicroRNAs as Potential Regulators of Immune Response Networks in Asthma and Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 11:608666. [PMID: 33488613 PMCID: PMC7819856 DOI: 10.3389/fimmu.2020.608666] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic respiratory diseases (CRDs) are an important factor of morbidity and mortality, accounting for approximately 6% of total deaths worldwide. The main CRDs are asthma and chronic obstructive pulmonary disease (COPD). These complex diseases have different triggers including allergens, pollutants, tobacco smoke, and other risk factors. It is important to highlight that although CRDs are incurable, various forms of treatment improve shortness of breath and quality of life. The search for tools that can ensure accurate diagnosis and treatment is crucial. MicroRNAs (miRNAs) are small non-coding RNAs and have been described as promising diagnostic and therapeutic biomarkers for CRDs. They are implicated in multiple processes of asthma and COPD, regulating pathways associated with inflammation, thereby showing that miRNAs are critical regulators of the immune response. Indeed, miRNAs have been found to be deregulated in several biofluids (sputum, bronchoalveolar lavage, and serum) and in both structural lung and immune cells of patients in comparison to healthy subjects, showing their potential role as biomarkers. Also, miRNAs play a part in the development or termination of histopathological changes and comorbidities, revealing the complexity of miRNA regulation and opening up new treatment possibilities. Finally, miRNAs have been proposed as prognostic tools in response to both conventional and biologic treatments for asthma or COPD, and miRNA-based treatment has emerged as a potential approach for clinical intervention in these respiratory diseases; however, this field is still in development. The present review applies a systems biology approach to the understanding of miRNA regulatory networks in asthma and COPD, summarizing their roles in pathophysiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Marta Gil-Martinez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Natalia Redondo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
27
|
Liu Z, Fan P, Chen M, Xu Y, Zhao D. miRNAs and Leukotrienes in Respiratory Syncytial Virus Infection. Front Pediatr 2021; 9:602195. [PMID: 33996675 PMCID: PMC8116547 DOI: 10.3389/fped.2021.602195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/17/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate posttranscription by binding to 3'-untranslated regions of target mRNAs. Recent functional studies have elucidated mechanisms that miRNAs regulate leukotriene synthesis by perturbing arachidonic acid metabolism. Both microarrays and high-throughput sequencing revealed distinct differential expression of miRNAs in children with respiratory syncytial virus (RSV) infection compared with healthy controls. Abnormal miRNA expression may contribute to higher leukotriene levels, which is associated with airway hyperreactivity. Targeting miRNAs may benefit to restore the homeostasis of inflammatory reaction and provide new strategies to alleviate airway hyperreactivity induced by RSV. In this article, we provide an overview of the current knowledge about miRNAs modulating leukotrienes through regulation of arachidonic acid metabolism with a special focus on miRNAs aberrantly expressed in children with RSV infection.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Panpan Fan
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yueshi Xu
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
The influence of genetic variability in IL1B and MIR146A on the risk of pleural plaques and malignant mesothelioma. Radiol Oncol 2020; 54:429-436. [PMID: 33085641 PMCID: PMC7585336 DOI: 10.2478/raon-2020-0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Asbestos exposure is associated with the development of pleural plaques as well as malignant mesothelioma (MM). Asbestos fibres activate macrophages, leading to the release of inflammatory mediators including interleukin 1 beta (IL-1β). The expression of IL-1β may be influenced by genetic variability of IL1B gene or regulatory microRNAs (miRNAs). This study investigated the effect of polymorphisms in IL1B and MIR146A genes on the risk of developing pleural plaques and MM. Subjects and methods In total, 394 patients with pleural plaques, 277 patients with MM, and 175 healthy control subjects were genotyped for IL1B and MIR146A polymorphisms. Logistic regression was used in statistical analysis. Results We found no association between MIR146A and IL1B genotypes, and the risk of pleural plaques. MIR146A rs2910164 was significantly associated with a decreased risk of MM (OR = 0.31, 95% CI = 0.13–0.73, p = 0.008). Carriers of two polymorphic alleles had a lower risk of developing MM, even after adjustment for gender and age (OR = 0.34, 95% CI = 0.14–0.85, p = 0.020). Among patients with known asbestos exposure, carriers of at least one polymorphic IL1B rs1143623 allele also had a lower risk of MM in multivariable analysis (OR = 0.50, 95% CI = 0.28–0.92, p = 0.025). The interaction between IL1B rs1143623 and IL1B rs1071676 was significantly associated with an increased risk of MM (p = 0.050). Conclusions Our findings suggest that genetic variability of inflammatory mediator IL-1β could contribute to the risk of developing MM, but not pleural plaques.
Collapse
|
29
|
Sun D, Xiang G, Wang J, Li Y, Mei S, Ding H, Yan J. miRNA 146b-5p protects against atherosclerosis by inhibiting vascular smooth muscle cell proliferation and migration. Epigenomics 2020; 12:2189-2204. [PMID: 33084403 DOI: 10.2217/epi-2020-0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To explore the potentially important role of miRNA 146b-5p (miR-146b) during the development of atherosclerosis. Materials & methods: Proliferation, migration and luciferase assays and mouse models were used to determine the functions of miR-146b. Results: miR-146b was identified as substantially upregulated in the aortic plaques of ApoE-/- mice as well as in response to inflammatory cytokines. Overexpression of miR-146b repressed proliferation and migration of vascular smooth muscle cells by downregulating Bag1 and Mmp16, respectively. Adeno-associated virus-mediated miR-146b overexpression inhibited neointima formation after carotid injury and suppressed atherosclerotic plaque formation in western diet-induced ApoE-/- mice. Conclusion: miR-146b is a novel regulator of vascular smooth muscle cell function induced by inflammatory response, specifically in neointima formation, and offers a novel therapeutic strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Dating Sun
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Gui Xiang
- Department of Physiology & Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China
| | - Jing Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Yuanyuan Li
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shuai Mei
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Hu Ding
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Jiangtao Yan
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| |
Collapse
|
30
|
An Integrative miRNA-mRNA Expression Analysis Reveals Striking Transcriptomic Similarities between Severe Equine Asthma and Specific Asthma Endotypes in Humans. Genes (Basel) 2020; 11:genes11101143. [PMID: 32998415 PMCID: PMC7600650 DOI: 10.3390/genes11101143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Severe equine asthma is an incurable obstructive respiratory condition affecting 10–15% of horses in temperate climates. Upon exposure to airborne antigens from hay feeding, affected horses show neutrophilic airway inflammation and bronchoconstriction, leading to increased respiratory effort. The resulting implications range from welfare concerns to economic impacts on equestrian sports and horse breeding. Immunological and pathophysiological characteristics of severe equine asthma show important parallels with allergic and severe neutrophilic human asthma. Our study aimed at investigating regulatory networks underlying the pathophysiology of the disease by profiling miRNA and mRNA expression in lung tissue samples from asthmatic horses compared with healthy controls. We sequenced small RNAs and mRNAs from lungs of seven asthmatic horses in exacerbation, five affected horses in remission, and eight healthy control horses. Our comprehensive differential expression analyses, combined with the miRNA–mRNA negative correlation approach, revealed a strong similarity on the transcriptomic level between severe equine asthma and severe neutrophilic asthma in humans, potentially through affecting Th17 cell differentiation. This study also showed that several dysregulated miRNAs and mRNAs are involved in airway remodeling. These results present a starting point for a better transcriptomic understanding of severe equine asthma and its similarities to asthma in humans.
Collapse
|
31
|
Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res 2020; 160:105045. [PMID: 32590100 DOI: 10.1016/j.phrs.2020.105045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the development of many diseases, such as stroke, cardiovascular conditions, cancers and inflammatory airway diseases. There is recent evidence that miRNAs play important roles in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD), and could help to distinguish between T2-low (non-eosinophilic, steroid-insensitive) versus T2-high (eosinophilic, steroid-sensitive) disease endotypes. As these are the two most prevalent chronic respiratory diseases globally, with rising disease burden, miRNA research might lead to the development of new diagnostic and therapeutic targets. Research involving miRNAs in airway disease is challenging because: (i) asthma and COPD are heterogeneous inflammatory airway diseases; there are overlapping but distinct inter- and intra-disease differences in the immunological pathophysiology, (ii) there exists more than 2000 known miRNAs and a single miRNA can regulate multiple targets, (iii) differential effects of miRNAs could be present in different cellular subtypes and tissues, and (iv) dysregulated miRNA expression might be a direct consequence of an indirect effect of airway disease onset or progression. As miRNAs are actively secreted in fluids and remain relatively stable, they have the potential for biomarker development and therapeutic targets. In this review, we summarize the preclinical data on potential miRNA biomarkers that mediate different pathophysiological mechanisms in airway disease. We discuss the framework for biomarker development using miRNA and highlight the need for careful patient characterization and endotyping in the screening and validation cohorts, profiling both airway and blood samples to determine the biological fluids of choice in different disease states or severity, and adopting an untargeted approach. Collaboration between the various stakeholders - pharmaceutical companies, laboratory professionals and clinician-scientists is crucial to reduce the difficulties and cost required to bring miRNA research into the translational stage for airway diseases.
Collapse
Affiliation(s)
- Bryce W Q Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Win Sen Kuan
- Department of Emergency Medicine, National University Hospital, National University Health System, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Lu RA, Zeki AA, Ram-Mohan S, Nguyen N, Bai Y, Chmiel K, Pecic S, Ai X, Krishnan R, Ghosh CC. Inhibiting Airway Smooth Muscle Contraction Using Pitavastatin: A Role for the Mevalonate Pathway in Regulating Cytoskeletal Proteins. Front Pharmacol 2020; 11:469. [PMID: 32435188 PMCID: PMC7218099 DOI: 10.3389/fphar.2020.00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Despite maximal use of currently available therapies, a significant number of asthma patients continue to experience severe, and sometimes life-threatening bronchoconstriction. To fill this therapeutic gap, we examined a potential role for the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor, pitavastatin. Using human airway smooth muscle (ASM) cells and murine precision-cut lung slices, we discovered that pitavastatin significantly inhibited basal-, histamine-, and methacholine (MCh)-induced ASM contraction. This occurred via reduction of myosin light chain 2 (MLC2) phosphorylation, and F-actin stress fiber density and distribution, in a mevalonate (MA)- and geranylgeranyl pyrophosphate (GGPP)-dependent manner. Pitavastatin also potentiated the ASM relaxing effect of a simulated deep breath, a beneficial effect that is notably absent with the β2-agonist, isoproterenol. Finally, pitavastatin attenuated ASM pro-inflammatory cytokine production in a GGPP-dependent manner. By targeting all three hallmark features of ASM dysfunction in asthma—contraction, failure to adequately relax in response to a deep breath, and inflammation—pitavastatin may represent a unique asthma therapeutic.
Collapse
Affiliation(s)
- Robin A Lu
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nhan Nguyen
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kenneth Chmiel
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, United States
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chandra C Ghosh
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Phạm TL, Yin Y, Kwon HH, Shin N, Kim SI, Park H, Shin J, Shin HJ, Hwang JA, Song HJ, Kim SR, Lee JH, Hwang PTJ, Jun HW, Kim DW. miRNA 146a-5p-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles impair pain behaviors by inhibiting multiple inflammatory pathways in microglia. Nanomedicine (Lond) 2020; 15:1113-1126. [PMID: 32292108 DOI: 10.2217/nnm-2019-0462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: We investigated whether miRNA (miR) 146a-5p-loaded nanoparticles (NPs) can attenuate neuropathic pain behaviors in the rat spinal nerve ligation-induced neuropathic pain model by inhibiting activation of the NF-κB and p38 MAPK pathways in spinal microglia. Materials & methods: After NP preparation, miR NPs were assessed for their physical characteristics and then injected intrathecally into the spinal cords of rat spinal nerve ligation rats to test their analgesic effects. Results: miR NPs reduced pain behaviors for 11 days by negatively regulating the inflammatory response in spinal microglia. Conclusion: The anti-inflammatory effects of miR 146a-5p along with nanoparticle-based materials make miR NPs promising tools for treating neuropathic pain.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yuhua Yin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong Province, PR China
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jeong-Ah Hwang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joo Hyoung Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrick T J Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
34
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
35
|
|
36
|
Kivihall A, Aab A, Soja J, Sładek K, Sanak M, Altraja A, Jakiela B, Bochenek G, Rebane A. Reduced expression of miR-146a in human bronchial epithelial cells alters neutrophil migration. Clin Transl Allergy 2019; 9:62. [PMID: 31798831 PMCID: PMC6880603 DOI: 10.1186/s13601-019-0301-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background The role of miRNAs in the pathogenesis and determining the phenotypes of asthma is not fully elucidated. miR-146a has been previously shown to suppress inflammatory responses in different cells. In this study, we investigated the functions of miR-146a in human bronchial epithelial cells (HBECs) in association with neutrophilic, eosinophilic, and paucigranulocytic phenotypes of asthma. Methods Bronchial brushing specimens and brochial mucosal biopsy samples were collected from adult patients with asthma and from age- and gender-matched non-asthmatic individuals. The expression of miR-146a in bronchial brushing specimens, bronchial biopsy tissue sections or cultured primary bronchial epithelial cells was analyzed by RT-qPCR or by in situ hybridization. The expression of direct and indirect miR-146a target genes was determined by RT-qPCR or ELISA. The migration of neutrophils was studied by neutrophil chemotaxis assay and flow cytometry. For statistical analysis, unpaired two-way Student’s t test, one-way ANOVA or linear regression analysis were used. Results Reduced expression of miR-146a was found in bronchial brushing specimens from asthma patients as compared to non-asthmatics and irrespective of the phenotype of asthma. In the same samples, the neutrophil attracting chemokines IL-8 and CXCL1 showed increased expression in patients with neutrophilic asthma and increased IL-33 expression was found in patients with eosinophilic asthma. Linear regression analysis revealed a significant negative association between the expression of miR-146a in bronchial brushings and neutrophil cell counts in bronchoalveolar lavage fluid of patients with asthma. In bronchial biopsy specimens, the level of miR-146a was highest in the epithelium as determined with in situ hybridization. In primary conventional HBEC culture, the expression of miR-146a was induced in response to the stimulation with IL-17A, TNF-α, and IL-4. The mRNA expression and secretion of IL-8 and CXCL1 was inhibited in both stimulated and unstimulated HBECs transfected with miR-146a mimics. Supernatants from HBECs transfected with miR-146a had reduced capability of supporting neutrophil migration in neutrophil chemotaxis assay. Conclusion Our results suggest that decreased level of miR-146a in HBECs from patients with asthma may contribute to the development of neutrophilic phenotype of asthma.
Collapse
Affiliation(s)
- Anet Kivihall
- 1Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50414 Tartu, Estonia
| | - Alar Aab
- 1Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50414 Tartu, Estonia
| | - Jerzy Soja
- 2Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Sładek
- 2Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- 2Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Alan Altraja
- 3Department of Pulmonary Medicine, University of Tartu, Tartu, Estonia.,4Lung Clinic of Tartu University Hospital, Tartu, Estonia
| | - Bogdan Jakiela
- 2Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grazyna Bochenek
- 2Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ana Rebane
- 1Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50414 Tartu, Estonia
| |
Collapse
|
37
|
Fussbroich D, Kohnle C, Schwenger T, Driessler C, Dücker RP, Eickmeier O, Gottwald G, Jerkic SP, Zielen S, Kreyenberg H, Beermann C, Chiocchetti AG, Schubert R. A combination of LCPUFAs regulates the expression of miRNA-146a-5p in a murine asthma model and human alveolar cells. Prostaglandins Other Lipid Mediat 2019; 147:106378. [PMID: 31698144 DOI: 10.1016/j.prostaglandins.2019.106378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND LCPUFAs are suggestive of having beneficial effects on inflammatory diseases such as asthma. However, little is known about the modulative capacity of omega-(n)-3 and n-6 LCPUFAs within the epigenetic regulation of inflammatory processes. OBJECTIVE The aim of this study was to investigate whether a specific combined LCPUFA supplementation restores disease-dysregulated miRNA-profiles in asthmatic mice. In addition, we determined the effect of the LCPUFA supplementation on the interaction of the most regulated miRNA expression and oxygenase activity in vitro. METHODS Sequencing of miRNA was performed by NGS from lung tissue of asthmatic and control mice with normal diet, as well as of LCPUFA supplemented asthmatic mice. Network analysis and evaluation of the biological targets of the miRNAs were performed by DIANA- miRPath v.3 webserver software, TargetScanMouse 7.2, and tool String v.10, respectively. Expression of hsa-miRNA-146a-5p and activity of COX-2 and 5-LO in LCPUFA-treated A549 cells were assessed by qPCR and flow cytometry, respectively. RESULTS In total, 62 miRNAs were dysregulated significantly in murine allergic asthma. The LCPUFA combination restored 21 of these dysregulated miRNAs, of which eight (mmu-miR-146a-5p, -30a-3p, -139-5p, -669p-5p, -145a-5p, -669a-5p, -342-3p and -15b-5p) were even normalized compared to the control levels. Interestingly, six of the eight rescued miRNAs are functionally implicated in TGF-β signaling, ECM-receptor interaction and fatty acid biosynthesis. Furthermore, in vitro experiments demonstrated that upregulation of hsa-miRNA-146a-5p is accompanied by a reduction of COX-2 and 5-LO activity. Moreover, transfection experiments revealed that LCPUFAs inhibit 5-LO activity in the presence and absence of anti-miR-146a-5p. CONCLUSION Our results demonstrate the modulative capacity of LCPUFAs on dysregulated miRNA expression in asthma. In addition, we pointed out the high regulative potential of LCPUFAs on 5-LO regulation and provided evidence that miR-146a partly controls the regulation of 5-LO.
Collapse
Affiliation(s)
- D Fussbroich
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany; Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany; Faculty of Biological Sciences, Goethe University Frankfurt/Main, Max-von-Laue-Straße 9, Frankfurt/Main, Germany.
| | - C Kohnle
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - T Schwenger
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany
| | - C Driessler
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - R P Dücker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - O Eickmeier
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - G Gottwald
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - S P Jerkic
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - S Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - H Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents, University Hospital, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - C Beermann
- Department of Food Technology, University of Applied Sciences, Leipziger Str. 123, Fulda, Germany
| | - A G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - R Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| |
Collapse
|
38
|
Rao VTS, Fuh SC, Karamchandani JR, Woulfe JMJ, Munoz DG, Ellezam B, Blain M, Ho MK, Bedell BJ, Antel JP, Ludwin SK. Astrocytes in the Pathogenesis of Multiple Sclerosis: An In Situ MicroRNA Study. J Neuropathol Exp Neurol 2019; 78:1130-1146. [DOI: 10.1093/jnen/nlz098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Astrocytes are increasingly recognized as active contributors to the disease process in multiple sclerosis (MS), rather than being merely reactive. We investigated the expression of a selected microRNA (miRNA) panel that could contribute both to the injury and to the recovery phases of the disease. Individual astrocytes were laser microdissected from brain sections. We then compared the miRNAs’ expressions in MS and control brain samples at different lesional stages in white versus grey matter regions. In active MS lesions, we found upregulation of ischemia-related miRNAs in white but not grey matter, often with reversion to the normal state in inactive lesions. In contrast to our previous findings on MS macrophages, expression of 2 classical inflammatory-related miRNAs, miRNA-155 and miRNA-146a, was reduced in astrocytes from active and chronic active MS lesions in white and grey matter, suggesting a lesser direct pathogenetic role for these miRNAs in astrocytes. miRNAs within the categories regulating aquaporin4 (-100, -145, -320) and glutamate transport/apoptosis/neuroprotection (-124a, -181a, and -29a) showed some contrasting responses. The regional and lesion-stage differences of expression of these miRNAs indicate the remarkable ability of astrocytes to show a wide range of selective responses in the face of differing insults and phases of resolution.
Collapse
Affiliation(s)
- Vijayaraghava T S Rao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Shih-Chieh Fuh
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - John M J Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa
| | - David G Munoz
- Department of Pathology, St. Michaels Hospital, Toronto University, Toronto
| | | | - Manon Blain
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Ming-Kai Ho
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Barry J Bedell
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neuropathology, Montreal Neurological Institute
| | - Samuel K Ludwin
- Department of Pathology, The Ottawa Hospital, University of Ottawa
| |
Collapse
|
39
|
Iacona JR, Monteleone NJ, Lemenze AD, Cornett AL, Lutz CS. Transcriptomic studies provide insights into the tumor suppressive role of miR-146a-5p in non-small cell lung cancer (NSCLC) cells. RNA Biol 2019; 16:1721-1732. [PMID: 31425002 DOI: 10.1080/15476286.2019.1657351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a complex disease in need of new methods of therapeutic intervention. Recent interest has focused on using microRNAs (miRNAs) as a novel treatment method for various cancers. miRNAs negatively regulate gene expression post-transcriptionally, and have become attractive candidates for cancer treatment because they often simultaneously target multiple genes of similar biological function. One such miRNA is miR-146a-5p, which has been described as a tumor suppressive miRNA in NSCLC cell lines and tissues. In this study, we performed RNA-Sequencing (RNA-Seq) analysis following transfection of synthetic miR-146a-5p in an NSCLC cell line, A549, and validated our data with Gene Ontology and qRT-PCR analysis of known miR-146a-5p target genes. Our transcriptomic data revealed that miR-146a-5p exerts its tumor suppressive function beyond previously reported targeting of EGFR and NF-κB signaling. miR-146a-5p mimic transfection downregulated arachidonic acid metabolism genes, the RNA-binding protein HuR, and many HuR-stabilized pro-cancer mRNAs, including TGF-β, HIF-1α, and various cyclins. miR-146a-5p transfection also reduced expression and cellular release of the chemokine CCL2, and this effect was mediated through the 3' untranslated region of its mRNA. Taken together, our work reveals that miR-146a-5p functions as a tumor suppressor in NSCLC by controlling various metabolic and signaling pathways through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Nicholas J Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Alexander D Lemenze
- Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA.,Molecular Resource Facility, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Ashley L Cornett
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| |
Collapse
|
40
|
Redes JL, Basu T, Ram-Mohan S, Ghosh CC, Chan EC, Sek AC, Zhao M, Krishnan R, Rosenberg HF, Druey KM. Aspergillus fumigatus-Secreted Alkaline Protease 1 Mediates Airways Hyperresponsiveness in Severe Asthma. Immunohorizons 2019; 3:368-377. [PMID: 31603851 PMCID: PMC10985461 DOI: 10.4049/immunohorizons.1900046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
The hallmark features of allergic asthma are type 2 (eosinophilic) inflammation and airways hyperresponsiveness (AHR). Although these features often comanifest in mouse lungs in vivo, we demonstrate in this study that the serine protease Alp1 from the ubiquitous mold and allergen, Aspergillus fumigatus, can induce AHR in mice unable to generate eosinophilic inflammation. Strikingly, Alp1 induced AHR in mice devoid of protease-activated receptor 2/F2 trypsin-like receptor 1 (PAR2/F2RL1), a receptor expressed in lung epithelium that is critical for allergic responses to protease-containing allergens. Instead, using precision-cut lung slices and human airway smooth muscle cells, we demonstrate that Alp1 directly increased contractile force. Taken together, these findings suggest that Alp1 induces bronchoconstriction through mechanisms that are largely independent of allergic inflammation and point to a new target for direct intervention of fungal-associated asthma.
Collapse
Affiliation(s)
- Jamie L Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD 20892
| | - Trisha Basu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD 20892
| | - Sumati Ram-Mohan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Chandra C Ghosh
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD 20892
| | - Albert C Sek
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD 20892; and
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, MD 20852
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD 20892; and
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
41
|
Mengel-From J, Rønne ME, Carlsen AL, Skogstrand K, Larsen LA, Tan Q, Christiansen L, Christensen K, Heegaard NHH. Circulating, Cell-Free Micro-RNA Profiles Reflect Discordant Development of Dementia in Monozygotic Twins. J Alzheimers Dis 2019; 63:591-601. [PMID: 29660943 DOI: 10.3233/jad-171163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We aim to examine if circulating micro-RNA and cytokine levels associate with dementia diagnosis and cognitive scores. To test our hypothesis, we use plasma donated from 48 monozygotic twin pairs in 1997 and 46 micro-RNAs and 10 cytokines were quantified using microfluidic RT-qPCR and multiplex solid-phase immunoassays, respectively. Micro-RNA and cytokine profiling were examined for associations with dementia diagnoses in a longitudinal registry study or with cognitive scores at baseline. Thirty-six micro-RNAs and all cytokines were detected consistently. Micro-RNA profiles associate with diagnoses and cognitive scores at statistically significant levels while cytokine only showed trends pointing at chronic inflammation in twins having or developing dementia. The most notable findings were decreased miR-106a and miR-210, and increased miR-106b expression in twins with a dementia diagnosis. This pioneering evaluation of micro-RNA and cytokine and dementia diagnosis suggests micro-RNA targets in vasculogenesis, lipoprotein transport, and amyloid precursor protein genes.
Collapse
Affiliation(s)
- Jonas Mengel-From
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mette E Rønne
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Anting L Carlsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - Kristin Skogstrand
- Department of Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Lisbeth A Larsen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- Department of Public Health, The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
42
|
Yoshie H, Koushki N, Kaviani R, Tabatabaei M, Rajendran K, Dang Q, Husain A, Yao S, Li C, Sullivan JK, Saint-Geniez M, Krishnan R, Ehrlicher AJ. Traction Force Screening Enabled by Compliant PDMS Elastomers. Biophys J 2019; 114:2194-2199. [PMID: 29742412 DOI: 10.1016/j.bpj.2018.02.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023] Open
Abstract
Actomyosin contractility is an essential element of many aspects of cellular biology and manifests as traction forces that cells exert on their surroundings. The central role of these forces makes them a novel principal therapeutic target in diverse diseases. This requires accurate and higher-capacity measurements of traction forces; however, existing methods are largely low throughput, limiting their utility in broader applications. To address this need, we employ Fourier-transform traction force microscopy in a parallelized 96-well format, which we refer to as contractile force screening. Critically, rather than the frequently employed hydrogel polyacrylamide, we fabricate these plates using polydimethylsiloxane rubber. Key to this approach is that the polydimethylsiloxane used is very compliant, with a lower-bound Young's modulus of ∼0.4 kPa. We subdivide these monolithic substrates spatially into biochemically independent wells, creating a uniform multiwell platform for traction force screening. We demonstrate the utility and versatility of this platform by quantifying the compound and dose-dependent contractility responses of human airway smooth muscle cells and retinal pigment epithelial cells. By directly quantifying the endpoint of therapeutic intent, airway-smooth-muscle contractile force, this approach fills an important methodological void in current screening approaches for bronchodilator drug discovery, and, more generally, in measuring contractile response for a broad range of cell types and pathologies.
Collapse
Affiliation(s)
- Haruka Yoshie
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Rosa Kaviani
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Mohammad Tabatabaei
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Quynh Dang
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Amjad Husain
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sean Yao
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Chuck Li
- Amgen Inc., Thousand Oaks, California
| | | | - Magali Saint-Geniez
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
43
|
Feketea G, Bocsan CI, Popescu C, Gaman M, Stanciu LA, Zdrenghea MT. A Review of Macrophage MicroRNAs' Role in Human Asthma. Cells 2019; 8:cells8050420. [PMID: 31071965 PMCID: PMC6562863 DOI: 10.3390/cells8050420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Corina I Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Cristian Popescu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK.
| | - Mihnea T Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Oncology Institute, 400010 Cluj-Napoca, Romania.
| |
Collapse
|
44
|
Rodrigo-Muñoz JM, Cañas JA, Sastre B, Rego N, Greif G, Rial M, Mínguez P, Mahíllo-Fernández I, Fernández-Nieto M, Mora I, Barranco P, Quirce S, Sastre J, del Pozo V. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy 2019; 74:507-517. [PMID: 30040124 DOI: 10.1111/all.13570] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Asthma is a syndrome characterized by airway inflammation and obstruction. Due to its heterogeneity, the difficulties in asthma diagnosis and treatment make the discovery of new biomarkers a focus of research. So, we determined the differential miRNA expression of eosinophils between healthy and asthmatic patients and to establish a differentially expressed miRNA profile detectable in sera for use as biomarker. METHODS MicroRNAs from peripheral eosinophils from healthy and asthmatic subjects were isolated and analyzed by next-generation sequencing and confirmed by quantitative PCR in 29 asthmatics and 10 healthy individuals. The levels of serum miRNAs were performed by quantitative PCR in 138 asthmatics and 39 healthy subjects. Regression analysis and Random Forest models were performed. RESULTS We found a set of miRNAs whose expression differs between eosinophils from asthmatics and healthy subjects. These miRNAs can classify asthmatics into two clusters that differed in the number of eosinophils and periostin concentration in serum. Some of these miRNAs were also confirmed in sera, as miR-185-5p which discriminates asthmatics from healthy subjects. Together with other two miRNAs, miR-185-5p allowed us to create a logistic regression model to discriminate better both conditions and a Random Forest model that can even sort the asthmatics into intermittent, mild persistent, moderate persistent, and severe persistent asthma. CONCLUSION Our data show that miRNAs profile in eosinophils can be used as asthma diagnosis biomarker in serum and that this profile is able to rank asthma severity.
Collapse
Affiliation(s)
- José M. Rodrigo-Muñoz
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - José A. Cañas
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Beatriz Sastre
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - Natalia Rego
- Institut Pasteur de Montevideo; Montevideo Uruguay
| | | | - Manuel Rial
- Department of Allergy; IIS-Fundación Jiménez Díaz; Madrid Spain
| | - Pablo Mínguez
- Department of Genetics; Bioinformatics Group; IIS-Fundacion Jimenez Diaz-UAM; Madrid Spain
| | | | - Mar Fernández-Nieto
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; IIS-Fundación Jiménez Díaz; Madrid Spain
| | - Inés Mora
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
| | - Pilar Barranco
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; Hospital La Paz-Institute for Health Research (IdiPAZ); Madrid Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; Hospital La Paz-Institute for Health Research (IdiPAZ); Madrid Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; IIS-Fundación Jiménez Díaz; Madrid Spain
| | - Victoria del Pozo
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| |
Collapse
|
45
|
Tsai MJ, Tsai YC, Chang WA, Lin YS, Tsai PH, Sheu CC, Kuo PL, Hsu YL. Deducting MicroRNA-Mediated Changes Common in Bronchial Epithelial Cells of Asthma and Chronic Obstructive Pulmonary Disease-A Next-Generation Sequencing-Guided Bioinformatic Approach. Int J Mol Sci 2019; 20:ijms20030553. [PMID: 30696075 PMCID: PMC6386886 DOI: 10.3390/ijms20030553] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are chronic airway inflammatory diseases that share some common features, although these diseases are somewhat different in etiologies, clinical features, and treatment policies. The aim of this study is to investigate the common microRNA-mediated changes in bronchial epithelial cells of asthma and COPD. The microRNA profiles in primary bronchial epithelial cells from asthma (AHBE) and COPD (CHBE) patients and healthy subjects (NHBE) were analyzed with next-generation sequencing (NGS) and the significant microRNA changes common in AHBE and CHBE were extracted. The upregulation of hsa-miR-10a-5p and hsa-miR-146a-5p in both AHBE and CHBE was confirmed with quantitative polymerase chain reaction (qPCR). Using bioinformatic methods, we further identified putative targets of these microRNAs, which were downregulated in both AHBE and CHBE: miR-10a-5p might suppress BCL2, FGFR3, FOXO3, PDE4A, PDE4C, and PDE7A; miR-146a-5p might suppress BCL2, INSR, PDE4D, PDE7A, PDE7B, and PDE11A. We further validated significantly decreased expression levels of FOXO3 and PDE7A in AHBE and CHBE than in NHBE with qPCR. Increased serum miR-146a-5p level was also noted in patients with asthma and COPD as compared with normal control subjects. In summary, our study revealed possible mechanisms mediated by miR-10a-5p and miR-146a-5p in the pathogenesis of both asthma and COPD. The findings might provide a scientific basis for developing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Yu-Chen Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Yi-Shiuan Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Pei-Hsun Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| |
Collapse
|
46
|
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets. J Leukoc Biol 2018; 104:987-1002. [DOI: 10.1002/jlb.ma1217-499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
|
47
|
Han S, Ma C, Bao L, Lv L, Huang M. miR-146a Mimics Attenuate Allergic Airway Inflammation by Impacted Group 2 Innate Lymphoid Cells in an Ovalbumin-Induced Asthma Mouse Model. Int Arch Allergy Immunol 2018; 177:302-310. [PMID: 30134242 DOI: 10.1159/000491438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The prevalence of allergic asthma has increased dramatically. Previous studies have found that the microRNA 146a (miR-146a) expression in asthma inhibits cell proliferation and promotes apoptosis of bronchial smooth muscle cells. We aimed to investigate the effect of miR-146a mimics on ovalbumin (OVA)-induced asthma in a mouse model. METHODS Inflammatory cell infiltration in bronchoalveolar lavage fluid (BALF) was measured by flow cytometry. Levels of OVA-specific immunoglobulin E (IgE) in serum and cytokines in BALF were examined by enzyme-linked immunosorbent assay. For monitoring the airway, the Penh value (% baseline) was measured using a whole-body plethysmograph. RESULTS In OVA-induced asthmatic mice, miR-146a significantly suppressed the infiltration of inflammatory cells in BALF and decreased the levels of OVA-specific IgE and T helper 2 cell type cytokines. In addition, miR-146a inhibited the OVA-induced airway hyperresponsiveness and the group 2 innate lymphoid cell responses. Moreover, the effects of miR-146a mimics were dependent on interleukin 33 stimulation. CONCLUSIONS Our results suggest that miR-146a mimics might serve as an attractive candidate for further preclinical studies as an anti-inflammatory treatment of asthma.
Collapse
Affiliation(s)
- Shuguang Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chenhui Ma
- Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Liang Bao
- Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lei Lv
- Department of Respiratory Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing,
| |
Collapse
|
48
|
Fekonja S, Korošec P, Rijavec M, Jeseničnik T, Kunej T. Asthma MicroRNA Regulome Development Using Validated miRNA-Target Interaction Visualization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:607-615. [PMID: 30124362 DOI: 10.1089/omi.2018.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma is a common multifactorial complex disease caused by an interaction of genetic and environmental factors. There are no robust biomarkers or molecular diagnostics for asthma or its detailed phenotypic stratification in the clinic. Regulatory and epigenomic factors are priority candidates for asthma biomarker discovery and translational research because this common disease emerges in association with host/environment interactions. In this context, epigenomic molecular events such as microRNA (miRNA) silencing affect asthma susceptibility and severity. We report here an analysis of the miRNAs in the literature, their targets associated with asthma, and present the findings organized as an miRNA-target network, an miRNA regulome of asthma. The miRNA-target interactions in asthma were extracted from the PubMed and the Web of Science databases, while the miRNA-target network was visualized with the Cytoscape tool. Genomic locations of miRNA and target genes were displayed using the Ensembl Whole Genome tool. We cataloged miRNAs associated with asthma and their experimentally validated targets, retrieving 48 miRNAs associated with asthma, and 54 experimentally validated miRNA targets. Four central molecules involved in 34.5% of all interactions were identified in the network. The miRNA-target pairs were constructed as an asthma-associated miRNA-target regulatory network. The network revealed subnetworks pointing toward potential asthma biomarker candidates. The asthma miRNA regulome reported here offers a strong foundation for future translational research and systems medicine applications for asthma diagnostic and therapeutic innovation. Developed protocol for constructing miRNA regulome could now be used for biomarker development in multifactorial diseases.
Collapse
Affiliation(s)
- Simon Fekonja
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domžale, Slovenia
| | - Peter Korošec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnick, Golnik, Slovenia
| | - Matija Rijavec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnick, Golnik, Slovenia
| | - Taja Jeseničnik
- 3 Agronomy Department, Biotechnical Faculty, University of Ljubljana , Jamnikarjeva, Ljubljana, Slovenia
| | - Tanja Kunej
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domžale, Slovenia
| |
Collapse
|
49
|
Martin JG. Airway smooth muscle may drive mucus hypersecretion in asthma. Eur Respir J 2018; 52:52/2/1801166. [PMID: 30093557 DOI: 10.1183/13993003.01166-2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023]
Affiliation(s)
- James G Martin
- Dept of Medicine, Division of Respiratory Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada .,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
50
|
Association of the miR-196a2, miR-146a, and miR-499 Polymorphisms with Asthma Phenotypes in a Korean Population. Mol Diagn Ther 2018; 21:547-554. [PMID: 28527151 DOI: 10.1007/s40291-017-0280-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) modulate expressions of inflammatory genes, thereby regulating inflammatory responses. Single nucleotide polymorphisms (SNPs) in miRNAs could affect their efficiency in binding to messenger RNAs (mRNAs). OBJECTIVE We investigated the associations of miRNA SNPs with asthma phenotypes. miR-196a2 (rs11614913 T>C), miR-146a (rs2910164 C>G), and miR-499 (rs3746444 A>G) were genotyped in 347 asthma patients and 172 normal healthy controls (NCs). RESULTS The CT/CC genotype of miR-196a2 rs11614913 was associated with eosinophilic asthma (p = 0.004) and a higher sputum eosinophil count compared with the TT genotype (p = 0.003). The CG/GG genotype of miR-146a rs2910164 tended to be associated with higher bronchial hyperresponsiveness to methacholine (PC20) compared with the CC genotype. The AG/GG genotype of miR-499 rs3746444 was associated with higher predicted values of forced expiratory volume in 1 s (%FEV1) compared with the AA genotype (p = 0.008). CONCLUSIONS Genetic polymorphisms in miR-196a2, miR-146a, and miR-499 could be potential biomarkers for asthma phenotypes and targets for asthma treatments in a Korean population.
Collapse
|