1
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:227-240. [PMID: 29047089 DOI: 10.1007/978-3-319-63245-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The soluble form of guanylate cyclase (sGC) and cGMP signaling are major regulators of pulmonary vasodilation and vascular remodeling that protect the pulmonary circulation from hypertension development. Nitric oxide, reactive oxygen species, thiol and heme redox, and heme biosynthesis control mechanisms regulating the production of cGMP by sGC. In addition, a cGMP-independent mechanism regulates protein kinase G through thiol oxidation in manner controlled by peroxide metabolism and NADPH redox. Multiple aspects of these regulatory processes contribute to physiological and pathophysiological regulation of the pulmonary circulation, and create potentially novel therapeutic targets for the treatment of pulmonary vascular disease.
Collapse
|
3
|
Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci 2015; 16:4600-14. [PMID: 25739077 PMCID: PMC4394437 DOI: 10.3390/ijms16034600] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/13/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023] Open
Abstract
Preeclampsia (PE) is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO) and tissue damage caused by increased levels of reactive oxygen species (ROS). Furthermore, superoxide (O2−) rapidly inactivates NO and forms peroxynitrite (ONOO−). It is known that ONOO− accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE.
Collapse
|
4
|
Antihypertensive effect of radix paeoniae alba in spontaneously hypertensive rats and excessive alcohol intake and high fat diet induced hypertensive rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:731237. [PMID: 25784949 PMCID: PMC4345252 DOI: 10.1155/2015/731237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Radix Paeoniae Alba (Baishao, RPA) has long been used in traditional Chinese medicine formulation to treat hypertension by repression the hyperfunction of liver. However, whether the RPA itself has the antihypertensive effect or not is seldom studied. This study was to evaluate the protective effect of RPA on hypertensive rats. Alcohol in conjunction with a high fat diet- (ACHFD-) induced hypertensive rats and spontaneously hypertensive rats (SHR) was constantly received either RPA extract (25 or 75 mg/kg) or captopril (15 mg/kg) all along the experiments. As a result, RPA extract (75 mg/kg) could significantly reduce systolic blood pressure of both ACHFD-induced hypertensive rats and SHR after 9-week or 4-week treatment. In ACHFD-induced hypertensive rats, the blood pressure was significantly increased and the lipid profiles in serum including triglyceride, total cholesterol, LDL-cholesterol, and HDL-cholesterol were significantly deteriorated. Also, hepatic damage was manifested by a significant increase in alanine transaminase (ALT) and aspartate transaminase (AST) in serum. The RPA extract significantly reversed these parameters, which revealed that it could alleviate the liver damage of rats. In SHR, our result suggested that the antihypertensive active of RPA extract may be related to its effect on regulating serum nitric oxide (NO) and endothelin (ET) levels.
Collapse
|
5
|
Chang KH, Nayak RC, Roy S, Perumbeti A, Wellendorf AM, Bezold KY, Pirman M, Hill SE, Starnes J, Loberg A, Zhou X, Inagami T, Zheng Y, Malik P, Cancelas JA. Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial AT₂R and cytoskeletal dysregulation. Nat Commun 2015; 6:5914. [PMID: 25574809 PMCID: PMC4293039 DOI: 10.1038/ncomms6914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022] Open
Abstract
Patients in organ failure of vascular origin have increased circulating hematopoietic stem cells and progenitors (HSC/P). Plasma levels of angiotensin II (Ang-II), are commonly increased in vasculopathies. Hyperangiotensinemia results in activation of a very distinct Ang-II receptor set, Rho-family GTPase members, and actin in bone marrow endothelial cells (BMEC) and HSC/P, which results in decreased membrane integrin activation in both BMEC and HSC/P, and in HSC/P de-adhesion and mobilization. The Ang-II effect can be reversed pharmacologically and genetically by inhibiting Ang-II production or signaling through BMEC AT2R, HSCP AT1R/AT2R or HSC/P RhoA, but not by interfering with other vascular tone mediators. Hyperangiotensinemia and high counts of circulating HSC/P seen in sickle cell disease (SCD) as a result of vascular damage, is significantly decreased by Ang-II inhibitors. Our data define for the first time the role of Ang-II HSC/P traffic regulation and redefine the hematopoietic consequences of anti-angiotensin therapy in SCD.
Collapse
Affiliation(s)
- Kyung Hee Chang
- 1] Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, Ohio 45267, USA [2] Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Ramesh C Nayak
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Swarnava Roy
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Ajay Perumbeti
- Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, Ohio 45267, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Katie Y Bezold
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Megan Pirman
- Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, Ohio 45267, USA
| | - Sarah E Hill
- Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, Ohio 45267, USA
| | - Joseph Starnes
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Anastacia Loberg
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Xuan Zhou
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Tadashi Inagami
- Department of Biochemistry, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Jose A Cancelas
- 1] Hoxworth Blood Center, University of Cincinnati College of Medicine, 3130 Highland Avenue, Cincinnati, Ohio 45267, USA [2] Division of Experimental Hematology and Cell Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| |
Collapse
|
6
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Angiotensin II type 2 receptor-dependent increase in nitric oxide synthase activity in the endothelium of db/db mice is mediated via a MEK pathway. Pharmacol Res 2012; 66:41-50. [DOI: 10.1016/j.phrs.2012.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/15/2012] [Accepted: 02/27/2012] [Indexed: 01/01/2023]
|
7
|
Camelo JS, Martins AR, Rosa E, Ramos SG, Hehre D, Bancalari E, Suguihara C. Angiotensin II type 1 receptor blockade partially attenuates hypoxia-induced pulmonary hypertension in newborn piglets: relationship with the nitrergic system. Braz J Med Biol Res 2012; 45:163-71. [PMID: 22310488 PMCID: PMC3854258 DOI: 10.1590/s0100-879x2012007500014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/19/2012] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Collapse
Affiliation(s)
- J S Camelo
- Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | |
Collapse
|
8
|
Guimond MO, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne) 2012; 3:164. [PMID: 23267346 PMCID: PMC3525946 DOI: 10.3389/fendo.2012.00164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
The angiotensin type 2 (AT(2)) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT(1)) receptor. Functional studies in neuronal cells have demonstrated AT(2) receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT(2) receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT(1) receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT(2) receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor's mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT(2) receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT(2) receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer's disease and other neurological cognitive disorders.
Collapse
Affiliation(s)
| | - Nicole Gallo-Payet
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| |
Collapse
|
9
|
Endothelium-derived vasoactive agents, AT1 receptors and inflammation. Pharmacol Ther 2011; 131:187-203. [DOI: 10.1016/j.pharmthera.2010.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 12/25/2022]
|
10
|
Miller AG, Tan G, Binger KJ, Pickering RJ, Thomas MC, Nagaraj RH, Cooper ME, Wilkinson-Berka JL. Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function. Diabetes 2010; 59:3208-15. [PMID: 20852029 PMCID: PMC2992784 DOI: 10.2337/db10-0552] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Advanced glycation end products (AGEs) and the renin-angiotensin system (RAS) are both implicated in the development of diabetic retinopathy. How these pathways interact to promote retinal vasculopathy is not fully understood. Glyoxalase-I (GLO-I) is an enzyme critical for the detoxification of AGEs and retinal vascular cell survival. We hypothesized that, in retina, angiotensin II (Ang II) downregulates GLO-I, which leads to an increase in methylglyoxal-AGE formation. The angiotensin type 1 receptor blocker, candesartan, rectifies this imbalance and protects against retinal vasculopathy. RESEARCH DESIGN AND METHODS Cultured bovine retinal endothelial cells (BREC) and bovine retinal pericytes (BRP) were incubated with Ang II (100 nmol/l) or Ang II+candesartan (1 μmol/l). Transgenic Ren-2 rats that overexpress the RAS were randomized to be nondiabetic, diabetic, or diabetic+candesartan (5 mg/kg/day) and studied over 20 weeks. Comparisons were made with diabetic Sprague-Dawley rats. RESULTS In BREC and BRP, Ang II induced apoptosis and reduced GLO-I activity and mRNA, with a concomitant increase in nitric oxide (NO(•)), the latter being a known negative regulator of GLO-I in BRP. In BREC and BRP, candesartan restored GLO-I and reduced NO(•). Similar events occurred in vivo, with the elevated RAS of the diabetic Ren-2 rat, but not the diabetic Sprague-Dawley rat, reducing retinal GLO-I. In diabetic Ren-2 rats, candesartan reduced retinal acellular capillaries, inflammation, and inducible nitric oxide synthase and NO(•), and restored GLO-I. CONCLUSIONS We have identified a novel mechanism by which candesartan improves diabetic retinopathy through the restoration of GLO-I.
Collapse
Affiliation(s)
- Antonia G Miller
- Oxidative Stress Laboratory, Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Marcus NJ, Li YL, Bird CE, Schultz HD, Morgan BJ. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir Physiol Neurobiol 2010; 171:36-45. [PMID: 20153844 PMCID: PMC2846996 DOI: 10.1016/j.resp.2010.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/01/2010] [Accepted: 02/05/2010] [Indexed: 12/18/2022]
Abstract
Chronic exposure to intermittent hypoxia (CIH) increases carotid sinus nerve activity in normoxia and in response to acute hypoxia. We hypothesized that CIH augments basal and chemoreflex-stimulated sympathetic outflow through an angiotensin receptor-dependent mechanism. Rats were exposed to CIH for 28 days: a subset was treated with losartan. Then, lumbar sympathetic activity was recorded under anesthesia during 20-s apneas, isocapnic hypoxia, and potassium cyanide. We measured carotid body superoxide production and expression of angiotensin II type-1 receptor, neuronal nitric oxide synthase, and NADPH oxidase. Sympathetic activity was higher in CIH vs. control rats at baseline, during apneas and isocapnic hypoxia, but not cyanide. Carotid body superoxide production and expression of angiotensin II type 1 receptor and gp91(phox) subunit of NADPH oxidase were elevated in CIH rats, whereas expression of neuronal nitric oxide synthase was reduced. None of these differences were evident in animals treated with losartan. CIH-induced augmentation of chemoreflex sensitivity occurs, at least in part, via the renin-angiotensin system.
Collapse
Affiliation(s)
- Noah J. Marcus
- John Rankin Laboratory of Pulmonary Medicine, Department of Kinesiology, University of Wisconsin, Madison, WI, USA
- Respiratory Neurobiology Training Program, University of Wisconsin, Madison, WI, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cynthia E. Bird
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Barbara J. Morgan
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
- Respiratory Neurobiology Training Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
13
|
Littlejohn TW, Trenkwalder P, Hollanders G, Zhao Y, Liao W. Long-term safety, tolerability and efficacy of combination therapy with aliskiren and amlodipine in patients with hypertension. Curr Med Res Opin 2009; 25:951-9. [PMID: 19257800 DOI: 10.1185/03007990902785845] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Most patients with hypertension require antihypertensive combination therapy to achieve BP control. This study investigated the safety and efficacy of the direct renin inhibitor aliskiren combined with the calcium channel blocker amlodipine. METHODS Overall, 556 patients with hypertension (msDBP > or =95-<110 mmHg) received open-label aliskiren/amlodipine 150/5 mg for 2 weeks, followed by forced titration to aliskiren/amlodipine 300/10 mg for 52 weeks. Add-on hydrochlorothiazide (HCT) was permitted from week 10 to achieve BP control (<140/90 mmHg). The primary objective of the study was to evaluate the long-term safety and tolerability of aliskiren/amlodipine combination therapy; the BP-lowering efficacy of the combination was also assessed (week 54 endpoint; last observation carried forward). TRIAL REGISTRATION ClinicalTrials.gov identifier NCT00402103. RESULTS In total, 452 patients completed 54 weeks' treatment with aliskiren/amlodipine 300/10 mg, with or without add-on HCT. The most frequently reported adverse events (AEs) were peripheral edema, upper respiratory tract infection, headache and bronchitis. Peripheral edema (the most common AE), occurred in 22.7% of treated patients, and was generally mild or moderate in intensity and transient in nature. Few patients exhibited laboratory abnormalities. Aliskiren/amlodipine combination therapy provided a mean BP reduction from baseline to week 54 of 24.2/15.5 mmHg; 74.3% of patients achieved BP control. In the subgroup of patients with stage 2 hypertension (baseline msSBP > or =160 mmHg and/or msDBP > or =100 mmHg), the mean BP reduction at week 54 was 29.1/17.1 mmHg, and 67.0% of patients achieved BP control. CONCLUSION In this open-label study, aliskiren/amlodipine 300/10 mg combination therapy, with or without add-on HCT, effectively reduced BP, particularly in patients with stage 2 hypertension. The most common AE was peripheral edema, consistent with the known AE profile of high-dose (10 mg) amlodipine. Further studies comparing the aliskiren/amlodipine combination with the component monotherapies and other antihypertensive combinations are warranted.
Collapse
|
14
|
Piotrkowski B, Koch OR, De Cavanagh EMV, Fraga CG. Cardiac mitochondrial function and tissue remodelling are improved by a non-antihypertensive dose of enalapril in spontaneously hypertensive rats. Free Radic Res 2009; 43:390-9. [PMID: 19296328 DOI: 10.1080/10715760902801517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Renal and cardiac benefits of renin-angiotensin system inhibition exceed blood pressure (BP) reduction and seem to involve mitochondrial function. It has been shown that RAS inhibition prevented mitochondrial dysfunction in spontaneously hypertensive rats (SHR) kidneys. Here, it is investigated whether a non-antihypertensive enalapril dose protects cardiac tissue and mitochondria function. Three-month-old SHR received water containing enalapril (10 mg/kg/day, SHR+Enal) or no additions (SHR-C) for 5 months. Wistar-Kyoto rats (WKY) were normotensive controls. At month 5, BP was similar in SHR+Enal and SHR-C. In SHR+Enal and WKY, heart weight and myocardial fibrosis were lower than in SHR-C. Matrix metalloprotease-2 activity was lower in SHR+Enal with respect to SHR-C and WKY. In SHR+Enal and WKY, NADH/cytochrome c oxidoreductase activity, eNOS protein and activity and mtNOS activity were higher and Mn-SOD activity was lower than in SHR-C. In summary, enalapril at a non-antihypertensive dose prevented cardiac hypertrophy and modifies parameters of cardiac mitochondrial dysfunction in SHR.
Collapse
Affiliation(s)
- Barbara Piotrkowski
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
15
|
Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol 2009; 296:H745-55. [PMID: 19151255 PMCID: PMC2660233 DOI: 10.1152/ajpheart.00861.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reduced blood pressure (BP) and decreased pressor response to vasoconstrictors, even though the renin-angiotensin system is upregulated. Angiotensin II (ANG II) activates both angiotensin type 1 receptors (AT(1)Rs) and angiotensin type 2 receptors (AT(2)Rs). Although the role of the AT(1)R in vascular contraction is well documented, the role of the AT(2)R in vascular relaxation, particularly during pregnancy, is less clear. It was hypothesized that the decreased BP and vasoconstriction during pregnancy was, at least in part, due to changes in AT(2)R amount, distribution, and/or postreceptor mechanisms of vascular relaxation. To test this hypothesis, systolic BP was measured in virgin and pregnant (day 19) Sprague-Dawley rats. Isometric contraction/relaxation was measured in isolated aortic rings, and nitric oxide (NO) production was measured using 4-amino-5-methylamino-2',7'-difluorescein fluorescence. AT(1)R and AT(2)R mRNA expression and protein amount were measured in tissue homogenates using real-time RT-PCR and Western blots, and their local distribution was visualized in cryosections using immunohistochemistry and immunofluorescence. BP was lower in pregnant than virgin rats. Phenylephrine (Phe) caused concentration-dependent contraction that was reduced in the aorta of pregnant compared with virgin rats. Treatment with the AT(2)R antagonist PD-123319 caused greater enhancement of Phe contraction, and the AT(2)R agonist CGP-42112A caused greater relaxation of Phe contraction in the aorta of pregnant than virgin rats. ANG II plus the AT(1)R blocker losartan induced greater NO production in the aorta of pregnant than virgin rats. RT-PCR revealed increased mRNA expression of vascular endothelial NO synthase (eNOS), little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Western blots revealed an increased protein amount of activated phospho-eNOS, little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Immunohistochemistry and immunofluorescence analysis in aortic sections of virgin rats revealed abundant AT(1)R staining in tunica media that largely colocalized with actin in vascular smooth muscle and less AT(2)Rs mainly in the tunica intima and endothelium. In pregnant rats, AT(1)R staining in the smooth muscle layer and adventitia was reduced, and endothelial AT(2)R staining was enhanced. These data suggest an enhanced AT(2)R-mediated vascular relaxation pathway involving increased expression/activity of endothelial AT(2)Rs and increased postreceptor activated phospho-eNOS, which may contribute to the decreased BP during pregnancy.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Aorta/enzymology
- Blood Pressure
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Female
- Imidazoles/pharmacology
- Losartan/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oligopeptides/pharmacology
- Phenylephrine/pharmacology
- Phosphorylation
- Pregnancy
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Up-Regulation
- Vasoconstriction
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Amanda K Stennett
- Div. of Vascular Surgery, Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Effect of valsartan on the expression of angiotensin II receptors in the lung of chronic antigen exposure rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Zhang Y, Lu J, Shi J, Lin X, Dong J, Zhang S, Liu Y, Tong Q. Central administration of angiotensin-(1-7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides 2008; 42:593-600. [PMID: 18990443 DOI: 10.1016/j.npep.2008.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/14/2008] [Accepted: 09/19/2008] [Indexed: 01/18/2023]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an endogenous peptide of the renin-angiotensin system with several beneficial effects that are often opposite to those attributed to angiotensin II (Ang II). Since there are no data available so far on the role of Ang-(1-7) after cerebral ischemia/reperfusion, in this paper, we investigated the central administration of Ang-(1-7) modulates in vivo the nitric oxide(NO) release and the endothelial NO synthase (eNOS) expression following focal cerebral ischemia/reperfusion in rats. Cerebral ischemia-reperfusion injury was induced by intraluminal thread occlusion of middle cerebral artery in the adult male rats. The levels of NO in ischemic tissues were measured by NO detection kits. Reverse transcription (RT)-PCR and western blot were used to determine messenger RNA (mRNA) and protein levels of the eNOS in ischemic tissues. The cerebral ischemic lesion resulted in a significant increase of NO release at 3 and 6h compared with sham operation group in our model after reperfusion, whereas both medium and high doses Ang-(1-7) markedly enhanced NO levels at 3-24h, and 3-72h after reperfusion, respectively. In addition, NO release increased was significantly induced by high-dose Ang-(1-7) compared with medium-dose Ang-(1-7) at 24-72 h after reperfusion. Medium and high-dose Ang-(1-7) significantly stimulated eNOS activation when compared with artificial cerebrospinal fluid (aCSF) treatment group at 3, 6, 12, 24, and 48h after reperfusion, however, no significant changes in eNOS expression were found between medium and high-dose Ang-(1-7) at different times after the ischemic insult. These findings indicate that medium and high-dose Ang-(1-7) stimulate NO release and upregulate eNOS expression in ischemic tissues following focal cerebral ischemia/reperfusion in rats.
Collapse
Affiliation(s)
- Yingdong Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ootaki C, Yamashita M, Ootaki Y, Kamohara K, Weber S, Klatte RS, Smith WA, Massiello AL, Emancipator SN, Golding LA, Fukamachi K. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J Thorac Cardiovasc Surg 2008; 136:150-8. [PMID: 18603068 PMCID: PMC2533270 DOI: 10.1016/j.jtcvs.2007.12.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/11/2007] [Accepted: 12/06/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The need for pulsatility in the circulation during long-term mechanical support has been a subject of debate. We compared histologic changes in calf renal arteries subjected to various degrees of pulsatile circulation in vivo. We addressed the hypothesis that the local renin-angiotensin system may be implicated in these histologic changes. METHODS AND RESULTS Sixteen calves were implanted with devices giving differing degrees of pulsatile circulation: 6 had a continuous flow left ventricular assist device (LVAD); 6 had a continuous flow right ventricular assist device (RVAD); and 4 had a pulsatile total artificial heart (TAH). Six other calves were histologic and immunohistochemical controls. In the LVAD group, the pulsatility index was significantly lower (0.28 +/- 0.07 LVAD vs 0.56 +/- 0.08 RVAD, vs 0.53 +/- 0.10 TAH; P < 0.01), and we observed severe periarteritis in all cases in the LVAD group. The number of angiotensin II type 1 receptor-positive cells and angiotensin converting enzyme-positive cells in periarterial areas was significantly higher in the LVAD group (angiotensin II type 1 receptor: 350 +/- 139 LVAD vs 8 +/- 6 RVAD, vs 3 +/- 2 TAH, vs 3 +/- 2 control; P < .001; angiotensin-converting enzyme: 325 +/- 59 LVAD vs 6 +/- 4 RVAD, vs 6 +/- 5 TAH, vs 3 +/- 1 control; P < .001). CONCLUSIONS The reduced pulsatility produced by a continuous flow LVAD implantation induced severe periarteritis in the kidneys. The local renin-angiotensin system was up-regulated in the inflammatory cells only in the continuous flow LVAD group.
Collapse
Affiliation(s)
- Chiyo Ootaki
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Yoshio Ootaki
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Keiji Kamohara
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stephan Weber
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ryan S. Klatte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - William A. Smith
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alex L. Massiello
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Leonard A.R. Golding
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
19
|
Kleinhenz DJ, Sutliff RL, Polikandriotis JA, Walp ER, Dikalov SI, Guidot DM, Hart CM. Chronic ethanol ingestion increases aortic endothelial nitric oxide synthase expression and nitric oxide production in the rat. Alcohol Clin Exp Res 2008; 32:148-54. [PMID: 18028525 PMCID: PMC3160792 DOI: 10.1111/j.1530-0277.2007.00550.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic alcohol consumption perturbs cellular function in a variety of organ systems. Previous studies have suggested that moderate alcohol consumption reduces vascular disease, whereas heavier alcohol consumption may worsen it. The mechanisms for these vascular effects of chronic alcohol ingestion continue to be defined and constitute the focus of this study. METHODS Male Sprague Dawley rats were fed an isocaloric, Lieber-Decarli liquid diet containing either ethanol (36% calories) or Maltose-Dextrin (substituted for ethanol) for 6 weeks. Telemetric blood pressure measurements were taken before and after ethanol feeding. After the rats were killed, the aortas were analyzed for endothelial nitric oxide (NO) synthase expression and NO production. RESULTS Chronic ethanol ingestion decreased mean arterial pressure and increased aortic NO production as demonstrated by direct ex vivo measurements using iron diethyldithio-carbamic acid as well as analysis of nitrosyl-hemoglobin (NO-Hb) levels. Consistent with these assays of vascular NO production, endothelium-dependent relaxation responses to acetycholine (Ach) were enhanced in ethanol-fed animals. Aortic endothelial nitric oxide synthase expression was also increased by chronic ethanol ingestion. CONCLUSIONS These findings demonstrate that a regimen of chronic alcohol ingestion in the rat produced generally salutary effects in the systemic vasculature following a 6-week treatment regimen. These findings extend previous in vitro studies to demonstrate that alcohol has potent effects on vascular endothelial nitric oxide synthase expression, NO production, and vascular function. Consistent with previous reports, these findings confirm that alcohol-induced alterations in the production of reactive nitrogen species play an important role in the pathogenesis of alcohol-mediated tissue effects.
Collapse
Affiliation(s)
- Dean J Kleinhenz
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia 30033, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Camelo JS, Hehre D, Devia C, Camelo SHH, Bancalari E, Suguihara C. The role of angiotensin II receptor-1 blockade in the hypoxic pulmonary vasoconstriction response in newborn piglets. Neonatology 2008; 93:263-8. [PMID: 18043007 DOI: 10.1159/000111879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme activity is increased in newborn infants with respiratory distress syndrome and in animals with alveolar hypoxia. OBJECTIVE To test whether angiotensin II (Ang II) mediates the pulmonary vasoconstriction induced by acute hypoxia in newborn piglets. METHODS Eight unanesthetized chronically instrumented newborn piglets (mean +/- SEM; age 6.6 +/- 0.6 days; weight 2,181 +/- 174 g) were randomly assigned to receive a saline solution or the Ang II type 1 receptor (AT(1)) antagonist, losartan, in a crossover study design, with an interval of at least 48 h between the first and second study. Pulmonary artery (Ppa), wedge, systemic arterial (Psa) and right atrial pressures, cardiac output (CO), pulmonary (PVR) and systemic (SVR) vascular resistances, and arterial blood gases were obtained in room air, before and during the saline or losartan infusion (6 mg/kg followed by 3 mg/kg/h), and during 6 h of hypoxia (FiO(2) = 0.11) and saline or losartan infusion. Data were analyzed by repeated measures analysis of variance. RESULTS The pulmonary vasoconstriction induced by acute hypoxia was significantly attenuated during losartan infusion, while Psa, SVR, CO, pH, PaCO(2), PaO(2) and base excess did not differ between groups. During room air, Ppa, PVR, Psa, SVR and CO values were not modified by saline or losartan infusion. CONCLUSION These data suggest that the pulmonary vasoconstriction induced by acute hypoxia in newborn piglets is partially mediated by Ang II, acting via AT(1).
Collapse
Affiliation(s)
- José Simon Camelo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Fla. 33101, USA
| | | | | | | | | | | |
Collapse
|
21
|
Li J, Zhao X, Li X, Lerea KM, Olson SC. Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium is mediated via a Gαi3/Ras/Raf/MAPK pathway. Am J Physiol Cell Physiol 2007; 292:C2185-96. [PMID: 17329403 DOI: 10.1152/ajpcell.00204.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that angiotensin II (ANG II) stimulated Src tyrosine kinase via a pertussis toxin-sensitive type 2 receptor, which, in turn, activates MAPK, resulting in an increase in nitric oxide synthase (NOS) expression in pulmonary artery endothelial cells (PAECs). The present study was designed to investigate the pathway by which ANG II activates Src leading to an increase in ERK1/ERK2 phosphorylation and an increase in NOS protein in PAECs. Transfection of PAECs with Gαi3dominant negative (DN) cDNA blocked the ANG II-dependent activation of Src, ERK1/ERK2 phosphorylation, and increase in NOS expression. ANG II stimulated an increase in tyrosine phosphorylation of sequence homology of collagen (Shc; 15 min) that was prevented when PAECs were pretreated with 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo-[3,4-d]pyrimidine (PP2), a Src inhibitor. ANG II induced a Src-dependent association between Shc and growth factor receptor-bound protein 2 (Grb2) and between Grb2 and son of sevenless (Sos), both of which were maximal at 15 min. The ANG II-dependent increase in Ras GTP binding was prevented when PAECs were pretreated with the AT2antagonist PD-123319 or with PP2 or were transfected with Src DN cDNA. ANG II-dependent activation of MAPK and the increase in endothelial NOS (eNOS) were prevented when PAECs were transfected with Ras DN cDNA or treated with FTI-277, a farnesyl transferase inhibitor. ANG II induction of Raf-1 phosphorylation was prevented when PAECs were pretreated with PD-123319 and PP2. Raf kinase inhibitor 1 prevented the ANG II-dependent increase in eNOS expression. Collectively, these data suggest that Gαi3, Shc, Grb2, Ras, and Raf-1 link Src to activation of MAPK and to the AT2-dependent increase in eNOS expression in PAECs.
Collapse
Affiliation(s)
- Jianyu Li
- Dept. of Biochemistry, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Increasing knowledge of the role of nitric oxide (NO) in physiology and disease has stimulated efforts to target the NO pathway pharmacologically. These therapeutic strategies include NO donors that directly or indirectly release NO and agents that increase NO bioactivity. Traditional organic nitrates such as nitroglycerin, which indirectly release NO, were believed to have limited long-term efficacy and tolerability, chiefly because of nitrate tolerance. Recent studies, however, suggest more effective ways of using these agents and new applications for them. Nicorandil, a hybrid organic nitrate that also activates potassium channels, has demonstrated significant benefits in acute coronary syndromes. Other nitrates are being investigated for use in neurodegenerative diseases. Direct NO donors include NO gas, which is useful in respiratory disorders, and the more recent classes of diazeniumdiolates, sydnonimines, and S-nitrosothiols. Preliminary data suggest that these agents may be effective as antiatherosclerotic agents as well as in other disease states. In addition, hybrid agents that consist of an NO donor coupled with a parent anti-inflammatory drug, including nonsteroidal anti-inflammatory drugs, have demonstrated enhanced efficacy and tolerability compared with the anti-inflammatory parent drug alone in diverse experimental models. Established drugs that enhance NO bioactivity include antihypertensive agents, particularly angiotensin-converting enzyme inhibitors, calcium channel blockers, and newer vasodilating beta-blockers. In addition, 3-methylglutaryl coenzyme A reductase inhibitors (statins) promote NO bioactivity, both through and independent of lipid lowering. The NO-promoting actions of these established drugs provide some insight into their known benefits and suggest possible therapeutic potential.
Collapse
Affiliation(s)
- R Preston Mason
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
23
|
Miyamoto A, Wada R, Inoue A, Ishiguro S, Liao JK, Nishio A. Role of angiotensin II receptor subtypes in porcine basilar artery: functional, radioligand binding, and cell culture studies. Life Sci 2006; 78:943-9. [PMID: 16223512 PMCID: PMC2641039 DOI: 10.1016/j.lfs.2005.06.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 06/01/2005] [Indexed: 11/26/2022]
Abstract
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.
Collapse
Affiliation(s)
- Atsushi Miyamoto
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ryoko Wada
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Aya Inoue
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Shigeru Ishiguro
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - James K. Liao
- Vascular Medicine Research, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | - Akira Nishio
- Department of Veterinary Pharmacology, Faculty of Agriculture, Kagoshima University, Kagoshima, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
24
|
Zhao X, Li X, Trusa S, Olson SC. Angiotensin type 1 receptor is linked to inhibition of nitric oxide production in pulmonary endothelial cells. ACTA ACUST UNITED AC 2005; 132:113-22. [PMID: 16242794 DOI: 10.1016/j.regpep.2005.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/08/2005] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that angiotensin II (Ang II) stimulates an increase in nitric oxide synthase (NOS) mRNA levels, eNOS protein expression and NO production via the type 2 (AT2) receptor, whereas signaling via the type 1 (AT1) receptor negatively regulates NO production in bovine pulmonary artery endothelial cells (BPAECs). In the present study, we investigated the components of the AT1 receptor-linked signaling pathway(s) that are involved in the downregulation of eNOS protein expression in BPAECs. Treatment of BPAECs with either AT1 receptor antagonists or an anti-AT1 receptor antibody induced eNOS protein expression. Furthermore, intracellular delivery of GP-Antagonist-2A, an inhibitor of Galphaq proteins, and treatment of BPAECs with U73122, a phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, enhanced eNOS protein expression. Treatment of BPAECs with the cell-permeable calcium chelator, BAPTA/AM, increased eNOS protein expression at 8 h, while increasing intracellular calcium with either thapsigargin or A23187 prevented Ang II-induced eNOS protein expression. Phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, completely prevented Ang II-stimulated eNOS protein expression at 8 h, whereas depletion of PKC by long-term treatment with PMA, induced eNOS protein expression. Treatment of BPAECs with a PKCalpha-specific inhibitor or transfection of BPAECs with an anti-PKCalpha neutralizing antibody stimulated eNOS protein expression. Conversely, rottlerin, a PKCdelta specific isoform inhibitor had no effect on basal or Ang II-stimulated eNOS protein expression. Moreover, treatment of BPAECs with U73122, BAPTA/AM and PKCalpha-specific inhibitors increased NO production at 8 h. In conclusion, Ang II downregulates eNOS protein expression via an AT1 receptor-linked pathway involving Galphaq/PLC/calcium/PKCalpha signaling pathway in BPAECs.
Collapse
Affiliation(s)
- Xiangmin Zhao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
25
|
Kihara M, Sato K, Hashimoto T, Imai N, Toya Y, Umemura S. Expression of endothelial nitric oxide synthase is suppressed in the renal vasculature of angiotensinogen-gene knockout mice. Cell Tissue Res 2005; 323:313-20. [PMID: 16189718 DOI: 10.1007/s00441-005-0058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
We have attempted to elucidate the mechanism by which endothelial-type nitric oxide synthase (eNOS) is regulated in the kidney, with special reference to the role of renal hemodynamics and angiotensin II (Ang II). We compared angiotensinogen gene knockout (Atg-/-) mice, which lacked Ang II (resulting in sodium/water depletion and severe hypotension), with wild-type (Atg+/+) mice. Using Western blot analysis and the NADPH diaphorase histochemical reaction, we found that the expression and activity of eNOS were markedly lower in the renal vessels of Atg-/- mice compared with wild-type (Atg+/+) mice. Dietary salt loading significantly enhanced renal eNOS levels and increased blood pressure in Atg-/- mice, but severe hypotension almost abolished the effects of salt loading. In contrast, in Atg+/+ mice, altered salt intake or hydralazine had no effect on renal eNOS levels. These results suggest that perfusion pressure plays an essential role in maintaining renal vascular eNOS activity, whereas Ang II plays a supportive role, especially when renal circulation is impaired.
Collapse
Affiliation(s)
- Minoru Kihara
- Department of Internal Medicine II, School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Zheng J, Wen Y, Chen DB, Bird IM, Magness RR. Angiotensin II Elevates Nitric Oxide Synthase 3 Expression and Nitric Oxide Production Via a Mitogen-Activated Protein Kinase Cascade in Ovine Fetoplacental Artery Endothelial Cells1. Biol Reprod 2005; 72:1421-8. [PMID: 15728793 DOI: 10.1095/biolreprod.104.039172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, Wisconsin 53715, USA.
| | | | | | | | | |
Collapse
|
27
|
Zheng J, Bird IM, Chen DB, Magness RR. Angiotensin II regulation of ovine fetoplacental artery endothelial functions: interactions with nitric oxide. J Physiol 2005; 565:59-69. [PMID: 15790666 PMCID: PMC1464493 DOI: 10.1113/jphysiol.2004.082420] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During normal pregnancy, elevated angiotensin II (Ang II) concentrations in the maternal and fetal circulations are associated with dramatic increases in placental angiogenesis and blood flow. Much is known about a local renin-angiotensin system within the uteroplacental vasculature. However, the roles of Ang II in regulating fetoplacental vascular functions are less well defined. In the fetal placenta, the overall in vivo vasoconstrictor responses of the blood vessels to Ang II infusion is thought to be less than that in its maternal counterpart, even though infused Ang II induces vasoconstriction. Recent data from our laboratories suggest that Ang II stimulates cell proliferation and increases endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO) in ovine fetoplacental artery endothelial cells. These data imply that elevations of the known vasoconstrictor Ang II in the fetal circulation may indeed play a role in the marked increases in fetoplacental angiogenesis and that Ang II-elevated endothelial NO production may partly attenuate Ang II-induced vasoconstriction on vascular smooth muscle. Together with both of these processes, the high levels of Ang II in the fetal circulation may serve to modulate overall fetoplacental vascular resistance. In this article, we review currently available data on the expression of Ang II receptors in the ovine fetal placenta with particular emphasis on the effects of Ang II on ovine fetoplacental endothelium. The potential cellular mechanisms underlying the regulation of Ang II on endothelial growth and vasodilator production are discussed.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Obstetrics, Perinatal Research Laboratories, University of Wisconsin, 7E Meriter Hospital, Madison, WI 53715, USA.
| | | | | | | |
Collapse
|
28
|
Li X, Lerea KM, Li J, Olson SC. Src kinase mediates angiotensin II-dependent increase in pulmonary endothelial nitric oxide synthase. Am J Respir Cell Mol Biol 2004; 31:365-72. [PMID: 15191917 DOI: 10.1165/rcmb.2004-0098oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that angiotensin II (Ang II) stimulates nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs) by increasing NO synthase (NOS) expression via the type 2 receptor. The purpose of this study was to identify the Ang II-dependent signaling pathway that mediates this increase in endothelial NOS (eNOS). The Ang II-dependent increase in eNOS expression is prevented when BPAECs are pretreated with the tyrosine kinase inhibitors, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which also blocked Ang II-dependent mitogen-activated protein kinase (MAPK) kinase/extracellular-regulated protein kinase (MEK)-1 and MAPK phosphorylation, suggesting that Src is upstream of MAPK in this pathway. Transfection of BPAECs with an Src dominant negative mutant cDNA prevented the Ang II-dependent Src activation and increase in eNOS protein expression. PD98059, a MEK-1 inhibitor, prevented the Ang II-dependent phosphorylation of extracellular-regulated protein kinases 1 and 2 and increase in eNOS expression. Neither AG1478, an epidermal growth factor receptor kinase inhibitor, nor AG1295, a platelet derived growth factor receptor kinase inhibitor, had any effect on Ang II-stimulated Src activity, MAPK activation, or eNOS expression. Pertussis toxin prevented the Ang II-dependent increase in Src activity, MAPK activation, and eNOS expression. These data suggest that Ang II stimulates Src tyrosine kinase via a pertussis toxin-sensitive pathway, which in turn activates the MAPK pathway, resulting in increased eNOS protein expression in BPAECs.
Collapse
Affiliation(s)
- Xinmei Li
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|