1
|
Boucher M, Henry C, Bossé Y. Force adaptation through the intravenous route in naïve mice. Exp Lung Res 2023; 49:131-141. [PMID: 37477352 DOI: 10.1080/01902148.2023.2237127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Aim of the study: Force adaptation is a process whereby the contractile capacity of the airway smooth muscle increases during a sustained contraction (aka tone). Tone also increases the response to a nebulized challenge with methacholine in vivo, presumably through force adaptation. Yet, due to its patchy pattern of deposition, nebulized methacholine often spurs small airway narrowing heterogeneity and closure, two important enhancers of the methacholine response. This raises the possibility that the potentiating effect of tone on the methacholine response is not due to force adaptation but by furthering heterogeneity and closure. Herein, methacholine was delivered homogenously through the intravenous (i.v.) route. Materials and Methods: Female and male BALB/c mice were subjected to one of two i.v. methacholine challenges, each of the same cumulative dose but starting by a 20-min period either with or without tone induced by serial i.v. boluses. Changes in respiratory mechanics were monitored throughout by oscillometry, and the response after the final dose was compared between the two challenges to assess the effect of tone. Results: For the elastance of the respiratory system (Ers), tone potentiated the methacholine response by 64 and 405% in females (37.4 ± 10.7 vs. 61.5 ± 15.1 cmH2O/mL; p = 0.01) and males (33.0 ± 14.3 vs. 166.7 ± 60.6 cmH2O/mL; p = 0.0004), respectively. For the resistance of the respiratory system (Rrs), tone potentiated the methacholine response by 129 and 225% in females (9.7 ± 3.5 vs. 22.2 ± 4.3 cmH2O·s/mL; p = 0.0003) and males (10.7 ± 3.1 vs. 34.7 ± 7.9 cmH2O·s/mL; p < 0.0001), respectively. Conclusions: As previously reported with nebulized challenges, tone increases the response to i.v. methacholine in both sexes; albeit sexual dimorphisms were obvious regarding the relative resistive versus elastic nature of this potentiation. This represents further support that tone increases the lung response to methacholine through force adaptation.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, Canada
| |
Collapse
|
2
|
Bruggink S, Kentch K, Kronenfeld J, Renquist BJ. A Leak-Free Head-Out Plethysmography System to Accurately Assess Lung Function in Mice. J Appl Physiol (1985) 2022; 133:104-118. [DOI: 10.1152/japplphysiol.00835.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice are a valuable model for elegant studies of complex, systems-dependent diseases, including pulmonary diseases. Current tools to assess lung function in mice are either terminal or lack accuracy. We set out to develop a low-cost, accurate, head-out variable-pressure plethysmography system to allow for repeated, non-terminal measurements of lung function in mice. Current head-out plethysmography systems are limited by air leaks that prevent accurate measures of volume and flow. We designed an inflatable cuff that encompasses the mouse's neck preventing air leak. We wrote corresponding software to collect and analyze the data, remove movement artifacts, and automatically calibrate each dataset. This software calculates inspiratory/expiratory volume, inspiratory/expiratory time, breaths per minute, mid-expiratory flow, and end-inspiratory pause. To validate the use, we established that our plethysmography system accurately measured tidal breathing, the bronchoconstrictive response to methacholine, sex and age associated changes in breathing, and breathing changes associated with house dust mite sensitization. Our estimates of volume, flow, and timing of breaths are in line with published estimates, we observed dose-dependent decreases in volume and flow in response to methacholine (P < 0.05), increased lung volume and decreased breathing rate with aging (P < 0.05), and that house dust mite sensitization decreased volume and flow (P <0.05) while exacerbating the methacholine induced increases in inspiratory and expiratory time (P < 0.05). We describe an accurate, sensitive, low-cost, head-out plethysmography system that allows for longitudinal studies of pulmonary disease in mice.
Collapse
Affiliation(s)
- Stephanie Bruggink
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ, United States
| | - Kyle Kentch
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Jason Kronenfeld
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Benjamin Jennings Renquist
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Abstract
Asthma has been the most prevalent chronic respiratory disease (Mensah et al. J Allergy Clin Immunol 142:744-748, 2018). To explore pathogenic mechanism or new treatments of asthma, mice have been utilized to model the disease. Eosinophilic airway inflammation, allergen specific-IgE, and airway hyperresponsiveness have been characteristic features of allergic asthma (Drake et al. Pulm Ther 5:103-115, 2019). In mouse models, airway hyperresponsiveness to inhaled broncho-constrictor agents such as methacholine chloride (MCh) has been a key disease marker (Alessandrini et al. Front Immunol 11:575936, 2020). A variety of systems to assess airway reactivity in mice are currently available. Here, three distinct systems are described as these have been used in many publications. In the first system, an invasive system in which mice are anesthetized and intubated followed by mechanical ventilation, lung resistance (R), dynamic compliance (C), and other respiratory parameters with MCh challenge are measured. In the second system, a noninvasive system equipped with a chamber in which mice can move freely and spontaneously breathe, changes in airways with MCh challenge are measured as enhanced pause (Penh) values. In the third system, in vitro airway smooth muscle (ASM) reactivity is monitored in an extracted mouse tracheal duct with a cholinergic agonist challenge or electrical stimulation. Each of these systems has unique features, benefits, or disadvantages.
Collapse
|
4
|
Mori V, Vitorasso RL, Takeuchi VA, Lima WT, Oliveira MA, Moriya HT. Signal processing to remove spurious contributions to the assessment of respiratory mechanics. Exp Lung Res 2021; 48:1-11. [PMID: 34935573 DOI: 10.1080/01902148.2021.2019355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Signal disruptions in small animals during the realization of the Forced Oscillation Technique are a well-known cause of data loss as it leads to non-reliable estimations of the respiratory impedance. In this work, we assessed the effects of removing the disrupted epoch when a 3-seconds input signal composed of one and a half 2-seconds full cycle is used. We tested our hypothesis in 25 SAMR1 mice under different levels of bronchoconstriction due to methacholine administration by iv bolus injections in different doses (15 animals) and by iv continuous infusion in different infusion rates (10 animals). Signal disruptions were computationally simulated as sharp drops in the pressure signal within a short timescale, and signal processing was performed using own developed algorithms. We found that the model goodness of fit worsens when averaging techniques to estimate the input respiratory impedance are not used. However, no statistically significant differences were observed in the comparison between Constant Phase Model parameters of the full 3-s signal and the 2-s non disrupted epoch in all doses or infusion rates for both methacholine delivery strategies. The proposed technique presents reliable outcomes that can reduce animal use in Forced Oscillation Technique realization.
Collapse
Affiliation(s)
- Vitor Mori
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Renato L Vitorasso
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Vitor A Takeuchi
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Wothan T Lima
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Xu G, Wan H, Yi L, Chen W, Luo Y, Huang Y, Liu X. Berberine administrated with different routes attenuates inhaled LPS-induced acute respiratory distress syndrome through TLR4/NF-κB and JAK2/STAT3 inhibition. Eur J Pharmacol 2021; 908:174349. [PMID: 34284014 PMCID: PMC8285933 DOI: 10.1016/j.ejphar.2021.174349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence showed that berberine possessed the anti-inflammatory action in various diseases caused by inflammation. However, it was still unclear whether both inhalation and injection with berberine produced pulmonary protective role in acute respiratory distress syndrome (ARDS). This study was aimed to evaluate the effects of both administration routes including inhalation and injection with berberine in ARDS induced by lipopolysaccharide (LPS) inhalation. Histopathological examination and weight of lung were evaluated. Phosphorylation of NF-κB, JAK2 and STAT3 were measured to assess the activity of inflammation related signaling pathways. Proinflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) and serum were also detected. The results showed that LPS caused the lung injury, while both administration routes with berberine attenuated the injury and improved the pulmonary morphology. In addition, the primary TLR4/NF-κB and secondary JAK2/STAT3 signaling pathways which were activated by LPS in lung were totally inhibited by berberine administration. Moreover, proinflammatory cytokines in both BALF and serum were decreased by berberine. Considering that molecular docking simulation indicated that berberine could bind with TLR4, the present suggested that the inhibition of the inflammation related TLR4/NF-κB and JAK2/STAT3 signaling pathways might be involved in the pulmonary protective effect of berberine in LPS-induced ARDS.
Collapse
Affiliation(s)
- Guanghui Xu
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China.
| | - Huiqi Wan
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Wei Chen
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Youhua Luo
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Yiqi Huang
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Xiaojuan Liu
- Pharmaceutical Research Center, Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| |
Collapse
|
6
|
Lundblad LKA, Robichaud A. Oscillometry of the respiratory system: a translational opportunity not to be missed. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1038-L1056. [PMID: 33822645 PMCID: PMC8203417 DOI: 10.1152/ajplung.00222.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Airway oscillometry has become the de facto standard for quality assessment of lung physiology in laboratory animals and has demonstrated its usefulness in understanding diseases of small airways. Nowadays, it is seeing extensive use in daily clinical practice and research; however, a question that remains unanswered is how well physiological findings in animals and humans correlate? Methodological and device differences are obvious between animal and human studies. However, all devices deliver an oscillated airflow test signal and output respiratory impedance. In addition, despite analysis differences, there are ways to interpret animal and human oscillometry data to allow suitable comparisons. The potential with oscillometry is its ability to reveal universal features of the respiratory system across species, making translational extrapolation likely to be predictive. This means that oscillometry can thus help determine if an animal model displays the same physiological characteristics as the human disease. Perhaps more importantly, it can also be useful to determine whether an intervention is effective as well as to understand if it affects the desired region of the respiratory system, e.g., the periphery of the lung. Finally, findings in humans can also inform preclinical scientists and give indications as to what type of physiological changes should be observed in animal models to make them relevant as models of human disease. The present article will attempt to demonstrate the potential of oscillometry in respiratory research, an area where the development of novel therapies is plagued with a failure rate higher than in other disease areas.
Collapse
Affiliation(s)
- Lennart K A Lundblad
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- THORASYS Thoracic Medical Systems Inc., Montreal, Quebec, Canada
| | - Annette Robichaud
- SCIREQ Scientific Respiratory Equipment Inc., Montreal, Quebec, Canada
| |
Collapse
|
7
|
Respiratory mechanics during methacholine bolus and continuous infusion protocols in asthma model. Respir Physiol Neurobiol 2021; 292:103705. [PMID: 34062282 DOI: 10.1016/j.resp.2021.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Balb/c mice respiratory mechanics was studied in two intravenous methacholine (MCh) protocols: bolus and continuous infusion. The Constant Phase Model (CPM) was used in this study. The harmonic distortion index (kd) was used to assess the respiratory system nonlinearity. The analysis of variance showed difference between groups (OVA vs control) and among doses for both protocols. Bolus protocol posttest: there was a difference between OVA and control at 0.3 and 1 mg/kg doses (p<0.0001 and p<0.001) for Rn. Infusion: there was a difference between OVA and control at 192 μg.kg-1.min-1 dose for Rn, G and H, (p<0.01; p<0.001; p<0.001). An increment was found in kd values near to the observed peak values in bolus protocol. The bolus protocol could better differentiate inflamed and non-inflamed airway resistance, whereas the differences between OVA and control in continuous infusion protocol were associated to airway- and, mainly, parenchyma-related parameters. Moreover, the bolus protocol presented a higher nonlinear degree compared to the infusion protocol.
Collapse
|
8
|
Oliveira MA, Lino-Alvarado AE, Moriya HT, Vitorasso RL. Drug class effects on respiratory mechanics in animal models: access and applications. Exp Biol Med (Maywood) 2021; 246:1094-1103. [PMID: 33601911 DOI: 10.1177/1535370221993095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Assessment of respiratory mechanics extends from basic research and animal modeling to clinical applications in humans. However, to employ the applications in human models, it is desirable and sometimes mandatory to study non-human animals first. To acquire further precise and controlled signals and parameters, the animals studied must be further distant from their spontaneous ventilation. The majority of respiratory mechanics studies use positive pressure ventilation to model the respiratory system. In this scenario, a few drug categories become relevant: anesthetics, muscle blockers, bronchoconstrictors, and bronchodilators. Hence, the main objective of this study is to briefly review and discuss each drug category, and the impact of a drug on the assessment of respiratory mechanics. Before and during the positive pressure ventilation, the experimental animal must be appropriately sedated and anesthetized. The sedation will lower the pain and distress of the studied animal and the plane of anesthesia will prevent the pain. With those drugs, a more controlled procedure is carried out; further, because many anesthetics depress the respiratory system activity, a minimum interference of the animal's respiration efforts are achieved. The latter phenomenon is related to muscle blockers, which aim to minimize respiratory artifacts that may interfere with forced oscillation techniques. Generally, the respiratory mechanics are studied under appropriate anesthesia and muscle blockage. The application of bronchoconstrictors is prevalent in respiratory mechanics studies. To verify the differences among studied groups, it is often necessary to challenge the respiratory system, for example, by pharmacologically inducing bronchoconstriction. However, the selected bronchoconstrictor, doses, and administration can affect the evaluation of respiratory mechanics. Although not prevalent, studies have applied bronchodilators to return (airway resistance) to the basal state after bronchoconstriction. The drug categories can influence the mathematical modeling of the respiratory system, systemic conditions, and respiratory mechanics outcomes.
Collapse
Affiliation(s)
- Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP) Sao Paulo, SP 05508-000, Brazil
| | - Alembert E Lino-Alvarado
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| | - Renato L Vitorasso
- Biomedical Engineering Laboratory - University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
| |
Collapse
|
9
|
Zahn N, Mikulsky BN, Roni MSR, Yocum GT, Mian MY, Knutson DE, Cook JM, Emala CW, Stafford DC, Arnold LA. Nebulized MIDD0301 Reduces Airway Hyperresponsiveness in Moderate and Severe Murine Asthma Models. ACS Pharmacol Transl Sci 2020; 3:1381-1390. [PMID: 33344908 PMCID: PMC7737320 DOI: 10.1021/acsptsci.0c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 01/19/2023]
Abstract
We report the relaxation of methacholine-constricted airways with nebulized MIDD0301, a positive allosteric γ-aminobutyric acid type A receptor (GABAAR) modulator. The therapeutic efficacy of nebulized MIDD0301 in reducing airway resistance was investigated in spontaneous breathing mice using a whole-body plethysmograph and in unconscious mice using a forced oscillation technique. Prophylactic nebulized MIDD0301 reduced subsequent methacholine-induced bronchoconstriction in ovalbumin and house dust mite allergic asthma models and in normal mice. Nebulized MIDD0301 exhibited comparable or better therapeutic potency compared to nebulized albuterol and oral montelukast. Prophylactic nebulized MIDD0301 was also effective in reducing bronchoconstriction, comparable to nebulized albuterol or fluticasone, in a steroid resistant asthma mouse model induced by intratracheal installation of lipopolysaccharide and interferon-gamma. Oral dexamethasone was ineffective in this model. Nebulized MIDD0301 was also effective in reversing bronchospasm when dosed after methacholine challenge comparable to albuterol. Pharmacokinetic studies showed that about 0.06% of nebulized MIDD0301 entered the mouse lung when using a whole body plethysmograph and therapeutic levels were sustained in the lung for at least 25 min. Consistent with previous reports on orally dosed MIDD0301, high doses of nebulized MIDD0301 resulted in minimal brain exposure and thus no observable adverse sensorimotor or respiratory depression effects occurred. In addition, no adverse cardiovascular effects were observed following 100 mg/kg i.p. dosing. These results further demonstrate that charged imidazodiazepine MIDD0301 can selectively target lung GABAAR without adverse motor, cardiovascular, or respiratory effects and inhaled dosing is effective in reducing bronchoconstriction in allergen and infectious lung inflammation.
Collapse
Affiliation(s)
- Nicolas
M. Zahn
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | | | - M. S. Rashid Roni
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Gene T. Yocum
- Department
of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Md Yeunus Mian
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Daniel E. Knutson
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - James M. Cook
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Charles W. Emala
- Department
of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Douglas C. Stafford
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States,Pantherics
Incorporated, La Jolla, California 92037, United States
| | - Leggy A. Arnold
- Department
of Chemistry and Biochemistry and the Milwaukee Institute for Drug
Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States,Pantherics
Incorporated, La Jolla, California 92037, United States,
| |
Collapse
|
10
|
Haider SH, Veerappan A, Crowley G, Caraher EJ, Ostrofsky D, Mikhail M, Lam R, Wang Y, Sunseri M, Kwon S, Prezant DJ, Liu M, Schmidt AM, Nolan A. Multiomics of World Trade Center Particulate Matter-induced Persistent Airway Hyperreactivity. Role of Receptor for Advanced Glycation End Products. Am J Respir Cell Mol Biol 2020; 63:219-233. [PMID: 32315541 DOI: 10.1165/rcmb.2019-0064oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pulmonary disease after World Trade Center particulate matter (WTC-PM) exposure is associated with dyslipidemia and the receptor for advanced glycation end products (RAGE); however, the mechanisms are not well understood. We used a murine model and a multiomics assessment to understand the role of RAGE in the pulmonary long-term effects of a single high-intensity exposure to WTC-PM. After 1 month, WTC-PM-exposed wild-type (WT) mice had airway hyperreactivity, whereas RAGE-deficient (Ager-/-) mice were protected. PM-exposed WT mice also had histologic evidence of airspace disease, whereas Ager-/- mice remained unchanged. Inflammatory mediators such as G-CSF (granulocyte colony-stimulating factor), IP-10 (IFN-γ-induced protein 10), and KC (keratinocyte chemoattractant) were differentially expressed after WTC-PM exposure. WTC-PM induced α-SMA, DIAPH1 (protein diaphanous homolog 1), RAGE, and significant lung collagen deposition in WT compared with Ager-/- mice. Compared with WT mice with PM exposure, relative expression of phosphorylated to total CREB (cAMP response element-binding protein) and JNK (c-Jun N-terminal kinase) was significantly increased in the lung of PM-exposed Ager-/- mice, whereas Akt (protein kinase B) was decreased. Random forests of the refined lung metabolomic profile classified subjects with 92% accuracy; principal component analysis captured 86.7% of the variance in three components and demonstrated prominent subpathway involvement, including known mediators of lung disease such as vitamin B6 metabolites, sphingolipids, fatty acids, and phosphatidylcholines. Treatment with a partial RAGE antagonist, pioglitazone, yielded similar fold-change expression of metabolites (N6-carboxymethyllysine, 1-methylnicotinamide, N1+N8-acetylspermidine, and succinylcarnitine [C4-DC]) between WT and Ager-/- mice exposed to WTC-PM. RAGE can mediate WTC-PM-induced airway hyperreactivity and warrants further investigation.
Collapse
Affiliation(s)
- Syed H Haider
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Arul Veerappan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - George Crowley
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Erin J Caraher
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Dean Ostrofsky
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Mena Mikhail
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Rachel Lam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Yuyan Wang
- Division of Biostatistics, Department of Population Health
| | - Maria Sunseri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Sophia Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - David J Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York; and.,Division of Pulmonary Medicine, Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health.,Department of Environmental Medicine, and
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, New York
| | - Anna Nolan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Department of Environmental Medicine, and.,Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York; and
| |
Collapse
|
11
|
Keeler AM, Zieger M, Semple C, Pucci L, Veinbachs A, Brown RH, Mueller C, ElMallah MK. Intralingual and Intrapleural AAV Gene Therapy Prolongs Survival in a SOD1 ALS Mouse Model. Mol Ther Methods Clin Dev 2020; 17:246-257. [PMID: 31970202 PMCID: PMC6962641 DOI: 10.1016/j.omtm.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results in death from respiratory failure. No cure exists for this devastating disease, but therapy that directly targets the respiratory system has the potential to prolong survival and improve quality of life in some cases of ALS. The objective of this study was to enhance breathing and prolong survival by suppressing superoxide dismutase 1 (SOD1) expression in respiratory motor neurons using adeno-associated virus (AAV) expressing an artificial microRNA targeting the SOD1 gene. AAV-miRSOD1 was injected in the tongue and intrapleural space of SOD1G93A mice, and repetitive respiratory and behavioral measurements were performed until the end stage. Robust silencing of SOD1 was observed in the diaphragm and tongue as well as systemically. Silencing of SOD1 prolonged survival by approximately 50 days, and it delayed weight loss and limb weakness in treated animals compared to untreated controls. Histologically, there was preservation of the neuromuscular junctions in the diaphragm as well as the number of axons in the phrenic and hypoglossal nerves. Although SOD1 suppression improved breathing and prolonged survival, it did not ameliorate the restrictive lung phenotype. Suppression of SOD1 expression in motor neurons that underlie respiratory function prolongs survival and enhances breathing until the end stage in SOD1G93A ALS mice.
Collapse
Affiliation(s)
- Allison M. Keeler
- Division of Pulmonary Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marina Zieger
- Division of Pulmonary Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Carson Semple
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Logan Pucci
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Alessandra Veinbachs
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert H. Brown
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Christian Mueller
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
12
|
Vitorasso RDL, de Oliveira MA, Tavares-de-Lima W, Moriya HT. Respiratory mechanics evaluation of mice submitted to intravenous methacholine: Bolus vs. continuous infusion. Exp Biol Med (Maywood) 2020; 245:680-689. [PMID: 32183551 DOI: 10.1177/1535370220912393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
IMPACT STATEMENT Respiratory mechanics studies are associated with fundamental research and translational studies; the present work thus investigates this particular matter. Our current research describes differences and similarities between two different ways of administrating a very prevalent bronchoconstrictor (methacholine) in an aging process scenario. The core issue of our work is related with troubles we find with the bolus protocol and the application of the mathematical model used to assess the respiratory mechanics. Our findings reveal the continuous infusion as an alternative to these problems and we hope to provide the proper foundations to a more reliable assessment in the respiratory field.
Collapse
Affiliation(s)
- Renato de L Vitorasso
- Biomedical Engineering Laboratory, University of Sao Paulo (USP), Sao Paulo 05508-010, Brazil
| | - Maria A de Oliveira
- Department of Pharmacology, Institute of Biomedical Science USP, Sao Paulo 05508-000, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Science USP, Sao Paulo 05508-000, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, University of Sao Paulo (USP), Sao Paulo 05508-010, Brazil
| |
Collapse
|
13
|
Umstead TM, Hewage EK, Mathewson M, Beaudoin S, Chroneos ZC, Wang M, Halstead ES. Lower respiratory tract delivery, airway clearance, and preclinical efficacy of inhaled GM-CSF in a postinfluenza pneumococcal pneumonia model. Am J Physiol Lung Cell Mol Physiol 2020; 318:L571-L579. [PMID: 31994895 DOI: 10.1152/ajplung.00296.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Inhaled granulocyte/macrophage colony-stimulating factor (GM-CSF) shows promise as a therapeutic to treat viral and bacterial pneumonia, but no mouse model of inhaled GM-CSF has been described. We sought to 1) develop a mouse model of aerosolized recombinant mouse GM-CSF administration and 2) investigate the protection conferred by inhaled GM-CSF during influenza A virus (IAV) infection against secondary bacterial infection with pneumococcus. To assess lower respiratory tract delivery of aerosolized therapeutics, mice were exposed to aerosolized fluorescein (FITC)-labeled dextran noninvasively via an aerosolization tower or invasively using a rodent ventilator. The efficiency of delivery to the lower respiratory tracts of mice was 0.01% noninvasively compared with 0.3% invasively. The airway pharmacokinetics of inhaled GM-CSF fit a two-compartment model with a terminal phase half-life of 1.3 h. To test if lower respiratory tract levels were sufficient for biological effect, mice were infected intranasally with IAV, treated with aerosolized recombinant mouse GM-CSF, and then secondarily infected with Streptococcus pneumoniae. Inhaled GM-CSF conferred a significant survival benefit to mice against secondary challenge with S. pneumoniae (P < 0.05). Inhaled GM-CSF did not reduce airway or lung parenchymal bacterial growth but significantly reduced the incidence of S. pneumoniae bacteremia (P < 0.01). However, GM-CSF overexpression during influenza virus infection did not affect lung epithelial permeability to FITC-dextran ingress into the bloodstream. Therefore, the mechanism of protection conferred by inhaled GM-CSF appears to be locally mediated improved lung antibacterial resistance to systemic bacteremia during IAV infection.
Collapse
Affiliation(s)
- Todd M Umstead
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Eranda Kurundu Hewage
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Margaret Mathewson
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sarah Beaudoin
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zissis C Chroneos
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ming Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - E Scott Halstead
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
14
|
Vitorasso RDL, Mori V, Oliveira MA, Suaiden AS, Tavares-DE-Lima W, Moriya HT. Methacholine dose response curve and acceptability criteria of respiratory mechanics modeling. Exp Lung Res 2020; 46:23-31. [DOI: 10.1080/01902148.2020.1711831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Renato de L. Vitorasso
- Laboratory of Biomedical Engineering, School of Engineering, University of São Paulo (USP), São Paulo, Brazil
| | - Vitor Mori
- Laboratory of Biomedical Engineering, School of Engineering, University of São Paulo (USP), São Paulo, Brazil
| | - Maria A. Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, USP, São Paulo, SP, Brazil
| | - Andre S. Suaiden
- Department of Pharmacology, Institute of Biomedical Sciences, USP, São Paulo, SP, Brazil
| | - Wothan Tavares-DE-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, USP, São Paulo, SP, Brazil
| | - Henrique T. Moriya
- Laboratory of Biomedical Engineering, School of Engineering, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
15
|
Valenga MH, Vitorasso RDL, Rodrigues TG, Pazetti R, Cardoso PFG, Moriya HT, Aoki FG. An in vivo image acquisition system for the evaluation of tracheal mechanics in rats. Artif Organs 2019; 44:504-512. [PMID: 31715014 DOI: 10.1111/aor.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
Mechanical evaluation of tracheal grafts is of great relevance for transplant research. Although there are some publications demonstrating different techniques of tracheal mechanical evaluation, there is still no definitive or preferred protocol available. Here, we present a simple image processing acquisition system that can be used for in vivo experiments. Six male Wistar rats were submitted to orotracheal intubation and a longitudinal incision was made to expose the trachea. Images of tracheae were acquired from a video camera in different scenarios of bronchoconstriction using methacholine (MCh) (Basal, PBS, MCh 30 μg/kg, MCh 300 μg/kg, and postmetabolized) during imposed-inspiration and imposed-expiration. The area variation ratio (the ratio between areas during expiration vs. inspiration) was 1.1× for the Basal group, while the ratio for MCh 300 µg/kg was 6.5×. The area variation of imaged tracheae was statistically significant at the dose of MCh 300 µg/kg for imposed-inspiration versus imposed-expiration (P = .002). Likewise, elastance data of respiratory mechanics indicated a statistically significant difference at the dose of MCh 300 µg/kg for imposed-inspiration versus imposed-expiration (P = .026). Our image processing analysis protocol presented corresponding behavior when compared to mechanical parameters of the respiratory system. In addition, our image acquisition system was able to highlight the differences between imposed-inspiration and imposed-expiration. Image analysis of the tracheal area variation seems to be in agreement with the elastance of the respiratory system. Taken together, these observations may help future studies of tracheal transplantation for in situ assessment of graft patency.
Collapse
Affiliation(s)
- Marcelo Henrique Valenga
- Biomedical Engineering Laboratory (LEB), Escola Politécnica, University of São Paulo, São Paulo - SP, Brazil
| | - Renato de Lima Vitorasso
- Biomedical Engineering Laboratory (LEB), Escola Politécnica, University of São Paulo, São Paulo - SP, Brazil
| | - Thiago Guimarães Rodrigues
- Biomedical Engineering Laboratory (LEB), Escola Politécnica, University of São Paulo, São Paulo - SP, Brazil
| | - Rogério Pazetti
- Thoracic Surgery Research Laboratory (LIM-61), Instituto do Coração (InCor), University of São Paulo, São Paulo - SP, Brazil
| | | | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory (LEB), Escola Politécnica, University of São Paulo, São Paulo - SP, Brazil
| | - Fabio Gava Aoki
- Biomedical Engineering Laboratory (LEB), Escola Politécnica, University of São Paulo, São Paulo - SP, Brazil.,Institute of Science and Technology (ICT), Federal University of São Paulo, São José dos Campos - SP, Brazil
| |
Collapse
|
16
|
Gerde P, Nowenwik M, Sjöberg CO, Selg E. Adapting the Aerogen Mesh Nebulizer for Dried Aerosol Exposures Using the PreciseInhale Platform. J Aerosol Med Pulm Drug Deliv 2019; 33:116-126. [PMID: 31613690 PMCID: PMC7133437 DOI: 10.1089/jamp.2019.1554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Many substances used in inhalation research are water soluble and can be administered as nebulized solutions. Typical examples are therapeutic, small-molecular agents, or macromolecules. Another category is a number of water-soluble agents used for airway diagnostics or disease modeling. Mesh nebulizers have facilitated well-controlled liquid aerosol exposures. Meanwhile, a benchtop inhalation platform, PreciseInhale, was developed for providing small-scale, well-controlled aerosol exposures in preclinical configurations. The purpose of the current research was to adapt the Aerogen mesh nebulizer to work within the PreciseInhale system for both cell culture and rodent exposures. Methods: The wet aerosols produced with the Aerogen Pro nebulizer were dried out in an aerosol holding chamber by supplying dry carrier air, which was provided by passing the incoming ambient air through a column with silica gel. The nebulizer was installed in an aerosol holding chamber between an upstream flow-rate pneumotach and a downstream aerosol monitor. By pulsing, the nebulizer output was reduced to 1%–10% of continuous operation to better match the exposure ventilation requirements. Additional drying was obtained by mantling the holding chamber with dried paper. Results and Conclusions: The nebulizer output was reduced to 3–30 μL/min and dried out before reaching the in vitro or in vivo exposure modules. Using solute concentrations in the range of 0.5%–2% (w/w), dried aerosols were produced with a mass median aerodynamic diameter of 1.5–2.0 μm, compared to the 4–5 μm droplets emitted by the nebulizer. Controlling the Aerogen nebulizer under a reduced output scheme within the PreciseInhale platform gave two major advantages: (i) by reducing aerosol output to better match exposure flow rates of single rodents, increased airway deposition yields were obtained in a range of 1%–10% relative to the nebulized amount of test substance and (ii) shrinking aerosol particle sizes through drying improved the peripheral lung deposition of test aerosols.
Collapse
Affiliation(s)
- Per Gerde
- Inhalation Sciences Sweden AB, Huddinge, Sweden.,Institute of Environmental Medicine, Karolinska Intitutet, Stockholm, Sweden
| | | | | | - Ewa Selg
- Inhalation Sciences Sweden AB, Huddinge, Sweden
| |
Collapse
|
17
|
Gradl R, Dierolf M, Yang L, Hehn L, Günther B, Möller W, Kutschke D, Stoeger T, Gleich B, Achterhold K, Donnelley M, Pfeiffer F, Schmid O, Morgan KS. Visualizing treatment delivery and deposition in mouse lungs using in vivo x-ray imaging. J Control Release 2019; 307:282-291. [DOI: 10.1016/j.jconrel.2019.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 01/17/2023]
|
18
|
Keeler AM, Zieger M, Todeasa SH, McCall AL, Gifford JC, Birsak S, Choudhury SR, Byrne BJ, Sena-Esteves M, ElMallah MK. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum Gene Ther 2018; 30:57-68. [PMID: 29901418 DOI: 10.1089/hum.2018.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption in muscle and the central nervous system (CNS). Adeno-associated virus (AAV) gene therapy is ideal for Pompe disease, since a single systemic injection may correct both muscle and CNS pathologies. Using the Pompe mouse (B6;129-GaaTm1Rabn/J), this study sought to explore if AAVB1, a newly engineered vector with a high affinity for muscle and CNS, reduces systemic weakness and improves survival in adult mice. Three-month-old Gaa-/- animals were injected with either AAVB1 or AAV9 vectors expressing GAA and tissues were harvested 6 months later. Both AAV vectors prolonged survival. AAVB1-treated animals had a robust weight gain compared to the AAV9-treated group. Vector genome levels, GAA enzyme activity, and histological analysis indicated that both vectors transduced the heart efficiently, leading to glycogen clearance, and transduced the diaphragm and CNS at comparable levels. AAVB1-treated mice had higher GAA activity and greater glycogen clearance in the tongue. Finally, AAVB1-treated animals showed improved respiratory function comparable to wild-type animals. In conclusion, AAVB1-GAA offers a promising therapeutic option for the treatment of muscle and CNS in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Marina Zieger
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sophia H Todeasa
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Angela L McCall
- 4 Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jennifer C Gifford
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Samantha Birsak
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sourav R Choudhury
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Barry J Byrne
- 5 Department of Pediatrics, University of Florida, Gainesville, Florida.,6 Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Miguel Sena-Esteves
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Mai K ElMallah
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,4 Department of Pediatrics, Duke University, Durham, North Carolina
| |
Collapse
|
19
|
Guillon A, Sécher T, Dailey LA, Vecellio L, de Monte M, Si-Tahar M, Diot P, Page CP, Heuzé-Vourc'h N. Insights on animal models to investigate inhalation therapy: Relevance for biotherapeutics. Int J Pharm 2017; 536:116-126. [PMID: 29180257 DOI: 10.1016/j.ijpharm.2017.11.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Acute and chronic respiratory diseases account for major causes of illness and deaths worldwide. Recent developments of biotherapeutics opened a new era in the treatment and management of patients with respiratory diseases. When considering the delivery of therapeutics, the inhaled route offers great promises with a direct, non-invasive access to the diseased organ and has already proven efficient for several molecules. To assist in the future development of inhaled biotherapeutics, experimental models are crucial to assess lung deposition, pharmacokinetics, pharmacodynamics and safety. This review describes the animal models used in pulmonary research for aerosol drug delivery, highlighting their advantages and limitations for inhaled biologics. Overall, non-clinical species must be selected with relevant scientific arguments while taking into account their complexities and interspecies differences, to help in the development of inhaled medicines and ensure their successful transposition in the clinics.
Collapse
Affiliation(s)
- A Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France; CHRU de Tours, Service de Médecine Intensive - Réanimation, F-37000, Tours, France
| | - T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France
| | - L A Dailey
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06122, Halle (Saale), Germany
| | - L Vecellio
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Aerodrug, Université François Rabelais - Faculté de Médecine, Tours, France
| | - M de Monte
- Plateforme Scientifique et Technique (PST) Animaleries, Université F. Rabelais, F-37000, Tours, France
| | - M Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France
| | - P Diot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France; CHRU de Tours, Service de Pneumologie, F-37000, Tours, France
| | - C P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032, Tours, France; Université François Rabelais de Tours, F-37032, Tours, France.
| |
Collapse
|
20
|
Caraher EJ, Kwon S, Haider SH, Crowley G, Lee A, Ebrahim M, Zhang L, Chen LC, Gordon T, Liu M, Prezant DJ, Schmidt AM, Nolan A. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure. PLoS One 2017; 12:e0184331. [PMID: 28926576 PMCID: PMC5604982 DOI: 10.1371/journal.pone.0184331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is associated with WTC-LI. In our murine model, absence of RAGE mitigated acute deleterious effects of PM and may be a biologically plausible mediator of PM-related lung disease.
Collapse
Affiliation(s)
- Erin J. Caraher
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Syed H. Haider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Audrey Lee
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Minah Ebrahim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Liqun Zhang
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Respiratory Medicine, PLA, Army General Hospital, Beijing, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ann Marie Schmidt
- Departments of Biochemistry and Molecular Pharmacology and Pathology, Division of Endocrinology, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, United States of America
| |
Collapse
|
21
|
Keeler AM, Liu D, Zieger M, Xiong L, Salemi J, Bellvé K, Byrne BJ, Fuller DD, ZhuGe R, ElMallah MK. Airway smooth muscle dysfunction in Pompe ( Gaa-/- ) mice. Am J Physiol Lung Cell Mol Physiol 2017; 312:L873-L881. [PMID: 28336814 DOI: 10.1152/ajplung.00568.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. Deficiency of GAA leads to systemic glycogen accumulation in the lysosomes of skeletal muscle, motor neurons, and smooth muscle. Skeletal muscle and motor neuron pathology are known to contribute to respiratory insufficiency in Pompe disease, but the role of airway pathology has not been evaluated. Here we propose that GAA enzyme deficiency disrupts the function of the trachea and bronchi and this lower airway pathology contributes to respiratory insufficiency in Pompe disease. Using an established mouse model of Pompe disease, the Gaa-/- mouse, we compared histology, pulmonary mechanics, airway smooth muscle (ASM) function, and calcium signaling between Gaa-/- and age-matched wild-type (WT) mice. Lysosomal glycogen accumulation was observed in the smooth muscle of both the bronchi and the trachea in Gaa-/- but not WT mice. Furthermore, Gaa-/- mice had hyporesponsive airway resistance and bronchial ring contraction to the bronchoconstrictive agents methacholine (MCh) and potassium chloride (KCl) and to a bronchodilator (albuterol). Finally, calcium signaling during bronchiolar smooth muscle contraction was impaired in Gaa-/- mice indicating impaired extracellular calcium influx. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the trachea and bronchi and impairs the ability of lower ASM to regulate calcium and respond appropriately to bronchodilator or constrictors. Accordingly, ASM dysfunction may contribute to respiratory impairments in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donghai Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Marina Zieger
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lang Xiong
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey Salemi
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karl Bellvé
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida; and
| | - David D Fuller
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts; .,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
22
|
Tao C, Tang Y, Zhang L, Tian Y, Zhang Y. Atomization method for verifying size effects of inhalable particles on lung damage of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1476-1484. [PMID: 27914648 DOI: 10.1016/j.scitotenv.2016.11.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
To explore the size effects of inhalable particles on lung damage, aqueous aerosol containing cadmium was studied as a model to design a new type of two-stage atomization device that was composed of two adjustable parts with electronic ultrasonic atomization and pneumatic atomization. The working parameters and effectiveness of this device were tested with H2O atomization and CdCl2 inhalation, respectively. By gravimetrically detecting the mass concentrations of PM2.5 and PM10 and analysing the particle size with a laser sensor, we confirmed the particle size distribution of the aqueous aerosol produced by the new device under different working conditions. Then, we conducted experiments in male Kunming mice that inhaled CdCl2 to determine the size effects of inhalable particles on lung damage and to confirm the effectiveness of the device. The new device could effectively control the particle size in the aqueous aerosol. The inhaled CdCl2 entered and injured the lungs of the mice by causing tissue damage, oxidative stress, increasing endoplasmic reticulum stress and triggering an inflammatory response, which might be related to where the particles deposited. The smaller particles in the aqueous aerosol atomized by the new two-stage atomization device deposited deeper into lung causing more damage. This device could provide a new method for animal experiments involving inhalation with water-soluble toxins.
Collapse
Affiliation(s)
- Chen Tao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yue Tang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lan Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yonggang Tian
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Mo LH, Yang LT, Zeng L, Xu LZ, Zhang HP, Li LJ, Liu JQ, Xiao XJ, Zheng PY, Liu ZG, Yang PC. Dust mite allergen, glutathione S-transferase, induces T cell immunoglobulin mucin domain-4 in dendritic cells to facilitate initiation of airway allergy. Clin Exp Allergy 2016; 47:264-270. [PMID: 27532130 DOI: 10.1111/cea.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 07/03/2016] [Accepted: 07/17/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Allergens from dust mites play a critical role in the pathogenesis of airway allergy. The mechanism by which dust mite allergens induce allergic diseases is not fully understood yet. OBJECTIVE This study tests a hypothesis that the eighth subtypes of Dermatophagoides farina allergen (Derf8) play an important role in the induction of airway allergy. METHODS The protein of Derf8 was synthesized via molecular cloning approach. Dendritic cells (DC) were stimulated with Derf8 in the culture, and then, the expression of T cell immunoglobulin mucin domain 4 (TIM4) in dendritic cells (DC) was analysed. The role of Derf8 in the induction of airway allergy was evaluated with a mouse model. RESULTS Exposure to Derf8 markedly induced the TIM4 expression in DCs by modulating the chromatin at the TIM4 promoter locus. Derf8 played a critical role in the expansion of the T helper 2 response in the mouse airway via inducing DCs to produce TIM4. Administration with Derf8-depleted dust mite extracts (DME) inhibited the allergic inflammation and induced regulatory T cells in mice with airway allergy. CONCLUSION Derf8 plays an important role in the initiation of dust mite allergy. Vaccination with Derf8-deficient DME is more efficient to inhibit the dust mite allergic inflammation than using wild DME.
Collapse
Affiliation(s)
- L-H Mo
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen, China
| | - L-T Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen, China.,Brain Body Institute, McMaster University, Hamilton, ON, Canada
| | - L Zeng
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - L-Z Xu
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - H-P Zhang
- Brain Body Institute, McMaster University, Hamilton, ON, Canada
| | - L-J Li
- Brain Body Institute, McMaster University, Hamilton, ON, Canada
| | - J-Q Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen, China.,Brain Body Institute, McMaster University, Hamilton, ON, Canada
| | - X-J Xiao
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - P-Y Zheng
- Department of Gastroenterology, The Fifth Hospital, Zhengzhou University, Zhengzhou, China
| | - Z-G Liu
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - P-C Yang
- The Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
24
|
Mechanical consequences of allergic induced remodeling on mice airway resistance and compressibility. Respir Physiol Neurobiol 2015. [PMID: 26213118 DOI: 10.1016/j.resp.2015.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effect of remodeling on airway function is uncertain. It may affect airway compressibility during forced expirations differently than airflow resistance, providing a tool for its assessment. The aim of the current study was to compare the effects of acute and chronic antigen challenge on methacholine-induced bronchoconstriction assessed from resistance and maximal tidal expiratory flow. Balb/C mice were sensitized with ovalbumin (OVA) and challenged either daily for three days with intra-nasal OVA or daily for 5 days and three times a week for 5 subsequent weeks. Acute and chronic allergen challenge induced airway hyperresponsiveness (AHR) to methacholine. However the relationship between maximal tidal expiratory flow and resistance during methacholine challenge was different between the two conditions, suggesting that the determinants of AHR are not identical following acute and chronic allergen exposure. We conclude that the contrast of changes in maximal tidal expiratory flow and respiratory resistance during methacholine-induced bronchoconstriction may allow the detection of the mechanical consequences of airway remodeling.
Collapse
|