1
|
Zhang Y, Yang YS, Chen WC, Wang CM, He HF. Constructing and Validating a Network of Potential Olfactory Sheathing Cell Transplants Regulating Spinal Cord Injury Progression. Mol Neurobiol 2023; 60:6883-6895. [PMID: 37515671 DOI: 10.1007/s12035-023-03510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
The pathology of spinal cord injury (SCI), including primary and secondary injuries, primarily involves hemorrhage, ischemia, edema, and inflammatory responses. Cell transplantation has been the most promising treatment for SCI in recent years; however, its specific molecular mechanism remains unclear. In this study, bioinformatics analysis verified by experiment was used to elucidate the hub genes associated with SCI and to discover the underlying molecular mechanisms of cell intervention. GSE46988 data were downloaded from the Gene Expression Omnibus dataset. In our study, differentially expressed genes (DEGs) were reanalyzed using the "R" software (R v4.2.1). Functional enrichment and protein-protein interaction network analyses were performed, and key modules and hub genes were identified. Network construction was performed for the hub genes and their associated miRNAs. Finally, a semi-quantitative analysis of hub genes and pathways was performed using quantitative real-time polymerase chain reaction. In total, 718 DEGs were identified, mainly enriched in immune and inflammation-related functions. We found that Cd4, Tp53, Rac2, and Akt3 differed between vehicle and transplanted groups, suggesting that these genes may play an essential role in the transplantation of olfactory ensheathing cells, while a toll-like receptor signaling pathway was significantly enriched in Gene set enrichment analysis, and then, the differences were statistically significant by experimentally verifying the expression of their associated molecules (Tlr4, Nf-κb, Ikkβ, Cxcl2, and Tnf-α). In addition, we searched for upstream regulatory molecules of these four central genes and constructed a regulatory network. This study is the first to construct a regulatory network for olfactory ensheathing cell transplantation in treating SCI, providing a new idea for SCI cell therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
2
|
Padmanabhan J, Chen K, Sivaraj D, Henn D, Kuehlmann BA, Kussie HC, Zhao ET, Kahn A, Bonham CA, Dohi T, Beck TC, Trotsyuk AA, Stern-Buchbinder ZA, Than PA, Hosseini HS, Barrera JA, Magbual NJ, Leeolou MC, Fischer KS, Tigchelaar SS, Lin JQ, Perrault DP, Borrelli MR, Kwon SH, Maan ZN, Dunn JCY, Nazerali R, Januszyk M, Prantl L, Gurtner GC. Allometrically scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cells. Nat Biomed Eng 2023; 7:1419-1436. [PMID: 37749310 PMCID: PMC10651488 DOI: 10.1038/s41551-023-01091-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Britta A Kuehlmann
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hudson C Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Eric T Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Anum Kahn
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University, Stanford, CA, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Teruyuki Dohi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Beck
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zachary A Stern-Buchbinder
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter A Than
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hadi S Hosseini
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Janos A Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah J Magbual
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seth S Tigchelaar
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - John Q Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun Hyung Kwon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lukas Prantl
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
3
|
Zhang Y, Jiang S, Liao F, Huang Z, Yang X, Zou Y, He X, Guo Q, Huang C. A transcriptomic analysis of neuropathic pain in the anterior cingulate cortex after nerve injury. Bioengineered 2022; 13:2058-2075. [PMID: 35030976 PMCID: PMC8973654 DOI: 10.1080/21655979.2021.2021710] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The anterior cingulate cortex (ACC) is a core brain region processing pain emotion. In this study, we performed RNA sequencing analysis to reveal transcriptomic profiles of the ACC in a rat chronic constriction injury (CCI) model. A total of 1628 differentially expressed genes (DEGs) were identified by comparing sham-operated rats with rats of 12 hours, 1, 3, 7, and 14 days after surgery, respectively. Although these inflammatory-related DEGs were generally increased after CCI, different kinetics of time-series expression were observed with the development of neuropathic pain affection. Specifically, the expression of Ccl5, Cxcl9 and Cxcl13 continued to increase following CCI. The expression of Ccl2, Ccl3, Ccl4, Ccl6, and Ccl7 were initially upregulated after CCI and subsequently decreased after 12 hours. Similarly, the expression of Rac2, Cd68, Icam-1, Ptprc, Itgb2, and Fcgr2b increased after 12 hours but reduced after 1 day. However, the expression of the above genes increased again 7 days after CCI, when the neuropathic pain affection had developed. Furthermore, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment and interaction network analyses further showed a high connectivity degree among these chemokine targeting genes. Similar expressional changes in these genes were found in the rat spinal dorsal horn responsible for nociception processing. Taken together, our results indicated chemokines and their targeting genes in the ACC may be differentially involved in the initiation and maintenance of neuropathic pain affection. These genes may be a target for not only the nociception but also the pain affection following nerve injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Shiwei Jiang
- Medical College of Xiangya, Central South University, Changsha, China
| | - Fei Liao
- Department of Anesthesiology, People's Hospital of Yuxi City, Yuxi, China
| | - Zhifeng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Cao F, Wang C, Long D, Deng Y, Mao K, Zhong H. Network-Based Integrated Analysis of Transcriptomic Studies in Dissecting Gene Signatures for LPS-Induced Acute Lung Injury. Inflammation 2021; 44:2486-2498. [PMID: 34462829 PMCID: PMC8405180 DOI: 10.1007/s10753-021-01518-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/07/2021] [Indexed: 10/26/2022]
Abstract
Acute lung injury (ALI) is a type of serious clinical syndrome leading to morbidity and mortality. However, the precise pathogenesis of ALI remains elusive. Here, we implemented an integrative meta-analysis of six GEO microarray studies with 76 samples in the ALI mouse model. A total of 958 differentially expressed genes (DEGs) were identified in LPS relative to normal samples. Then, a network-based meta-analysis was used to mine core DEGs and to unfold the interactions among these genes. We found that Ebi3 was the top upregulated genes in the LPS-induced ALI. GO, KEGG, and GSEA analyses were performed for functional annotation. qRT-PCR revealed augmented expression of six candidate genes (Stat1, Syk, Jak3, Rac2, Ripk1, and Traf6) in the established ALI mouse model with LPS exposure. Taken together, our study investigated comprehensively hub DEGs and their networks for LPS-stimulated ALI, which might afford an additional approach to determine biomarkers and therapeutic targets and explore the molecular pathophysiology toward ALI.
Collapse
Affiliation(s)
- Fang Cao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Huichuan District, 149 Dalian Road, Zunyi, Guizhou, 563003 China
| | - Chunyan Wang
- Department of Gastroenterology, Sichuan Provincial Peoples Hospital, University of Electronic Science and Technology, Chengdu, 610000 Sichuan China
| | - Danling Long
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 Hubei China
| | - Yujuan Deng
- School of Computer Science and Engineering, Shijiazhuang University, Shijiazhuang, Hebei China
| | - Kaimin Mao
- Department of Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200127 China
| | - Hua Zhong
- College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei China
| |
Collapse
|
5
|
Effect of SIS3 on Extracellular Matrix Remodeling and Repair in a Lipopolysaccharide-Induced ARDS Rat Model. J Immunol Res 2020; 2020:6644687. [PMID: 33294466 PMCID: PMC7714568 DOI: 10.1155/2020/6644687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The remodeling of the extracellular matrix (ECM) in the parenchyma plays an important role in the development of acute respiratory distress syndrome (ARDS), a disease characterized by lung injury. Although it is clear that TGF-β1 can modulate the expression of the extracellular matrix (ECM) through intracellular signaling molecules such as Smad3, its role as a therapeutic target against ARDS remains unknown. In this study, a rat model was established to mimic ARDS via intratracheal instillation of lipopolysaccharide (LPS). A selective inhibitor of Smad3 (SIS3) was intraperitoneally injected into the disease model, while phosphate-buffered saline (PBS) was used in the control group. Animal tissues were then evaluated using histological analysis, immunohistochemistry, RT-qPCR, ELISA, and western blotting. LPS was found to stimulate the expression of RAGE, TGF-β1, MMP2, and MMP9 in the rat model. Moreover, treatment with SIS3 was observed to reverse the expression of these molecules. In addition, pretreatment with SIS3 was shown to partially inhibit the phosphorylation of Smad3 and alleviate symptoms including lung injury and pulmonary edema. These findings indicate that SIS3, or the blocking of TGF-β/Smad3 pathways, could influence remodeling of the ECM and this may serve as a therapeutic strategy against ARDS.
Collapse
|
6
|
Tan K, Jones SH, Lake BB, Chousal JN, Shum EY, Zhang L, Chen S, Sohni A, Pandya S, Gallo RL, Zhang K, Cook-Andersen H, Wilkinson MF. The role of the NMD factor UPF3B in olfactory sensory neurons. eLife 2020; 9:e57525. [PMID: 32773035 PMCID: PMC7452722 DOI: 10.7554/elife.57525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Samantha H Jones
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Blue B Lake
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Jennifer N Chousal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Eleen Y Shum
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Lingjuan Zhang
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Song Chen
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Shivam Pandya
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
| | - Richard L Gallo
- Department of Dermatology, University of California, San DiegoSan DiegoUnited States
| | - Kun Zhang
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine University of California, San DiegoSan DiegoUnited States
- Institute of Genomic Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
7
|
Abstract
Background: Coronavirus disease (COVID-19) is an infectious disease discovered in 2019 and currently in outbreak across the world. Lung injury with severe respiratory failure is the leading cause of death in COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there still lacks efficient treatment for COVID-19 induced lung injury and acute respiratory failure. Methods: Inhibition of angiotensin-converting enzyme 2 (ACE2) caused by the spike protein of SARS-CoV-2 is the most plausible mechanism of lung injury in COVID-19. We performed drug repositioning analysis to identify drug candidates that reverse gene expression pattern in L1000 lung cell line HCC515 treated with ACE2 inhibitor. We confirmed these drug candidates by similar bioinformatics analysis using lung tissues from patients deceased from COVID-19. We further investigated deregulated genes and pathways related to lung injury, as well as the gene-pathway-drug candidate relationships. Results: We propose two candidate drugs, COL-3 (a chemically modified tetracycline) and CGP-60474 (a cyclin-dependent kinase inhibitor), for treating lung injuries in COVID-19. Further bioinformatics analysis shows that 12 significantly enriched pathways (P-value <0.05) overlap between HCC515 cells treated with ACE2 inhibitor and human COVID-19 patient lung tissues. These include signaling pathways known to be associated with lung injury such as TNF signaling, MAPK signaling and chemokine signaling pathways. All 12 pathways are targeted in COL-3 treated HCC515 cells, in which genes such as RHOA, RAC2, FAS, CDC42 have reduced expression. CGP-60474 shares 11 of 12 pathways with COL-3 and common target genes such as RHOA. It also uniquely targets other genes related to lung injury, such as CALR and MMP14. Conclusions: This study shows that ACE2 inhibition is likely part of the mechanisms leading to lung injury in COVID-19, and that compounds such as COL-3 and CGP-60474 have potential as repurposed drugs for its treatment.
Collapse
Affiliation(s)
- Bing He
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| | - Lana Garmire
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| |
Collapse
|
8
|
Abstract
Background: Coronavirus disease (COVID-19) is an infectious disease discovered in 2019 and currently in outbreak across the world. Lung injury with severe respiratory failure is the leading cause of death in COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there still lacks efficient treatment for COVID-19 induced lung injury and acute respiratory failure. Methods: Inhibition of angiotensin-converting enzyme 2 (ACE2) caused by the spike protein of SARS-CoV-2 is the most plausible mechanism of lung injury in COVID-19. We performed drug repositioning analysis to identify drug candidates that reverse gene expression pattern in L1000 lung cell line HCC515 treated with ACE2 inhibitor. We confirmed these drug candidates by similar bioinformatics analysis using lung tissues from patients deceased from COVID-19. We further investigated deregulated genes and pathways related to lung injury, as well as the gene-pathway-drug candidate relationships. Results: We propose two candidate drugs, COL-3 (a chemically modified tetracycline) and CGP-60474 (a cyclin-dependent kinase inhibitor), for treating lung injuries in COVID-19. Further bioinformatics analysis shows that 12 significantly enriched pathways (P-value <0.05) overlap between HCC515 cells treated with ACE2 inhibitor and human COVID-19 patient lung tissues. These include signaling pathways known to be associated with lung injury such as TNF signaling, MAPK signaling and chemokine signaling pathways. All 12 pathways are targeted in COL-3 treated HCC515 cells, in which genes such as RHOA, RAC2, FAS, CDC42 have reduced expression. CGP-60474 shares 11 of 12 pathways with COL-3 and common target genes such as RHOA. It also uniquely targets other genes related to lung injury, such as CALR and MMP14. Conclusions: This study shows that ACE2 inhibition is likely part of the mechanisms leading to lung injury in COVID-19, and that compounds such as COL-3 and CGP-60474 have potential as repurposed drugs for its treatment.
Collapse
Affiliation(s)
- Bing He
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| | - Lana Garmire
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| |
Collapse
|
9
|
He B, Garmire L. Prediction of repurposed drugs for treating lung injury in COVID-19. ARXIV 2020:arXiv:2003.14333v2. [PMID: 32550243 PMCID: PMC7280878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Coronavirus disease (COVID-19) is an infectious disease discovered in 2019 and currently in outbreak across the world. Lung injury with severe respiratory failure is the leading cause of death in COVID-19, brought by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2). However, there still lacks efficient treatment for COVID-19 induced lung injury and acute respiratory failure. Inhibition of Angiotensin-converting enzyme 2 (ACE2) caused by spike protein of SARS-CoV-2 is the most plausible mechanism of lung injury in COVID-19. We propose two candidate drugs, COL-3 (a chemically modified tetracycline) and CGP-60474 (a cyclin-dependent kinase inhibitor), for treating lung injuries in COVID-19, based on their abilities to reverse the gene expression patterns in HCC515 cells treated with ACE2 inhibitor and in human COVID-19 patient lung tissues. Further bioinformatics analysis shows that twelve significantly enriched pathways (P-value <0.05) overlap between HCC515 cells treated with ACE2 inhibitor and human COVID-19 patient lung tissues, including signaling pathways known to be associated with lung injury such as TNF signaling, MAPK signaling and Chemokine signaling pathways. All these twelve pathways are targeted in COL-3 treated HCC515 cells, in which genes such as RHOA, RAC2, FAS, CDC42 have reduced expression. CGP-60474 shares eleven of twelve pathways with COL-3 with common target genes such as RHOA. It also uniquely targets genes related to lung injury, such as CALR and MMP14. In summary, this study shows that ACE2 inhibition is likely part of the mechanisms leading to lung injury in COVID-19, and that compounds such as COL-3 and CGP-60474 have the potential as repurposed drugs for its treatment.
Collapse
Affiliation(s)
- Bing He
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| | - Lana Garmire
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, 48105, USA
| |
Collapse
|
10
|
Pantarelli C, Welch HCE. Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment. Eur J Clin Invest 2018; 48 Suppl 2:e12939. [PMID: 29682742 PMCID: PMC6321979 DOI: 10.1111/eci.12939] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Abstract
Rac-GTPases and their Rac-GEF activators play important roles in the recruitment and host defence functions of neutrophils. These proteins control the activation of adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migration and tissue recruitment of neutrophils. They also regulate the effector functions that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris. This review focuses on the roles of Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment.
Collapse
|
11
|
Meng J, Zou Y, Chen J, Qin F, Chen X, Chen X, Dai S. sTLR4/sMD-2 complex alleviates LPS-induced acute lung injury by inhibiting pro-inflammatory cytokines and chemokine CXCL1 expression. Exp Ther Med 2018; 16:4632-4638. [PMID: 30542414 PMCID: PMC6257829 DOI: 10.3892/etm.2018.6746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Activation of Toll-like receptor 4 (TLR4) and its accessory proteins myeloid differentiation protein 2 (MD-2) can trigger immune and inflammatory activities, and contribute to developing chronic inflammatory diseases. The formation of the TLR4/MD-2 complex after binding to lipopolysaccharide (LPS) leads to the activation of downstream signaling pathway. The present study was designed to reveal the effect of the soluble form of the extracellular TLR4 domain and MD-2 (sTLR4/sMD-2) complex lacking the intracellular and transmembrane domains on various aspects of LPS-induced inflammation in vivo and in vitro. It was demonstrated that the sTLR4/sMD-2 complex inhibited the LPS-induced production of tumor necrosis factor-α, interleukin-8 and C-X-C motif chemokine ligand 1 (CXCL1) in THP-1 cells. In addition, it was revealed that the sTLR4/sMD-2 complex significantly reduced LPS-induced acute lung injury (ALI) with a reduction of total cells and neutrophil count, pro-inflammatory cytokines and chemokine CXCL1 in bronchoalveolar lavage fluid. Moreover, the sTLR4/sMD-2 complex inhibited the number of inflammatory cells in the lung of treated animals. These novel mechanisms emphasized the important role of sTLR4/sMD-2 complex in ALI and suggested sTLR4/sMD-2 complex could provide an anti-inflammatory strategy for treating inflammatory diseases.
Collapse
Affiliation(s)
- Jie Meng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Yan Zou
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Jifei Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Fengxian Qin
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Xiang Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Xiaoli Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
12
|
Ding H, Wang Y, Dong W, Ren R, Mao Y, Deng X. Proteomic Lung Analysis of Mice with Ventilator-Induced Lung Injury (VILI) Using iTRAQ-Based Quantitative Proteomics. Chem Pharm Bull (Tokyo) 2018; 66:691-700. [PMID: 29962452 DOI: 10.1248/cpb.c17-00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventilator-induced lung injury (VILI) has implications for mortality from acute lung injury (ALI) and for acute respiratory distress syndrome (ARDS) patients; the complicated mechanisms of VILI have not been well defined. To discover new biomarkers and mechanisms of VILI, isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based quantitative proteomics were applied to identify differentially expressed proteins in mice treated with high tidal volume ventilation (HV), low tidal volume ventilation (LV) and lipopolysaccharide (LPS). A total of 14 dysregulated proteins showed the same change trend both in the LV and HV group and no change in the LPS group, and most importantly, the fold change of these proteins increased with the increase of volume ventilation, which indicates these proteins may be considered as potential markers specific for VILI. Ingenuity pathway analysis (IPA) canonical pathways analysis identified the top 4 canonical pathways, including the extrinsic prothrombin activation pathway, coagulation systems, the intrinsic prothrombin activation pathway and the acute phase response, suggesting that these pathways, as associated with these proteins' expression, may be important therapeutic targets for reducing VILI. These findings will provide a new perspective for understanding the pathogenesis of VILI in the future.
Collapse
Affiliation(s)
- Haoshu Ding
- Faculty of Anesthesiology, Changhai Hospital Affiliated to Second Military Medical University.,Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Yan Wang
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Wenwen Dong
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Rongrong Ren
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Yanfei Mao
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital Affiliated to Second Military Medical University
| |
Collapse
|
13
|
Guo Y, Xiong J, Wang J, Wen J, Zhi F. Inhibition of Rac family protein impairs colitis and colitis-associated cancer in mice. Am J Cancer Res 2018; 8:70-80. [PMID: 29416921 PMCID: PMC5794722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/03/2017] [Indexed: 06/08/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) has increased worldwide and IBD has been demonstrated to promote the development of colorectal cancer. The Rac family of proteins are involved in key mitogenic pathways. However, to the best of our knowledge, no prior studies have investigated the expression and role of Rac on colitis and colitis-associated cancer (CAC). In the current study, Rac expression in patients with colitis was analyzed according to the expression value from NCBI GEO database (GDS3268). EHT-1864, the specific inhibitor of Rac, was intraperitoneally injected to treat mice with dextran sulfate sodium (DSS)-induced acute and chronic colitis and mice with azoxymethane (AOM)/DSS-induced CAC. Furthermore, immune cell infiltration and the expression of several inflammatory cytokines in colon tissues were analyzed by flow cytometry, immunofluorescence, and ELISAs. We demonstrated the upregulation of the Rac family of proteins in colitis. Inhibition of Rac by EHT-1864 treatment was found to have an efficient inhibitory effect on DSS-induced acute and chronic colitis and AOM/DSS-induced CAC development. We also observed that downregulation of Rac family protein expression markedly prevented macrophage and myeloid-derived suppressor cell (MDSC) infiltration in colon tissues and suppressed pro-inflammatory cytokine expression. Our study established a foundation for understanding the role of Rac in colitis and CAC and to provide a novel strategy and target for colitis and CAC therapy.
Collapse
Affiliation(s)
- Yandong Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Jing Xiong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Jing Wen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| |
Collapse
|
14
|
Joshi S, Singh AR, Wong SS, Zulcic M, Jiang M, Pardo A, Selman M, Hagood JS, Durden DL. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype. PLoS One 2017; 12:e0182851. [PMID: 28817691 PMCID: PMC5560537 DOI: 10.1371/journal.pone.0182851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by cellular phenotype alterations and deposition of extracellular matrix proteins. The alternative activation of macrophages in the lungs has been associated as a major factor promoting pulmonary fibrosis, however the mechanisms underlying this phenomenon are poorly understood. In the present study, we have defined a molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin lead to the activation of Rac2 which regulates alternative macrophage differentiation, a signaling axis within the pulmonary macrophage compartment required for bleomycin induced pulmonary fibrosis. Mice deficient in Rac2 were protected against bleomycin-induced fibrosis and displayed diminished collagen deposition in association with lower expression of alternatively activated profibrotic macrophage markers. We have demonstrated a macrophage autonomous process by which the injection of M2 and not M1 macrophages restored the bleomycin induced pulmonary fibrosis susceptibility in Rac2-/- mice, establishing a critical role for a macrophage Rac2 signaling axis in the regulation of macrophage differentiation and lung fibrosis in vivo. We also demonstrate that markers of alternative macrophage activation are increased in patients with IPF. Taken together, these studies define an important role for an integrin-driven Rac2 signaling axis in macrophages, and reveal that Rac2 activation is required for polarization of macrophages towards a profibrotic phenotype and progression of pulmonary fibrosis in vivo.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
| | - Alok R. Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
| | - Simon S. Wong
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, United States of America
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
| | - Min Jiang
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, United States of America
| | - Annie Pardo
- Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas México Mexico City, Mexico
| | - James S. Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, United States of America
| | - Donald L. Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California, San Diego, United States of America
- Division of Pediatric Hematology-Oncology, UCSD Rady Children’s Hospital, San Diego, United States of America
| |
Collapse
|
15
|
Wang J, Ma SH, Tao R, Xia LJ, Liu L, Jiang YH. Gene expression profile changes in rat dorsal horn after sciatic nerve injury. Neurol Res 2016; 39:176-182. [PMID: 28033741 DOI: 10.1080/01616412.2016.1273590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study aims to investigate gene expression changes in rat dorsal horns after sciatic nerve injury (SNI). METHODS The GSE18803 microarray data collected from young and adult rats were downloaded from GEO. After preprocessing, differentially expressed genes (DEGs) between SNI and sham-operated groups were selected using Limma package, in young and adult group, respectively, followed by Venn analysis. Then, enrichment analyses were performed for these DEGs using DAVID. The STRING database was used to identify protein-protein interactions (PPIs) among these DEGs, and the module network was further extracted using plugin ClusterONE. Finally, protein domain enrichment analysis of DEGs in each module was performed using InterPro database. RESULTS Totally, 210 and 50 DEGs were identified in adult and young group, respectively. Among them, 160 were specific in adult group (e.g. CCL2, NF-κB1 and RAC2); 9 were specific in young group (e.g. ILF3 and LYVE1); and 41 were common in both two groups (e.g. FCER1G, C1QA, C1QB and C1QC). The up-regulated DEGs were mostly enriched in immune response-related biological processes, as well as 15 immune- and inflammation-related pathways. Then, two modules were identified in PPI network. CCL2 and NF-κB1 had high connectivity degrees in module 1, and RAC2, FCER1G and CD68 in module 2. CONCLUSION CCL2, NF-κB1, RAC2, FCER1G and C1Q may contribute to the generation of neuropathic pain after SNI via immune and defense pathways. Among the five genes, the first three are specific in adult population, while the latter two are age-independent. They all might function through involvement of these immune or inflammatory pathways.
Collapse
Affiliation(s)
- Jing Wang
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Song-He Ma
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Rong Tao
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Ling-Jie Xia
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Lin Liu
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying-Hai Jiang
- a Department of Pain Management , Henan Provincial People's Hospital, The People's Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
16
|
Small GTPases and their guanine-nucleotide exchange factors and GTPase-activating proteins in neutrophil recruitment. Curr Opin Hematol 2016; 23:44-54. [PMID: 26619317 DOI: 10.1097/moh.0000000000000199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The review describes the roles of Rho- and Rap-guanosine triphosphatases (GTPases) and of their activators, guanine-nucleotide exchange factors (GEFs), and inhibitors, GTPase activating proteins (GAPs), in neutrophil recruitment from the blood stream into inflamed tissues, with a focus on recently identified roles in neutrophils, endothelial cells, and platelets. RECENT FINDINGS Recent studies have identified important roles of Rho- and Rap-GTPases, and of their GEFs and GAPs, in the neutrophil recruitment cascade. These proteins control the upregulation and/or activation of adhesion molecules on the surface of neutrophils, endothelial cells, and platelets, and they alter cell/cell adhesion in the vascular endothelium. This enables the capture of neutrophils from the blood stream, their migration along and through the vessel wall, and their passage into the inflamed tissue. In particular, it has recently become clear that P-Rex and Vav family Rac-GEFs in platelets are crucial for neutrophil recruitment. SUMMARY These recent findings have contributed greatly to our understanding of the signalling pathways that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research in this field.
Collapse
|
17
|
P-Rex and Vav Rac-GEFs in platelets control leukocyte recruitment to sites of inflammation. Blood 2014; 125:1146-58. [PMID: 25538043 DOI: 10.1182/blood-2014-07-591040] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading, and migration suggested that these defects were only partially neutrophil-intrinsic and were not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, showing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes, and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation was essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.
Collapse
|
18
|
Arizmendi N, Puttagunta L, Chung KL, Davidson C, Rey-Parra J, Chao DV, Thebaud B, Lacy P, Vliagoftis H. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis. Respir Res 2014; 15:71. [PMID: 24970330 PMCID: PMC4082672 DOI: 10.1186/1465-9921-15-71] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/16/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. METHODS To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2-/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. RESULTS BLM-treated rac2-/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2-/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2-/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2-/- and WT and mice that survived to day 21. CONCLUSION Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kerri L Chung
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Davidson
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Juliana Rey-Parra
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Danny V Chao
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thebaud
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Lacy
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Shen J, Wang J, Shao YR, He DK, Zhang L, Nadeem L, Xu G. Adenovirus-delivered angiopoietin-1 treatment for phosgene-induced acute lung injury. Inhal Toxicol 2013; 25:272-9. [DOI: 10.3109/08958378.2013.777820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Li S, Hou W, Wang Y, Cheng S, Jiang Z, Liu Y, Xiao J, Guo H, Wang Z. Effect of PER1 on cell proliferation and cell migration. BIOL RHYTHM RES 2013. [DOI: 10.1080/09291016.2012.668006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Yeo CD, Rhee CK, Kim IK, Kang HH, Lee SH, Lee SY, Kwon SS, Kim YK, Kim KH, Kim JW. Protective effect of pravastatin on lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. Exp Lung Res 2013; 39:99-106. [DOI: 10.3109/01902148.2013.763388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality. Rejuvenation Res 2012; 15:381-94. [PMID: 22533364 DOI: 10.1089/rej.2011.1257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Recently we have shown that the human life span is influenced jointly by many common single-nucleotide polymorphisms (SNPs), each with a small individual effect. Here we investigate further the polygenic influence on life span and discuss its possible biological mechanisms. First we identified six sets of prolongevity SNP alleles in the Framingham Heart Study 550K SNPs data, using six different statistical procedures (normal linear, Cox, and logistic regressions; generalized estimation equation; mixed model; gene frequency method). We then estimated joint effects of these SNPs on human survival. We found that alleles in each set show significant additive influence on life span. Twenty-seven SNPs comprised the overlapping set of SNPs that influenced life span, regardless of the statistical procedure. The majority of these SNPs (74%) were within genes, compared to 40% of SNPs in the original 550K set. We then performed a review of current literature on functions of genes closest to these 27 SNPs. The review showed that the respective genes are largely involved in aging, cancer, and brain disorders. We concluded that polygenic effects can explain a substantial portion of genetic influence on life span. Composition of the set of prolongevity alleles depends on the statistical procedure used for the allele selection. At the same time, there is a core set of longevity alleles that are selected with all statistical procedures. Functional relevance of respective genes to aging and major diseases supports causal relationships between the identified SNPs and life span. The fact that genes found in our and other genetic association studies of aging/longevity have similar functions indicates high chances of true positive associations for corresponding genetic variants.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- Center for Population Health and Aging, Duke University, Durham, NC 27708-0408, USA.
| | | | | | | |
Collapse
|
23
|
Ghosh MC, Makena PS, Gorantla V, Sinclair SE, Waters CM. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2. Am J Physiol Lung Cell Mol Physiol 2012; 302:L846-56. [PMID: 22345572 DOI: 10.1152/ajplung.00321.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.
Collapse
Affiliation(s)
- Manik C Ghosh
- Department of Physiology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
24
|
Senbagavalli P, Anuradha R, Ramanathan VD, Kumaraswami V, Nutman TB, Babu S. Heightened measures of immune complex and complement function and immune complex-mediated granulocyte activation in human lymphatic filariasis. Am J Trop Med Hyg 2011; 85:89-96. [PMID: 21734131 DOI: 10.4269/ajtmh.2011.11-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The presence of circulating immune complexes (CICs) is a characteristic feature of human lymphatic filariasis. However, the role of CICs in modulating granulocyte function and complement functional activity in filarial infection is unknown. The levels of CICs in association with complement activation in clinically asymptomatic, filarial-infected patients (INF); filarial-infected patients with overt lymphatic pathologic changes (CPDT); and uninfected controls (EN) were examined. Significantly increased levels of CICs and enhanced functional efficiency of the classical and mannose-binding lectin pathways of the complement system was observed in INF compared with CPDT and EN. Polyethylene glycol-precipitated CICs from INF and CPDT induced significantly increased granulocyte activation compared with those from EN, determined by the increased production of neutrophil granular proteins and a variety of pro-inflammatory cytokines. Thus, CIC-mediated enhanced granulocyte activation and modulation of complement function are important features of filarial infection and disease.
Collapse
Affiliation(s)
- Prakash Senbagavalli
- National Institutes of Health-International Center for Excellence in Research, Chennai, India.
| | | | | | | | | | | |
Collapse
|
25
|
Pérez-Rial S, del Puerto-Nevado L, González-Mangado N, Peces-Barba G. Early Detection of Susceptibility to Acute Lung Inflammation by Molecular Imaging in Mice Exposed to Cigarette Smoke. Mol Imaging 2011; 10:398-405. [DOI: 10.2310/7290.2011.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sandra Pérez-Rial
- From the Experimental Pulmonology Laboratory, IIS-Fundación Jiménez Díaz-CIBERES, Madrid, Spain
| | - Laura del Puerto-Nevado
- From the Experimental Pulmonology Laboratory, IIS-Fundación Jiménez Díaz-CIBERES, Madrid, Spain
| | | | - Germán Peces-Barba
- From the Experimental Pulmonology Laboratory, IIS-Fundación Jiménez Díaz-CIBERES, Madrid, Spain
| |
Collapse
|
26
|
Lacy P, Willetts L, Kim JD, Lo AN, Lam B, Maclean EI, Moqbel R, Rothenberg ME, Zimmermann N. Agonist activation of f-actin-mediated eosinophil shape change and mediator release is dependent on Rac2. Int Arch Allergy Immunol 2011; 156:137-47. [PMID: 21576984 PMCID: PMC3104871 DOI: 10.1159/000322597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/03/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Tissue recruitment and activation of eosinophils contribute to allergic symptoms by causing airway hyperresponsiveness and inflammation. Shape changes and mediator release in eosinophils may be regulated by mammalian Rho-related guanosine triphosphatases. Of these, Rac2 is essential for F-actin formation as a central process underlying cell motility, exocytosis, and respiratory burst in neutrophils, while the role of Rac2 in eosinophils is unknown.We set out to determine the role of Rac2 in eosinophil mediator release and F-actin-dependent shape change in response to chemotactic stimuli. METHODS Rac2-deficient eosinophils from CD2-IL-5 transgenic mice crossed with rac2 gene knockout animals were examined for their ability to release superoxide through respiratory burst or eosinophil peroxidase by degranulation. Eosinophil shape change and actin polymerization were also assessed by flow cytometry and confocal microscopy following stimulation with eotaxin-2 or platelet-activating factor. RESULTS Eosinophils from wild-type mice displayed inducible superoxide release, but at a small fraction (4-5%) of human eosinophils. Rac2-deficient eosinophils showed significantly less superoxide release (p < 0.05, 26% less than wild type). Eosinophils lacking Rac2 had diminished degranulation (p < 0.05, 62% less eosinophil peroxidase) and shape changes in response to eotaxin-2 or platelet-activating factor (with 68 and 49% less F-actin formation, respectively; p < 0.02) compared with wild-type cells. CONCLUSION These results demonstrate that Rac2 is an important regulator of eosinophil function by contributing to superoxide production, granule protein release, and eosinophil shape change. Our findings suggest that Rho guanosine triphosphatases are key regulators of cellular inflammation in allergy and asthma.
Collapse
Affiliation(s)
- Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alta., Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lawson CD, Donald S, Anderson KE, Patton DT, Welch HCE. P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1467-76. [PMID: 21178006 DOI: 10.4049/jimmunol.1002738] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptor (GPCR) activation elicits neutrophil responses such as chemotaxis and reactive oxygen species (ROS) formation, which depend on the small G protein Rac and are essential for host defense. P-Rex and Vav are two families of guanine-nucleotide exchange factors (GEFs) for Rac, which are activated through distinct mechanisms but can both control GPCR-dependent neutrophil responses. It is currently unknown whether they play specific roles or whether they can compensate for each other in controlling these responses. In this study, we have assessed the function of neutrophils from mice deficient in P-Rex and/or Vav family GEFs. We found that both the P-Rex and the Vav family are important for LPS priming of ROS formation, whereas particle-induced ROS responses and cell spreading are controlled by the Vav family alone. Surprisingly, fMLF-stimulated ROS formation, adhesion, and chemotaxis were synergistically controlled by P-Rex1 and Vav1. These responses were more severely impaired in neutrophils lacking both P-Rex1 and Vav1 than those lacking the entire P-Rex family, the entire Vav family, or both P-Rex1 and Vav3. P-Rex1/Vav1 (P1V1) double-deficient cells also showed the strongest reduction in fMLF-stimulated activation of Rac1 and Rac2. This reduction in Rac activity may be sufficient to cause the defects observed in fMLF-stimulated P1V1 neutrophil responses. Additionally, Mac-1 surface expression was reduced in P1V1 cells, which might contribute further to defects in responses involving integrins, such as GPCR-stimulated adhesion and chemotaxis. We conclude that P-Rex1 and Vav1 together are the major fMLFR-dependent Dbl family Rac-GEFs in neutrophils and cooperate in the control of fMLF-stimulated neutrophil responses.
Collapse
Affiliation(s)
- Campbell D Lawson
- Inositide Laboratory, Babraham Research Campus, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
8-oxo-2'-deoxyguanosine suppresses allergy-induced lung tissue remodeling in mice. Eur J Pharmacol 2010; 651:218-26. [PMID: 21114981 DOI: 10.1016/j.ejphar.2010.10.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/26/2010] [Accepted: 10/31/2010] [Indexed: 11/23/2022]
Abstract
We previously reported that 8-oxo-2'-deoxyguanosine (8-oxo-dG) suppressed airway hyperresponsiveness and allergy-associated immune responses in ovalbumin-induced allergic mice by inactivating Rac. In the present study, 8-oxo-dG was investigated for its suppression of inflammation and remodeling in lung tissues induced by allergic reaction in mice. Mice were sensitized and challenged with ovalbumin without or with oral administration of 8-oxo-dG. The mice without 8-oxo-dG administration showed the following inflammatory and airway remodeling signs: infiltration of inflammatory cells into peribronchial area, hyperplasia of mucus-secreting goblet cells in bronchial walls, increase of expressions of Muc5ac and vascular cell adhesion molecule (VCAM)-1, collagen deposition and protein expression, and matrix metalloproteinase (MMP)-2/-9 expressions. We also observed an increase of various inflammation-mediating proteins, namely IL-4, IL-5, IL-8, IL-13, TNF-α and IFN-γ, and activation of STAT1 and NF-κB. Production of reactive oxygen species and nitric oxide (NO(.)) was increased as indicated by a dramatic increase in formation of nitro-tyrosine. Importantly, Rac1 and 2 were also markedly activated. However, 8-oxo-dG suppressed all these inflammatory and tissue remodeling signs as well as activation of Rac1 and 2. These results indicate that 8-oxo-dG can inhibit allergy-induced inflammation and remodeling in airway and lung tissues through Rac inactivation.
Collapse
|