1
|
Cawthon CR, Blonde GD, Nisi AV, Bloomston HM, Krubitski B, le Roux CW, Spector AC. Chronic Semaglutide Treatment in Rats Leads to Daily Excessive Concentration-Dependent Sucrose Intake. J Endocr Soc 2023; 7:bvad074. [PMID: 37388574 PMCID: PMC10306276 DOI: 10.1210/jendso/bvad074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 07/01/2023] Open
Abstract
Context The glucagon-like peptide-1 receptor (GLP-1R) agonist semaglutide (SEMA) produces 15% weight loss when chronically administered to humans with obesity. Methods In 2 separate experiments, rats received daily injections of either vehicle (VEH) or SEMA starting at 7 µg/kg body weight (BW) and increasing over 10 days to the maintenance dose (70 µg/kg-BW), emulating clinical dose escalation strategies. Results During dose escalation and maintenance, SEMA rats reduced chow intake and bodyweight. Experiment 2 meal pattern analysis revealed that meal size, not number, mediated these SEMA-induced changes in chow intake. This suggests SEMA affects neural processes controlling meal termination and not meal initiation. Two-bottle preference tests (vs water) began after 10 to 16 days of maintenance dosing. Rats received either an ascending sucrose concentration series (0.03-1.0 M) and 1 fat solution (Experiment 1) or a 4% and 24% sucrose solution in a crossover design (Experiment 2). At lower sucrose concentrations, SEMA-treated rats in both experiments drank sometimes >2× the volume consumed by VEH controls; at higher sucrose concentrations (and 10% fat), intake was similar between treatment groups. Energy intake of SEMA rats became similar to VEH rats. This was unexpected because GLP-1R agonism is thought to decrease the reward and/or increase the satiating potency of palatable foods. Despite sucrose-driven increases in both groups, a significant bodyweight difference between SEMA- and VEH-treated rats remained. Conclusion The basis of the SEMA-induced overconsumption of sucrose at lower concentrations relative to VEH controls remains unclear, but the effects of chronic SEMA treatment on energy intake and BW appear to depend on the caloric sources available.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - A Valentina Nisi
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Haley M Bloomston
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Belle Krubitski
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Carel W le Roux
- Diabetes Complications Research Center, Conway Institute, School of Medicine, University College Dublin, Dublin, D04 C1P1, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
Behary P, Alessimii H, Miras AD, Tharakan G, Alexiadou K, Aldhwayan MM, Purkayastha S, Moorthy K, Ahmed AR, Bloom SR, Tan TM. Tripeptide gut hormone infusion does not alter food preferences or sweet taste function in volunteers with obesity and prediabetes/diabetes but promotes restraint eating: A secondary analysis of a randomized single-blind placebo-controlled study. Diabetes Obes Metab 2023; 25:1731-1739. [PMID: 36811311 PMCID: PMC11497251 DOI: 10.1111/dom.15028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
AIMS To investigate whether the elevation in postprandial concentrations of the gut hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and peptide YY (PYY) accounts for the beneficial changes in food preferences, sweet taste function and eating behaviour after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS This was a secondary analysis of a randomized single-blind study in which we infused GLP-1, OXM, PYY (GOP) or 0.9% saline subcutaneously for 4 weeks in 24 subjects with obesity and prediabetes/diabetes, to replicate their peak postprandial concentrations, as measured at 1 month in a matched RYGB cohort (ClinicalTrials.gov NCT01945840). A 4-day food diary and validated eating behaviour questionnaires were completed. Sweet taste detection was measured using the method of constant stimuli. Correct sucrose identification (corrected hit rates) was recorded, and sweet taste detection thresholds (EC50s: half maximum effective concencration values) were derived from concentration curves. The intensity and consummatory reward value of sweet taste were assessed using the generalized Labelled Magnitude Scale. RESULTS Mean daily energy intake was reduced by 27% with GOP but no significant changes in food preferences were observed, whereas a reduction in fat and increase in protein intake were seen post-RYGB. There was no change in corrected hit rates or detection thresholds for sucrose detection following GOP infusion. Additionally, GOP did not alter the intensity or consummatory reward value of sweet taste. A significant reduction in restraint eating, comparable to the RYGB group was observed with GOP. CONCLUSION The elevation in plasma GOP concentrations after RYGB is unlikely to mediate changes in food preferences and sweet taste function after surgery but may promote restraint eating.
Collapse
Affiliation(s)
- Preeshila Behary
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| | - Haya Alessimii
- Clinical Nutrition Department, College of Applied Medical SciencesUmm Al Qura UniversityMeccaSaudi Arabia
| | - Alexander D. Miras
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
- School of MedicineUlster UniversityLondonderryUK
| | - George Tharakan
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| | - Kleopatra Alexiadou
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| | - Madhawi M. Aldhwayan
- Community Health Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service TrustLondonUK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service TrustLondonUK
| | - Ahmed R. Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service TrustLondonUK
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
| | - Tricia M. Tan
- Section of Endocrinology and Investigative Medicine, Imperial College LondonLondonUK
- Department of Endocrinology, Imperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
3
|
Alabduljabbar K, Al-Najim W, le Roux CW. Food preferences after bariatric surgery: a review update. Intern Emerg Med 2023; 18:351-358. [PMID: 36478323 DOI: 10.1007/s11739-022-03157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
Obesity is a serious and global health problem. The multiple complications of obesity reduce quality of life and increase mortality. Bariatric surgery is one of the best treatment options for obesity management. Bariatric surgery helps people reduce their caloric intake by treating the disease of obesity effectively, in part by increasing signaling from the gut to the brain. The most frequent surgical options are Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). There is controversy regarding changes in food preferences and selection after bariatric surgery. In this review, we aim to outline the changes in food intake and selection, clarify the behavior changes in food intake, and assess the potential mechanisms responsible for these changes in patients after bariatric surgery.
Collapse
Affiliation(s)
- Khaled Alabduljabbar
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Taste-Driven Responsiveness to Fat and Sweet Stimuli in Mouse Models of Bariatric Surgery. Biomedicines 2022; 10:biomedicines10040741. [PMID: 35453491 PMCID: PMC9028277 DOI: 10.3390/biomedicines10040741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
A preferential consumption of healthier foods, low in fat and sugar, is often reported after bariatric surgery, suggesting a switch of taste-guided food choices. To further explore this hypothesis in well-standardized conditions, analysis of licking behavior in response to oily and sweet solutions has been realized in rats that have undergone a Roux-en-Y bypass (RYGB). Unfortunately, these studies have produced conflicting data mainly due to methodological differences. Paradoxically, whereas the vertical sleeve gastrectomy (VSG) becomes the most commonly performed bariatric surgery worldwide and is easier to perform and standardize in small animals, its putative impacts on the orosensory perception of energy-dense nutrients remains unknown. Using brief-access licking tests in VSG or RYGB mice, we found that (i) VSG induces a significant reduction in the fat mass in diet-induced obese (DIO) mice, (ii) VSG partially corrects the licking responses to lipid and sucrose stimuli which are degraded in sham-operated DIO mice, (iii) VSG improves the willingness to lick oily and sucrose solutions in DIO mice and (iv) RYGB leads to close outcomes. Altogether, these data strongly suggest that VSG, as RYGB, can counteract the deleterious effect of obesity on the orosensory perception of energy-dense nutrients in mice.
Collapse
|
5
|
Blonde GD, Mathes CM, Inui T, Hamel EA, Price RK, Livingstone MBE, Le Roux CW, Spector AC. Oromotor and somatic taste reactivity during sucrose meals reveals internal state and stimulus palatability after gastric bypass in rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R204-R218. [PMID: 35043683 PMCID: PMC8858674 DOI: 10.1152/ajpregu.00285.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
After Roux-en-Y gastric bypass (RYGB), rats consume less high-energy foods and fluids, though whether this reflects a concomitant change in palatability remains unclear. By measuring behavior during intraorally delivered liquid meals across days (1 water, 8 sucrose sessions), we showed that RYGB rats (RYGB, n = 8/sex) consumed less 1.0 M sucrose than their sham surgery counterparts (SHAM, n = 8 males, n = 11 females) but displayed similarly high levels of ingestive taste reactivity responses at the start of infusions. Relative to water, both groups increased intake of sucrose, and ingestive responses were dominated by tongue protrusions rather than mouth movements. Thus, RYGB animals still found sucrose palatable despite consuming less than the SHAM group. As the intraoral infusion progressed but before meal termination, aversive behavior remained low and both RYGB and SHAM animals showed fewer ingestive responses, predominantly mouth movements as opposed to tongue protrusions. This shift in responsiveness unrelated to surgical manipulation suggests negative alliesthesia, or a decreased palatability, as rats approach satiation. Notably, only in RYGB rats, across sessions, there was a striking emergence of aversive behavior immediately after the sucrose meal. Thus, although lower intake in RYGB rats seems independent of the hedonic taste properties of sucrose, taste reactivity behavior in these animals immediately after termination of a liquid meal appears to be influenced by postoral events and reflects a state of nimiety or excessive consumption. Measurement of taste reactivity behaviors during an intraorally delivered meal represents a promising way to make inferences about internal state in nonverbal preclinical models.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Clare M Mathes
- Department of Neuroscience, Baldwin Wallace University, Berea, Ohio
| | - Tadashi Inui
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Elizabeth A Hamel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Ruth K Price
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - M Barbara E Livingstone
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Carel W Le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
6
|
Hyde KM, Blonde GD, Nisi AV, Spector AC. The Influence of Roux-en-Y Gastric Bypass and Diet on NaCl and Sucrose Taste Detection Thresholds and Number of Circumvallate and Fungiform Taste Buds in Female Rats. Nutrients 2022; 14:nu14040877. [PMID: 35215527 PMCID: PMC8880222 DOI: 10.3390/nu14040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) in rats attenuates preference for, and intake of, sugar solutions. Additionally, maintenance on a high-fat diet (HFD) reportedly alters behavioral responsiveness to sucrose in rodents in short-term drinking tests. Due to the fact that the behavioral tests to date rely on the hedonic value of the stimulus to drive responsiveness, we sought to determine whether taste detection thresholds to sucrose and NaCl are affected by these manipulations as measured in an operant two-response signal detection paradigm. Female rats were maintained on HFD or chow for 10 weeks, at which point animals received either RYGB or SHAM surgery followed by a gel-based diet and then powdered chow. Upon recovery, half of the rats that were previously on HFD were switched permanently to chow, and the other rats were maintained on their presurgical diets (n = 5–9/diet condition x surgery group for behavioral testing). The rats were then trained and tested in a gustometer. There was a significant interaction between diet condition and surgery on NaCl threshold that was attributable to a lower value in RYGB vs. SHAM rats in the HFD condition, but this failed to survive a Bonferroni correction. Importantly, there were no effects of diet condition or surgery on sucrose thresholds. Additionally, although recent evidence suggests that maintenance on HFD alters taste bud number in the circumvallate papillae (CV) of mice, in a subset of rats, we did not find that diet significantly influenced taste pores in the anterior tongue or CV of female rats. These results suggest that any changes in sucrose responsiveness in intake/preference or hedonically oriented tests in rats as a function of HFD maintenance or RYGB are not attributable to alterations in taste sensitivity.
Collapse
|
7
|
Al-Alsheikh AS, Alabdulkader S, Johnson B, Goldstone AP, Miras AD. Effect of Obesity Surgery on Taste. Nutrients 2022; 14:866. [PMID: 35215515 PMCID: PMC8878262 DOI: 10.3390/nu14040866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity surgery is a highly efficacious treatment for obesity and its comorbidities. The underlying mechanisms of weight loss after obesity surgery are not yet fully understood. Changes to taste function could be a contributing factor. However, the pattern of change in different taste domains and among obesity surgery operations is not consistent in the literature. A systematic search was performed to identify all articles investigating gustation in human studies following bariatric procedures. A total of 3323 articles were identified after database searches, searching references and deduplication, and 17 articles were included. These articles provided evidence of changes in the sensory and reward domains of taste following obesity procedures. No study investigated the effect of obesity surgery on the physiological domain of taste. Taste detection sensitivity for sweetness increases shortly after Roux-en-Y gastric bypass. Additionally, patients have a reduced appetitive reward value to sweet stimuli. For the subgroup of patients who experience changes in their food preferences after Roux-en-Y gastric bypass or vertical sleeve gastrectomy, changes in taste function may be underlying mechanisms for changing food preferences which may lead to weight loss and its maintenance. However, data are heterogeneous; the potential effect dilutes over time and varies significantly between different procedures.
Collapse
Affiliation(s)
- Alhanouf S. Al-Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahd Alabdulkader
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Brett Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Alexander Dimitri Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
| |
Collapse
|
8
|
The Effects of Roux-en-Y Gastric Bypass on Glucose- vs. Fructose-Associated Conditioned Flavor Preference. Physiol Behav 2022; 248:113730. [PMID: 35149056 PMCID: PMC8901435 DOI: 10.1016/j.physbeh.2022.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
In rodents, repeated single-bottle exposures to distinctly flavored isocaloric glucose and fructose solutions, two sugars with different metabolic pathways, eventually lead to a preference for the former. Because Roux-en-Y gastric bypass (RYGB) surgery decreases preference for and intake of sugar solutions in rats, we tested whether RYGB would curtail the conditioning of a preference for a glucose-paired vs. fructose-paired flavor. RYGB (♂ n=11; ♀ n=10) and sham-operated (SHAM; ♂ n=9; ♀ n=10) rats were trained with a single bottle (30 min/day) containing 8% glucose solution flavored with either 0.05% grape or cherry Kool-Aid (Glu/CSG) or 8% fructose solution with the alternative Kool-Aid flavor (Fru/CSF) in an alternating fashion for 8 days. To determine baseline preferences, a 4-day 30-min two-bottle test was used to assess preference for Glu/CSG vs. Fru/CSF before training. After training, 2-day 30-min two-bottle tests assessed preference for the a) Glu/CSG (CSG-flavored 8% glucose solution) vs Fru/CSF (CSF-flavored 8% fructose solution), b) CSG- vs. CSF-flavored mixture of 4% glucose & 4% fructose (isocaloric), c) CSG- vs. CSF-flavored 0.2% saccharin ("sweet", no calories), and d) CSG- vs. CSF-flavored water. During training, only male SHAM rats demonstrated progressively increased intake of Glu/CSG over Fru/CSF, and female SHAM rats displayed a trend. RYGB eliminated any difference in single-bottle intake of these solutions during training, regardless of sex. Like their male and female SHAM counterparts, male RYGB rats displayed a conditioned preference for the CSG-associated stimulus in Tests 1-3. Although female RYGB rats displayed acquisition of the conditioned flavor preference in Test 1, unlike the other groups, when the differential sugar cue between the two solutions was removed in Tests 2 and 3, female rats did not display a CSG preference. When the sugar and sweetener cues were both removed on Test 4, all groups displayed some generalization decrement. Thus, RYGB does not compromise the ability of rats to learn and express a glucose- vs. fructose-associated conditioned flavor preference when the exact CS used in training is presented in testing. The mechanistic basis for the sex difference in the effect of RYGB on the generalization decrement observed in this type of flavor preference learning warrants further study.
Collapse
|
9
|
Treesukosol Y, Moran TH. Administration of Exendin-4 but not CCK alters lick responses and trial initiation to sucrose and intralipid during brief-access tests. Chem Senses 2022; 47:bjac004. [PMID: 35427413 PMCID: PMC9012268 DOI: 10.1093/chemse/bjac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Administration of cholecystokinin (CCK) or the glucagon-like peptide 1 (GLP-1) receptor agonist Exendin-4 (Ex-4) reduces food intake. Findings in the literature suggest CCK reduces intake primarily as a satiety signal whereas GLP-1 may play a role in both satiety and reward-related feeding signals. Compounds that humans describe as âsweetâ and âfattyâ are palatable yet are signaled via separate transduction pathways. Here, unconditioned lick responses to sucrose and intralipid were measured in a brief-access lick procedure in food-restricted male rats in response to i.p. administration of Ex-4 (3 h before test), CCK (30 min before test), or a combination of both. The current experimental design measures lick responses to water and varying concentrations of both sucrose (0.03, 0.1, and 0.5 M) and intralipid (0.2%, 2%, and 20%) during 10-s trials across a 30-min single test session. This design minimized postingestive influences. Compared with saline-injected controls, CCK (1.0, 3.0, or 6.0 µg/kg) did not change lick responses to sucrose or intralipid. Number of trials initiated and lick responses to both sucrose and intralipid were reduced in rats injected with 3.0 µg/kg, but not 1.0 µg/kg Ex-4. The supplement of CCK did not alter lick responses or trials initiated compared with Ex-4 administration alone. These findings support a role for GLP-1 but not CCK in the oral responsiveness to palatable stimuli. Furthermore, Ex-4-induced reductions were observed for both sucrose and intralipid, compounds representing âsweetâ and âfat,â respectively.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychology, California State University Long Beach, Long Beach, CA 90840, United States
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Malone IG, Hunter BK, Rossow HL, Herzog H, Zolotukhin S, Munger SD, Dotson CD. Y1 receptors modulate taste-related behavioral responsiveness in male mice to prototypical gustatory stimuli. Horm Behav 2021; 136:105056. [PMID: 34509673 PMCID: PMC8640844 DOI: 10.1016/j.yhbeh.2021.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Mammalian taste bud cells express receptors for numerous peptides implicated elsewhere in the body in the regulation of metabolism, nutrient assimilation, and satiety. The perturbation of several peptide signaling pathways in the gustatory periphery results in changes in behavioral and/or physiological responsiveness to subsets of taste stimuli. We previously showed that Peptide YY (PYY) - which is present in both saliva and in subsets of taste cells - can affect behavioral taste responsiveness and reduce food intake and body weight. Here, we investigated the contributions of taste bud-localized receptors for PYY and the related Neuropeptide Y (NPY) on behavioral taste responsiveness. Y1R, but not Y2R, null mice show reduced responsiveness to sweet, bitter, and salty taste stimuli in brief-access taste tests; similar results were seen when wildtype mice were exposed to Y receptor antagonists in the taste stimuli. Finally, mice in which the gene encoding the NPY propeptide was deleted also showed reduced taste responsiveness to sweet and bitter taste stimuli. Collectively, these results suggest that Y1R signaling, likely through its interactions with NPY, can modulate peripheral taste responsiveness in mice.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brianna K Hunter
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Heidi L Rossow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Sergei Zolotukhin
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Cedrick D Dotson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Guyot E, Dougkas A, Nazare JA, Bagot S, Disse E, Iceta S. A systematic review and meta-analyses of food preference modifications after bariatric surgery. Obes Rev 2021; 22:e13315. [PMID: 34312976 DOI: 10.1111/obr.13315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
This systematic review and meta-analyses aimed to synthesize evidence of the link between bariatric surgery and changes in food preferences, considering the method of assessment. MEDLINE, Cochrane Library, Web of Science, Cinahl, PsychINFO, ProQuest, and Open grey were searched incorporating two blocks of terms ("Intervention" and "Food Preferences"). Interventional or observational studies involving patients (BMI ≥ 35 kg m-2 ) with sleeve gastrectomy (SG) or Roux-en-Y Gastric Bypass (RYGB) and a control group were included. Meta-analyses were performed comparing the standardized daily mean percentage energy from proteins, carbohydrates, and lipids between preoperative and postoperative patients. Fifty-seven studies concerning 2,271 patients with RYGB and 903 patients with SG met the inclusion criteria, of which 24 were eligible for meta-analysis. Despite a total reduction in macronutrient intakes, the meta-analyses revealed a postoperative increase in percentage energy from proteins at 12 months (0.24, 95% CI: 0.03, 0.46, {I2 } = 73%) and a decrease in percentage energy from fat at 1 month (-0.47, 95% CI: 0.86, 0.09, {I2 } = 72%), up to 24 months (-0.20, 95% CI: -0.31, 0.08, {I2 } = 0%). In conclusion, the present systematic review and meta-analyses showed changes of food preferences in terms of macronutrient, food selection and, overall food appreciation up to 5 years following bariatric surgery.
Collapse
Affiliation(s)
- Erika Guyot
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Institut Paul Bocuse Research Center, Ecully, France
| | | | - Julie-Anne Nazare
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Laboratoire CarMeN, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Sarah Bagot
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Institut Paul Bocuse Research Center, Ecully, France
| | - Emmanuel Disse
- Centre Européen Nutrition et Santé (CENS), Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), Pierre-Bénite, France.,Laboratoire CarMeN, Université Claude Bernard Lyon 1, Pierre-Bénite, France.,Department of Endocrinology, Diabetes and Nutrition, Integrated Center for Obesity, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Sylvain Iceta
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
12
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
13
|
Gero D, File B, Alceste D, Frick LD, Serra M, Ismaeil AE, Steinert RE, Spector AC, Bueter M. Microstructural changes in human ingestive behavior after Roux-en-Y gastric bypass during liquid meals. JCI Insight 2021; 6:e136842. [PMID: 34369388 PMCID: PMC8410040 DOI: 10.1172/jci.insight.136842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) decreases energy intake and is, therefore, an effective treatment of obesity. The behavioral bases of the decreased calorie intake remain to be elucidated. We applied the methodology of microstructural analysis of meal intake to establish the behavioral features of ingestion in an effort to discern the various controls of feeding as a function of RYGB. METHODS The ingestive microstructure of a standardized liquid meal in a cohort of 11 RYGB patients, in 10 patients with obesity, and in 10 healthy-weight adults was prospectively assessed from baseline to 1 year with a custom-designed drinkometer. Statistics were performed on log-transformed ratios of change from baseline so that each participant served as their own control, and proportional increases and decreases were numerically symmetrical. Data-driven (3 seconds) and additional burst pause criteria (1 and 5 seconds) were used. RESULTS At baseline, the mean meal size (909.2 versus 557.6 kCal), burst size (28.8 versus 17.6 mL), and meal duration (433 versus 381 seconds) differed between RYGB patients and healthy-weight controls, whereas suck volume (5.2 versus 4.6 mL) and number of bursts (19.7 versus 20.1) were comparable. At 1 year, the ingestive differences between the RYGB and healthy-weight groups disappeared due to significantly decreased burst size (P = 0.008) and meal duration (P = 0.034) after RYGB. The first-minute intake also decreased after RYGB (P = 0.022). CONCLUSION RYGB induced dynamic changes in ingestive behavior over the first postoperative year. While the eating pattern of controls remained stable, RYGB patients reduced their meal size by decreasing burst size and meal duration, suggesting that increased postingestive sensibility may mediate postbariatric ingestive behavior. TRIAL REGISTRATION NCT03747445; https://clinicaltrials.gov/ct2/show/NCT03747445. FUNDING This work was supported by the University of Zurich, the Swiss National Fund (32003B_182309), and the Olga Mayenfisch Foundation. Bálint File was supported by the Hungarian Brain Research Program Grant (grant no. 2017-1.2.1-NKP-2017-00002).
Collapse
Affiliation(s)
- Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Bálint File
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Wigner Research Centre for Physics, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Daniela Alceste
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Lukas D Frick
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Michele Serra
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Aiman Em Ismaeil
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Robert E Steinert
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Douton JE, Norgren R, Grigson PS. Effects of a glucagon-like peptide-1 analog on appetitive and consummatory behavior for rewarding and aversive gustatory stimuli in rats. Physiol Behav 2021; 229:113279. [PMID: 33285178 PMCID: PMC7794656 DOI: 10.1016/j.physbeh.2020.113279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that is essential for the regulation of food intake and approved for the treatment of type 2 diabetes mellitus and obesity in humans. More recently, GLP-1 has been investigated for its ability to modulate motivation for food and drugs. Reward behavior can be divided into two components: 'motivational' (i.e., approach and consummatory behaviors) and 'affective' (i.e., perceived palatability). Studies show that GLP-1 analogs reduce the motivation to approach and consume palatable food, but the impact on affective responding is unknown. Thus, the present study tested the effect of the GLP-1 analog, Exendin-4 (Ex-4), on the appetitive response to intraorally delivered sucrose and quinine. Results showed that Ex-4 (2.4ug/kg ip) failed to alter passive drip, appetitive reactions (i.e., mouth movements, tongue protrusions, and lateral tongue protrusions) or aversive reactions (i.e., gapes) to sucrose. Paw-licking, however, was significantly reduced by Ex-4. Treatment with Ex-4 also failed to influence passive drip to quinine, but increased the latency to gape and reduced the total number of gapes emitted. In addition, Ex-4 reduced intake of quinine in water restricted rats, but did not reduce conditioned aversion (i.e., gapes) or avoidance (i.e., reduced intake) of a LiCl-paired saccharin cue. Thus, while Ex-4 had no effect on a learned aversion, it reduced approach and ingestion of sweet and bitter solutions, while leaving the appetitive affective response to the sweet almost intact, and the aversive affective response to the bitter reduced. Treatment with Ex-4, then, differentially modulates appetitive and consummatory components of reward, depending on the valence of the stimulus and whether its valence is learned or innate.
Collapse
Affiliation(s)
- Joaquin E Douton
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, H181, Hershey, PA 17033.
| | - Ralph Norgren
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, H181, Hershey, PA 17033.
| | - Patricia Sue Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, H181, Hershey, PA 17033.
| |
Collapse
|
15
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Nicanor Carreón J, Acevedo MB, Rowitz B, Pepino MY. Taste and Smell in Weight Loss Surgery. SENSORY SCIENCE AND CHRONIC DISEASES 2021:125-143. [DOI: 10.1007/978-3-030-86282-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Rohde K, Schamarek I, Blüher M. Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets? Diabetes Metab J 2020; 44:509-528. [PMID: 32431111 PMCID: PMC7453985 DOI: 10.4093/dmj.2020.0058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Premature obesity-related mortality is caused by cardiovascular and pulmonary diseases, type 2 diabetes mellitus, physical disabilities, osteoarthritis, and certain types of cancer. Obesity is caused by a positive energy balance due to hyper-caloric nutrition, low physical activity, and energy expenditure. Overeating is partially driven by impaired homeostatic feedback of the peripheral energy status in obesity. However, food with its different qualities is a key driver for the reward driven hedonic feeding with tremendous consequences on calorie consumption. In addition to visual and olfactory cues, taste buds of the oral cavity process the earliest signals which affect the regulation of food intake, appetite and satiety. Therefore, taste buds may play a crucial role how food related signals are transmitted to the brain, particularly in priming the body for digestion during the cephalic phase. Indeed, obesity development is associated with a significant reduction in taste buds. Impaired taste bud sensitivity may play a causal role in the pathophysiology of obesity in children and adolescents. In addition, genetic variation in taste receptors has been linked to body weight regulation. This review discusses the importance of taste buds as contributing factors in the development of obesity and how obesity may affect the sense of taste, alterations in food preferences and eating behavior.
Collapse
Affiliation(s)
- Kerstin Rohde
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Imke Schamarek
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Hyde KM, Blonde GD, Bueter M, le Roux CW, Spector AC. Gastric bypass in female rats lowers concentrated sugar solution intake and preference without affecting brief-access licking after long-term sugar exposure. Am J Physiol Regul Integr Comp Physiol 2020; 318:R870-R885. [PMID: 32083966 DOI: 10.1152/ajpregu.00240.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In rodents, Roux-en-Y gastric bypass (RYGB) decreases intake of, and preference for, foods or fluids that are high in sugar. Whether these surgically induced changes are due to decreases in the palatability of sugar stimuli is controversial. We used RYGB and sham-operated (SHAM) female rats to test the influence of prolonged ingestive experience with sugar solutions on the motivational potency of these stimuli to drive licking in brief-access (BA) tests. In experiment 1, RYGB attenuated intake of, and caloric preference for, 0.3 M sucrose during five consecutive, 46-h two-bottle tests (TBTs; sucrose). A second series of TBTs (5 consecutive, 46-h tests) with 1.0 M sucrose revealed similar results, except fluid preference for 1.0 M sucrose also significantly decreased. Before, between, and after the two series of TBTs, two sessions of BA tests (30 min; 10-s trials) with an array of sucrose concentrations (0 and 0.01-1.0 M) were conducted. Concentration-dependent licking and overall trial initiation did not differ between surgical groups in any test. In a similar experimental design in a second cohort of female rats, 0.6 and 2.0 M glucose (isocaloric with sucrose concentrations in experiment 1) were used in the TBTs; 0 and 0.06-2.0 M glucose were used in the BA tests. Outcomes were similar to those for experiment 1, except RYGB rats initiated fewer trials during the BA tests. Although RYGB profoundly affected intake of, and caloric preference for, sugar solutions and, with high concentrations, fluid preference, RYGB never influenced the motivational potency of sucrose or glucose to drive concentration-dependent licking in BA tests.
Collapse
Affiliation(s)
- Kellie M Hyde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Marco Bueter
- Division of Visceral and Transplantation Surgery, Department of Surgery, University of Zürich, Zürich, Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
19
|
Hankir MK, Al-Bas S, Rullmann M, Chakaroun R, Seyfried F, Pleger B. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite 2020; 146:104419. [DOI: 10.1016/j.appet.2019.104419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
20
|
Mathes CM. Taste- and flavor-guided behaviors following Roux-en-Y gastric bypass in rodent models. Appetite 2019; 146:104422. [PMID: 31472198 DOI: 10.1016/j.appet.2019.104422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 11/15/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most efficacious treatments for obesity, but the behavioral and physiological mechanisms through which it enacts its effects are not completely understood. The weight loss that follows RYGB surgery is due to some extent to decreased caloric intake. The perception of flavor and the sense of taste undoubtedly contribute to ingestion, and changes in taste sensation and flavor perception may, even in part, propel the altered feeding seen after RYGB surgery. Measuring observable behavior in non-human animal models of RYGB surgery is an objective way by which to evaluate underlying mechanism, including the influence of flavor and taste to intake changes after RYGB surgery, as well as the interaction of flavor and taste with post-oral consequences and learning phenomena. Collectively, the data in rodent models support the conclusion that neither palatability nor motivational potency are reduced following RYGB surgery. Indeed, rats still typically show preference for sweet and fatty solids and liquids, and positive flavor-guided hedonic responses for these substances remain stable in some tests. However, preference for these foods and fluids is reduced, and flavor-guided behaviors after long-term tests are reorganized. These patterns suggest that, while rats are still motivated to consume sweet and fatty consumables and find them palatable, they learn to limit their intake of them to avoid undesirable post-oral consequences. Examination of these interactions and elucidating their physiologic correlates may maximize the efficacy of RYGB surgery and/or promote the development of alternative or supplemental treatments.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Neuroscience, Baldwin Wallace University, 275 Eastland Rd, Berea, OH, 44017, USA.
| |
Collapse
|
21
|
Neuro-hormonal mechanisms underlying changes in reward related behaviors following weight loss surgery: Potential pharmacological targets. Biochem Pharmacol 2019; 164:106-114. [PMID: 30954487 DOI: 10.1016/j.bcp.2019.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
|
22
|
Qiao H, Ren WN, Li HZ, Hou YX. Inhibitory effects of peripheral administration of exendin-4 on food intake are attenuated by lesions of the central nucleus of amygdala. Brain Res Bull 2019; 148:131-135. [DOI: 10.1016/j.brainresbull.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
|
23
|
Spector AC, Kapoor N, Price RK, Pepino MY, Livingstone MBE, Le Roux CW. Proceedings from the 2018 Association for Chemoreception Annual Meeting Symposium: Bariatric Surgery and Its Effects on Taste and Food Selection. Chem Senses 2019; 44:155-163. [PMID: 30517609 PMCID: PMC6410396 DOI: 10.1093/chemse/bjy076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article provides a summary of the topics discussed at the symposium titled "Bariatric Surgery and Its Effects on Taste and Food Selection," which was held at the Fortieth Annual Meeting of the Association for Chemoreception Sciences. Bariatric surgery such as Roux-en-Y gastric bypass (RYGB) is currently one of the most effective treatments available for weight loss and Type 2 diabetes. For this reason, it is of great interest to clinicians as well as to basic scientists studying the controls of feeding and energy balance. Despite the commonly held view by clinicians that RYGB patients change their food preferences away from fats and sugars in favor of less energy dense alternatives such as vegetables, the empirical support for this claim is equivocal. It is currently thought that the taste and palatability of fats and sugars are affected by the surgery. Some key preclinical and clinical findings addressing these issues were evaluated in this symposium.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Natasha Kapoor
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Ruth K Price
- The Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, Northern Ireland
| | - M Yanina Pepino
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, College of ACES, University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - M Barbara E Livingstone
- The Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, Northern Ireland
| | - Carel W Le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Al-Najim W, Docherty NG, le Roux CW. Food Intake and Eating Behavior After Bariatric Surgery. Physiol Rev 2018; 98:1113-1141. [PMID: 29717927 DOI: 10.1152/physrev.00021.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is an escalating global chronic disease. Bariatric surgery is a very efficacious treatment for obesity and its comorbidities. Alterations to gastrointestinal anatomy during bariatric surgery result in neurological and physiological changes affecting hypothalamic signaling, gut hormones, bile acids, and gut microbiota, which coalesce to exert a profound influence on eating behavior. A thorough understanding of the mechanisms underlying eating behavior is essential in the management of patients after bariatric surgery. Studies investigating candidate mechanisms have expanded dramatically in the last decade. Herein we review the proposed mechanisms governing changes in eating behavior, food intake, and body weight after bariatric surgery. Additive or synergistic effects of both conditioned and unconditioned factors likely account for the complete picture of changes in eating behavior. Considered application of strategies designed to support the underlying principles governing changes in eating behavior holds promise as a means of optimizing responses to surgery and long-term outcomes.
Collapse
Affiliation(s)
- Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland ; Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden ; and Investigative Science, Imperial College London , London , United Kingdom
| |
Collapse
|
25
|
Abstract
BACKGROUND Alterations in taste perception and preferences may contribute to dietary changes and subsequent weight loss following bariatric surgery. METHODS A systematic search was performed to identify all articles investigating gustation, olfaction, and sensory perception in both animal and human studies following bariatric procedures. RESULTS Two hundred fifty-five articles were identified after database searches, bibliography inclusions and deduplication. Sixty-one articles were included. These articles provide evidence supporting changes in taste perception and hedonic taste following bariatric procedures. Taste sensitivity to sweet and fatty stimuli appears to increase post-operatively. Additionally, patients also have a reduced hedonic response to these stimuli. CONCLUSIONS Available evidence suggests that there is a change in taste perception following bariatric procedures, which may contribute to long-term maintenance of weight loss following surgery.
Collapse
Affiliation(s)
- Kasim Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nicholas Penney
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College London, London, UK
- Imperial Weight Centre, St Mary's Hospital, London, UK
| |
Collapse
|
26
|
Blackburn AN, Hajnal A, Leggio L. The gut in the brain: the effects of bariatric surgery on alcohol consumption. Addict Biol 2017; 22:1540-1553. [PMID: 27578259 DOI: 10.1111/adb.12436] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/15/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022]
Abstract
Obesity represents a major medical and public health problem worldwide. Efforts have been made to develop novel treatments, and among them bariatric surgery is used as an effective treatment to achieve significant, long-term weight loss and alleviate medical problems related to obesity. Alcohol use disorder (AUD) is also a leading cause of morbidity and mortality worldwide. Recent clinical studies have revealed a concern for bariatric surgery patients developing an increased risk for alcohol consumption, and for AUD. A better understanding of the relationship between bariatric surgery and potential later development of AUD is important, given the critical need of identifying patients at high risk for AUD. This paper reviews current clinical and basic science research and discusses potential underlying mechanisms. Special emphasis in this review is given to recent work suggesting that, alterations in alcohol metabolism/pharmacokinetics resulting from bariatric surgery are unlikely to be the primary or at least the only explanation for increased alcohol use and development of AUD, as changes in brain reward processing are also likely to play an important role. Additional studies are needed to clarify the potential role and mechanisms of how bariatric surgery may increase alcohol use and lead to AUD development.
Collapse
Affiliation(s)
- Ashley N. Blackburn
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health; Bethesda MD USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences; Pennsylvania State University College of Medicine; PA USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health; Bethesda MD USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences; Brown University; Providence RI USA
| |
Collapse
|
27
|
Mulla CM, Middelbeek RJW, Patti ME. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci 2017; 1411:53-64. [PMID: 28868615 DOI: 10.1111/nyas.13409] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
Abstract
Bariatric surgery is increasingly recognized as one of the most effective interventions to help patients achieve significant and sustained weight loss, as well as improved metabolic and overall health. Unfortunately, the cellular and physiological mechanisms by which bariatric surgery achieves weight loss have not been fully elucidated, yet are critical to understanding the central role of the intestinal tract in whole-body metabolism and to developing novel strategies for the treatment of obesity. In this review, we provide an overview of potential mechanisms contributing to weight loss, including effects on regulation of energy balance and both central and peripheral nervous system regulation of appetite and metabolism. Moreover, we highlight the importance of the gastrointestinal tract, including alterations in bile acid physiology, secretion of intestinally derived hormones, and the microbiome, as a potent mediator of improved metabolism in postbariatric patients.
Collapse
Affiliation(s)
- Christopher M Mulla
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Roeland J W Middelbeek
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mary-Elizabeth Patti
- Research and Clinic Divisions, Joslin Diabetes Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Kapoor N, Al-Najim W, le Roux CW, Docherty NG. Shifts in Food Preferences After Bariatric Surgery: Observational Reports and Proposed Mechanisms. Curr Obes Rep 2017; 6:246-252. [PMID: 28699145 DOI: 10.1007/s13679-017-0270-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Bariatric surgery is currently the most effective treatment for obesity. Roux-en-Y gastric bypass (RYGB) is the most commonly performed bariatric procedure and results in long-term weight loss. Alterations in food preference and choices may contribute to the long-term benefits of RYGB. This manuscript reviews the available literature documenting changes in food preference in both humans and experimental animals after RYGB and discusses the current theory on the underlying mechanisms involved. RECENT FINDINGS Obesity is associated with an increased preference for sweet and high-fat foods, and the most consistent evidence has been the shift away from these calorie-dense foods in both animal and human studies after RYGB. Self-reporting is the most common method used to record food preferences in humans, while more direct approaches have been used in animal work. This methodological heterogeneity may give rise to inconsistent findings. Future studies in humans should focus on direct measures to permit corroboration of mechanistic insights gained from animal studies.
Collapse
Affiliation(s)
- Natasha Kapoor
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Investigative Science, Imperial College London, London, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Investigative Science, Imperial College London, London, UK
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
29
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
30
|
Spector AC, le Roux CW, Munger SD, Travers SP, Sclafani A, Mennella JA. Proceedings of the 2015 ASPEN Research Workshop-Taste Signaling. JPEN J Parenter Enteral Nutr 2016; 41:113-124. [PMID: 26598504 DOI: 10.1177/0148607115617438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article summarizes research findings from 6 experts in the field of taste and feeding that were presented at the 2015 American Society for Parenteral and Enteral Nutrition Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass and increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding.
Collapse
Affiliation(s)
- Alan C Spector
- 1 Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Carel W le Roux
- 2 Diabetes Complications Research Centre, Conway Institute, University College, Dublin, Ireland
| | - Steven D Munger
- 3 Department of Pharmacology and Therapeutics; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism; Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Susan P Travers
- 4 Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio, USA
| | - Anthony Sclafani
- 5 Department of Psychology, Brooklyn College of the City University of New York, New York, New York, USA
| | - Julie A Mennella
- 6 Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Makaronidis JM, Batterham RL. Potential Mechanisms Mediating Sustained Weight Loss Following Roux-en-Y Gastric Bypass and Sleeve Gastrectomy. Endocrinol Metab Clin North Am 2016; 45:539-52. [PMID: 27519129 DOI: 10.1016/j.ecl.2016.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bariatric surgery is the only effective treatment for severe obesity. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), the most commonly performed procedures, lead to sustained weight loss, improvements in obesity-related comorbidities and reduced mortality. In humans, the main driver for weight loss following RYGB and SG is reduced energy intake. Reduced appetite, changes in subjective taste and food preference, and altered neural response to food cues are thought to drive altered eating behavior. The biological mediators underlying these changes remain incompletely understood but changes in gut-derived signals, as a consequence of altered nutrient and/or biliary flow, are key candidates.
Collapse
Affiliation(s)
- Janine M Makaronidis
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK; University College London Hospitals (UCLH) Bariatric Centre for Weight Loss, Metabolic and Endocrine Surgery, UCLH, Ground Floor West Wing, 250 Euston Road, London NW1 2PG, UK; National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, Kings Cross, London W1T 7DN, UK
| | - Rachel L Batterham
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK; University College London Hospitals (UCLH) Bariatric Centre for Weight Loss, Metabolic and Endocrine Surgery, UCLH, Ground Floor West Wing, 250 Euston Road, London NW1 2PG, UK; National Institute of Health Research University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, Kings Cross, London W1T 7DN, UK.
| |
Collapse
|
32
|
Primeaux SD, de Silva T, Tzeng TH, Chiang MC, Hsia DS. Recent advances in the modification of taste and food preferences following bariatric surgery. Rev Endocr Metab Disord 2016; 17:195-207. [PMID: 27245858 DOI: 10.1007/s11154-016-9365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a large body of evidence indicating that bariatric surgery provides durable weight loss and health benefits to patients who are obese and have comorbidities such as type 2 diabetes (T2D). However, there are still many questions related to mechanisms of metabolic improvement, predictors of success/failure, and long term consequences, which need to be answered. More recently, there has been a particular interest in the modulation of taste and food preferences that occurs after bariatric surgery and how this affects weight loss in different individuals. Animal models as well as human studies have shed some light on the role of taste in changing food preferences and how these changes may affect weight loss after surgery. The goal of this review is to discuss the physiological and behavioral consequences of bariatric surgery as a treatment for obesity and T2D, with particular emphasis on recent studies describing bariatric surgery-induced modifications in taste perception and food preferences.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB 7159D, New Orleans, LA, 70112, USA.
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Taniya de Silva
- Department of Internal Medicine-Endocrinology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tony H Tzeng
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB 7159D, New Orleans, LA, 70112, USA
| | - Monica C Chiang
- Department of Internal Medicine-Endocrinology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Daniel S Hsia
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
- Department of Internal Medicine-Endocrinology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| |
Collapse
|
33
|
Mathes CM, Letourneau C, Blonde GD, le Roux CW, Spector AC. Roux-en-Y gastric bypass in rats progressively decreases the proportion of fat calories selected from a palatable cafeteria diet. Am J Physiol Regul Integr Comp Physiol 2016; 310:R952-9. [PMID: 26864811 DOI: 10.1152/ajpregu.00444.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Roux-en-Y gastric bypass surgery (RYGB) decreases caloric intake in both human patients and rodent models. In long-term intake tests, rats decrease their preference for fat and/or sugar after RYGB, and patients may have similar changes in food selection. Here we evaluated the impact of RYGB on intake during a "cafeteria"-style presentation of foods to assess if rats would lower the percentage of calories taken from fat and/or sugar after RYGB in a more complex dietary context. Male Sprague-Dawley rats that underwent either RYGB or sham surgery (Sham) were presurgically and postsurgically given 8-days free access to four semisolid foods representative of different fat and sugar levels along with standard chow and water. Compared with Sham rats, RYGB rats took proportionally fewer calories from fat and more calories from carbohydrates; the latter was not attributable to an increase in sugar intake. The proportion of calories taken from protein after RYGB also increased slightly. Importantly, these postsurgical macronutrient caloric intake changes in the RYGB rats were progressive, making it unlikely that the surgery had an immediate impact on the hedonic evaluation of the foods and strongly suggesting that learning is influencing the food choices. Indeed, despite these dietary shifts, RYGB, as well as Sham, rats continued to select the majority of their calories from the high-fat/high-sugar option. Apparently after RYGB, rats can progressively regulate their intake and selection of complex foods to achieve a seemingly healthier macronutrient dietary composition.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Chanel Letourneau
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Carel W le Roux
- Diabetes Complications Research Centre, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Investigative Medicine, Imperial College London, London, United Kingdom; and Gastrosurgical Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida;
| |
Collapse
|
34
|
RYGB progressively increases avidity for a low-energy, artificially sweetened diet in female rats. Appetite 2015; 98:133-41. [PMID: 26707654 DOI: 10.1016/j.appet.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023]
Abstract
Weight re-gain within 2 y after Roux-en-Y gastric bypass (RYGB) is significantly associated with increased intake of and cravings for sweet foods. Here we describe a novel model of this late increase in sweet appetite. Ovariectomized RYGB and Sham-operated rats, with or without estradiol treatment, were maintained on Ensure liquid diet and offered a low-energy, artificially sweetened diet (ASD) 2 h/d. First, we tested rats more than six months after RYGB. ASD meals were larger in RYGB than Sham rats, whereas Ensure meals were smaller. General physical activity increased during ASD meals in RYGB rats, but not during Ensure meals. Second, new rats were adapted to ASD before surgery, and were then offered ASD again during 4-10 wk following surgery. Estradiol-treated RYGB rats lost the most weight and progressively increased ASD intake to >20 g/2 h in wk 9-10 vs. ∼3 g/2 h in Sham rats. Finally, the same rats were then treated with leptin or saline for 8 d. Leptin did not affect body weight, Ensure intake, or activity during meals, but slightly reduced ASD intake in estradiol-treated RYGB rats. Food-anticipatory activity was increased in estradiol-treated RYGB rats during the saline-injection tests. Because increased meal-related physical activity together with larger meals is evidence of hunger in rats, these data suggest that (1) RYGB can increase hunger for a low-energy sweet food in rats and (2) low leptin levels contribute to this hunger, but are not its only cause. This provides a unique rat model for the increased avidity for sweets that is significantly associated with weight recidivism late after RYGB.
Collapse
|
35
|
Spector AC. Behavioral analyses of taste function and ingestion in rodent models. Physiol Behav 2015; 152:516-26. [PMID: 25892670 PMCID: PMC4608852 DOI: 10.1016/j.physbeh.2015.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
In 1975, at the start of my junior year in college, I took a course on experimental methods in psychology from Dr. James C. Smith, when he was a Visiting Professor at Penn State University. That experience set me on the professional path of studying the neural bases of taste function and ingestion on which I remain to this day. Along the way, I did my graduate work at Florida State University under the tutelage of Jim, I did my postdoctoral training at the University of Pennsylvania under the supervision of Harvey Grill, and I also worked closely with Ralph Norgren, who was at the Penn State Medical College. This article briefly summarizes some of the lessons I learned from my mentors and highlights a few key research findings arising from my privilege of working with gifted students and postdocs. After close to 40 years of being a student of the gustatory system and ingestive behavior, it is still with the greatest conviction that I believe rigorous analysis of behavior is indispensable to any effort seeking to understand brain function.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
36
|
Manning S, Pucci A, Batterham RL. GLP-1: a mediator of the beneficial metabolic effects of bariatric surgery? Physiology (Bethesda) 2015; 30:50-62. [PMID: 25559155 DOI: 10.1152/physiol.00027.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There has been increasing interest in the role that gut hormones may play in contributing to the physiological changes produced by certain bariatric procedures, such as Roux-en-Y gastric bypass and sleeve gastrectomy. Here, we review the evidence implicating one such gut hormone, glucagon-like peptide-1, as a mediator of the metabolic benefits of these two procedures.
Collapse
Affiliation(s)
- Sean Manning
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Andrea Pucci
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom
| | - Rachel L Batterham
- Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London, London, United Kingdom; UCLH Centre for Weight Loss, Metabolic and Endocrine Surgery, University College London Hospitals, London, United Kingdom; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
37
|
Mathes CM, Bohnenkamp RA, le Roux CW, Spector AC. Reduced sweet and fatty fluid intake after Roux-en-Y gastric bypass in rats is dependent on experience without change in stimulus motivational potency. Am J Physiol Regul Integr Comp Physiol 2015; 309:R864-74. [PMID: 26290100 DOI: 10.1152/ajpregu.00029.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/10/2015] [Indexed: 01/14/2023]
Abstract
Here we assessed how intake reductions induced by Roux-en-Y gastric bypass surgery (RYGB) occur within and across access periods by examining drinking microstructure. After training, RYGB (n = 8-10) or sham-operated (SHAM, n = 12) rats were given 60-min access first to 0.3 M sucrose, then to 5% Intralipid, and finally to milk-chocolate Ensure Plus across 5 days each. Initially, total licks taken during the first meal of sucrose and Intralipid by RYGB and SHAM rats did not differ, but, across subsequent test periods, RYGB rats licked less than SHAM rats. First Ensure meal size also did not differ between RYGB and SHAM rats, but SHAM rats increased licking across test periods while the behavior of RYGB rats remained stable. The intake differences between the surgical groups, when they occurred, were most often due to smaller burst sizes in RYGB rats. Importantly, the surgical-group difference in sucrose and Intralipid intakes could not be explained by altered palatability of these solutions because, throughout testing, both groups had similar early meal licking behavior thought to represent the motivational potency of stimulus orosensory features. Although, overall, RYGB rats displayed lower early meal licking of Ensure relative to the SHAM rats, this appeared to be driven primarily by increases in the latter group across test periods; the RYGB group stayed relatively stable. Collectively, these results suggest that some level of postoral experience with these stimuli and/or their components is necessary before intake differences emerge between surgical groups, and, even when differences occur, often immediate taste-motivated ingestive behavior remains unaltered.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Ryan A Bohnenkamp
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Carel W le Roux
- Diabetes Complications Research Centre, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Investigative Medicine, Imperial College London, London, United Kingdom; and Gastrosurgical Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida;
| |
Collapse
|
38
|
Boxwell AJ, Chen Z, Mathes CM, Spector AC, Le Roux CW, Travers SP, Travers JB. Effects of high-fat diet and gastric bypass on neurons in the caudal solitary nucleus. Physiol Behav 2015. [PMID: 26216080 DOI: 10.1016/j.physbeh.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bariatric surgery is an effective treatment for obesity that involves both peripheral and central mechanisms. To elucidate central pathways by which oral and visceral signals are influenced by high-fat diet (HFD) and Roux-en-Y gastric bypass (RYGB) surgery, we recorded from neurons in the caudal visceral nucleus of the solitary tract (cNST, N=287) and rostral gustatory NST (rNST,N=106) in rats maintained on a HFD and lab chow (CHOW) or CHOW alone, and subjected to either RYGB or sham surgery. Animals on the HFD weighed significantly more than CHOW rats and RYGB reversed and then blunted weight gain regardless of diet. Using whole-cell patch clamp recording in a brainstem slice, we determined the membrane properties of cNST and rNST neurons associated with diet and surgery. We could not detect differences in rNST neurons associated with these manipulations. In cNST neurons, neither the threshold for solitary tract stimulation nor the amplitude of evoked EPSCs at threshold varied by condition; however suprathreshold EPSCs were larger in HFD compared to chow-fed animals. In addition, a transient outward current, most likely an IA current, was increased with HFD and RYGB reduced this current as well as a sustained outward current. Interestingly, hypothalamic projecting cNST neurons preferentially express IA and modulate transmission of afferent signals (Bailey, '07). Thus, diet and RYGB have multiple effects on the cellular properties of neurons in the visceral regions of NST, with potential to influence inputs to forebrain feeding circuits.
Collapse
Affiliation(s)
- A J Boxwell
- Ohio State Univ., Columbus, OH, United States
| | - Z Chen
- Ohio State Univ., Columbus, OH, United States
| | - C M Mathes
- Florida State Univ., Tallahassee, FL, United States
| | - A C Spector
- Florida State Univ., Tallahassee, FL, United States
| | | | - S P Travers
- Ohio State Univ., Columbus, OH, United States
| | - J B Travers
- Ohio State Univ., Columbus, OH, United States.
| |
Collapse
|
39
|
Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia. Neuropsychopharmacology 2015; 40:2001-14. [PMID: 25703200 PMCID: PMC4839524 DOI: 10.1038/npp.2015.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback.
Collapse
|
40
|
Yasoshima Y, Yoshizawa H, Shimura T, Miyamoto T. The basolateral nucleus of the amygdala mediates caloric sugar preference over a non-caloric sweetener in mice. Neuroscience 2015; 291:203-15. [PMID: 25684750 DOI: 10.1016/j.neuroscience.2015.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/19/2022]
Abstract
Neurobiological and genetic mechanisms underlying increased intake of and preference for nutritive sugars over non-nutritive sweeteners are not fully understood. We examined the roles of subnuclei of the amygdala in the shift in preference for a nutritive sugar. Food-deprived mice alternately received caloric sucrose (1.0 M) on odd-numbered training days and a non-caloric artificial sweetener (2.5 mM saccharin) on even-numbered training days. During training, mice with sham lesions of the basolateral (BLA) or central (CeA) nucleus of the amygdala increased their intake of 1.0 M sucrose, but not saccharin. Trained mice with sham lesions showed a significant shift in preference toward less concentrated sucrose (0.075 M) over the saccharin in a two-bottle choice test, although the mice showed an equivalent preference for these sweeteners before training. No increased intake of or preference for sucrose before and after the alternating training was observed in non-food-deprived mice. Excitotoxic lesions centered in the BLA impaired the increase in 1.0M sucrose intake and shift in preference toward 0.075 M sucrose over saccharin. Microlesions with iontophoretic excitotoxin injections into the CeA did not block the training-dependent changes. These results suggest that food-deprived animals selectively shift their preference for a caloric sugar over a non-caloric sweetener through the alternate consumption of caloric and non-caloric sweet substances. The present data also suggest that the BLA, but not CeA, plays a role in the selective shift in sweetener preference.
Collapse
Affiliation(s)
- Y Yasoshima
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita 565-0871, Japan.
| | - H Yoshizawa
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - T Shimura
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita 565-0871, Japan.
| | - T Miyamoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan; Laboratory of Behavioral Neuroscience, Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| |
Collapse
|
41
|
Mathes CM, Bohnenkamp RA, Blonde GD, Letourneau C, Corteville C, Bueter M, Lutz TA, le Roux CW, Spector AC. Gastric bypass in rats does not decrease appetitive behavior towards sweet or fatty fluids despite blunting preferential intake of sugar and fat. Physiol Behav 2015; 142:179-88. [PMID: 25660341 PMCID: PMC4358755 DOI: 10.1016/j.physbeh.2015.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 01/14/2023]
Abstract
After Roux-en-Y gastric bypass surgery (RYGB), patients report consuming fewer fatty and dessert-like foods, and rats display blunted sugar and fat preferences. Here we used a progressive ratio task (PR) in our rat model to explicitly test whether RYGB decreases the willingness of rats to work for very small amounts of preferred sugar- and/or fat-containing fluids. In each of two studies, two groups of rats - one maintained on a high-fat diet (HFD) and standard chow (CHOW) and one given CHOW alone - were trained while water-deprived to work for water or either Ensure or 1.0 M sucrose on increasingly difficult operant schedules. When tested before surgery while nondeprived, HFD rats had lower PR breakpoints (number of operant responses in the last reinforced ratio) for sucrose, but not for Ensure, than CHOW rats. After surgery, at no time did rats given RYGB show lower breakpoints than SHAM rats for Ensure, sucrose, or when 5% Intralipid served postoperatively as the reinforcer. Nevertheless, RYGB rats showed blunted preferences for these caloric fluids versus water in 2-bottle preference tests. Importantly, although the Intralipid and sucrose preferences of RYGB rats decreased further over time, subsequent breakpoints for them were not significantly impacted. Collectively, these data suggest that the observed lower preferences for normally palatable fluids after RYGB in rats may reflect a learned adjustment to altered postingestive feedback rather than a dampening of the reinforcing taste characteristics of such stimuli as measured by the PR task in which postingestive stimulation is negligible.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Ryan A Bohnenkamp
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Chanel Letourneau
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Caroline Corteville
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland
| | - Marco Bueter
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Institute of Laboratory Animal Science, Vetsuisse Faculty University of Zurich, Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, School of Medicine and Medical Science, University College Dublin, Ireland; Investigative Medicine, Imperial College London, UK; Gastrosurgical Laboratory, University of Gothenburg, Sweden
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
42
|
Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1275-91. [PMID: 25253084 DOI: 10.1152/ajpregu.00185.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity and its related comorbidities can be detrimental for the affected individual and challenge public health systems worldwide. Currently, the only available treatment options leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality are based on surgical interventions. This review will focus on two main clinical effects of Roux-en-Y gastric bypass (RYGB), namely body weight loss and change in eating behavior. Animal experiments designed to understand the underlying physiological mechanisms of these post-gastric bypass effects will be discussed. Where appropriate, reference will also be made to vertical sleeve gastrectomy. While caloric malabsorption and mechanical restriction seem not to be major factors in this respect, alterations in gut hormone levels are invariably found after RYGB. However, their causal role in RYGB effects on eating and body weight has recently been challenged. Other potential factors contributing to the RYGB effects include increased bile acid concentrations and an altered composition of gut microbiota. RYGB is further associated with remarkable changes in preference for different dietary components, such as a decrease in the preference for high fat or sugar. It needs to be noted, however, that in many cases, the question about the necessity of these alterations for the success of bariatric surgery procedures remains unanswered.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland; Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; and
| | - Marco Bueter
- Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
le Roux CW, Bueter M. The physiology of altered eating behaviour after Roux-en-Y gastric bypass. Exp Physiol 2014; 99:1128-32. [DOI: 10.1113/expphysiol.2014.078378] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carel W. le Roux
- Diabetes Complications Research Centre; Conway Institute; School of Medicine and Medical Sciences; University College Dublin; Dublin Ireland
- Gastrosurgical Laboratory; University of Gothenburg; Gothenburg Sweden
- Investigative Science; Imperial College London; London UK
| | - Marco Bueter
- Department of Surgery; Division of Visceral and Transplantation Surgery; University Hospital Zurich; Zurich Switzerland
- Center of Integrative Human Physiology; University of Zurich; Zurich Switzerland
| |
Collapse
|
44
|
Abstract
Obesity and its related comorbidities can be detrimental for the affected individual and challenge public health systems worldwide. Currently, the only available treatment options leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality are based on surgical interventions. Apart from the 'gold standard' Roux-en-Y gastric bypass (RYGB), the vertical sleeve gastrectomy and gastric banding are two frequently performed procedures. This review will discuss animal experiments designed to understand the underlying mechanisms of body weight loss after bariatric surgery. While caloric malabsorption and mechanical restriction are no major factors in this respect, alterations in gut hormone levels are invariably found after RYGB. However, their causal role in RYGB effects on eating and body weight has recently been challenged. Other potential factors contributing to the RYGB effects include increased bile acid concentrations and an altered composition of gut microbiota. RYGB is further associated with remarkable changes in the preference for different dietary components such as a decrease in the preference for high fat or sugar; it is important to note that the contribution of altered food preferences to the RYGB effects on body weight is not clear.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
45
|
Ramzy AR, Nausheen S, Chelikani PK. Ileal transposition surgery produces ileal length-dependent changes in food intake, body weight, gut hormones and glucose metabolism in rats. Int J Obes (Lond) 2013; 38:379-87. [PMID: 24166069 DOI: 10.1038/ijo.2013.201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/23/2013] [Accepted: 10/06/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Enhanced stimulation of the lower gut is hypothesized to play a key role in the weight loss and resolution of diabetes following bariatric surgeries. Ileal transposition (IT) permits study of the effects of direct lower gut stimulation on body weight, glucose homeostasis and other metabolic adaptations without the confounds of gastric restriction or foregut exclusion. However, the underlying mechanisms and the length of the ileum sufficient to produce metabolic benefits following IT surgery remain largely unknown. OBJECTIVE To determine the effects of transposing varying lengths of the ileum to upper jejunum on food intake, body weight, glucose tolerance and lower gut hormones, and the expression of key markers of glucose and lipid metabolism in skeletal muscle and adipose tissue in rats. METHODS Adult male Sprague-Dawley rats (n=9/group) were subjected to IT surgery with translocation of 5, 10 or 20 cm of the ileal segment to proximal jejunum or sham manipulations. Daily food intake and body weight were recorded, and an intraperitoneal glucose tolerance test was performed. Blood samples were assayed for hormones and tissue samples for mRNA (RT-qPCR) and/or protein abundance (immunoblotting) of regulatory metabolic markers. RESULTS We demonstrate that IT surgery exerts ileal length-dependent effects on multiple parameters including: (1) decreased food intake and weight gain, (2) improved glucose tolerance, (3) increased tissue expression and plasma concentrations of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), and decreased leptin concentrations and (4) upregulation of key markers of glucose metabolism (glucose transporter-4 (GLUT-4), insulin receptor substrate 1 (IRS-1), adenosine monophosphate-activated protein kinase (AMPK), hexokinase (HK) and phosphofructokinase (PFK)) together with a downregulation of lipogenic markers (fatty acid synthase (FAS)) in muscle and adipose tissue. CONCLUSIONS Together, our data demonstrate that the reduction in food intake and weight gain, increase in lower gut hormones, glycemic improvements and associated changes in tissue metabolic markers following IT surgery are dependent on the length of the transposed ileum.
Collapse
Affiliation(s)
- A R Ramzy
- Department of Production Animal Health, Faculty of Veterinary Medicine, Alberta, Calgary, Canada
| | - S Nausheen
- Department of Production Animal Health, Faculty of Veterinary Medicine, Alberta, Calgary, Canada
| | - P K Chelikani
- 1] Department of Production Animal Health, Faculty of Veterinary Medicine, Alberta, Calgary, Canada [2] Gastrointestinal Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Alberta, Calgary, Canada
| |
Collapse
|
46
|
Pezeshki A, Chelikani PK. Effects of Roux-en-Y gastric bypass and ileal transposition surgeries on glucose and lipid metabolism in skeletal muscle and liver. Surg Obes Relat Dis 2013; 10:217-28. [PMID: 24603111 DOI: 10.1016/j.soard.2013.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/29/2013] [Accepted: 09/27/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Roux-en Y gastric bypass (RYGB) and ileal transposition (IT) surgeries produce weight loss and improve diabetic control; however, the mechanisms of glycemic improvements are largely unknown. Because skeletal muscle and liver play a key role in glucose homeostasis, we compared the effects of RYGB and IT surgeries on key molecules of glucose and lipid metabolism in muscle and liver. METHODS Sprague-Dawley rats were subjected to RYGB, IT, or sham surgeries; sham-animals were ad-lib fed or pair-fed to RYGB rats (n = 7-9/group). At 8 weeks postoperatively, blood samples were collected for glucagon-like peptide-1 (GLP-1) and insulin analyses by ELISA. Leg muscle and liver tissues were analyzed for mRNA (RT-qPCR) and/or protein abundance (immuno blotting) of important molecules of glucose and lipid metabolism [glucose transporter-4 (GLUT-4), hexokinase, phosphofructokinase (PFK), adenosine monophosphate activated protein kinase-α (AMPKα), cytochrome C oxidase-IV (COX-IV), citrate synthase, carnitine palmitoyl transferase-1 (CPT-1), medium-chain acyl-CoA dehydrogenase (MCAD), peroxisome proliferator-activated receptor gamma co-activator 1 α (PGC-1 α), PGC-1-related coactivator (PRC), uncoupling protein-3 (UCP-3)]. RESULTS Plasma GLP-1 concentrations were increased comparably with RYGB and IT. RYGB and IT increased muscle GLUT-4 protein content, muscle hexokinase mRNA, and liver PFK mRNA. IT increased muscle AMPKα and COX-IV protein content and liver citrate synthase activity. IT increased muscle CPT-1, MCAD and PRC mRNA, whereas RYGB increased UCP-3 mRNA in muscle and liver, and PGC-1 α mRNA in liver. CONCLUSION The data suggest that RYGB and IT surgeries lead to enhanced GLP-1 secretion and produce similar stimulatory effects on important molecules of glucose metabolism but differential effects on key molecules of lipid oxidation in muscle and liver.
Collapse
Affiliation(s)
- Adel Pezeshki
- Department of Production Animal Health, Faculty of Veterinary Medicine, Gastrointestinal Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, Gastrointestinal Research Group, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
47
|
Skibicka KP. The central GLP-1: implications for food and drug reward. Front Neurosci 2013; 7:181. [PMID: 24133407 PMCID: PMC3796262 DOI: 10.3389/fnins.2013.00181] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like-peptide-1 (GLP-1) and its long acting analogs comprise a novel class of type 2 diabetes (T2D) treatment. What makes them unique among other T2D drugs is their concurrent ability to reduce food intake, a great benefit considering the frequent comorbidity of T2D and obesity. The precise neural site of action underlying this beneficial effect is vigorously researched. In accordance with the classical model of food intake control GLP-1 action on feeding has been primarily ascribed to receptor populations in the hypothalamus and the hindbrain. In contrast to this common view, relevant GLP-1 receptor populations are distributed more widely, with a prominent mesolimbic complement emerging. The physiological relevance of the mesolimbic GLP-1 is suggested by the demonstration that similar anorexic effects can be obtained by independent stimulation of the mesolimbic and hypothalamic GLP-1 receptors (GLP-1R). Results reviewed here support the idea that mesolimbic GLP-1R are sufficient to reduce hunger-driven feeding, the hedonic value of food and food-motivation. In parallel, emerging evidence suggests that the range of action of GLP-1 on reward behavior is not limited to food-derived reward but extends to cocaine, amphetamine, and alcohol reward. The new discoveries concerning GLP-1 action on the mesolimbic reward system significantly extend the potential therapeutic range of this drug target.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
48
|
McCaughey SA, Glendinning JI. Experience with sugar modifies behavioral but not taste-evoked medullary responses to sweeteners in mice. Chem Senses 2013; 38:793-802. [PMID: 24084168 DOI: 10.1093/chemse/bjt046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary exposure to sugars increases the preference for and intake of sugar solutions in mice. We used brief-access lick tests and multiunit electrophysiological recordings from the nucleus of the solitary tract (NST) to investigate the role of taste in diet-induced changes in sucrose responsiveness. We exposed C57BL/6J (B6) and 129X1/SvJ (129) mice to either a sucrose diet (chow, water, and a 500mM sucrose solution) or a control diet (chow and water) for 3 days. In B6 mice, exposure to the sucrose diet decreased the appetitive response (i.e., number of trials initiated) but had no effect on the consummatory response (i.e., rate of licking) to 500mM sucrose and 20mM saccharin. In 129 mice, exposure to the sucrose diet increased the appetitive response but had no effect on the consummatory response to the sweetener solutions. In the NST recordings, the B6 mice exhibited larger multiunit responses to sweeteners than 129 mice, but there was no effect of the sucrose diet in either strain. Our results indicate that sucrose exposure alters the appetitive response of B6 and 129 mice to sweeteners in diametrically opposed ways and that these changes are mediated by structures in the gustatory neuraxis above the NST (e.g., ventral forebrain).
Collapse
Affiliation(s)
- Stuart A McCaughey
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|
49
|
Abstract
The clinical efficacy of bariatric surgery has encouraged the scientific investigation of the gut as a major endocrine organ. Manipulation of gastrointestinal anatomy through surgery has been shown to profoundly affect the physiological and metabolic processes that control body weight and glycaemia. The most popular bariatric surgical procedures are gastric bypass, adjustable gastric banding and vertical sleeve gastrectomy. Even though these procedures were designed with the aim of causing restriction of food intake and nutrient malabsorption, evidence suggests that their contributions to weight loss are minimal. Instead, these interventions reduce body weight by decreasing hunger, increasing satiation during a meal, changing food preferences and energy expenditure. In this Review, we have explored these mechanisms as well as their mediators. The hope is that that their in-depth investigation will enable the optimization and individualization of surgical techniques, the development of equally effective but safer nonsurgical weight-loss interventions, and even the understanding of the pathophysiology of obesity itself.
Collapse
Affiliation(s)
- Alexander D Miras
- Molecular and Metabolic Imaging Group, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | |
Collapse
|
50
|
Zhang XJ, Wang YQ, Long Y, Wang L, Li Y, Gao FB, Tian HM. Alteration of sweet taste in high-fat diet induced obese rats after 4 weeks treatment with exenatide. Peptides 2013; 47:115-23. [PMID: 23891652 DOI: 10.1016/j.peptides.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes.
Collapse
Affiliation(s)
- Xiao-juan Zhang
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|