1
|
Norman BP, Sutherland H, Wilson PJM, Rutland DA, Milan AM, Hughes AT, Davison AS, Khedr M, Jarvis JC, Gallagher JA, Bou-Gharios G, Ranganath LR. Hepatobiliary circulation and dominant urinary excretion of homogentisic acid in a mouse model of alkaptonuria. J Inherit Metab Dis 2024; 47:664-673. [PMID: 38487984 DOI: 10.1002/jimd.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 07/18/2024]
Abstract
Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] μmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] μmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.
Collapse
Affiliation(s)
- B P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - H Sutherland
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- School of Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - P J M Wilson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - D A Rutland
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - A M Milan
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
| | - A T Hughes
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
| | - A S Davison
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
| | - M Khedr
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
| | - J C Jarvis
- School of Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - J A Gallagher
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - G Bou-Gharios
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - L R Ranganath
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK
| |
Collapse
|
2
|
Reho JJ, Muskus PC, Bennett DM, Grobe CC, Burnett CML, Nakagawa P, Segar JL, Sigmund CD, Grobe JL. Modulatory effects of estrous cycle on ingestive behaviors and energy balance in young adult C57BL/6J mice maintained on a phytoestrogen-free diet. Am J Physiol Regul Integr Comp Physiol 2024; 326:R242-R253. [PMID: 38284128 PMCID: PMC11213288 DOI: 10.1152/ajpregu.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The estrous cycle is known to modify food, fluid, and electrolyte intake behaviors and energy homeostasis in various species, in part through fluctuations in estrogen levels. Simultaneously, commonly commercially available rodent dietary formulations greatly vary in soy protein content, and thereby the delivery of biologically active phytoestrogens. To explore the interactions among the estrous cycle, sodium, fluid, and caloric seeking behaviors, and energy homeostasis, young adult C57BL/6J female mice were maintained on a soy protein-free 2920x diet and provided water, or a choice between water and 0.15 mol/L NaCl drink solution. Comprehensive metabolic phenotyping was performed using a multiplexed Promethion (Sable Systems International) system, and estrous stages were determined via daily vaginal cytology. When provided food and water, estrous cycling had no major modulatory effects on intake behaviors or energy balance. When provided a saline solution drink choice, significant modulatory effects of the transition from diestrus to proestrus were observed upon fluid intake patterning, locomotion, and total energy expenditure. Access to saline increased total daily sodium consumption and aspects of energy expenditure, but these effects were not modified by the estrous stage. Collectively, these results indicate that when supplied a phytoestrogen-free diet, the estrous cycle has minor modulatory effects on ingestive behaviors and energy balance in C57BL/6J mice that are sensitive to sodium supply.NEW & NOTEWORTHY When provided a phytoestrogen-free diet, the estrous cycle had very little effect on food and water intake, physical activity, or energy expenditure in C57BL/6J mice. In contrast, when provided an NaCl drink in addition to food and water, the estrous cycle was associated with changes in intake behaviors and energy expenditure. These findings highlight the complex interactions among estrous cycling, dietary formulation, and nutrient presentation upon ingestive behaviors and energy homeostasis in mice.
Collapse
Affiliation(s)
- John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Patricia C Muskus
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Darby M Bennett
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Department of Medicine/Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Lawton SB, Grobe CC, Reho JJ, Raff H, Thulin JD, Jensen ES, Burnett CM, Segar JL, Grobe JL. Differences in Fluid, Electrolyte, and Energy Balance in C57BL/6J Mice ( Mus musculus) in Metabolic Caging at Thermoneutral or Standard Room Temperatures. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:190-200. [PMID: 38191147 PMCID: PMC11022944 DOI: 10.30802/aalas-jaalas-23-000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
The Guide for the Care and Use of Laboratory Animals recommends mice be pair or group housed and provided with nesting materials. These provisions support social interactions and are also critical for thermoregulatory behaviors such as huddling and burrowing. However, studies of fluid and electrolyte balance and digestive function may involve use of metabolic caging (MC) systems in which mice are housed individually on wire-mesh floors that permit quantitative collection of urine and feces. MC housing prevents mice from performing their typical huddling and burrowing behaviors. Housing in MC can cause weight loss and behavioral changes in rodents. Here, we tested the hypothesis that MC housing of mice at standard room temperature (SRT, 22 to 23 °C) exposes them to cold stress, which causes metabolic changes in the mice as compared with standard housing. We hypothesized that performing MC studies at a thermoneutral temperature (TNT, 30 °C) would minimize these changes. Fluid, electrolyte, and energy balance and body composition were assessed in male and female C57BL/6J mice housed at SRT or TNT in MC, static microisolation cages, or a multiplexed metabolic phenotyping system designed to mimic static microisolation cages (Promethion, Sable Systems International). In brief, as compared with MC housing at SRT, MC housing at TNT was associated with lower food intake and energy expenditure, absence of weight loss, and lower urine and fecal corticosterone levels. These results indicate that housing in MC at SRT causes cold stress that can be mitigated if MC studies are performed at TNT.
Collapse
Affiliation(s)
- Samuel Br Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph D Thulin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Research Office Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric S Jensen
- Department of Pediatrics, Research Office Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Colin Ml Burnett
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin;,
| |
Collapse
|
4
|
Bello JLG, Lafargue AL, Ciria HC, Luna TB, Leyva YZ. Methodology for integrated analysis of vector- and spectroscopic bioimpedance methods. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2024; 15:154-161. [PMID: 39717622 PMCID: PMC11665879 DOI: 10.2478/joeb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/25/2024]
Abstract
Electrical bioimpedance is based on the opposition exerted by body tissues to the passage of an electrical current. This characteristic allows the assessment of the individual's body composition, nutritional status, and hydration status. Electrical bioimpedance can be used to estimate body composition, health-related markers, general health status, diagnosis and prognostic of diseases, evaluation of treatment progress, and others. The aim of this study is to propose a methodology that allows us to integrate two methods of electrical bioimpedance analysis: bioelectrical impedance vector analysis, and bioelectrical impedance spectroscopy to evaluate the health of individuals. For methodology validation a retrospective clinical investigation was carried out where the data of healthy individuals and cancer patients included in the Database of the characterization of bioelectrical parameters by electrical Bioimpedance methods were analyzed. The values of electrical resistance and electrical reactance are higher in cancer patients compared to healthy individuals. However, the phase angle is lower in these patients. In the advanced stages of the disease, patients are located outside the tolerance ellipses. All these results are obtained at the characteristic frequency. The integration of bioelectrical impedance vector analysis, and bioelectrical impedance spectroscopy can be a sensitive complementary tool, capable of establishing differences between healthy individuals and cancer patients. Enrichment could be achieved by including the analysis of different physiological parameters through estimation equations validated by BIS parameters.
Collapse
Affiliation(s)
- José Luis García Bello
- Autonomous University of Santo Domingo (UASD) Dominican Republic, Santo Domingo, Dominican Republic
| | - Alcibiades Lara Lafargue
- National Center for Applied Electromagnetism (CNEA). Universidad de Oriente. Santiago de Cuba, Cuba
| | - Héctor Camué Ciria
- National Center for Applied Electromagnetism (CNEA). Universidad de Oriente. Santiago de Cuba, Cuba
| | - Taira Batista Luna
- Autonomous University of Santo Domingo (UASD) Dominican Republic, Santo Domingo, Dominican Republic
| | - Yohandys Zulueta Leyva
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente. Santiago de Cuba, Cuba
| |
Collapse
|
5
|
Ziegler AA, Lawton SBR, Grobe CC, Reho JJ, Freudinger BP, Burnett CML, Nakagawa P, Grobe JL, Segar JL. Early-life sodium deprivation programs long-term changes in ingestive behaviors and energy expenditure in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R576-R592. [PMID: 37720996 PMCID: PMC10866575 DOI: 10.1152/ajpregu.00137.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Postnatal growth failure remains a significant problem for infants born prematurely, despite aggressive efforts to improve perinatal nutrition. Though often dysregulated in early life when children are born preterm, sodium (Na) homeostasis is vital to achieve optimal growth. We hypothesize that insufficient Na supply in this critical period contributes to growth restriction and programmed risks for cardiometabolic disease in later adulthood. Thus, we sought to ascertain the effects of prolonged versus early-life Na depletion on weight gain, body composition, food and water intake behaviors, and energy expenditure in C57BL/6J mice. In one study, mice were provided a low (0.04%)- or normal/high (0.30%)-Na diet between 3 and 18 wk of age. Na-restricted mice demonstrated delayed growth and elevated basal metabolic rate. In a second study, mice were provided 0.04% or 0.30% Na diet between 3 and 6 wk of age and then returned to standard (0.15%)-Na diet through the end of the study. Na-restricted mice exhibited growth delays that quickly caught up on return to standard diet. Between 6 and 18 wk of age, previously restricted mice exhibited sustained, programmed changes in feeding behaviors, reductions in total food intake, and increases in water intake and aerobic energy expenditure while maintaining normal body composition. Although having no effect in control mice, administration of the ganglionic blocker hexamethonium abolished the programmed increase in basal metabolic rate in previously restricted mice. Together these data indicate that early-life Na restriction can cause programmed changes in ingestive behaviors, autonomic function, and energy expenditure that persist well into adulthood.
Collapse
Affiliation(s)
- Alisha A Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Samuel B R Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Bonnie P Freudinger
- Engineering Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Colin M L Burnett
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Wisconsin, United States
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Grobe CC, Reho JJ, Brown-Williams D, Ziegler AA, Mathieu NM, Lawton SB, Fekete EM, Brozoski DT, Wackman KK, Burnett CM, Nakagawa P, Sigmund CD, Segar JL, Grobe JL. Cardiometabolic Effects of DOCA-Salt in Mice Depend on Ambient Temperature. Hypertension 2023; 80:1871-1880. [PMID: 37470185 PMCID: PMC10528934 DOI: 10.1161/hypertensionaha.122.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Mice prefer warmer environments than humans. For this reason, behavioral and physiological thermoregulatory responses are engaged by mice in response to a standard room temperature of 22 to 24 °C. Autonomic mechanisms mediating thermoregulatory responses overlap with mechanisms activated in hypertension, and, therefore, we hypothesized that housing at thermoneutral temperatures (TNs; 30 °C) would modify the cardiometabolic effects of deoxycorticosterone acetate (DOCA)-salt in mice. METHODS The effects of DOCA-salt treatment upon ingestive behaviors, energy expenditure, blood pressure, heart rate (HR), and core temperature were assessed in C57BL/6J mice housed at room temperature or TN. RESULTS Housing at TN reduced food intake, energy expenditure, blood pressure, and HR and attenuated HR responses to acute autonomic blockade by chlorisondamine. At room temperature, DOCA-salt caused expected increases in fluid intake, sodium retention in osmotically inactive pools, blood pressure, core temperature, and also caused expected decreases in fat-free mass, total body water, and HR. At TN, the effects of DOCA-salt upon fluid intake, fat gains, hydration, and core temperature were exaggerated, but effects on energy expenditure and HR were blunted. Effects of DOCA-salt upon blood pressure were similar for 3 weeks and exaggerated by TN housing in the fourth week. CONCLUSIONS Ambient temperature robustly influences behavioral and physiological functions in mice, including metabolic and cardiovascular phenotype development in response to DOCA-salt treatment. Studying cardiometabolic responses of mice at optimal ambient temperatures promises to improve the translational relevance of rodent models.
Collapse
Affiliation(s)
- Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Alisha A. Ziegler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Natalia M. Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Samuel B.R. Lawton
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Eva M. Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Daniel T. Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kelsey K. Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Colin M.L. Burnett
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jeffrey L. Segar
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
7
|
Mathieu NM, Fekete EM, Muskus PC, Brozoski DT, Lu KT, Wackman KK, Gomez J, Fang S, Reho JJ, Grobe CC, Vazirabad I, Mouradian GC, Hodges MR, Segar JL, Grobe JL, Sigmund CD, Nakagawa P. Genetic Ablation of Prorenin Receptor in the Rostral Ventrolateral Medulla Influences Blood Pressure and Hydromineral Balance in Deoxycorticosterone-Salt Hypertension. FUNCTION 2023; 4:zqad043. [PMID: 37609445 PMCID: PMC10440998 DOI: 10.1093/function/zqad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Non-enzymatic activation of renin via its interaction with prorenin receptor (PRR) has been proposed as a key mechanism of local renin-angiotensin system (RAS) activation. The presence of renin and angiotensinogen has been reported in the rostral ventrolateral medulla (RVLM). Overactivation of bulbospinal neurons in the RVLM is linked to hypertension (HTN). Previous studies have shown that the brain RAS plays a role in the pathogenesis of the deoxycorticosterone (DOCA)-salt HTN model. Thus, we hypothesized that PRR in the RVLM is involved in the local activation of the RAS, facilitating the development of DOCA-salt HTN. Selective PRR ablation targeting the RVLM (PRRRVLM-Null mice) resulted in an unexpected sex-dependent and biphasic phenotype in DOCA-salt HTN. That is, PRRRVLM-Null females (but not males) exhibited a significant delay in achieving maximal pressor responses during the initial stage of DOCA-salt HTN. Female PRRRVLM-Null subsequently showed exacerbated DOCA-salt-induced pressor responses during the "maintenance" phase with a maximal peak at 13 d on DOCA-salt. This exacerbated response was associated with an increased sympathetic drive to the resistance arterioles and the kidney, exacerbated fluid and sodium intake and output in response to DOCA-salt, and induced mobilization of fluids from the intracellular to extracellular space concomitant with elevated vasopressin. Ablation of PRR suppressed genes involved in RAS activation and catecholamine synthesis in the RVLM but also induced expression of genes involved in inflammatory responses. This study illustrates complex and sex-dependent roles of PRR in the neural control of BP and hydromineral balance through autonomic and neuroendocrine systems. Graphical abstract.
Collapse
Affiliation(s)
- Natalia M Mathieu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eva M Fekete
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Patricia C Muskus
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ko-Ting Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shi Fang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ibrahim Vazirabad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey L Segar
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Wagner VA, Deng G, Claflin KE, Ritter ML, Cui H, Nakagawa P, Sigmund CD, Morselli LL, Grobe JL, Kwitek AE. Cell-specific transcriptome changes in the hypothalamic arcuate nucleus in a mouse deoxycorticosterone acetate-salt model of hypertension. Front Cell Neurosci 2023; 17:1207350. [PMID: 37293629 PMCID: PMC10244568 DOI: 10.3389/fncel.2023.1207350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
A common preclinical model of hypertension characterized by low circulating renin is the "deoxycorticosterone acetate (DOCA)-salt" model, which influences blood pressure and metabolism through mechanisms involving the angiotensin II type 1 receptor (AT1R) in the brain. More specifically, AT1R within Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) has been implicated in selected effects of DOCA-salt. In addition, microglia have been implicated in the cerebrovascular effects of DOCA-salt and angiotensin II. To characterize DOCA-salt effects upon the transcriptomes of individual cell types within the ARC, we used single-nucleus RNA sequencing (snRNAseq) to examine this region from male C57BL/6J mice that underwent sham or DOCA-salt treatment. Thirty-two unique primary cell type clusters were identified. Sub-clustering of neuropeptide-related clusters resulted in identification of three distinct AgRP subclusters. DOCA-salt treatment caused subtype-specific changes in gene expression patterns associated with AT1R and G protein signaling, neurotransmitter uptake, synapse functions, and hormone secretion. In addition, two primary cell type clusters were identified as resting versus activated microglia, and multiple distinct subtypes of activated microglia were suggested by sub-cluster analysis. While DOCA-salt had no overall effect on total microglial density within the ARC, DOCA-salt appeared to cause a redistribution of the relative abundance of activated microglia subtypes. These data provide novel insights into cell-specific molecular changes occurring within the ARC during DOCA-salt treatment, and prompt increased investigation of the physiological and pathophysiological significance of distinct subtypes of neuronal and glial cell types.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Genetics Graduate Program, University of Iowa, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lisa L Morselli
- Department of Medicine, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Pierre A, Bourel C, Favory R, Brassart B, Wallet F, Daussin FN, Normandin S, Howsam M, Romien R, Lemaire J, Grolaux G, Durand A, Frimat M, Bastide B, Amouyel P, Boulanger E, Preau S, Lancel S. Sepsis-like Energy Deficit Is Not Sufficient to Induce Early Muscle Fiber Atrophy and Mitochondrial Dysfunction in a Murine Sepsis Model. BIOLOGY 2023; 12:529. [PMID: 37106730 PMCID: PMC10136327 DOI: 10.3390/biology12040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Sepsis-induced myopathy is characterized by muscle fiber atrophy, mitochondrial dysfunction, and worsened outcomes. Whether whole-body energy deficit participates in the early alteration of skeletal muscle metabolism has never been investigated. Three groups were studied: "Sepsis" mice, fed ad libitum with a spontaneous decrease in caloric intake (n = 17), and "Sham" mice fed ad libitum (Sham fed (SF), n = 13) or subjected to pair-feeding (Sham pair fed (SPF), n = 12). Sepsis was induced by the intraperitoneal injection of cecal slurry in resuscitated C57BL6/J mice. The feeding of the SPF mice was restricted according to the food intake of the Sepsis mice. Energy balance was evaluated by indirect calorimetry over 24 h. The tibialis anterior cross-sectional area (TA CSA), mitochondrial function (high-resolution respirometry), and mitochondrial quality control pathways (RTqPCR and Western blot) were assessed 24 h after sepsis induction. The energy balance was positive in the SF group and negative in both the SPF and Sepsis groups. The TA CSA did not differ between the SF and SPF groups, but was reduced by 17% in the Sepsis group compared with the SPF group (p < 0.05). The complex-I-linked respiration in permeabilized soleus fibers was higher in the SPF group than the SF group (p < 0.05) and lower in the Sepsis group than the SPF group (p < 0.01). Pgc1α protein expression increased 3.9-fold in the SPF mice compared with the SF mice (p < 0.05) and remained unchanged in the Sepsis mice compared with the SPF mice; the Pgc1α mRNA expression decreased in the Sepsis compared with the SPF mice (p < 0.05). Thus, the sepsis-like energy deficit did not explain the early sepsis-induced muscle fiber atrophy and mitochondrial dysfunction, but led to specific metabolic adaptations not observed in sepsis.
Collapse
Affiliation(s)
- Alexandre Pierre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Claire Bourel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Raphael Favory
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Benoit Brassart
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Frederic Wallet
- Division of Bacteriology, Biology Pathology Institute of Lille, CHU de Lille, F-59000 Lille, France
| | - Frederic N. Daussin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Sylvain Normandin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Michael Howsam
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Raphael Romien
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Jeremy Lemaire
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Gaelle Grolaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Arthur Durand
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Marie Frimat
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Nephrology, CHU de Lille, Université de Lille, F-59000 Lille, France
| | - Bruno Bastide
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| | - Sebastien Preau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, F-59000 Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France
| |
Collapse
|
10
|
Dos-Santos RC, Ishioka G, Cognuck SQ, Mantovani M, Caliman IF, Elias LLK, Antunes-Rodrigues J. High-fat diet changes the behavioural and hormonal responses to water deprivation in male Wistar rats. Exp Physiol 2022; 107:1454-1466. [PMID: 36114682 DOI: 10.1113/ep090513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect of an obesogenic diet on the control of hydromineral balance in rats? What is the main finding and its importance? The results showed that, when dehydrated, rats fed a high-fat diet drink less water than their control-diet-fed counterparts. Changes in aquaporin-7 and peroxisome proliferator-activated receptor α expression in the white adipose tissue might be involved. ABSTRACT High-fat diet (HFD) increases fat accumulation, glycaemia and blood triglycerides and is used as a model to study obesity. Besides the metabolic changes, obesity likely affects water intake. We assessed the effects of HFD on behavioural and hormonal responses to water deprivation. Additionally, we measured if the adipose tissue is differentially affected by water deprivation in control and HFD-fed rats. HFD rats showed a decreased basal water intake when compared to control-fed rats. When subjected to 48 h of water deprivation, as expected, both control and HFD rats drank more water than the hydrated rats. However, the increase in water intake was lessened in HFD dehydrated rats. Similarly, the increase in haematocrit in dehydrated rats was less pronounced in HFD dehydrated rats. These results suggest that HFD diminishes drinking behaviour. White adipose tissue weight, glycaemia and plasma glycerol concentration were increased in HFD rats; however, after 48 h of water deprivation, these parameters were significantly decreased in dehydrated HFD rats, when compared to controls. The increase in adipose tissue caused by HFD may mitigate the effects of dehydration, possibly through the increased production of metabolic water caused by lipolysis in the adipocytes. Oxytocin possibly mediates the lipolytic response, since both its secretion and receptor expression are affected by dehydration in both control and HFD rats, which suggests that oxytocin signalling is maintained in these conditions. Changes in mediators of lipolysis, such as aquaporin-7 and peroxisome proliferator-activated receptor α, might contribute to the different effects observed in control and HFD rats.
Collapse
Affiliation(s)
- Raoni Conceição Dos-Santos
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Ishioka
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Milene Mantovani
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Izabela Facco Caliman
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucila Leico Kagohara Elias
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Patil CN, Ritter ML, Wackman KK, Oliveira V, Balapattabi K, Grobe CC, Brozoski DT, Reho JJ, Nakagawa P, Mouradian GC, Kriegel AJ, Kwitek AE, Hodges MR, Segar JL, Sigmund CD, Grobe JL. Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. Am J Physiol Regul Integr Comp Physiol 2022; 322:R467-R485. [PMID: 35348007 PMCID: PMC9054347 DOI: 10.1152/ajpregu.00017.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023]
Abstract
Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kelsey K Wackman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Connie C Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel T Brozoski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey L Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Reho JJ, Nakagawa P, Mouradian GC, Grobe CC, Saravia FL, Burnett CML, Kwitek AE, Kirby JR, Segar JL, Hodges MR, Sigmund CD, Grobe JL. Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Front Physiol 2022; 13:855054. [PMID: 35283781 PMCID: PMC8914175 DOI: 10.3389/fphys.2022.855054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease represents the leading cause of death in the United States, and metabolic diseases such as obesity represent the primary impediment to improving cardiovascular health. Rodent (mouse and rat) models are widely used to model cardiometabolic disease, and as a result, there is increasing interest in the development of accurate and precise methodologies with sufficiently high resolution to dissect mechanisms controlling cardiometabolic physiology in these small organisms. Further, there is great utility in the development of centralized core facilities furnished with high-throughput equipment configurations and staffed with professional content experts to guide investigators and ensure the rigor and reproducibility of experimental endeavors. Here, we outline the array of specialized equipment and approaches that are employed within the Comprehensive Rodent Metabolic Phenotyping Core (CRMPC) and our collaborating laboratories within the Departments of Physiology, Pediatrics, Microbiology & Immunology, and Biomedical Engineering at the Medical College of Wisconsin (MCW), for the detailed mechanistic dissection of cardiometabolic function in mice and rats. We highlight selected methods for the analysis of body composition and fluid compartmentalization, electrolyte accumulation and flux, energy accumulation and flux, physical activity, ingestive behaviors, ventilatory function, blood pressure, heart rate, autonomic function, and assessment and manipulation of the gut microbiota. Further, we include discussion of the advantages and disadvantages of these approaches for their use with rodent models, and considerations for experimental designs using these methods.
Collapse
Affiliation(s)
- John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Connie C. Grobe
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fatima L. Saravia
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Colin M. L. Burnett
- Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, United States
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey L. Segar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D. Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Justin L. Grobe,
| |
Collapse
|
13
|
Riedl RA, Burnett CML, Pearson NA, Reho JJ, Mokadem M, Edwards RA, Kindel TL, Kirby JR, Grobe JL. Gut Microbiota Represent a Major Thermogenic Biomass. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab019. [PMID: 33939772 PMCID: PMC8055641 DOI: 10.1093/function/zqab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023]
Abstract
Evidence supports various roles for microbial metabolites in the control of multiple aspects of host energy flux including feeding behaviors, digestive efficiency, and energy expenditure, but few studies have quantified the energy utilization of the biomass of the gut microbiota itself. Because gut microbiota exist in an anoxic environment, energy flux is expected to be anaerobic; unfortunately, commonly utilized O2/CO2 respirometry-based approaches are unable to detect anaerobic energy flux. To quantify the contribution of the gut microbial biomass to whole-animal energy flux, we examined the effect of surgical reduction of gut biomass in C57BL/6J mice via cecectomy and assessed energy expenditure using methods sensitive to anaerobic flux, including bomb and direct calorimetry. First, we determined that cecectomy caused an acceleration of weight gain over several months due to a reduction in combined total host plus microbial energy expenditure, as reflected by an increase in energy efficiency (ie, weight gained per calorie absorbed). Second, we determined that under general anesthesia, cecectomy caused immediate changes in heat dissipation that were significantly modified by short-term pretreatment with dietary or pharmaceutical interventions known to modify the microbiome, and confirmed that these effects were undetectable by respirometry. We conclude that while the cecum only contributes approximately 1% of body mass in the mouse, this organ contributes roughly 8% of total resting energy expenditure, that this contribution is predominantly anaerobic, and that the composition and abundance of the cecal microbial contents can significantly alter its contribution to energy flux.
Collapse
Affiliation(s)
- Ruth A Riedl
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Colin M L Burnett
- Department of Internal Medicine, Division of Cardiology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology/Proteomics, Mayo Clinic, Rochester, MN, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Kirby
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA,Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA,Address correspondence to J.L.G. (e-mail: ), J.R.K. (e-mail: )
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, USA,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA,Address correspondence to J.L.G. (e-mail: ), J.R.K. (e-mail: )
| |
Collapse
|
14
|
Segar JL, Grobe CC, Balapattabi K, Ritter ML, Reho JJ, Grobe JL. Dissociable effects of dietary sodium in early life upon somatic growth, fluid homeostasis, and spatial memory in mice of both sexes. Am J Physiol Regul Integr Comp Physiol 2021; 320:R438-R451. [PMID: 33439766 PMCID: PMC8238146 DOI: 10.1152/ajpregu.00281.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Postnatal growth failure is a common morbidity for preterm infants and is associated with adverse neurodevelopmental outcomes. Although sodium (Na) deficiency early in life impairs somatic growth, its impact on neurocognitive functions has not been extensively studied. We hypothesized that Na deficiency during early life is sufficient to cause growth failure and program neurobehavioral impairments in later life. C57BL/6J mice were placed on low- (0.4), normal- (1.5), or high- (3 g/kg) Na chow at weaning (PD22) and continued on the diet for 3 wk (to PD40). Body composition and fluid distribution were determined serially by time-domain NMR and bioimpedance spectroscopy, and anxiety, learning, and memory were assessed using the elevated plus maze and Morris water maze paradigms in later adulthood (PD63-PD69). During the diet intervention, body mass gains were suppressed in the low- compared with normal- and high-Na groups despite similar caloric uptake rates across groups. Fat mass was reduced in males but not in females fed low-Na diet. Fat-free mass and hydration were significantly reduced in both males and females fed the low-Na diet, although rapidly corrected after return to normal diet. Measures of anxiety-like behavior and learning in adulthood were not affected by diet in either sex, yet memory performance was modified by a complex interaction between sex and early life Na intake. These data support the concepts that Na deficiency impairs growth and that the amount of Na intake which supports optimal somatic growth during early life may be insufficient to fully support neurocognitive development.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Connie C Grobe
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|