1
|
Wang F, Ko CW, Qu J, Wu D, Zhu Q, Liu M, Tso P. Apolipoprotein A-IV-Deficient Mice in 129/SvJ Background Are Susceptible to Obesity and Glucose Intolerance. Nutrients 2023; 15:4840. [PMID: 38004234 PMCID: PMC10674380 DOI: 10.3390/nu15224840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Apolipoprotein A-IV (apoA-IV), synthesized by enterocytes, is potentially involved in regulating lipid absorption and metabolism, food intake, and glucose metabolism. In this study, we backcrossed apoA-IV knockout (apoA-IV-/-) mice onto the 129/SvJ background for eight generations. Compared to the wild-type (WT) mice, the 129/SvJ apoA-IV-/- mice gained more weight and exhibited delayed glucose clearance even on the chow diet. During a 16-week high-fat diet (20% by weight of fat) study, apoA-IV-/- mice were more obese than the WT mice, which was associated with their increased food intake as well as reduced energy expenditure and physical activity. In addition, apoA-IV-/- mice developed significant insulin resistance (indicated by HOMA-IR) with severe glucose intolerance even though their insulin levels were drastically higher than the WT mice. In conclusion, we have established a model of apoA-IV-/- mice onto the 129/SvJ background. Unlike in the C57BL/6J strain, apoA-IV-/- 129/SvJ mice become significantly more obese and insulin-resistant than WT mice. Our current investigations of apoA-IV in the 129/SvJ strain and our previous studies in the C57BL/6J strain underline the impact of genetic background on apoA-IV metabolic effects.
Collapse
Affiliation(s)
- Fei Wang
- Norton Healthcare, 4910 Chamberlain Lane, Louisville, KY 40202, USA;
| | - Chih-Wei Ko
- Chroma Medicine, 201 Brookine Ave, Suite 1101, Boston, MA 02215, USA;
| | - Jie Qu
- Medpace Reference Laboratories, LLC., 5365 Medpace Way, Cincinnati, OH 45227, USA;
| | - Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Qi Zhu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| |
Collapse
|
2
|
Kuo HCN, LaRussa Z, Xu FM, West K, Consitt L, Davidson WS, Liu M, Coschigano KT, Shi H, Lo CC. Apolipoprotein A4 Elevates Sympathetic Activity and Thermogenesis in Male Mice. Nutrients 2023; 15:2486. [PMID: 37299447 PMCID: PMC10255745 DOI: 10.3390/nu15112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Long-chain fatty acids induce apolipoprotein A4 (APOA4) production in the small intestine and activate brown adipose tissue (BAT) thermogenesis. The increase in BAT thermogenesis enhances triglyceride clearance and insulin sensitivity. Acute administration of recombinant APOA4 protein elevates BAT thermogenesis in chow-fed mice. However, the physiological role of continuous infusion of recombinant APOA4 protein in regulating sympathetic activity, thermogenesis, and lipid and glucose metabolism in low-fat-diet (LFD)-fed mice remained elusive. The hypothesis of this study was that continuous infusion of mouse APOA4 protein would increase sympathetic activity and thermogenesis in BAT and subcutaneous inguinal white adipose tissue (IWAT), attenuate plasma lipid levels, and improve glucose tolerance. To test this hypothesis, sympathetic activity, BAT temperature, energy expenditure, body weight, fat mass, caloric intake, glucose tolerance, and levels of BAT and IWAT thermogenic and lipolytic proteins, plasma lipids, and markers of fatty acid oxidation in the liver in mice with APOA4 or saline treatment were measured. Plasma APOA4 levels were elevated, BAT temperature and thermogenesis were upregulated, and plasma triglyceride (TG) levels were reduced, while body weight, fat mass, caloric intake, energy expenditure, and plasma cholesterol and leptin levels were comparable between APOA4- and saline-treated mice. Additionally, APOA4 infusion stimulated sympathetic activity in BAT and liver but not in IWAT. APOA4-treated mice had greater fatty acid oxidation but less TG content in the liver than saline-treated mice had. Plasma insulin in APOA4-treated mice was lower than that in saline-treated mice after a glucose challenge. In conclusion, continuous infusion of mouse APOA4 protein stimulated sympathetic activity in BAT and the liver, elevated BAT thermogenesis and hepatic fatty acid oxidation, and consequently attenuated levels of plasma and hepatic TG and plasma insulin without altering caloric intake, body weight gain and fat mass.
Collapse
Affiliation(s)
- Hsuan-Chih N. Kuo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Zachary LaRussa
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Flora Mengyang Xu
- Department of Biology, Miami University, Oxford, OH 45056, USA; (F.M.X.); (H.S.)
| | - Kathryn West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| | - Leslie Consitt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| | - William Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; (W.S.D.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; (W.S.D.); (M.L.)
| | - Karen T. Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA; (F.M.X.); (H.S.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine and Diabetes Institute, Ohio University, Athens, OH 45701, USA; (H.-C.N.K.); (Z.L.); (K.W.); (L.C.); (K.T.C.)
| |
Collapse
|
3
|
LaRussa Z, Kuo HCN, West K, Shen Z, Wisniewski K, Tso P, Coschigano KT, Lo CC. Increased BAT Thermogenesis in Male Mouse Apolipoprotein A4 Transgenic Mice. Int J Mol Sci 2023; 24:4231. [PMID: 36835642 PMCID: PMC9959433 DOI: 10.3390/ijms24044231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Dietary lipids induce apolipoprotein A4 (APOA4) production and brown adipose tissue (BAT) thermogenesis. Administration of exogenous APOA4 elevates BAT thermogenesis in chow-fed mice, but not high-fat diet (HFD)-fed mice. Chronic feeding of HFD attenuates plasma APOA4 production and BAT thermogenesis in wildtype (WT) mice. In light of these observations, we sought to determine whether steady production of APOA4 could keep BAT thermogenesis elevated, even in the presence of HFD consumption, with an aim toward eventual reduction of body weight, fat mass and plasma lipid levels. Transgenic mice with overexpression of mouse APOA4 in the small intestine (APOA4-Tg mice) produce greater plasma APOA4 than their WT controls, even when fed an atherogenic diet. Thus, we used these mice to investigate the correlation of levels of APOA4 and BAT thermogenesis during HFD consumption. The hypothesis of this study was that overexpression of mouse APOA4 in the small intestine and increased plasma APOA4 production would increase BAT thermogenesis and consequently reduce fat mass and plasma lipids of HFD-fed obese mice. To test this hypothesis, BAT thermogenic proteins, body weight, fat mass, caloric intake, and plasma lipids in male APOA4-Tg mice and WT mice fed either a chow diet or a HFD were measured. When fed a chow diet, APOA4 levels were elevated, plasma triglyceride (TG) levels were reduced, and BAT levels of UCP1 trended upward, while body weight, fat mass, caloric intake, and plasma lipids were comparable between APOA4-Tg and WT mice. After a four-week feeding of HFD, APOA4-Tg mice maintained elevated plasma APOA4 and reduced plasma TG, but UCP1 levels in BAT were significantly elevated in comparison to WT controls; body weight, fat mass and caloric intake were still comparable. After 10-week consumption of HFD, however, while APOA4-Tg mice still exhibited increased plasma APOA4, UCP1 levels and reduced TG levels, a reduction in body weight, fat mass and levels of plasma lipids and leptin were finally observed in comparison to their WT controls and independent of caloric intake. Additionally, APOA4-Tg mice exhibited increased energy expenditure at several time points when measured during the 10-week HFD feeding. Thus, overexpression of APOA4 in the small intestine and maintenance of elevated levels of plasma APOA4 appear to correlate with elevation of UCP1-dependent BAT thermogenesis and subsequent protection against HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Zachary LaRussa
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Hsuan-Chih N Kuo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kathryn West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Zhijun Shen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Wisniewski
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Karen T Coschigano
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Betaine Reduces Lipid Anabolism and Promotes Lipid Transport in Mice Fed a High-Fat Diet by Influencing Intestinal Protein Expression. Foods 2022; 11:foods11162421. [PMID: 36010422 PMCID: PMC9407371 DOI: 10.3390/foods11162421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Betaine is more efficient than choline and methionine methyl donors, as it can increase nitrogen storage, promote fat mobilisation and fatty acid oxidation and change body fat content and distribution. Lipid is absorbed primarily in the small intestine after consumption, which is also the basis of lipid metabolism. This study was conducted to establish a mouse model of obesity in Kunming mice of the same age and similar body weight, and to assess the effect of betaine on the intestinal protein expression profile of mice using a proteomic approach. Analysis showed that betaine supplementation reversed the reduction in expression of proteins related to lipid metabolism and transport in the intestine of mice induced by a high-fat diet (HFD). For example, the addition of betaine resulted in a significant upregulation of microsomal triglyceride transfer protein (Mttp), apolipoprotein A-IV (Apoa4), fatty-acid-binding protein 1 (Fabp1) and fatty-acid-binding protein 2 (Fabp2) expression compared to the HFD group (p < 0.05), which exhibited accelerated lipid absorption and then translocation from the intestine into the body’s circulation, in addition to a significant increase in Acetyl-CoA acyltransferase (Acaa1a) protein expression, hastening lipid metabolism in the intestine (p < 0.05). Simultaneously, a significant reduction in protein expression of alpha-enolase 1 (Eno1) as the key enzyme for gluconeogenesis in mice in the betaine-supplemented group resulted in a reduction in lipid synthesis in the intestine (p < 0.05). These findings provide useful information for understanding the changes in the protein profile of the small intestine in response to betaine supplementation and the potential physiological regulation of diets’ nutrient absorption.
Collapse
|
5
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
6
|
Woods SC, May-Zhang AA, Begg DP. How and why do gastrointestinal peptides influence food intake? Physiol Behav 2018; 193:218-222. [PMID: 29577941 PMCID: PMC6087670 DOI: 10.1016/j.physbeh.2018.02.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Despite the ability of some gastrointestinal hormones to reliably reduce meal size when administered prior to a meal, it is not understood why the repeated administration or genetic knockout of these hormones appear largely ineffective in reducing food intake and body weight. Here, we review evidence that the ability of GI peptides such as cholecystokinin (CCK) to elicit satiation is a consequence of prior learning. Evidence includes first, that the ability of some of these signals to modify food intake depends upon past experience and is malleable with new experience. Additionally, the ability of CCK and other gut signals to reduce food intake may not be hard-wired; i.e., any so-called "satiation" signal that reduces food intake in a single-meal situation may not continue to do so over repeated trials. The individual will respond to the signal only so long as it provides reliable information about caloric content. If a particular signal becomes unreliable, the individual will rely on other signals to end meals. Thus, gut peptides/hormones have important metabolic effects such as mediating absorption, digestion, and many aspects of the distribution of ingested nutrients throughout the body; and, if they have been reliably associated with natural stimuli that mediate satiation, they also inform behavior.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, United States.
| | - Aaron A May-Zhang
- Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
7
|
Zhan J, Weng J, Hunt BG, Sean Davidson W, Liu M, Lo CC. Apolipoprotein A-IV enhances cholecystokinnin secretion. Physiol Behav 2018; 188:11-17. [PMID: 29378187 PMCID: PMC5845788 DOI: 10.1016/j.physbeh.2018.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Cholecystokinin (CCK) and apolipoprotein A-IV (ApoA-IV) are gastrointestinal peptides that play an important role in controlling energy homeostasis. Lymphatic ApoA-IV and plasma CCK secretion are mediated via a chylomicron formation-dependent pathway during a dietary lipid infusion. Given their similar roles as satiating proteins, the present study examines how the two peptides interact in their function. Specifically, this study sought to understand how ApoA-IV regulates CCK secretion. For this purpose, Cck gene expression in the small intestines of ApoA-IV knockout (ApoA-IV-KO) and wild-type (WT) mice were compared under an array of feeding conditions. When fed with a chow or high-fat diet (HFD), basal levels of Cck transcripts were significantly reduced in the duodenum of ApoA-IV-KO mice compared to WT mice. Furthermore, after an oral gavage of a lipid mixture, Cck gene expression in the duodenum was significantly reduced in ApoA-IV-KO mice relative to the change seen in WT mice. To determine the mechanism by which ApoA-IV modulates Cck gene expression, STC-1 cells were transfected with predesigned mouse lysophosphatidic acid receptor 5 (LPAR5) small interfering RNA (siRNA) to knockdown Lpar5 gene expression. In this in-vitro study, mouse recombinant ApoA-IV protein increased Cck gene expression in enteroendocrine STC-1 cells and stimulated CCK release from the STC-1 cells. However, the levels of CCK protein and Cck expression were attenuated when Lpar5 was knocked down in the STC-1 cells. Together these observations suggest that dietary lipid-induced ApoA-IV is associated with Cck synthesis in the duodenum and that ApoA-IV protein directly enhances CCK release through the activation of a LPAR5-dependent pathway.
Collapse
Affiliation(s)
- Jesse Zhan
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Weng
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Brian G Hunt
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
8
|
Woods SC, May AA, Liu M, Tso P, Begg DP. Using the cerebrospinal fluid to understand ingestive behavior. Physiol Behav 2017; 178:172-178. [PMID: 27923718 PMCID: PMC5944842 DOI: 10.1016/j.physbeh.2016.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023]
Abstract
The cerebrospinal fluid (CSF) offers a window into the workings of the brain and blood-brain barrier (BBB). Molecules that enter into the central nervous system (CNS) by passive diffusion or receptor-mediated transport through the choroid plexus often appear in the CSF prior to acting within the brain. Other molecules enter the CNS by passing through the BBB into the brain's interstitial fluid prior to appearing in the CSF. This pattern is also often observed for molecules synthesized by neurons or glia within the CNS. The CSF is therefore an important conduit for the entry and clearance of molecules into/from the CNS and thereby constitutes an important window onto brain activity and barrier function. Assessing the CSF basally, under experimental conditions, or in the context of challenges or metabolic diseases can provide powerful insights about brain function. Here, we review important findings made by our labs, as influenced by the late Randall Sakai, by interrogating the CSF.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Aaron A May
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Min Liu
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Patrick Tso
- Department of Pathology and Molecular Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Denovan P Begg
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Weng J, Lou D, Benoit SC, Coschigano N, Woods SC, Tso P, Lo CC. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R535-R548. [PMID: 28768657 DOI: 10.1152/ajpregu.00034.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 wk of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure.
Collapse
Affiliation(s)
- Jonathan Weng
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NewYork
| | - Danwen Lou
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Stephen C Benoit
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Natalie Coschigano
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio
| | - Stephen C Woods
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Chunmin C Lo
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio;
| |
Collapse
|
10
|
Saito R, So M, Motojima Y, Matsuura T, Yoshimura M, Hashimoto H, Yamamoto Y, Kusuhara K, Ueta Y. Activation of Nesfatin-1-Containing Neurones in the Hypothalamus and Brainstem by Peripheral Administration of Anorectic Hormones and Suppression of Feeding via Central Nesfatin-1 in Rats. J Neuroendocrinol 2016; 28. [PMID: 27203571 DOI: 10.1111/jne.12400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/02/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
Abstract
Peripheral anorectic hormones, such as glucagon-like peptide (GLP)-1, cholecystokinin (CCK)-8 and leptin, suppress food intake. The newly-identified anorectic neuropeptide, nesfatin-1, is synthesised in both peripheral tissues and the central nervous system, particularly by various nuclei in the hypothalamus and brainstem. In the present study, we examined the effects of i.p. administration of GLP-1 and CCK-8 and co-administrations of GLP-1 and leptin at subthreshold doses as confirmed by measurement of food intake, on nesfatin-1-immunoreactive (-IR) neurones in the hypothalamus and brainstem of rats by Fos immunohistochemistry. Intraperitoneal administration of GLP-1 (100 μg/kg) caused significant increases in the number of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the supraoptic nucleus (SON), the area postrema (AP) and the nucleus tractus solitarii (NTS) but not in the paraventricular nucleus (PVN), the arcuate nucleus (ARC) or the lateral hypothalamic area (LHA). On the other hand, i.p. administration of CCK-8 (50 μg/kg) resulted in marked increases in the number of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the SON, PVN, AP and NTS but not in the ARC or LHA. No differences in the percentage of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the nuclei of the hypothalamus and brainstem were observed between rats treated with saline, GLP-1 (33 μg/kg) or leptin. However, co-administration of GLP-1 (33 μg/kg) and leptin resulted in significant increases in the number of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the AP and the NTS. Furthermore, decreased food intake induced by GLP-1, CCK-8 and leptin was attenuated significantly by pretreatment with i.c.v. administration of antisense nesfatin-1. These results indicate that nesfatin-1-expressing neurones in the brainstem may play an important role in sensing peripheral levels of GLP-1 and leptin in addition to CCK-8, and also suppress food intake in rats.
Collapse
Affiliation(s)
- R Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M So
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - H Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Yamamoto
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
11
|
Wang F, Yang Q, Huesman S, Xu M, Li X, Lou D, Woods SC, Marziano C, Tso P. The role of apolipoprotein A-IV in regulating glucagon-like peptide-1 secretion. Am J Physiol Gastrointest Liver Physiol 2015; 309:G680-7. [PMID: 26294669 PMCID: PMC4609932 DOI: 10.1152/ajpgi.00075.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/14/2015] [Indexed: 01/31/2023]
Abstract
Both glucagon-like peptide-1 (GLP-1) and apolipoprotein A-IV (apoA-IV) are produced from the gut and enhance postprandial insulin secretion. This study investigated whether apoA-IV regulates nutrient-induced GLP-1 secretion and whether apoA-IV knockout causes compensatory GLP-1 release. Using lymph-fistula-mice, we first determined lymphatic GLP-1 secretion by administering apoA-IV before an intraduodenal Ensure infusion. apoA-IV changed neither basal nor Ensure-induced GLP-1 secretion relative to saline administration. We then assessed GLP-1 in apoA-IV-/- and wild-type (WT) mice administered intraduodenal Ensure. apoA-IV-/- mice had comparable lymph flow, lymphatic triglyceride, glucose, and protein outputs as WT mice. Intriguingly, apoA-IV-/- mice had higher lymphatic GLP-1 concentration and output than WT mice 30 min after Ensure administration. Increased GLP-1 was also observed in plasma of apoA-IV-/- mice at 30 min. apoA-IV-/- mice had comparable total gut GLP-1 content relative to WT mice under fasting, but a lower GLP-1 content 30 min after Ensure administration, suggesting that more GLP-1 was secreted. Moreover, an injection of apoA-IV protein did not reverse the increased GLP-1 secretion in apoA-IV-/- mice. Finally, we assessed gene expression of GLUT-2 and the lipid receptors, including G protein-coupled receptor (GPR) 40, GPR119, and GPR120 in intestinal segments. GLUT-2, GPR40 and GPR120 mRNAs were unaltered by apoA-IV knockout. However, ileal GPR119 mRNA was significantly increased in apoA-IV-/- mice. GPR119 colocalizes with GLP-1 in ileum and stimulates GLP-1 secretion by sensing OEA, lysophosphatidylcholine, and 2-monoacylglycerols. We suggest that increased ileal GPR119 is a potential mechanism by which GLP-1 secretion is enhanced in apoA-IV-/- mice.
Collapse
Affiliation(s)
- Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Qing Yang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Sarah Huesman
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Xu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Xiaoming Li
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Danwen Lou
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Stephen C. Woods
- 2Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Corina Marziano
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
12
|
Roman-Padilla J, Rodríguez-Rua A, Claros MG, Hachero-Cruzado I, Manchado M. Genomic characterization and expression analysis of four apolipoprotein A-IV paralogs in Senegalese sole (Solea senegalensis Kaup). Comp Biochem Physiol B Biochem Mol Biol 2015; 191:84-98. [PMID: 26453798 DOI: 10.1016/j.cbpb.2015.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/21/2023]
Abstract
The apolipoprotein A-IV (ApoA-IV) plays a key role in lipid transport and feed intake regulation. In this work, four cDNA sequences encoding ApoA-IV paralogs were identified. Sequence analysis revealed conserved structural features including the common 33-codon block and nine repeated motifs. Gene structure analysis identified four exons and three introns except for apoA-IVAa1 (with only 3 exons). Synteny analysis showed that the four paralogs were structured into two clusters (cluster A containing apoA-IVAa1 and apoA-IVAa2 and cluster B with apoA-IVBa3 and apoA-IVBa4) linked to an apolipoprotein E. Phylogenetic analysis clearly separated the paralogs according to their cluster organization as well as revealed four subclades highly conserved in Acanthopterygii. Whole-mount analyses (WISH) in early larvae (0 and 1day post-hatch (dph)) showed that the four paralogs were mainly expressed in yolk syncytial layer surrounding the oil globules. Later, at 3 and 5dph, the four paralogs were mainly expressed in liver and intestine although with differences in their relative abundance and temporal expression patterns. Diet supply triggered the intensity of WISH signals in the intestine of the four paralogs. Quantification of mRNA abundance by qPCR using whole larvae only detected the induction by diet at 5dph. Moreover, transcript levels increased progressively with age except for apoA-IVAa2, which appeared as a low-expressed isoform. Expression analysis in juvenile tissues confirmed that the four paralogs were mainly expressed in liver and intestine and secondary in other tissues. The role of these ApoA-IV genes in lipid transport and the possible role of apoA-IVAa2 as a regulatory form are discussed.
Collapse
Affiliation(s)
- J Roman-Padilla
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - A Rodríguez-Rua
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - M G Claros
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - I Hachero-Cruzado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
13
|
Shen L, Wang DQH, Lo CC, Arnold M, Tso P, Woods SC, Liu M. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats. Physiol Behav 2015; 152:62-7. [PMID: 26384952 DOI: 10.1016/j.physbeh.2015.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/12/2022]
Abstract
Ginsenoside Rb1 (Rb1) reduces food intake in both lean and high-fat diet induced-obese rats; however, the sites and/or mediation of the eating-suppressive effect of Rb1 have not previously been identified. We hypothesized that intraperitoneally (ip) administered Rb1 exerts its anorectic action by enhancing sensitivity to satiation signals, such as cholecystokinin (CCK), and/or that it acts through vagal afferent nerves that relay the satiating signaling to the hindbrain. To test these hypotheses, we gave ip bolus doses of Rb1 (2.5-10.0mg/kg) and CCK-8 (0.125-4.0μg/kg) alone or in combination and assessed food intake in rats. Low doses of Rb1 (2.5mg/kg) or CCK-8 (0.125μg/kg) alone had no effect on food intake whereas higher doses did. When these subthreshold doses of Rb1 and CCK-8 were co-administered, the combination significantly reduced food intake relative to saline controls, and this effect was attenuated by lorglumide, a selective CCK1-receptor antagonist. Interestingly, lorglumide blocked food intake induced by an effective dose of CCK-8 alone, but not by Rb1 alone, suggesting that Rb1's anorectic effect is independent of the CCK1 receptor. To determine whether peripherally administered Rb1 suppresses feeding via abdominal vagal nerves, we evaluated the effect of ip Rb1 injection in subdiaphragmatic vagal deafferentation (SDA) and control rats. Rb1's effect on food intake was significantly attenuated in SDA rats, compared with that in SHAM controls. These data indicate that the vagal afferent system is the major pathway conveying peripherally administered Rb1's satiation signal.
Collapse
Affiliation(s)
- Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - David Q-H Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Chunmin C Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Myrtha Arnold
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich, Schwerzenbach 8603, Switzerland
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA.
| |
Collapse
|
14
|
Duca FA, Bauer PV, Hamr SC, Lam TKT. Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology. Cell Metab 2015. [PMID: 26212718 DOI: 10.1016/j.cmet.2015.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emerging evidence suggests the gastrointestinal tract plays an important glucoregulatory role. In this perspective, we first review how the intestine senses ingested nutrients, initiating crucial negative feedback mechanisms through a gut-brain neuronal axis to regulate glycemia, mainly via reduction in hepatic glucose production. We then highlight how intestinal energy sensory mechanisms are responsible for the glucose-lowering effects of bariatric surgery, specifically duodenal-jejunal bypass, and the antidiabetic agents metformin and resveratrol. A better understanding of these pathways lays the groundwork for intestinally targeted drug therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sophie C Hamr
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tony K T Lam
- Toronto General Research Institute and Department of Medicine, UHN, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
15
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
16
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
17
|
Lo CC, Davidson WS, Hibbard SK, Georgievsky M, Lee A, Tso P, Woods SC. Intraperitoneal CCK and fourth-intraventricular Apo AIV require both peripheral and NTS CCK1R to reduce food intake in male rats. Endocrinology 2014; 155:1700-7. [PMID: 24564397 PMCID: PMC3990852 DOI: 10.1210/en.2013-1846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apolipoprotein AIV (Apo AIV) and cholecystokinin (CCK) are secreted in response to fat consumption, and both cause satiation via CCK 1 receptor (CCK-1R)-containing vagal afferent nerves to the nucleus of the solitary tract (NTS), where Apo AIV is also synthesized. Fasted male Long-Evans rats received ip CCK-8 or fourth-ventricular (i4vt) Apo AIV alone or in combination. Food intake and c-Fos proteins (a product of the c-Fos immediate-early gene) were assessed. i4vt Apo AIV and/or ip CCK at effective doses reduced food intake and activated c-Fos proteins in the NTS and hypothalamic arcuate nucleus and paraventricular nucleus. Blockade of the CCK-1R by i4vt lorglumide adjacent to the NTS attenuated the satiating and c-Fos-stimulating effects of CCK and Apo AIV, alone or in combination. Maintenance on a high-fat diet (HFD) for 10 weeks resulted in weight gain and attenuation of both the behavioral and c-Fos responses to a greater extent than occurred in low-fat diet-fed and pair-fed HFD animals. These observations suggest that NTS Apo AIV or/and peripheral CCK requires vagal CCK-1R signaling to elicit satiation and that maintenance on a HFD reduces the satiating capacity of these 2 signals.
Collapse
MESH Headings
- Animals
- Apolipoproteins A/administration & dosage
- Apolipoproteins A/genetics
- Apolipoproteins A/metabolism
- Apolipoproteins A/pharmacology
- Appetite Depressants/administration & dosage
- Appetite Depressants/pharmacology
- Appetite Depressants/therapeutic use
- Appetite Regulation/drug effects
- Appetite Stimulants/administration & dosage
- Appetite Stimulants/pharmacology
- Appetitive Behavior/drug effects
- Behavior, Animal/drug effects
- Cholecystokinin/administration & dosage
- Cholecystokinin/analogs & derivatives
- Cholecystokinin/antagonists & inhibitors
- Cholecystokinin/metabolism
- Diet, High-Fat/adverse effects
- Hormone Antagonists/administration & dosage
- Hormone Antagonists/pharmacology
- Infusions, Intraventricular
- Injections, Intraperitoneal
- Male
- Nerve Tissue Proteins/administration & dosage
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Rats
- Rats, Long-Evans
- Receptor, Cholecystokinin A/agonists
- Receptor, Cholecystokinin A/antagonists & inhibitors
- Receptor, Cholecystokinin A/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
- Sincalide/administration & dosage
- Sincalide/analogs & derivatives
- Sincalide/pharmacology
- Solitary Nucleus/drug effects
- Solitary Nucleus/metabolism
Collapse
Affiliation(s)
- Chunmin C Lo
- Departments of Pathology and Laboratory Medicine (C.C.L., W.S.D., S.K.H., M.G., A.L., P.T.) and Psychiatry and Behavioral Neuroscience (S.C.W.), Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237-0507
| | | | | | | | | | | | | |
Collapse
|
18
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
19
|
Wang F, Pearson KJ, Davidson WS, Tso P. Specific sequences in N termini of apolipoprotein A-IV modulate its anorectic effect. Physiol Behav 2013; 120:136-42. [PMID: 23911688 DOI: 10.1016/j.physbeh.2013.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/19/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Rodent apoA-IV is expressed predominantly in small intestine and also expressed to a small extent in liver and hypothalamus. ApoA-IV has been shown to inhibit food intake in rats when injected centrally. In the current study, we hypothesize that a specific sequence within rat apoA-IV is responsible for mediating the anorectic effect. We use a bacterial expression system to generate truncation mutants (Δ249-371, Δ117-371 and Δ1-61) of rat apoA-IV and assess the ability of various regions of the molecule to inhibit food intake. The results indicate that a responsible sequence exists within the N-terminal 61 amino acids of rat apoA-IV. Synthetic peptides (1-30 EVTSDQVANVMWDYFTQLSNNAKEAVEQLQ, 1-15 EVTSDQVANVMWDYF and 17-30 QLSNNAKEAVEQLQ) were used to specify the region in between residues 1 and 30. A 14-mer peptide (17-30) encompassing this sequence was capable of reducing food intake in a dose-dependent manner whereas a peptide designed on a more C-terminal region (211-232) of apoA-IV (QEKLNHQMEGLAFQMKKNAEEL) failed to exhibit the dose-dependent anorectic effect. The isolation of this sequence provides a valuable tool for future work directed at identifying apoA-IV binding proteins and is a key step for exploring the potential of therapeutic manipulation of food intake via this pathway.
Collapse
Affiliation(s)
- Fei Wang
- Departments of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
20
|
The Role of Cholecystokinin Receptors in the Short-Term Control of Food Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:277-316. [DOI: 10.1016/b978-0-12-386933-3.00008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Abstract
Many peptides and other compounds that influence metabolism also influence food intake, and numerous hypotheses explaining the observed effects in terms of energy homeostasis have been suggested over the years. For example, cholecystokinin (CCK), a duodenal peptide secreted during meals that aids in digestion, also reduces ongoing food intake, thereby contributing to satiation; and insulin and leptin, hormones secreted in direct proportion to body fat, act in the brain to help control adiposity by reducing energy intake. These behavioral actions are often considered to be hard-wired, such that negative experiments, in which an administered compound fails to have its purported effect, are generally disregarded. In point of fact, failures to replicate the effects of compounds on food intake are commonplace, and this occurs both between and within laboratories. Failures to replicate have historically fueled heated debate about the efficacy and/or normal function of one or another compound, leading to confusion and ambiguity in the literature. We review these phenomena and their implications and argue that, rather than eliciting hard-wired behavioral responses in the maintenance of homeostasis, compounds that alter food intake are subjected to numerous influences that can render them completely ineffective at times and that a major reason for this variance is that food intake is not under stringent homeostatic control.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
22
|
Lo CC, Langhans W, Georgievsky M, Arnold M, Caldwell JL, Cheng S, Liu M, Woods SC, Tso P. Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 2012; 153:5857-65. [PMID: 23027805 PMCID: PMC3512075 DOI: 10.1210/en.2012-1427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are gastrointestinal satiation signals that are stimulated by fat consumption. Previous studies have demonstrated that peripheral apo AIV cannot cross the blood-brain barrier. In the present study, we hypothesized that peripheral apo AIV uses a CCK-dependent system and intact vagal nerves to relay its satiation signal to the hindbrain. To test this hypothesis, CCK-knockout (CCK-KO) mice and Long-Evan rats that had undergone subdiaphragmatic vagal deafferentation (SDA) were used. Intraperitoneal administration of apo AIV at 100 or 200 μg/kg suppressed food intake of wild-type (WT) mice at 30, 60, and 90 min. In contrast, the same dose did not reduce food intake in the CCK-KO mice. Blockade of the CCK 1 receptor by lorglumide, a CCK 1 receptor antagonist, attenuated apo AIV-induced satiation. Apo AIV at 100 μg/kg reduced food intake in SHAM rats but not in SDA rats. Furthermore, apo AIV elicited an increase in c-Fos-positive cells in the nucleus of the solitary tract (NTS), area postrema, dorsal motor nucleus of the vagus, and adjacent areas of WT mice but elicited only an attenuated increase in these same regions in CCK-KO mice. Apo AIV-induced c-Fos positive cells in the NTS and area postrema of WT mice were reduced by lorglumide. Lastly, apo AIV increased c-Fos positive cells in the NTS of SHAM rats but not in SDA rats. These observations imply that peripheral apo AIV requires an intact CCK system and vagal afferents to activate neurons in the hindbrain to reduce food intake.
Collapse
Affiliation(s)
- Chunmin C Lo
- Departments of Pathology and Laboratory Medicine, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoshimichi G, Lo CC, Tamashiro KLK, Ma L, Lee DM, Begg DP, Liu M, Sakai RR, Woods SC, Yoshimatsu H, Tso P. Effect of peripheral administration of cholecystokinin on food intake in apolipoprotein AIV knockout mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1336-42. [PMID: 22461023 PMCID: PMC3378168 DOI: 10.1152/ajpgi.00325.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 03/20/2012] [Indexed: 01/31/2023]
Abstract
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.
Collapse
Affiliation(s)
- Go Yoshimichi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Visinoni S, Khalid NFI, Joannides CN, Shulkes A, Yim M, Whitehead J, Tiganis T, Lamont BJ, Favaloro JM, Proietto J, Andrikopoulos S, Fam BC. The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity. Diabetes 2012; 61:1122-32. [PMID: 22517657 PMCID: PMC3331739 DOI: 10.2337/db11-1511] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liver fructose-1,6-bisphosphatase (FBPase) is a regulatory enzyme in gluconeogenesis that is elevated by obesity and dietary fat intake. Whether FBPase functions only to regulate glucose or has other metabolic consequences is not clear; therefore, the aim of this study was to determine the importance of liver FBPase in body weight regulation. To this end we performed comprehensive physiologic and biochemical assessments of energy balance in liver-specific transgenic FBPase mice and negative control littermates of both sexes. In addition, hepatic branch vagotomies and pharmacologic inhibition studies were performed to confirm the role of FBPase. Compared with negative littermates, liver-specific FBPase transgenic mice had 50% less adiposity and ate 15% less food but did not have altered energy expenditure. The reduced food consumption was associated with increased circulating leptin and cholecystokinin, elevated fatty acid oxidation, and 3-β-hydroxybutyrate ketone levels, and reduced appetite-stimulating neuropeptides, neuropeptide Y and Agouti-related peptide. Hepatic branch vagotomy and direct pharmacologic inhibition of FBPase in transgenic mice both returned food intake and body weight to the negative littermates. This is the first study to identify liver FBPase as a previously unknown regulator of appetite and adiposity and describes a novel process by which the liver participates in body weight regulation.
Collapse
Affiliation(s)
- Sherley Visinoni
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | | | | | - Arthur Shulkes
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Mildred Yim
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jon Whitehead
- Mater Medical Research Institute, Brisbane, Queensland, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Benjamin J. Lamont
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jenny M. Favaloro
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Joseph Proietto
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | | | - Barbara C. Fam
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
- Corresponding author: Barbara C. Fam,
| |
Collapse
|
25
|
Fekete EM, Zhao Y, Szücs A, Sabino V, Cottone P, Rivier J, Vale WW, Koob GF, Zorrilla EP. Systemic urocortin 2, but not urocortin 1 or stressin 1-A, suppresses feeding via CRF2 receptors without malaise and stress. Br J Pharmacol 2012; 164:1959-75. [PMID: 21627635 DOI: 10.1111/j.1476-5381.2011.01512.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Infusion of corticotropin-releasing factor (CRF)/urocortin (Ucn) family peptides suppresses feeding in mice. We examined whether rats show peripheral CRF/Ucn-induced anorexia and determined its behavioural and pharmacological bases. EXPERIMENTAL APPROACH Male Wistar rats (n= 5-12 per group) were administered (i.p.) CRF receptor agonists with different subtype affinities. Food intake, formation of conditioned taste aversion and corticosterone levels were assessed. In addition, Ucn 1- and Ucn 2-induced anorexia was studied in fasted CRF(2) knockout (n= 11) and wild-type (n= 13) mice. KEY RESULTS Ucn 1, non-selective CRF receptor agonist, reduced food intake most potently (~0.32 nmol·kg(-1) ) and efficaciously (up to 70% reduction) in fasted and fed rats. The peptides' rank-order of anorexic potency was Ucn 1 ≥ Ucn 2 > >stressin(1) -A > Ucn 3, and efficacy, Ucn 1 > stressin(1) -A > Ucn 2 = Ucn 3. Ucn 1 reduced meal frequency and size, facilitated feeding bout termination and slowed eating rate. Stressin(1) -A (CRF(1) agonist) reduced meal size; Ucn 2 (CRF(2) agonist) reduced meal frequency. Stressin(1) -A and Ucn 1, but not Ucn 2, produced a conditioned taste aversion, reduced feeding efficiency and weight regain and elicited diarrhoea. Ucn 1, but not Ucn 2, also increased corticosterone levels. Ucn 1 and Ucn 2 reduced feeding in wild-type, but not CRF(2) knockout, mice. CONCLUSIONS AND IMPLICATIONS CRF(1) agonists, Ucn 1 and stressin(1) -A, reduced feeding and induced interoceptive stress, whereas Ucn 2 potently suppressed feeding via a CRF(2) -dependent mechanism without eliciting malaise. Consistent with their pharmacological differences, peripheral urocortins have diverse effects on appetite.
Collapse
Affiliation(s)
- E M Fekete
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. Br J Nutr 2012; 108:778-93. [PMID: 22409929 DOI: 10.1017/s0007114512000529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptides are classically known as short-term signals, primarily inducing satiation and/or satiety. However, accumulating evidence has broadened this view, and their role in long-term energy homeostasis and the development of obesity has been increasingly recognised. In the present review, the recent research involving the role of satiation signals, especially ghrelin, cholecystokinin, glucagon-like peptide 1 and peptide YY, in the development and treatment of obesity will be discussed. Their activity, interactions and release profile vary constantly with changes in dietary and energy influences, intestinal luminal environment, body weight and metabolic status. Manipulation of gut peptides and nutrient sensors in the oral and postoral compartments through diet and/or changes in gut microflora or using multi-hormone 'cocktail' therapy are among promising approaches aimed at reducing excess food consumption and body-weight gain.
Collapse
|
27
|
Moran-Ramos S, Tovar AR, Torres N. Diet: friend or foe of enteroendocrine cells--how it interacts with enteroendocrine cells. Adv Nutr 2012; 3:8-20. [PMID: 22332097 PMCID: PMC3262619 DOI: 10.3945/an.111.000976] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gut hormones play a key role in the regulation of food intake, energy expenditure, glucose homeostasis, lipid metabolism, and a wide range of metabolic functions in response to food ingestion. These hormones are altered in metabolic diseases, such as obesity and type 2 diabetes, and are thus proposed to be possible targets for the prevention or treatment of these diseases. It is clear that food composition, macronutrients, and other non-nutrient components as well as the physical properties of food not only modulate the secretion of gut peptides but also modulate transcription and enteroendocrine cell differentiation, which ultimately modifies gut hormone response. The specific mechanisms or sensing machinery that respond to the different components of the diet have been studied for many years; however, over the last few years, new molecular genetic techniques have led to important advances, thereby allowing a deeper understanding of these mechanisms. This review addresses the current knowledge regarding enteroendocrine cells and how diet interacts with this machinery to stimulate and regulate the secretion of gut peptides. The potential for diet interventions as a promising strategy for modulating gut hormone responses to food ingestion and, ultimately, preventing or treating metabolic diseases is being emphasized considering that these diseases are currently a public health burden.
Collapse
Affiliation(s)
- Sofia Moran-Ramos
- Departamento de Fisiología de la Nutrición Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán,” México, México City, México; and,Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán,” México, México City, México; and
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán,” México, México City, México; and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Razali N, Aziz AA, Junit SM. Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp. GENES AND NUTRITION 2010; 5:331-41. [PMID: 21189869 PMCID: PMC2988991 DOI: 10.1007/s12263-010-0187-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/29/2010] [Indexed: 11/24/2022]
Abstract
Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT-PCR and real-time RT-PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp.
Collapse
Affiliation(s)
- Nurhanani Razali
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
29
|
Steinert RE, Poller B, Castelli MC, Drewe J, Beglinger C. Oral administration of glucagon-like peptide 1 or peptide YY 3-36 affects food intake in healthy male subjects. Am J Clin Nutr 2010; 92:810-7. [PMID: 20720259 DOI: 10.3945/ajcn.2010.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Peripheral infusion of glucagon-like peptide 1 (GLP-1) or peptide YY 3-36 (PYY3-36) reduces food intake in healthy, obese, and diabetic subjects. In vivo, both peptides are cosecreted from intestinal L cells; GLP-1 is subject to rapid breakdown by dipeptidyl peptidase IV, and together with PYY3-36 it is likely to be degraded in the liver before entering the systemic circulation. The largest concentrations are observed in the splanchnic blood rather than in the systemic circulation. OBJECTIVE In contrast with peripheral infusion, oral delivery of sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) mimics endogenous secretion. We aimed to investigate how this affects food intake. DESIGN Twelve healthy male subjects were studied in a randomized, double-blind, placebo-controlled, 4-way crossover trial. Each subject received in random order 2.0 mg GLP-1, 1.0 mg PYY3-36, or 2.0 mg GLP-1 plus 1.0 mg PYY3-36; the peptides were mixed with SNAC. The placebo treatment was the delivery agent alone. Food intake during an ad libitum test meal was measured. RESULTS Both peptides were rapidly absorbed from the gut, leading to plasma concentrations several times higher than those in response to a normal meal. GLP-1 alone, but not PYY3-36, reduced total energy intake significantly, with marked effects on glucose homeostasis. Coadministration of both peptides reduced total energy intake by 21.5% and fullness at meal onset (P < 0.05) but not total 24-h energy intake. CONCLUSION The results show a marked effect of orally administered GLP-1 and PYY3-36 on appetite by showing enhanced fullness at meal onset and reduced energy intake. This trial was registered at clinicaltrials.gov as NCT00822705.
Collapse
Affiliation(s)
- Robert E Steinert
- Clinical Research Center, Department of Biomedicine, University Hospital, Basel, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1423-39. [PMID: 20861277 DOI: 10.1152/ajpregu.00126.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract serves as a portal sensing incoming nutrients and relays mechanical and chemosensory signals of a meal to higher brain centers. Prolonged consumption of dietary fat causes adaptive changes within the alimentary, metabolic, and humoral systems that promote a more efficient process for energy metabolism from this rich source, leading to storage of energy in the form of adipose tissue. Furthermore, prolonged ingestion of dietary fats exerts profound effects on responses to signals involved in termination of a meal. This article reviews the effects of ingested fat on gastrointestinal motility, hormone release, and neuronal substrates. It focuses on changes in sensitivity to satiation signals resulting from chronic ingestion of high-fat diet, which may lead to disordered appetite and dysregulation of body weight.
Collapse
Affiliation(s)
- Mihai Covasa
- L'Institute National de la Recherche Agronomique, Centre de Recherche, Microbiologie de l'Alimentation au service de la Santé Humaine (MICALIS), Neurobiology of Ingestive Behavior, Jouy-en-Josas, France.
| |
Collapse
|
31
|
Dockray GJ. The versatility of the vagus. Physiol Behav 2009; 97:531-6. [PMID: 19419683 DOI: 10.1016/j.physbeh.2009.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 12/24/2022]
Abstract
The gut is one of several organs contributing to the peripheral signalling network that controls food intake. Afferent neurons of the vagus nerve provide an important pathway for gut signals that act by triggering ascending pathways from the brain stem to hypothalamus. Recent work indicates the existence of mechanisms operating at the level of vagal afferent neurons to modulate the effect of gastrointestinal satiety signals. Thus, the well known satiety hormone cholecystokinin (CCK) not only stimulates the discharge of these neurons but also controls their expression of both G-protein coupled receptors and peptide neurotransmitters known to influence food intake. When plasma CCK concentrations are low e.g. in fasting, the expression by vagal afferent neurons of cannabinoid (CB)-1 and melanin concentrating hormone (MCH)-1 receptors is increased. Release of CCK by feeding leads to a rapid down-regulation of expression of both receptors and to increased expression of Y2 receptors. In fasting, there is also increased expression in these neurons of the appetite-stimulating neuropeptide transmitter MCH, and depressed expression of the satiety-peptide cocaine and amphetamine regulated transcript (CARTp); endogenous CCK decreases MCH expression and stimulates CART expression. The gastric orexigenic hormone ghrelin blocks these actions of CCK at least in part by excluding phosphoCREB from the nucleus. The data suggest that CCK acts as a gatekeeper to determine the capacity of other neuroendocrine signals to act via vagal afferent neurons to influence food intake.
Collapse
Affiliation(s)
- Graham J Dockray
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
32
|
Culnan DM, Cooney RN, Stanley B, Lynch CJ. Apolipoprotein A-IV, a putative satiety/antiatherogenic factor, rises after gastric bypass. Obesity (Silver Spring) 2009; 17:46-52. [PMID: 18948973 PMCID: PMC2627784 DOI: 10.1038/oby.2008.428] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Roux-en-Y gastric bypass surgery (RYGBP) leads to improvements in satiety and obesity-related comorbidities. The mechanism(s) underlying these improvements are not known but may be revealed in part by discovery proteomics. Therefore, fasting plasma was collected from 12 subjects (mean BMI >45) during RYGBP and during a second procedure approximately 17 months later. Body weight, obesity-related comorbidities, and medication use were decreased after RYGBP. Mass spectrometry-based proteomic analysis was performed on a subset of seven samples using isobaric isotope-coded affinity tags (four plex iTRAQ). Initial proteomic analysis (n = 7) quantified and identified hundreds of plasma proteins. Manual inspection of the data revealed a 2.6 +/- 0.5-fold increase in apolipoprotein A-IV (apo A-IV, gene designation: APOA4), a approximately 46-kDa glycoprotein synthesized mainly in the bypassed small bowel and liver after RYGBP. The change in apo A-IV was significantly greater than other apolipoproteins. Immunoblot analysis of the full longitudinal sample set (n = 12) indicated even higher increases (8.3 +/- 0.2 fold) in apo A-IV. Thus iTRAQ may underestimate the changes in protein concentrations compared to western blotting of apo A-IV. Apo A-IV inhibits gastric emptying and serves as a satiety factor whose synthesis and secretion are increased by the ingestion of dietary fat. It also possesses anti-inflammatory and antiatherogenic properties. Based on these functions, we speculate changes in apo A-IV may contribute to weight loss as well as the improvements in inflammation and cardiovascular disease after RYGBP. In addition, the findings provide evidence validating the use of iTRAQ proteomics in discovery-based studies of post-RYGBP improvements in obesity-related medical comorbidities.
Collapse
Affiliation(s)
- Derek M Culnan
- 1Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | |
Collapse
|
33
|
Lo CM, Xu M, Yang Q, Zheng S, Carey KM, Tubb MR, Davidson WS, Liu M, Woods SC, Tso P. Effect of intraperitoneal and intravenous administration of cholecystokinin-8 and apolipoprotein AIV on intestinal lymphatic CCK-8 and apo AIV concentration. Am J Physiol Regul Integr Comp Physiol 2008; 296:R43-50. [PMID: 19020287 DOI: 10.1152/ajpregu.90410.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK and apolipoprotein AIV (apo AIV) are gastrointestinal satiety signals whose synthesis and secretion by the gut are stimulated by fat absorption. Intraperitoneally administered CCK-8 is more potent in suppressing food intake than a similar dose administered intravenously, but the reason for this disparity is unclear. In contrast, both intravenous and intraperitoneally administered apo AIV are equally as potent in inhibiting food intake. When we compared the lymphatic concentration of CCK-8 and apo AIV, we found that neither intraperitoneally nor intravenously administered CCK-8 or apo AIV altered lymphatic flow rate. Interestingly, intraperitoneal administration of CCK-8 produced a significantly higher lymphatic concentration at 15 min than did intravenous administration. Intraperitoneal injection of apo AIV also yielded a higher lymphatic concentration at 30 min than did intravenous administration. Intraperitoneal administration of CCK-8 and apo AIV also resulted in a much longer period of elevated CCK-8 and apo AIV peptide concentration in lymph than intravenous administration. Furthermore, enzymatic activity of dipeptidyl peptidase IV (DPPIV) and aminopeptidase was higher in plasma than in lymph during fasting, and so, satiation peptides, such as CCK-8 and apo AIV in the lymph, are protected from degradation by the significantly lower DPPIV and aminopeptidase activity levels in lymph than in plasma. Therefore, the higher potency of intraperitoneally administered CCK-8 compared with intravenously administered CCK-8 in inhibiting food intake may be explained by both its higher concentration in lymph and the prolonged duration of its presence in the lamina propria.
Collapse
Affiliation(s)
- Chun-Min Lo
- Cincinnati Obesity Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Woods SC, D'Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab 2008; 93:S37-50. [PMID: 18987269 PMCID: PMC2585760 DOI: 10.1210/jc.2008-1630] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/08/2008] [Indexed: 12/14/2022]
Abstract
CONTEXT Energy balance is critical for survival and health, and control of food intake is an integral part of this process. This report reviews hormonal signals that influence food intake and their clinical applications. EVIDENCE ACQUISITION A relatively novel insight is that satiation signals that control meal size and adiposity signals that signify the amount of body fat are distinct and interact in the hypothalamus and elsewhere to control energy homeostasis. This review focuses upon recent literature addressing the integration of satiation and adiposity signals and therapeutic implications for treatment of obesity. EVIDENCE SYNTHESIS During meals, signals such as cholecystokinin arise primarily from the GI tract to cause satiation and meal termination; signals secreted in proportion to body fat such as insulin and leptin interact with satiation signals and provide effective regulation by dictating meal size to amounts that are appropriate for body fatness, or stored energy. Although satiation and adiposity signals are myriad and redundant and reduce food intake, there are few known orexigenic signals; thus, initiation of meals is not subject to the degree of homeostatic regulation that cessation of eating is. There are now drugs available that act through receptors for satiation factors and which cause weight loss, demonstrating that this system is amenable to manipulation for therapeutic goals. CONCLUSIONS Although progress on effective medical therapies for obesity has been relatively slow in coming, advances in understanding the central regulation of food intake may ultimately be turned into useful treatment options.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | |
Collapse
|