1
|
Hulm S, Timmins RG, Hickey JT, Maniar N, Lin YC, Knaus KR, Heiderscheit BC, Blemker SS, Opar DA. The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury. SPORTS MEDICINE - OPEN 2024; 10:133. [PMID: 39718717 DOI: 10.1186/s40798-024-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/24/2024] [Indexed: 12/25/2024]
Abstract
The aponeurosis is a large fibrous connective tissue structure within and surrounding skeletal muscle and is a critical component of the muscle-tendon unit (MTU). Due to the lack of consensus on terminology and the heterogeneous nature of the aponeurosis between MTUs, there are several questions that remain unanswered. For example, the aponeurosis is often conflated with the free tendon rather than being considered an independent structure. This has subsequent implications when interpreting data regarding the structure, function, and adaptation of the aponeuroses from these studies. In recent years, a body of work has emerged to suggest that acute injury to the myo-aponeurotic complex may have an impact on return-to-sport timeframes and reinjury rates. Therefore, the purpose of this review is to provide a more detailed understanding of the morphology and mechanical behaviour common to all aponeuroses, as well as the unique characteristics of specific lower-limb aponeuroses that are commonly injured. This review provides the practitioner with a current understanding of the mechanical, material, and adaptive properties of lower limb aponeuroses and suggests directions for future research related to the myo-aponeurotic complex.
Collapse
Affiliation(s)
- Scott Hulm
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Jack T Hickey
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Department of Sport Science and Nutrition, Maynooth University, County Kildare, Ireland
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Yi-Chung Lin
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| | - Katherine R Knaus
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Bryan C Heiderscheit
- Badger Athletic Performance Program, Department of Orthopedics and Rehabilitation, University of WI‑Madison, Madison, WI, USA
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
2
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
3
|
Hooijmans MT, Schlaffke L, Bolsterlee B, Schlaeger S, Marty B, Mazzoli V. Compositional and Functional MRI of Skeletal Muscle: A Review. J Magn Reson Imaging 2024; 60:860-877. [PMID: 37929681 PMCID: PMC11070452 DOI: 10.1002/jmri.29091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Cap V, Rocha dos Santos VR, Repnin K, Červený D, Laistler E, Meyerspeer M, Frass-Kriegl R. Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle. SENSORS (BASEL, SWITZERLAND) 2024; 24:3309. [PMID: 38894105 PMCID: PMC11174775 DOI: 10.3390/s24113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.
Collapse
Affiliation(s)
- Veronika Cap
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Vasco Rafael Rocha dos Santos
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Kostiantyn Repnin
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - David Červený
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Elmar Laistler
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Roberta Frass-Kriegl
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Hooijmans MT, Veeger TTJ, Mazzoli V, van Assen HC, de Groot JH, Gottwald LM, Nederveen AJ, Strijkers GJ, Kan HE. Muscle fiber strain rates in the lower leg during ankle dorsi-/plantarflexion exercise. NMR IN BIOMEDICINE 2024; 37:e5064. [PMID: 38062865 DOI: 10.1002/nbm.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 02/17/2024]
Abstract
Static quantitative magnetic resonance imaging (MRI) provides readouts of structural changes in diseased muscle, but current approaches lack the ability to fully explain the loss of contractile function. Muscle contractile function can be assessed using various techniques including phase-contrast MRI (PC-MRI), where strain rates are quantified. However, current two-dimensional implementations are limited in capturing the complex motion of contracting muscle in the context of its three-dimensional (3D) fiber architecture. The MR acquisitions (chemical shift-encoded water-fat separation scan, spin echo-echoplanar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) wereperformed at 3 T. PC-MRI acquisitions and performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Acquisitions (3 T, chemical shift-encoded water-fat separation scan, spin echo-echo planar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) were performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Strain rates and diffusion tensors were calculated and combined to obtain strain rates along and perpendicular to the muscle fibers in seven lower leg muscles during the dynamic dorsi-/plantarflexion movement cycle. To evaluate strain rates along the proximodistal muscle axis, muscles were divided into five equal segments. t-tests were used to test if cyclic strain rate patterns (amplitude > 0) were present along and perpendicular to the muscle fibers. The effects of proximal-distal location and load were evaluated using repeated measures ANOVAs. Cyclic temporal strain rate patterns along and perpendicular to the fiber were found in all muscles involved in dorsi-/plantarflexion movement (p < 0.0017). Strain rates along and perpendicular to the fiber were heterogeneously distributed over the length of most muscles (p < 0.003). Additional loading reduced strain rates of the extensor digitorum longus and gastrocnemius lateralis muscle (p < 0.001). In conclusion, the lower leg muscles involved in cyclic dorsi-/plantarflexion exercise showed cyclic fiber strain rate patterns with amplitudes that varied between muscles and between the proximodistal segments within the majority of muscles.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Thom T J Veeger
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurriaan H de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas M Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Hermien E Kan
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Center Netherlands, Leiden, The Netherlands
| |
Collapse
|
6
|
Malis V, Sinha U, Smitaman E, Obra JKL, Langer HT, Mossakowski AA, Baar K, Sinha S. Time-dependent diffusion tensor imaging and diffusion modeling of age-related differences in the medial gastrocnemius and feasibility study of correlations to histopathology. NMR IN BIOMEDICINE 2023; 36:e4996. [PMID: 37434581 PMCID: PMC10592510 DOI: 10.1002/nbm.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Implement STEAM-DTI to model time-dependent diffusion eigenvalues using the random permeable barrier model (RPBM) to study age-related differences in the medial gastrocnemius (MG) muscle. Validate diffusion model-extracted fiber diameter for histological assessment. METHODS Diffusion imaging at different diffusion times (Δ) was performed on seven young and six senior participants. Time-dependent diffusion eigenvalues (λ2 (t), λ3 (t), and D⊥ (t); average of λ2 (t) and λ3 (t)) were fit to the RPBM to extract tissue microstructure parameters. Biopsy of the MG tissue for histological assessment was performed on a subset of participants (four young, six senior). RESULTS λ3 (t) was significantly higher in the senior cohort for the range of diffusion times. RPBM fits to λ2 (t) yielded fiber diameters in agreement to those from histology for both cohorts. The senior cohort had lower values of volume fraction of membranes, ζ, in fits to λ2 (t), λ3 (t), and D⊥ (t) (significant for fit to λ3 (t)). Fits of fiber diameter from RPBM to that from histology had the highest correlation for the fit to λ2 (t). CONCLUSION The age-related patterns in λ2 (t) and λ3 (t) could tentatively be explained from RPBM fits; these patterns may potentially arise from a decrease in fiber asymmetry and an increase in permeability with age.
Collapse
Affiliation(s)
- Vadim Malis
- Physics, UC San Diego, San Diego, California, USA
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Jed Keenan Lim Obra
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Henning T Langer
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Agata A Mossakowski
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Keith Baar
- Department of Physiology and Membrane Biology, UC Davis, Davis, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Wheatley BB, Dyer OL, Tully EE, Seeley MA. Aponeurosis structure-function properties: Evidence of heterogeneity and implications for muscle function. Acta Biomater 2023; 168:298-308. [PMID: 37392931 DOI: 10.1016/j.actbio.2023.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Aponeurosis is a sheath-like connective tissue that aids in force transmission from muscle to tendon and can be found throughout the musculoskeletal system. The key role of aponeurosis in muscle-tendon unit mechanics is clouded by a lack of understanding of aponeurosis structure-function properties. This work aimed to determine the heterogeneous material properties of porcine triceps brachii aponeurosis tissue with materials testing and evaluate heterogeneous aponeurosis microstructure with scanning electron microscopy. We found that aponeurosis may exhibit more microstructural collagen waviness in the insertion region (near the tendon) compared to the transition region (near the muscle midbelly) (1.20 versus 1.12, p = 0.055), which and a less stiff stress-strain response in the insertion versus transition regions (p < 0.05). We also showed that different assumptions of aponeurosis heterogeneity, specifically variations in elastic modulus with location can alter the stiffness (by more than 10x) and strain (by approximately 10% muscle fiber strain) of a finite element model of muscle and aponeurosis. Collectively, these results suggest that aponeurosis heterogeneity could be due to variations in tissue microstructure and that different approaches to modeling tissue heterogeneity alters the behavior of computational models of muscle-tendon units. STATEMENT OF SIGNIFICANCE: Aponeurosis is a connective tissue found in many muscle tendon units that aids in force transmission, yet little is known about the specific material properties of aponeurosis. This work aimed to determine how the properties of aponeurosis tissue varied with location. We found that aponeurosis exhibits more microstructural waviness near the tendon compared to near the muscle midbelly, which was associated with differences in tissue stiffness. We also showed that different variations in aponeurosis modulus (stiffness) can alter the stiffness and stretch of a computer model of muscle tissue. These results show that assuming uniform aponeurosis structure and modulus, which is common, may lead to inaccurate models of the musculoskeletal system.
Collapse
Affiliation(s)
| | | | - Emily E Tully
- Department of Mechanical Engineering, Bucknell University, Lewisburg, PA
| | | |
Collapse
|
8
|
Blemker SS. In vivo imaging of skeletal muscle form and function: 50 years of insight. J Biomech 2023; 158:111745. [PMID: 37579605 DOI: 10.1016/j.jbiomech.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Skeletal muscle form and function has fascinated scientists for centuries. Our understanding of muscle function has long been driven by advancements in imaging techniques. For example, the sliding filament theory of muscle, which is now widely leveraged in biomechanics research, stemmed from observations made possible by scanning electron microscopy. Over the last 50 years, advancing in medical imaging, combined with ingenuity and creativity of biomechanists, have provide a wealth of new and important insights into in vivo human muscle function. Incorporation of in vivo imaging has also advanced computational modeling and allowed our research to have an impact in many clinical populations. While this review does not provide a comprehensive or meta-analysis of the all the in vivo muscle imaging work over the last five decades, it provides a narrative about the past, present, and future of in vivo muscle imaging.
Collapse
Affiliation(s)
- Silvia S Blemker
- Departments of Biomedical Engineering, Mechanical & Aerospace Engineering, Ophthalmology, and Orthopedic Surgery, University of Virginia, Charlottesville, VA, United States; Springbok Analytics, Charlottesville, VA, United States
| |
Collapse
|
9
|
Hernandez R, Sinha U, Malis V, Cunnane B, Smitaman E, Sinha S. Strain and Strain Rate Tensor Mapping of Medial Gastrocnemius at Submaximal Isometric Contraction and Three Ankle Angles. Tomography 2023; 9:840-856. [PMID: 37104139 PMCID: PMC10143483 DOI: 10.3390/tomography9020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
INTRODUCTION The aim of this study is to analyze the muscle kinematics of the medial gastrocnemius (MG) during submaximal isometric contractions and to explore the relationship between deformation and force generated at plantarflexed (PF), neutral (N) and dorsiflexed (DF) ankle angles. METHOD Strain and Strain Rate (SR) tensors were calculated from velocity-encoded magnetic resonance phase-contrast images in six young men acquired during 25% and 50% Maximum Voluntary Contraction (MVC). Strain and SR indices as well as force normalized values were statistically analyzed using two-way repeated measures ANOVA for differences with force level and ankle angle. An exploratory analysis of differences between absolute values of longitudinal compressive strain (Eλ1) and radial expansion strains (Eλ2) and maximum shear strain (Emax) based on paired t-test was also performed for each ankle angle. RESULTS Compressive strains/SRs were significantly lower at 25%MVC. Normalized strains/SR were significantly different between %MVC and ankle angles with lowest values for DF. Absolute values of Eλ2 and Emax were significantly higher than Eλ1 for DF suggesting higher deformation asymmetry and higher shear strain, respectively. CONCLUSIONS In addition to the known optimum muscle fiber length, the study identified two potential new causes of increased force generation at dorsiflexion ankle angle, higher fiber cross-section deformation asymmetry and higher shear strains.
Collapse
Affiliation(s)
- Ryan Hernandez
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Vadim Malis
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California San Diego, San Diego, CA 92037, USA
| | - Brandon Cunnane
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Edward Smitaman
- Department of Radiology, University of California San Diego, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California San Diego, San Diego, CA 92037, USA
| |
Collapse
|
10
|
He X, Taneja K, Chen JS, Lee CH, Hodgson J, Malis V, Sinha U, Sinha S. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3571. [PMID: 35049153 DOI: 10.1002/cnm.3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/06/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Passive materials in human skeletal muscle tissues play an important role in force output of skeletal muscles. This paper introduces a multiscale modeling framework to investigate how age-associated variations on microscale passive muscle components, including microstructural geometry (e.g., connective tissue thickness) and material properties (e.g., anisotropy), influence the force output and deformations of the continuum skeletal muscle. We first define a representative volume element (RVE) for the microstructure of muscle and determine the homogenized macroscale mechanical properties of the RVE from the separate mechanical properties of the individual components of the RVE, including muscle fibers and connective tissue with its associated collagen fibers. The homogenized properties of the RVE are then used to define the elements of the continuum muscle model to evaluate the force output and deformations of the whole muscle. Conversely, the regional deformations of the continuum model are fed back to the RVE model to determine the responses of the individual microscale components. Simulations of muscle isometric contractions at a range of muscle lengths are performed to investigate the effects of muscle architectural changes (e.g., pennation angles) due to aging on force output and muscle deformation. The correlations between the pennation angle, the shear deformation in the microscale connective tissue (an indicator for the lateral force transmission), the angle difference between the fiber direction and principal strain direction and the resulting shear deformation at the continuum scale, as well as the force output of the skeletal muscle are also discussed.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Structural Engineering, University of California San Diego, San Diego, California, USA
| | - Karan Taneja
- Department of Structural Engineering, University of California San Diego, San Diego, California, USA
| | - Jiun-Shyan Chen
- Department of Structural Engineering, University of California San Diego, San Diego, California, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - John Hodgson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA
| | - Vadim Malis
- Department of Physics, University of California San Diego, San Diego, California, USA
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Usha Sinha
- Department of Physics, San Diego State University, San Diego, California, USA
| | - Shantanu Sinha
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
11
|
Baligand C, Hirschler L, Veeger TTJ, Václavů L, Franklin SL, van Osch MJP, Kan HE. A split-label design for simultaneous measurements of perfusion in distant slices by pulsed arterial spin labeling. Magn Reson Med 2021; 86:2441-2453. [PMID: 34105189 PMCID: PMC8596809 DOI: 10.1002/mrm.28879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Purpose Multislice arterial spin labeling (ASL) MRI acquisitions are currently challenging in skeletal muscle because of long transit times, translating into low‐perfusion SNR in distal slices when large spatial coverage is required. However, fiber type and oxidative capacity vary along the length of healthy muscles, calling for multislice acquisitions in clinical studies. We propose a new variant of flow alternating inversion recovery (FAIR) that generates sufficient ASL signal to monitor exercise‐induced perfusion changes in muscle in two distant slices. Methods Label around and between two 7‐cm distant slices was created by applying the presaturation/postsaturation and selective inversion modules selectively to each slice (split‐label multislice FAIR). Images were acquired using simultaneous multislice EPI. We validated our approach in the brain to take advantage of the high resting‐state perfusion, and applied it in the lower leg muscle during and after exercise, interleaved with a single‐slice FAIR as a reference. Results We show that standard multislice FAIR leads to an underestimation of perfusion, while the proposed split‐label multislice approach shows good agreement with separate single‐slice FAIR acquisitions in brain, as well as in muscle following exercise. Conclusion Split‐label FAIR allows measuring muscle perfusion in two distant slices simultaneously without losing sensitivity in the distal slice.
Collapse
Affiliation(s)
- Celine Baligand
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thom T J Veeger
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lena Václavů
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne L Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Center for image sciences, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Damon BM, Ding Z, Hooijmans MT, Anderson AW, Zhou X, Coolbaugh CL, George MK, Landman BA. A MATLAB toolbox for muscle diffusion-tensor MRI tractography. J Biomech 2021; 124:110540. [PMID: 34171675 DOI: 10.1016/j.jbiomech.2021.110540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
Diffusion-tensor MRI fiber tractography has been used to reconstruct skeletal muscle architecture, but remains a specialized technique using custom-written data processing routines. In this work, we describe the public release of a software toolbox having the following design objectives: accomplish the pre-processing tasks of file input, image registration, denoising, and diffusion-tensor calculation; allow muscle-specific methods for defining seed points; make fiber-tract architectural measurements referenced to tendinous structures; visualize fiber tracts and other muscle structures of interest; analyze the goodness of outcomes; and provide a programming structure that allows the addition of new capabilities in future versions. The proper function of the code was verified using simulated datasets. The toolbox capabilities for characterizing human muscle structure in vivo were demonstrated in a case study. These capabilities included measurements of muscle morphology; contractile and non-contractile tissue volumes; fiber-tract length, pennation angle, curvature; and the physiological cross-sectional area,. The free public release of this software is a first step in creating of a community of users who use these tools in studies of muscle physiology and biomechanics. Users may further contribute to code development. Along with simulated and actual datasets for benchmarking, these tools will further create mechanisms for enhancing scientific rigor and developing and validating new code features. Planned future developments include additional options for image pre-processing, development of a graphical user interface, analysis of architectural patterns during muscle contraction, and integration of functional imaging data.
Collapse
Affiliation(s)
- Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Departments of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Departments of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Departments of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Departments of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Melissa T Hooijmans
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Departments of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Departments of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Xingyu Zhou
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Crystal L Coolbaugh
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA
| | - Mark K George
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Departments of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Departments of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Departments of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Ryan DS, Stutzig N, Helmer A, Siebert T, Wakeling JM. The Effect of Multidirectional Loading on Contractions of the M. Medial Gastrocnemius. Front Physiol 2021; 11:601799. [PMID: 33536934 PMCID: PMC7848218 DOI: 10.3389/fphys.2020.601799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Research has shown that compression of muscle can lead to a change in muscle force. Most studies show compression to lead to a reduction in muscle force, although recent research has shown that increases are also possible. Based on methodological differences in the loading design between studies, it seems that muscle length and the direction of transverse loading influence the effect of muscle compression on force production. Thus, in our current study we implement these two factors to influence the effects of muscle loading. In contrast to long resting length of the medial gastrocnemius (MG) in most studies, we use a shorter MG resting length by having participant seated with their knees at a 90° angle. Where previous studies have used unidirectional loads to compress the MG, in this study we applied a multidirectional load using a sling setup. Multidirectional loading using a sling setup has been shown to cause muscle force reductions in previous research. As a result of our choices in experimental design we observed changes in the effects of muscle loading compared to previous research. In the present study we observed no changes in muscle force due to muscle loading. Muscle thickness and pennation angle showed minor but significant increases during contraction. However, no significant changes occurred between unloaded and loaded trials. Fascicle thickness and length showed different patterns of change compared to previous research. We show that muscle loading does not result in force reduction in all situations and is possibly linked to differences in muscle architecture and muscle length.
Collapse
Affiliation(s)
- David S Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Andreas Helmer
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Malis V, Sinha U, Sinha S. 3D Muscle Deformation Mapping at Submaximal Isometric Contractions: Applications to Aging Muscle. Front Physiol 2020; 11:600590. [PMID: 33343396 PMCID: PMC7744822 DOI: 10.3389/fphys.2020.600590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
3D strain or strain rate tensor mapping comprehensively captures regional muscle deformation. While compressive strain along the muscle fiber is a potential measure of the force generated, radial strains in the fiber cross-section may provide information on the material properties of the extracellular matrix. Additionally, shear strain may potentially inform on the shearing of the extracellular matrix; the latter has been hypothesized as the mechanism of lateral transmission of force. Here, we implement a novel fast MR method for velocity mapping to acquire multi-slice images at different % maximum voluntary contraction (MVC) for 3D strain mapping to explore deformation in the plantar-flexors under isometric contraction in a cohort of young and senior subjects. 3D strain rate and strain tensors were computed and eigenvalues and two invariants (maximum shear and volumetric strain) were extracted. Strain and strain rate indices (contractile and in-plane strain/strain rate, shear strain/strain rate) changed significantly with %MVC (30 and 60% MVC) and contractile and shear strain with age in the medial gastrocnemius. In the soleus, significant differences with age in contractile and shear strain were seen. Univariate regression revealed weak but significant correlation of in-plane and shear strain and shear strain rate indices to %MVC and correlation of contractile and shear strain indices to force. The ability to map strain tensor components provides unique insights into muscle physiology: with contractile strain providing an index of the force generated by the muscle fibers while the shear strain could potentially be a marker of lateral transmission of force.
Collapse
Affiliation(s)
- Vadim Malis
- Department of Physics, University of California, San Diego, San Diego, CA, United States.,Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA, United States
| | - Shantanu Sinha
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Deligianni X, Hirschmann A, Place N, Bieri O, Santini F. Dynamic MRI of plantar flexion: A comprehensive repeatability study of electrical stimulation-gated muscle contraction standardized on evoked force. PLoS One 2020; 15:e0241832. [PMID: 33152035 PMCID: PMC7644050 DOI: 10.1371/journal.pone.0241832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/21/2020] [Indexed: 12/03/2022] Open
Abstract
Quantification of skeletal muscle contraction in Magnetic Resonance Imaging (MRI) is a non-invasive method for studying muscle motion and deformation. The aim of this study was to evaluate the repeatability of quantitative measures such as strain, based on single slice dynamic MRI synchronized with neuromuscular electrical stimulation (NMES) and standardized to a similar relative force level across various individuals. Unilateral electrical stimulation of the triceps surae muscles was applied in eight volunteers during single-slice, three-directional phase contrast MRI acquisition at a 3T MRI scanner. To assess repeatability, the same process was executed on two different days by standardizing the stimulation aiming at evoking a fixed percentage of their maximal voluntary force in the same position. Except from the force, the effect of using the current as reference was evaluated on day two as a secondary acquisition. Finally, the presence of fatigue induced by NMES was assessed (on day one) by examining the difference between consecutive measurements. Strain maps were derived from the acquired slice at every time point; distribution of strain in the muscle and peak strain over the muscle of interest were evaluated for repeatability. It was found that fatigue did not have an appreciable effect on the results. The stimulation settings based on evoked force produced more repeatable results with respect to using the current as the only reference, with an intraclass correlation coefficient between different days of 0.95 for the former versus 0.88 for the latter. In conclusion, for repeatable strain imaging it is advisable to record the force output of the evoked contraction and use that for the standardization of the NMES setup rather than the current.
Collapse
Affiliation(s)
- Xeni Deligianni
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- * E-mail:
| | - Anna Hirschmann
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
16
|
Sinha U, Malis V, Chen JS, Csapo R, Kinugasa R, Narici MV, Sinha S. Role of the Extracellular Matrix in Loss of Muscle Force With Age and Unloading Using Magnetic Resonance Imaging, Biochemical Analysis, and Computational Models. Front Physiol 2020; 11:626. [PMID: 32625114 PMCID: PMC7315044 DOI: 10.3389/fphys.2020.00626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
The focus of this review is the application of advanced MRI to study the effect of aging and disuse related remodeling of the extracellular matrix (ECM) on force transmission in the human musculoskeletal system. Structural MRI includes (i) ultra-low echo times (UTE) maps to visualize and quantify the connective tissue, (ii) diffusion tensor imaging (DTI) modeling to estimate changes in muscle and ECM microstructure, and (iii) magnetization transfer contrast imaging to quantify the macromolecular fraction in muscle. Functional MRI includes dynamic acquisitions during contraction cycles enabling computation of the strain tensor to monitor muscle deformation. Further, shear strain extracted from the strain tensor may be a potential surrogate marker of lateral transmission of force. Biochemical and histological analysis of muscle biopsy samples can provide "gold-standard" validation of some of the MR findings. The review summarizes biochemical studies of ECM adaptations with age and with disuse. A brief summary of animal models is included as they provide experimental confirmation of longitudinal and lateral force transmission pathways. Computational muscle models enable exploration of force generation and force pathways and elucidate the link between structural adaptations and functional consequences. MR image findings integrated in a computational model can explain and predict subject specific functional changes to structural adaptations. Future work includes development and validation of MRI biomarkers using biochemical analysis of muscle tissue as a reference standard and potential translation of the imaging markers to the clinic to noninvasively monitor musculoskeletal disease conditions and changes consequent to rehabilitative interventions.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA, United States
| | - Vadim Malis
- Department of Physics, University of California, San Diego, San Diego, CA, United States
| | - Jiun-Shyan Chen
- Department of Structural Engineering, University of California, San Diego, San Diego, CA, United States
| | - Robert Csapo
- Research Unit for Orthopaediic Sports Medicine and Injury Prevention, ISAG, Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Ryuta Kinugasa
- Department of Human Sciences, Kanagawa University, Yokohama, Japan.,Computational Engineering Applications Unit, Advanced Center for Computing and Communication, RIKEN, Saitama, Japan
| | - Marco Vincenzo Narici
- Institute of Physiology, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Shantanu Sinha
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
Van Hooren B, Teratsias P, Hodson-Tole EF. Ultrasound imaging to assess skeletal muscle architecture during movements: a systematic review of methods, reliability, and challenges. J Appl Physiol (1985) 2020; 128:978-999. [PMID: 32163334 DOI: 10.1152/japplphysiol.00835.2019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
B-mode ultrasound is often used to quantify muscle architecture during movements. Our objectives were to 1) systematically review the reliability of fascicle length (FL) and pennation angles (PA) measured using ultrasound during movements involving voluntary contractions; 2) systematically review the methods used in studies reporting reliability, discuss associated challenges, and provide recommendations to improve the reliability and validity of dynamic ultrasound measurements; and 3) provide an overview of computational approaches for quantifying fascicle architecture, their validity, agreement with manual quantification of fascicle architecture, and advantages and drawbacks. Three databases were searched until June 2019. Studies among healthy human individuals aged 17-85 yr that investigated the reliability of FL or PA in lower-extremity muscles during isoinertial movements and that were written in English were included. Thirty studies (n = 340 participants) were included for reliability analyses. Between-session reliability as measured by coefficient of multiple correlations (CMC), and coefficient of variation (CV) was FL CMC: 0.89-0.96; CV: 8.3% and PA CMC: 0.87-0.90; CV: 4.5-9.6%. Within-session reliability was FL CMC: 0.82-0.99; CV: 0.0-6.7% and PA CMC: 0.91; CV: 0.0-15.0%. Manual analysis reliability was FL CMC: 0.89-0.96; CV: 0.0-15.9%; PA CMC: 0.84-0.90; and CV: 2.0-9.8%. Computational analysis FL CMC was 0.82-0.99, and PA CV was 14.0-15.0%. Eighteen computational approaches were identified, and these generally showed high agreement with manual analysis and high validity compared with phantoms or synthetic images. B-mode ultrasound is a reliable method to quantify fascicle architecture during movement. Additionally, computational approaches can provide a reliable and valid estimation of fascicle architecture.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Panayiotis Teratsias
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Emma F Hodson-Tole
- Musculoskeletal Sciences and Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
18
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
19
|
Malis V, Sinha U, Sinha S. Compressed sensing velocity encoded phase contrast imaging: Monitoring skeletal muscle kinematics. Magn Reson Med 2019; 84:142-156. [PMID: 31828833 DOI: 10.1002/mrm.28100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE This study implements a compressed sensing (CS) 3-directional velocity encoded phase contrast (VE-PC) imaging for studying skeletal muscle kinematics within 40 s. METHODS Independent variable density random sampling in the phase encoding direction for each temporal frame was implemented for various combinations of CS-factors and views per segment. CS reconstruction was performed for the combined multicoil, temporal datasets using temporal Fourier transform followed by temporal principal component analysis sparsifying transformations. The method was tested on a flow phantom and in vivo, on velocity and strain rate of the medial gastrocnemius muscle of 11 subjects performing isometric contractions. RESULTS For the flow phantom, velocity from 8 undersampled sequences matched very well with the flowmeter values over a range of velocities spanning in vivo muscle velocities. Bland-Altman plots of the peak strain rate eigenvalues comparing 7 undersampled sequences was in good agreement with the reference (full k-space) scan. CS-factor of 4 combined with views per segment of 4 (scan times reduced by 4) yielded images with no visual artifacts allowing and yielded velocities and strain rate maps in the lower leg muscle in 40 s. CONCLUSION This study shows that a reduction in scan time of velocity encoded phase contrast imaging up to a factor of 4 is possible using the proposed CS reconstruction.
Collapse
Affiliation(s)
- Vadim Malis
- Physics, UC San Diego, San Diego, California.,Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California
| | - Usha Sinha
- Physics, San Diego State University, California
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California
| |
Collapse
|
20
|
Bilston LE, Bolsterlee B, Nordez A, Sinha S. Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo. J Appl Physiol (1985) 2019; 126:1454-1464. [PMID: 30236053 DOI: 10.1152/japplphysiol.00672.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscles' primary function in the body is mechanical: to move and stabilize the skeleton. As such, their mechanical behavior is a key aspect of their physiology. Recent developments in medical imaging technology have enabled quantitative studies of passive muscle mechanics, ranging from measurements of intrinsic muscle mechanical properties, such as elasticity and viscosity, to three-dimensional muscle architecture and dynamic muscle deformation and kinematics. In this review we summarize the principles and applications of contemporary imaging methods that have been used to study the passive mechanical behavior of skeletal muscles. Elastography measurements can provide in vivo maps of passive muscle mechanical parameters, and both MRI and ultrasound methods are available (magnetic resonance elastography and ultrasound shear wave elastography, respectively). Both have been shown to differentiate between healthy muscle and muscles affected by a broad range of clinical conditions. Detailed muscle architecture can now be depicted using diffusion tensor imaging, which not only is particularly useful for computational modeling of muscle but also has potential in assessing architectural changes in muscle disorders. More dynamic information about muscle mechanics can be obtained using a range of dynamic MRI methods, which characterize the detailed internal muscle deformations during motion. There are several MRI techniques available (e.g., phase-contrast MRI, displacement-encoded MRI, and "tagged" MRI), each of which can be collected in synchrony with muscle motion and postprocessed to quantify muscle deformation. Together, these modern imaging techniques can characterize muscle motion, deformation, mechanical properties, and architecture, providing complementary insights into skeletal muscle function.
Collapse
Affiliation(s)
- Lynne E Bilston
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales , Australia
| | - Bart Bolsterlee
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Graduate School of Biomedical Engineering, University of New South Wales , Kensington, New South Wales , Australia
| | - Antoine Nordez
- Health and Rehabilitation Research Institute, Auckland University of Technology , Auckland , New Zealand.,Movement, Interactions, Performance Laboratory (EA 4334), Faculty of Sport Sciences, University of Nantes , Nantes , France
| | - Shantanu Sinha
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California , San Diego, California
| |
Collapse
|
21
|
Abstract
This review, the first in a series of minireviews on the passive mechanical properties of skeletal muscles, seeks to summarize what is known about the muscle deformations that allow relaxed muscles to lengthen and shorten. Most obviously, when a muscle lengthens, muscle fascicles elongate, but this is not the only mechanism by which muscles change their length. In pennate muscles, elongation of muscle fascicles is accompanied by changes in pennation and changes in fascicle curvature, both of which may contribute to changes in muscle length. The contributions of these mechanisms to change in muscle length are usually small under passive conditions. In very pennate muscles with long aponeuroses, fascicle shear could contribute substantially to changes in muscle length. Tendons experience moderate axial strains even under passive loads, and, because tendons are often much longer than muscle fibers, even moderate tendon strains may contribute substantially to changes in muscle length. Data obtained with new imaging techniques suggest that muscle fascicle and aponeurosis strains are highly nonuniform, but this is yet to be confirmed. The development, validation, and interpretation of continuum muscle models informed by rigorous measurements of muscle architecture and material properties should provide further insights into the mechanisms that allow relaxed muscles to lengthen and shorten.
Collapse
Affiliation(s)
- R. D. Herbert
- Neuroscience Research Australia (NeuRA), Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - B. Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - S. C. Gandevia
- Neuroscience Research Australia (NeuRA), Sydney, Australia
- University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Malis V, Sinha U, Csapo R, Narici M, Smitaman E, Sinha S. Diffusion tensor imaging and diffusion modeling: Application to monitoring changes in the medial gastrocnemius in disuse atrophy induced by unilateral limb suspension. J Magn Reson Imaging 2018; 49:1655-1664. [PMID: 30569482 DOI: 10.1002/jmri.26295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) assesses underlying tissue microstructure, and has been applied to studying skeletal muscle. Unloading of the lower leg causes decreases in muscle force, mass, and muscle protein synthesis as well as changes in muscle architecture. PURPOSE To monitor the change in DTI indices in the medial gastrocnemius (MG) after 4-week unilateral limb suspension (ULLS) and to explore the feasibility of extracting tissue microstructural parameters based on a two-compartment diffusion model. STUDY TYPE Prospective cohort study. SUBJECTS Seven moderately active subjects (29.1 ± 5.7 years). FIELD STRENGTH/SEQUENCE 3T, single-shot fat-suppressed echo planar spin echo sequence. ASSESSMENT Suspension-related changes in the DTI indices (eigenvalues: λ1 , λ2 , λ3 , fractional anisotropy; coefficient of planarity) were statistically analyzed. Changes in model-derived tissue parameters (muscle fiber circularity and diameter, intracellular volume fraction, and residence time) after suspension are qualitatively discussed. STATISTICAL TESTS Changes in the DTI indices of the MG between pre- and postsuspension were assessed using repeated-measures two-way analysis of variance (ANOVA). RESULTS All the eigenvalues (λ1 : P = 0.025, λ2 : P = 0.035, λ3 : P = 0.049) as well as anisotropic diffusion coefficient (P = 0.029) were significantly smaller post-ULLS. Diffusion modeling revealed that fibers were more circular (circularity index increased from 0.55 to 0.95) with a smaller diameter (diameter decreased from 82-60 μm) postsuspension. DATA CONCLUSION We have shown that DTI indices change with disuse and modeling can relate these voxel level changes to changes in the tissue microarchitecture. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Vadim Malis
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA.,Physics, UC San Diego, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, California, USA
| | - Robert Csapo
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA.,Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Marco Narici
- School of Graduate Entry Medicine and Health University of Nottingham, Derby, UK
| | - Edward Smitaman
- Department of Radiology, UC San Diego, San Diego, California, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
23
|
Winters KV, Reynaud O, Novikov DS, Fieremans E, Kim SG. Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice. Magn Reson Med 2018; 80:2094-2108. [PMID: 29577406 PMCID: PMC6107391 DOI: 10.1002/mrm.27188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To measure the microstructural changes during skeletal muscle growth and progressive pathologies using the random permeable model with diffusion MRI, and compare findings to conventional imaging modalities such as three-point Dixon and T2 imaging. METHODS In vivo and ex vivo DTI experiments with multiple diffusion times (20-700 ms) were completed on wild-type (n = 22) and muscle-dystrophic mdx mice (n = 8) at various developmental time points. The DTI data were analyzed with the random permeable model framework that provides estimates of the unrestricted diffusion coefficient (D0 ), membrane surface-to-volume ratio (S/V), and membrane permeability (κ). In addition, the MRI experiments included conventional measures, such as tissue fat fractions and T2 relaxation. RESULTS During normal muscle growth between week 4 and week 13, the in vivo S/V, fractional anisotropy, and fat fraction correlated positively with age (ρ = 0.638, 0.664, and 0.686, respectively), whereas T2 correlated negatively (ρ = -0.847). In mdx mice, all DTI random permeable model parameters and fat fraction had significant positive correlation with age, whereas fractional anisotropy and T2 did not have significant correlation with age. Histological measurements of the perimeter-to-area ratio served as a proxy for the model-derived S/V in the cylindrical myofiber geometry, and had a significant correlation with the ex vivo S/V (r = 0.71) as well as the in vivo S/V (r = 0.56). CONCLUSION The present study demonstrates that DTI at multiple diffusion times with the random permeable model analysis allows for noninvasively quantifying muscle fiber microstructural changes during both normal muscle growth and disease progression. Future studies can apply our technique to evaluate current and potential treatments to muscle myopathies.
Collapse
Affiliation(s)
- Kerryanne V. Winters
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Olivier Reynaud
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Dmitry S. Novikov
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Els Fieremans
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Sungheon Gene Kim
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| |
Collapse
|
24
|
Raiteri BJ. Aponeurosis behaviour during muscular contraction: A narrative review. Eur J Sport Sci 2018; 18:1128-1138. [DOI: 10.1080/17461391.2018.1472299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Brent James Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Sinha U, Malis V, Csapo R, Narici M, Sinha S. Shear strain rate from phase contrast velocity encoded MRI: Application to study effects of aging in the medial gastrocnemius muscle. J Magn Reson Imaging 2018; 48:1351-1357. [PMID: 29607567 DOI: 10.1002/jmri.26030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/07/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Strain rate (SR) is a measure of the rate of regional deformation that can be computed by analyzing velocity-encoded phase-contrast 2D images. Recent studies have explored the changes in normal components of the strain tensor in aging muscle, while shear strain may also provide valuable information. PURPOSE To compute the shear SR from velocity-encoded MRI of the lower leg and to study the correlation of SR parameters measured in the medial gastrocnemius (MG) to muscle force in a cohort of young and senior subjects. STUDY TYPE Prospective cohort study. SUBJECTS Six young (26.1 ± 2.3 years) and six senior (76.7 ± 8.3 years) healthy females; two other subjects were scanned on three separate occasions for repeatability studies. FIELD STRENGTH/SEQUENCE 1.5T using a single oblique sagittal slice with velocity-encoding in three directions (velocity-encoded phase contrast gradient echo sequence). ASSESSMENT Age-related and regional differences in the SR eigenvalues (SRfiber , SRin-plane ), normal SRs (SRff , SRcc ), and shear SRs (SRfc , SRfc_max ) were statistically analyzed. STATISTICAL TESTS Difference between young and senior cohorts were assessed using two-way analysis of variance (ANOVAs). The coefficient of variation and repeatability coefficient were calculated from repeat studies. Univariate and stepwise multivariable linear regression was performed to identify predictors of force. RESULTS During isometric plantarflexion contraction, SRs in the principal basis (SRfiber , SRin-plane ) and maximum shear SR (SRfc_max ) was significantly lower in the senior cohort (P < 0.05). On multiple variable regression, maximum shear SR (SRfc_max ) and normal SR in the fiber cross-section (SRcc ) were significantly associated with force (R = 0.681, F = 14.034, P < 0.001). DATA CONCLUSION This study establishes that computation of shear strain is feasible and is a significant predictor of force variability with age. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1351-1357.
Collapse
Affiliation(s)
- Usha Sinha
- Physics, San Diego State University, California, USA
| | - Vadim Malis
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA.,Physics, UC San Diego, San Diego, California, USA
| | - Robert Csapo
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA.,Institute for Sports Medicine, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Marco Narici
- School of Graduate Entry Medicine and Health University of Nottingham, Derby, UK
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, UC San Diego, San Diego, California, USA
| |
Collapse
|
26
|
Mazzoli V, Gottwald LM, Peper ES, Froeling M, Coolen BF, Verdonschot N, Sprengers AM, Ooij P, Strijkers GJ, Nederveen AJ. Accelerated 4
D
phase contrast
MRI
in skeletal muscle contraction. Magn Reson Med 2018; 80:1799-1811. [DOI: 10.1002/mrm.27158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Mazzoli
- Department of RadiologyAcademic Medical CenterAmsterdam The Netherlands
- Biomedical NMR, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven The Netherlands
- Orthopaedic Research LabRadboud UMCNijmegen The Netherlands
| | - Lukas M. Gottwald
- Department of RadiologyAcademic Medical CenterAmsterdam The Netherlands
| | - Eva S. Peper
- Department of RadiologyAcademic Medical CenterAmsterdam The Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Bram F. Coolen
- Biomedical Engineering and PhysicsAcademic Medical CenterAmsterdam The Netherlands
| | - Nico Verdonschot
- Orthopaedic Research LabRadboud UMCNijmegen The Netherlands
- Laboratory for Biomechanical EngineeringUniversity of TwenteEnschede The Netherlands
| | - Andre M. Sprengers
- Orthopaedic Research LabRadboud UMCNijmegen The Netherlands
- Laboratory for Biomechanical EngineeringUniversity of TwenteEnschede The Netherlands
| | - Pim Ooij
- Department of RadiologyAcademic Medical CenterAmsterdam The Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven The Netherlands
- Biomedical Engineering and PhysicsAcademic Medical CenterAmsterdam The Netherlands
| | - Aart J. Nederveen
- Department of RadiologyAcademic Medical CenterAmsterdam The Netherlands
| |
Collapse
|
27
|
Gijsbertse K, Goselink R, Lassche S, Nillesen M, Sprengers A, Verdonschot N, van Alfen N, de Korte C. Ultrasound Imaging of Muscle Contraction of the Tibialis Anterior in Patients with Facioscapulohumeral Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2537-2545. [PMID: 28764967 DOI: 10.1016/j.ultrasmedbio.2017.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
A need exists for biomarkers to diagnose, quantify and longitudinally follow facioscapulohumeral muscular dystrophy (FSHD) and many other neuromuscular disorders. Furthermore, the pathophysiological mechanisms leading to muscle weakness in most neuromuscular disorders are not completely understood. Dynamic ultrasound imaging (B-mode image sequences) in combination with speckle tracking is an easy, applicable and patient-friendly imaging tool to visualize and quantify muscle deformation. This dynamic information provides insight in the pathophysiological mechanisms and may help to distinguish the various stages of diseased muscle in FSHD. In this proof-of-principle study, we applied a speckle tracking technique to 2-D ultrasound image sequences to quantify the deformation of the tibialis anterior muscle in patients with FSHD and in healthy controls. The resulting deformation patterns were compared with muscle ultrasound echo intensity analysis (a measure of fat infiltration and dystrophy) and clinical outcome measures. Of the four FSHD patients, two patients had severe peroneal weakness and two patients had mild peroneal weakness on clinical examination. We found a markedly varied muscle deformation pattern between these groups: patients with severe peroneal weakness showed a different motion pattern of the tibialis anterior, with overall less displacement of the central tendon region, while healthy patients showed a non-uniform displacement pattern, with the central aponeurosis showing the largest displacement. Hence, dynamic muscle ultrasound of the tibialis anterior muscle in patients with FSHD revealed a distinctively different tissue deformation pattern among persons with and without tibialis anterior weakness. These findings could clarify the understanding of the pathophysiology of muscle weakness in FSHD patients. In addition, the change in muscle deformation shows good correlation with clinical measures and quantitative muscle ultrasound measurements. In conclusion, dynamic ultrasound in combination with speckle tracking allows the study of the effects of muscle pathology in relation to strength, force transmission and movement generation. Although further research is required, this technique can develop into a biomarker to quantify muscle disease severity.
Collapse
Affiliation(s)
- Kaj Gijsbertse
- Orthopaedic Research Laboratory, Department of Orthopaedics, Radboud university medical center, Nijmegen, The Netherlands.
| | - Rianne Goselink
- Department of Neurology, Donders Centre for Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Saskia Lassche
- Department of Neurology, Donders Centre for Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Maartje Nillesen
- Medical Ultrasound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - André Sprengers
- Orthopaedic Research Laboratory, Department of Orthopaedics, Radboud university medical center, Nijmegen, The Netherlands; Laboratory of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Nico Verdonschot
- Orthopaedic Research Laboratory, Department of Orthopaedics, Radboud university medical center, Nijmegen, The Netherlands; Laboratory of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Centre for Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Chris de Korte
- Medical Ultrasound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands; Physics of Fluids Group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
28
|
Malis V, Sinha U, Csapo R, Narici M, Sinha S. Relationship of changes in strain rate indices estimated from velocity-encoded MR imaging to loss of muscle force following disuse atrophy. Magn Reson Med 2017; 79:912-922. [PMID: 28560822 DOI: 10.1002/mrm.26759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE This study explores changes in strain rate (SR) (rate of regional deformation) parameters extracted from velocity-encoded MRI and their relationship to muscle force loss following 4-week unilateral lower limb suspension in healthy humans. METHODS Two-dimensional SR maps were derived from three directional velocity-encoded MR phase-contrast images of the medial gastrocnemius in seven subjects. Atrophy-related and regional differences in the SR eigenvalues, angle between the SR and muscle fiber (SR-fiber angle), and strain rates in the fiber basis were statistically analyzed using analysis of variance and linear regression. RESULTS During isometric contraction, SR in the fiber cross section (SRin-plane ) was significantly lower, and the SR-fiber angle was significantly higher postsuspension (P < 0.05). On multiple variable regression analysis, the volume of medial gastrocnemius, SRin-plane , and SR-fiber angle were significantly associated with force and changes in the, and the SR eigenvalues and shear SR were significantly associated with change in force with disuse. CONCLUSIONS Changes in SR-fiber angle, SRin-plane , and shear SR as well as their ability to predict force and force changes may reflect the role of remodeling of the extracellular matrix in disuse atrophy and its functional consequence in reducing lateral transmission of force. Magn Reson Med 79:912-922, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Vadim Malis
- Muscle Imaging and Modeling Lab, Department of Radiology, University of California, San Diego, California, USA.,Physics, University of California, San Diego, California, USA
| | - Usha Sinha
- Physics, San Diego State University, San Diego, California, USA
| | - Robert Csapo
- Muscle Imaging and Modeling Lab, Department of Radiology, University of California, San Diego, California, USA
| | - Marco Narici
- School of Graduate Entry Medicine and Health University of Nottingham, Derby, UK
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
29
|
Damon BM, Froeling M, Buck AKW, Oudeman J, Ding Z, Nederveen AJ, Bush EC, Strijkers GJ. Skeletal muscle diffusion tensor-MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3563. [PMID: 27257975 PMCID: PMC5136336 DOI: 10.1002/nbm.3563] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/19/2016] [Accepted: 04/27/2016] [Indexed: 05/21/2023]
Abstract
The mechanical functions of muscles involve the generation of force and the actuation of movement by shortening or lengthening under load. These functions are influenced, in part, by the internal arrangement of muscle fibers with respect to the muscle's mechanical line of action. This property is known as muscle architecture. In this review, we describe the use of diffusion tensor (DT)-MRI muscle fiber tracking for the study of muscle architecture. In the first section, the importance of skeletal muscle architecture to function is discussed. In addition, traditional and complementary methods for the assessment of muscle architecture (brightness-mode ultrasound imaging and cadaver analysis) are presented. Next, DT-MRI is introduced and the structural basis for the reduced and anisotropic diffusion of water in muscle is discussed. The third section discusses issues related to the acquisition of skeletal muscle DT-MRI data and presents recommendations for optimal strategies. The fourth section discusses methods for the pre-processing of DT-MRI data, the available approaches for the calculation of the diffusion tensor and the seeding and propagating of fiber tracts, and the analysis of the tracking results to measure structural properties pertinent to muscle biomechanics. Lastly, examples are presented of how DT-MRI fiber tracking has been used to provide new insights into how muscles function, and important future research directions are highlighted. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bruce M. Damon
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN USA
| | - Martijn Froeling
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Amanda K. W. Buck
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA
| | - Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville TN USA
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Emily C. Bush
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers. J Mech Behav Biomed Mater 2016; 63:207-219. [DOI: 10.1016/j.jmbbm.2016.06.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
|
31
|
Oudeman J, Nederveen AJ, Strijkers GJ, Maas M, Luijten PR, Froeling M. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2015. [PMID: 26221741 DOI: 10.1002/jmri.25016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is increasingly applied to study skeletal muscle physiology, anatomy, and pathology. The reason for this growing interest is that DTI offers unique, noninvasive, and potentially diagnostically relevant imaging readouts of skeletal muscle structure that are difficult or impossible to obtain otherwise. DTI has been shown to be feasible within most skeletal muscles. DTI parameters are highly sensitive to patient-specific properties such as age, body mass index (BMI), and gender, but also to more transient factors such as exercise, rest, pressure, temperature, and relative joint position. However, when designing a DTI study one should not only be aware of sensitivity to the above-mentioned factors but also the fact that the DTI parameters are dependent on several acquisition parameters such as echo time, b-value, and diffusion mixing time. The purpose of this review is to provide an overview of DTI studies covering the technical, demographic, and clinical aspects of DTI in skeletal muscles. First we will focus on the critical aspects of the acquisition protocol. Second, we will cover the reported normal variance in skeletal muscle diffusion parameters, and finally we provide an overview of clinical studies and reported parameter changes due to several (patho-)physiological conditions.
Collapse
Affiliation(s)
- Jos Oudeman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Radiology, University Medical Center, Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Buck AKW, Ding Z, Elder CP, Towse TF, Damon BM. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography. PLoS One 2015; 10:e0126953. [PMID: 26010830 PMCID: PMC4444336 DOI: 10.1371/journal.pone.0126953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/09/2015] [Indexed: 11/30/2022] Open
Abstract
Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level. Results Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing. Conclusion Modest anisotropic smoothing (10%) improved fiber-tracking results, while preserving structural features.
Collapse
Affiliation(s)
- Amanda K. W. Buck
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Christopher P. Elder
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Theodore F. Towse
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bruce M. Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sinha U, Malis V, Csapo R, Moghadasi A, Kinugasa R, Sinha S. Age-related differences in strain rate tensor of the medial gastrocnemius muscle during passive plantarflexion and active isometric contraction using velocity encoded MR imaging: potential index of lateral force transmission. Magn Reson Med 2014; 73:1852-63. [PMID: 25046255 DOI: 10.1002/mrm.25312] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 11/05/2022]
Abstract
PURPOSE The strain rate (SR) tensor measures the principal directions and magnitude of the instantaneous deformation; this study aims to track age-related changes in the 2D SR tensor in the medial gastrocnemius during passive joint rotation and active isometric contraction. METHODS SR tensors were derived from velocity encoded magnetic resonance phase-contrast images in nine young (28 years) and eight senior (78 years) women. Strain rates along and in the cross-section of the fiber were calculated from the SR tensor and used to derive the out-plane SR. Age-related and regional differences in the SR eigenvalues, orientation, and the angle between the SR and muscle fiber (SR-fiber angle) were statistically analyzed. RESULTS SR along the fiber was significantly different between the cohorts during isometric contraction with higher values in the young (P < 0.05). The SR-fiber angle was larger in the young for both motion types but this difference was not statistically significant. Significant regional differences in the SR indices was seen in passive joint rotation (P < 0.05) for both cohorts. CONCLUSION SR mapping reflects age-related and regional differences during active and passive motion respectively; this may arise from differences in contractility (active motion) and elastic properties (active and passive motion).
Collapse
Affiliation(s)
- Usha Sinha
- Physics Department, San Diego State University, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|
34
|
Yucesoy CA, Emre Arıkan Ö, Ateş F. BTX-A Administration to the Target Muscle Affects Forces of All Muscles Within an Intact Compartment and Epimuscular Myofascial Force Transmission. J Biomech Eng 2012; 134:111002. [DOI: 10.1115/1.4007823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measurement of forces of mono- and bi-articular muscles of an entire intact muscle compartment can allow for a comprehensive assessment of the effects of Botulinum toxin type A (BTX-A) both at and beyond the injection site, and in conditions close to those in vivo. The goal was to test the hypotheses that BTX-A affects (1) the forces of not only the injected but also the noninjected muscles of the compartment, and (2) epimuscular myofascial force transmission (EMFT). Two groups of Wistar rats were tested: Control (no BTX-A injected) and BTX (0.1 units of BTX-A were injected exclusively to the mid-belly of TA). Isometric forces were measured simultaneously at the distal tendons of the tibialis anterior (TA) at different lengths, the restrained extensor digitorum longus (EDL) and the extensor hallucis longus (EHL) muscles and at the proximal tendon of EDL. Five days post-injection, BTX-A did affect the total forces of all muscles significantly: (1) The TA force decreased differentially (by 46.6%–55.9%) for most lengths such that a significant negative correlation was found between force reductions and increased muscle length. The maximum TA force decreased by 47.3%. However, the muscle’s length range of force production did not change significantly. (2) Distal and proximal EDL forces decreased (on average by 67.8% and 62.9%, respectively). (3) The EHL force also decreased (on average by 9.2%). The passive forces of only the TA showed a significant increase at higher lengths. EMFT effects were shown for the control group: (1) at the shortest TA lengths, the EDL proximo-distal force differences were in favor of the distal force, which was reversed at higher lengths. (2) the EHL force measured at the shortest TA length decreased (by 34%) as a function of TA lengthening. After BTX-A exposure, such EMFT effects disappeared for the EDL, whereas they remained as profound for the EHL. Exposure to BTX-A does affect forces of all muscles operating in an intact compartment. For the BTX-A injected muscle, the reduction in muscle force becomes less pronounced at higher muscle lengths. BTX-A also has effects on EMFT, however, these effects are not uniform within the anterior crural compartment. Decreased forces of the noninjected synergistic muscles suggest the presence of unintended additional effects of BTX-A both for the targeted distal joint and for the nontargeted proximal joint.
Collapse
Affiliation(s)
- Can A. Yucesoy
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, 34684 Turkey
| | - Önder Emre Arıkan
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, 34684 Turkey
| | - Filiz Ateş
- Biomedical Engineering Institute, Boğaziçi University, Istanbul, 34684 Turkey
| |
Collapse
|
35
|
Zhou Y, Li JZ, Zhou G, Zheng YP. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging. Biomed Eng Online 2012; 11:63. [PMID: 22943184 PMCID: PMC3776435 DOI: 10.1186/1475-925x-11-63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022] Open
Abstract
Background Muscle fascicle pennation angle (PA) is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT). Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.
Collapse
Affiliation(s)
- Yongjin Zhou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | | | | | | |
Collapse
|
36
|
Damon BM, Heemskerk AM, Ding Z. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters. Magn Reson Imaging 2012; 30:589-600. [PMID: 22503094 DOI: 10.1016/j.mri.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/04/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor magnetic resonance imaging fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image data sets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8 and 15.3 m(-1)), signal-to-noise ratio (50, 75, 100 and 150) and voxel geometry (13.8- and 27.0-mm(3) voxel volume with isotropic resolution; 13.5-mm(3) volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to second-order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m(-1)), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation.
Collapse
Affiliation(s)
- Bruce M Damon
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
37
|
Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech 2012; 45:647-52. [PMID: 22236527 DOI: 10.1016/j.jbiomech.2011.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.
Collapse
Affiliation(s)
- Niccolo M Fiorentino
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
38
|
Damon BM, Buck AKW, Ding Z. Diffusion-Tensor MRI Based Skeletal Muscle Fiber Tracking. ACTA ACUST UNITED AC 2011; 3:675-687. [PMID: 25429308 DOI: 10.2217/iim.11.60] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have been made in muscle fiber tracking technology, including defining seed points for fiber tracking, quantitatively characterizing muscle architecture, implementing denoising procedures, and testing validity and repeatability. Some examples exist of how these data can be integrated with those from other advanced MRI and computational methods to provide novel insights into muscle function. Perspectives are offered regarding future directions in muscle diffusion-tensor imaging, including needs to develop an improved understanding for the microstructural basis for reduced and anisotropic diffusion, establish the best practices for data acquisition and analysis, and integrate fiber tracking with other physiological data.
Collapse
Affiliation(s)
- Bruce M Damon
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA ; Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN USA ; Program in Chemical and Physical Biology, Vanderbilt University, Nashville TN USA
| | - Amanda K W Buck
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA ; Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA ; Program in Chemical and Physical Biology, Vanderbilt University, Nashville TN USA ; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN USA
| |
Collapse
|
39
|
Hadid A, Epstein Y, Shabshin N, Gefen A. Modeling mechanical strains and stresses in soft tissues of the shoulder during load carriage based on load-bearing open MRI. J Appl Physiol (1985) 2011; 112:597-606. [PMID: 22134690 DOI: 10.1152/japplphysiol.00990.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shoulder strain is a major limiting factor associated with load carriage. Despite advances in backpack designs, there are still reports of shoulder discomfort, loss of sensorimotor functions, and brachial plexus syndrome. The current study is aimed at characterizing mechanical loading conditions (strains and stresses) that develop within the shoulder's soft tissues when carrying a backpack. Open MRI scans were used for reconstructing a three-dimensional geometrical model of an unloaded shoulder and for measuring the soft tissue deformations caused by a 25-kg backpack; subsequently, a subject-specific finite element (FE) model for nonlinear, large-deformation stress-strain analyses was developed. Skin pressure distributions under the backpack strap were used as reference data and for verifying the numerical solutions. The parameters of the model were adjusted to fit the calculated tissue deformations to those obtained by MRI. The MRI scans revealed significant compression of the soft tissues of the shoulder, with substantial deformations in the area of the subclavian muscle and the brachial plexus. The maximal pressure values exerted by a 25-kg load were substantial and reached ∼90 kPa. In the muscle surrounding the brachial plexus, the model predicted maximal compressive strain of 0.14 and maximal tensile strain of 0.13, which might be injurious for the underlying neural tissue. In conclusion, the FE model provided some insights regarding the potential mechanisms underlying brachial plexus injuries related to load carriage. The large tissue deformations and pressure hotspots that were observed are likely to result in tissue damage, which may hamper neural function if sustained for long time exposures.
Collapse
Affiliation(s)
- Amir Hadid
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|