1
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
3
|
Al‐Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, Khazmi I, Nazzal RS, AL‐Najati HMH, Al‐Zuhairi BHYK, Razzaq M, Abd ZB, Marsool ADM, wahedaldin AI, Amir O. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep 2024; 7:e70034. [PMID: 39221051 PMCID: PMC11365580 DOI: 10.1002/hsr2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Obesity poses a significant global health challenge, necessitating effective prevention and treatment strategies. Exercise and diet are recognized as pivotal interventions in combating obesity. This study reviews the literature concerning the impact of exercise-induced cytokines, dietary factors, and inflammation on adipose tissue metabolism, shedding light on potential pathways for therapeutic intervention. METHODOLOGY A comprehensive review of relevant literature was conducted to elucidate the role of exercise-induced cytokines, including interleukin-6 (IL-6), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, myostatin, fibroblast growth factor 21 (FGF21), follistatin (FST), and angiopoietin-like 4 (ANGPTL4), in adipose tissue metabolism. Various databases were systematically searched using predefined search terms to identify relevant studies. Articles selected for inclusion underwent thorough analysis to extract pertinent data on the mechanisms underlying the influence of these cytokines on adipose tissue metabolism. RESULTS AND DISCUSSION Exercise-induced cytokines exert profound effects on adipose tissue metabolism, influencing energy expenditure (EE), thermogenesis, fat loss, and adipogenesis. For instance, IL-6 activates AMP-activated protein kinase (AMPK), promoting fatty acid oxidation and reducing lipogenesis. IL-15 upregulates peroxisome proliferator-activated receptor delta (PPARδ), stimulating fatty acid catabolism and suppressing lipogenesis. BDNF enhances AMPK-dependent fat oxidation, while irisin induces the browning of white adipose tissue (WAT), augmenting thermogenesis. Moreover, myostatin, FGF21, FST, and ANGPTL4 each play distinct roles in modulating adipose tissue metabolism, impacting factors such as fatty acid oxidation, adipogenesis, and lipid uptake. The elucidation of these pathways offers valuable insights into the complex interplay between exercise, cytokines, and adipose tissue metabolism, thereby informing the development of targeted obesity management strategies. CONCLUSION Understanding the mechanisms by which exercise-induced cytokines regulate adipose tissue metabolism is critical for devising effective obesity prevention and treatment modalities. Harnessing the therapeutic potential of exercise-induced cytokines, in conjunction with dietary interventions, holds promise for mitigating the global burden of obesity. Further research is warranted to delineate the precise mechanisms underlying the interactions between exercise, cytokines, and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - Hritvik Jain
- All India Institute of Medical SciencesJodhpurIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alnaaim SA, Al‐kuraishy HM, Al‐Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. New insights on the potential anti-epileptic effect of metformin: Mechanistic pathway. J Cell Mol Med 2023; 27:3953-3965. [PMID: 37737447 PMCID: PMC10747420 DOI: 10.1111/jcmm.17965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Saud A. Alnaaim
- Clinical Neurosciences Department, College of MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
5
|
Pelczyńska M, Miller-Kasprzak E, Piątkowski M, Mazurek R, Klause M, Suchecka A, Bucoń M, Bogdański P. The Role of Adipokines and Myokines in the Pathogenesis of Different Obesity Phenotypes-New Perspectives. Antioxidants (Basel) 2023; 12:2046. [PMID: 38136166 PMCID: PMC10740719 DOI: 10.3390/antiox12122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a characteristic disease of the twenty-first century that is affecting an increasing percentage of society. Obesity expresses itself in different phenotypes: normal-weight obesity (NWO), metabolically obese normal-weight (MONW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). A range of pathophysiological mechanisms underlie the occurrence of obesity, including inflammation, oxidative stress, adipokine secretion, and other processes related to the pathophysiology of adipose tissue (AT). Body mass index (BMI) is the key indicator in the diagnosis of obesity; however, in the case of the NWO and MONW phenotypes, the metabolic disturbances are present despite BMI being within the normal range. On the other hand, MHO subjects with elevated BMI values do not present metabolic abnormalities. The MUO phenotype involves both a high BMI value and an abnormal metabolic profile. In this regard, attention has been focused on the variety of molecules produced by AT and their role in the development of obesity. Nesfatin-1, neuregulin 4, myonectin, irisin, and brain-derived neurotrophic factor (BDNF) all seem to have protective effects against obesity. The primary mechanism underlying the action of nesfatin-1 involves an increase in insulin sensitivity and reduced food intake. Neuregulin 4 sup-presses lipogenesis, decreases lipid accumulation, and reduces chronic low-grade inflammation. Myonectin lowers the amount of fatty acids in the bloodstream by increasing their absorption in the liver and AT. Irisin stimulates the browning of white adipose tissue (WAT) and consequently in-creases energy expenditure, additionally regulating glucose metabolism. Another molecule, BDNF, has anorexigenic effects. Decorin protects against the development of hyperglycemia, but may also contribute to proinflammatory processes. Similar effects are shown in the case of visfatin and chemerin, which may predispose to obesity. Visfatin increases adipogenesis, causes cholesterol accumulation in macrophages, and contributes to the development of glucose intolerance. Chemerin induces angiogenesis, which promotes the expansion of AT. This review aims to discuss the role of adipokines and myokines in the pathogenesis of the different obesity phenotypes.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Ewa Miller-Kasprzak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Marcin Piątkowski
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Roksana Mazurek
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Mateusz Klause
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Suchecka
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Magdalena Bucoń
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| |
Collapse
|
6
|
Chen Y, Hu Q, Wang C, Wang T. The crosstalk between BAT thermogenesis and skeletal muscle dysfunction. Front Physiol 2023; 14:1132830. [PMID: 37153220 PMCID: PMC10160478 DOI: 10.3389/fphys.2023.1132830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Metabolic defects increase the risk of skeletal muscle diseases, and muscle impairment might worsen metabolic disruption, leading to a vicious cycle. Both brown adipose tissue (BAT) and skeletal muscle play important roles in non-shivering thermogenesis to regulate energy homeostasis. BAT regulates body temperature, systemic metabolism, and seretion of batokines that have positive or negative impacts on skeletal muscle. Conversely, muscle can secrete myokines that regulate BAT function. This review explained the crosstalk between BAT and skeletal muscle, and then discussed the batokines and highlighted their impact on skeletal muscle under physiological conditions. BAT is now considered a potential therapeutic target for obesity and diabetes treatment. Moreover, manipulation of BAT may be an attractive approach for the treatment of muscle weakness by correcting metabolic deficits. Therefore, exploring BAT as a potential treatment for sarcopenia could be a promising avenue for future research.
Collapse
Affiliation(s)
- Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Health Management Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Changyi Wang, ; Tiantian Wang,
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Changyi Wang, ; Tiantian Wang,
| |
Collapse
|
7
|
TRIM67 Deficiency Exacerbates Hypothalamic Inflammation and Fat Accumulation in Obese Mice. Int J Mol Sci 2022; 23:ijms23169438. [PMID: 36012700 PMCID: PMC9409122 DOI: 10.3390/ijms23169438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity has achieved the appearance of a global epidemic and is a serious cause for concern. The hypothalamus, as the central regulator of energy homeostasis, plays a critical role in regulating food intake and energy expenditure. In this study, we show that TRIM67 in the hypothalamus was responsive to body-energy homeostasis whilst a deficiency of TRIM67 exacerbated metabolic disorders in high-fat-diet-induced obese mice. We found exacerbated neuroinflammation and apoptosis in the hypothalamus of obese TRIM67 KO mice. We also found reduced BDNF in the hypothalamus, which affected the fat sympathetic nervous system innervation and contributed to lipid accumulation in adipose tissue under high-fat-diet exposure. In this study, we reveal potential implications between TRIM67 and the hypothalamic function responding to energy overuptake as well as a consideration for the therapeutic diagnosis of obesity.
Collapse
|
8
|
Sharma P, Silva C, Pfreundschuh S, Ye H, Sampath H. Metabolic protection by the dietary flavonoid 7,8-dihydroxyflavone requires an intact gut microbiome. Front Nutr 2022; 9:987956. [PMID: 36061902 PMCID: PMC9428675 DOI: 10.3389/fnut.2022.987956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in Godmania, Tridax, and Primula species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF. Objective To investigate a causal association between the gut microbiome and the metabolic effects of DHF using a model of antibiotic-induced gut microbiome ablation. Materials and methods Age-matched male and female C57Bl6/J mice were given ad libitum access to HFD and drinking water containing vehicle or DHF for 12 weeks. For antibiotic (Abx) treatment, female mice were given drinking water containing a cocktail of antibiotics for 2 weeks prior to HFD feeding and throughout the feeding period. Metabolic phenotyping consisted of longitudinal assessments of body weights, body composition, food, and water intake, as well as measurement of energy expenditure, glucose tolerance, and plasma and hepatic lipids. Protein markers mediating the cellular effects of DHF were assessed in brown adipose tissue (BAT) and skeletal muscle. Results Metabolic protection conferred by DHF in female HFD-fed mice was only apparent in the presence of an intact gut microbiome. Abx-treated mice were not protected from HFD-induced obesity by DHF administration. Further, tissue activation of the tropomyosin-related kinase receptor B (TrkB) receptor, which has been attributed to the biological activity of DHF, was lost upon gut microbiome ablation, indicating a requirement for microbial “activation” of DHF for its systemic effects. In addition, we report for the first time that DHF supplementation significantly activates TrkB in BAT of female, but not male, mice uncovering a novel target tissue of DHF. DHF supplementation also increased uncoupling protein 1 (UCP1) and AMP-activated protein kinase (AMPK) protein in BAT, consistent with protection from diet-induced obesity. Conclusion These results establish for the first time a requirement for the gut microbiome in mediating the metabolic effects of DHF in female mice and uncover a novel target tissue that may mediate these sexually-dimorphic protective effects.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Camila Silva
- Department of Biotechnology, Rutgers University, New Brunswick, NJ, United States
| | - Sarah Pfreundschuh
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Hong Ye
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Harini Sampath,
| |
Collapse
|
9
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
10
|
Cao C, Tachibana T, Gilbert ER, Cline MA. Prostaglandin E2-induced anorexia involves hypothalamic brain-derived neurotrophic factor and ghrelin in chicks. Prostaglandins Other Lipid Mediat 2021; 156:106574. [PMID: 34102274 DOI: 10.1016/j.prostaglandins.2021.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022]
Abstract
Central administration of prostaglandin E2 (PGE2) is associated with potent anorexia in rodents and chicks, although hypothalamic mechanisms are not fully understood. The objective of the present study was to identify hypothalamic nuclei and appetite-related factors that are involved in this anorexigenic effect, using chickens as a model. Intracerebroventricular injection of 2.5, 5, and 10 nmol of PGE2 suppressed food and water intake in broiler chicks in a dose-dependent manner. c-Fos immunoreactivity was increased in the paraventricular nucleus (PVN) at 60 min post injection of 5 nmol of PGE2. Under the same treatment condition, hypothalamic expression of melanocortin receptor 3 and ghrelin mRNAs increased, whereas neuropeptide Y receptor sub-type 5 and tropomyosin receptor kinase B (TrkB) mRNAs decreased in PGE2-treated chicks. In the PVN, chicks injected with PGE2 had more brain-derived neurotrophic factor (BDNF), ghrelin, and c-Fos mRNA but less corticotrophin-releasing factor receptor 1 (CRFR1), CRFR2, and TrkB mRNA expression. In conclusion, PGE2 injection resulted in decreased food and water intake that likely involves BDNF and ghrelin originating in the PVN. Because the anorexigenic effect is so potent and hypothalamic mechanisms are similar in chickens and rodents, a greater understanding of the role of PGE2 in acute appetite regulation may have implications for treating eating and metabolic disorders in humans.
Collapse
MESH Headings
- Animals
- Anorexia/chemically induced
- Anorexia/metabolism
- Ghrelin/pharmacology
- Ghrelin/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Chickens
- Dinoprostone/metabolism
- Hypothalamus/metabolism
- Hypothalamus/drug effects
- Male
- Eating/drug effects
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Paraventricular Hypothalamic Nucleus/metabolism
- Paraventricular Hypothalamic Nucleus/drug effects
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/genetics
Collapse
Affiliation(s)
- Chang Cao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Podyma B, Parekh K, Güler AD, Deppmann CD. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol Metab 2021; 32:488-499. [PMID: 33958275 PMCID: PMC8192464 DOI: 10.1016/j.tem.2021.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Metabolic disorders result from dysregulation of central nervous system and peripheral metabolic energy homeostatic pathways. To maintain normal energy balance, neural circuits must integrate feedforward and feedback signals from the internal metabolic environment to orchestrate proper food intake and energy expenditure. These signals include conserved meal and adipocyte cues such as glucose and leptin, respectively, in addition to more novel players including brain-derived neurotrophic factor (BDNF). In particular, BDNF's two receptors, tropomyosin related kinase B (TrkB) and p75 neurotrophin receptor (p75NTR), are increasingly appreciated to be involved in whole body energy homeostasis. At times, these two receptors even seem to functionally oppose one another's actions, providing the framework for a potential neurotrophin mediated energy regulatory axis, which we explore further here.
Collapse
Affiliation(s)
- Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908-0738, USA.
| | - Kavya Parekh
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
12
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|
13
|
Bumb JM, Bach P, Grosshans M, Wagner X, Koopmann A, Vollstädt-Klein S, Schuster R, Wiedemann K, Kiefer F. BDNF influences neural cue-reactivity to food stimuli and food craving in obesity. Eur Arch Psychiatry Clin Neurosci 2021; 271:963-974. [PMID: 33367955 PMCID: PMC8236045 DOI: 10.1007/s00406-020-01224-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
Abstract
There is increasing evidence that brain-derived neurotrophic factor (BDNF) impacts on the development of obesity. We are the first to test the hypothesis that BDNF levels might be associated with neural reactivity to food cues in patients suffering from obesity and healthy controls. We assessed visual food cue-induced neural response in 19 obese patients and 20 matched controls using functional magnetic resonance imaging and analyzed the associations between BDNF levels, food cue-reactivity and food craving. Whole-brain analysis in both groups revealed that food cues elicited higher neural activation in clusters of mesolimbic brain areas including the insula (food > neutral). Patients suffering from obesity showed a significant positive correlation between plasma BDNF levels and visual food cue-reactivity in the bilateral insulae. In addition, patients suffering from obesity with positive food cue-induced insula activation also reported significantly higher food craving than those with low cue-reactivity-an effect that was absent in normal weight participants. The present findings implicate that BDNF levels in patients suffering from obesity might be involved in food craving and obesity in humans. This highlights the importance to consider BDNF pathways when investigating obesity and obesity treatment.
Collapse
Affiliation(s)
- Jan Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany. .,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany.
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Martin Grosshans
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany
| | - Xenija Wagner
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rilana Schuster
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany
| | - Klaus Wiedemann
- Department of Psychiatry and Psychotherapy, University Medical Center, Martinistr, 52, 20246 Hamburg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, Mannheim, Germany ,Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Heidelberg, Germany ,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Brain-Derived Neurotrophic Factor Affects mRNA and miRNA Expression of the Appetite Regulating Centre in the Sheep Arcuate Nucleus. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The neuromodulatory effects of brain-derived neurotrophic factor (BDNF) on appetite regulation centre peptide gene activity in the sheep hypothalamus have not been examined yet. The aim of this study was to determine whether BDNF participates in modulation of neuropeptide Y (npy), agouti-related peptide (agrp), cocaine and amphetamine regulated transcript (cart), and proopiomelanocortin (pomc) mRNA expression and selected microRNAs in the sheep hypothalamic arcuate (ARC) nucleus. Animals (Polish Merino sheep, n=24) were divided into three groups. The control group received a central infusion of Ringer-Locke solution (480 µl/day) whereas the experimental groups were treated with BDNF in two doses: 10 or 60 μg/480 µl/day. All sheep received four intracerebroventricular infusions (performed from 08:40 a.m. to 01:30 p.m.; infusion scheme: 4 x 50 min infusions with 30 min intervals between them) on each of three consecutive days. Immediately after the last infusion, the sheep were slaughtered, and selected structures of the hypothalamus were frozen for further real-time qPCR analysis. Central infusion of BDNF evoked dose-dependent changes in npy, agrp, cart, pomc and peptidylglicine alpha-amidating monooxygenase (pam) mRNA expression in the sheep ARC nucleus. An increase in npy, agrp and pomc mRNA expression but also a decrease in cart mRNA expression in the ARC nucleus were detected. Moreover, a decrease in pam (gene encoding an enzyme that converts POMC into α-MSH) mRNA expression, was also noted. Furthermore, after central BDNF administration, changes in miRNA-33a-5p, miRNA-33b-5p, miRNA-377-3p, miRNA-214-3p, miRNA-485 and miRNA-488 expression were observed. Based on the presented results, it can be concluded that BDNF may affect the appetite regulating centre activity through modulation of npy, agrp, cart, pomc and pam mRNA expression in the ARC nucleus. It was also revealed that BDNF modulates miRNA expression in the sheep ARC nucleus.
Collapse
|
15
|
Colitti M, Montanari T. Brain-derived neurotrophic factor modulates mitochondrial dynamics and thermogenic phenotype on 3T3-L1 adipocytes. Tissue Cell 2020; 66:101388. [PMID: 32933711 DOI: 10.1016/j.tice.2020.101388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a growing threat. In recent years, the finding of functional brown adipose tissue (BAT) in adult humans implemented the studies of anti-obesity therapies based on triggering energy expenditure. The activation of BAT thermogenesis and the recruitment of brite (brown-in-white) adipocytes are under noradrenergic control. Brain-derived neurotrophic factor (BDNF), if centrally administered, enhances thermogenesis through sympathetic activation, but its direct effect on adipocytes is still unclear. The phenotypic change from fat storing to thermogenic adipocytes is recognized by the presence of multilocular lipid droplets (LDs) and fissed mitochondria that tend to surround LDs, maximizing the efficiency of fatty acid release for thermogenesis. BDNF treatment on differentiated 3T3-L1 adipocytes was compared to negative (CTRL) and positive (norepinephrine, NE) controls. BDNF significantly increased small globular mitochondria percentage (>150% CTRL), while the area surface and elongation index of branched tubules were respectively 55% and 10% lower than NE. Canonical discriminant analysis of mitochondria morphological data clearly separated differentially treated cells with 85% of the total variance. The expression of brown markers and mitochondrial dynamic genes was significantly affected by BDNF. Investigating the pathways involved in adipocyte BDNF stimulation could clarify its role in thermogenesis and its possible local regulation.
Collapse
Affiliation(s)
- M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - T Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
16
|
TrkB-expressing paraventricular hypothalamic neurons suppress appetite through multiple neurocircuits. Nat Commun 2020; 11:1729. [PMID: 32265438 PMCID: PMC7138837 DOI: 10.1038/s41467-020-15537-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/12/2020] [Indexed: 01/19/2023] Open
Abstract
The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite. The TrkB receptor is known to regulate obesity via appetite control, but the underlying neural circuits are not known. Here, the authors show that selective modulation of TrkB+ neurons in the paraventricular hypothalamus regulates food intake via circuits to ventromedial hypothalamus and lateral parabrachial nucleus.
Collapse
|
17
|
Circulating Diabetic Candidate Neurotrophic Factors, Brain-Derived Neurotrophic Factor and Fibroblast Growth Factor 21, in Sleeve Gastrectomy. Sci Rep 2020; 10:5341. [PMID: 32210348 PMCID: PMC7093508 DOI: 10.1038/s41598-020-62395-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies show brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 21 (FGF21) are neurotrophic factors associated with obesity and diabetes mellitus (DM). Laparoscopic sleeve gastrectomy (LSG) can significantly reduce weight and improve DM. In this study, we enrolled 78 patients with obesity and evaluated the change of BDNF and FGF21 6 months after LSG. At baseline, the BDNF level was similar between the preoperative DM (n = 30) (17.1 ± 7.7 ng/ml) and non-DM (n = 48) (17.0 ± 6.9 ng/ml) patients with obesity, but FGF21 was significantly higher in the DM patients (201.5 ± 204.3 versus 107.6 ± 63.8 pg/ml). At 6 months after LSG, most of the preoperative DM patients (96.7%) had DM either resolved (66.7%) or improved (30%). BDNF increased and FGF21 decreased significantly regardless of the preoperative DM status, while FGF21 decreased more prominently in the preoperative DM patients (-92.6 ± 179.8 versus -4.6 ± 63.4 pg/ml). After adjusted for age, sex, and preoperative DM status, FGF21 became significantly and positively related to C-peptide (β = 18.887), insulin (β = 2.399), and homeostasis model assessment of insulin resistance index (β = 8.566) after surgery. In conclusion, diabetic patients with obesity had higher FGF21 and similar BDNF levels compared to non-diabetic obese patients. BDNF increased and FGF21 decreased significantly after LSG. FGF21 became positively associated with several insulin-related profiles after surgery.
Collapse
|
18
|
Rozanska O, Uruska A, Zozulinska-Ziolkiewicz D. Brain-Derived Neurotrophic Factor and Diabetes. Int J Mol Sci 2020; 21:ijms21030841. [PMID: 32012942 PMCID: PMC7037992 DOI: 10.3390/ijms21030841] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Diabetes and its chronic complications still represent a great clinical problem, despite improvements made in the diagnosis and treatment of the disease. People with diabetes have a much higher risk of impaired brain function and psychiatric disorders. Neurotrophins are factors that protect neuronal tissue and improve the function of the central nervous system, and among them is brain-derived neurotrophic factor (BDNF). The level and function of BDNF in diabetes seems to be disturbed by and connected with the presence of insulin resistance. On the other hand, there is evidence for the highly beneficial impact of physical activity on brain function and BDNF level. However, it is not clear if this protective phenomenon works in the presence of diabetes. In this review, we summarize the current available research on this topic and find that the results of published studies are ambiguous.
Collapse
|
19
|
González-García I, Milbank E, Martinez-Ordoñez A, Diéguez C, López M, Contreras C. HYPOTHesizing about central comBAT against obesity. J Physiol Biochem 2019; 76:193-211. [PMID: 31845114 DOI: 10.1007/s13105-019-00719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expenditure attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully understood. Despite the fact that much has been known about the mechanisms that regulate BAT activity in recent years, and that the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular insights of brown adipocytes, its central control, and its implication in the development of obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Anxo Martinez-Ordoñez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
20
|
You H, Chu P, Guo W, Lu B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol Metab 2019; 31:109-123. [PMID: 31918913 PMCID: PMC6920260 DOI: 10.1016/j.molmet.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Brown adipose tissue (BAT)–mediated thermogenesis plays a key role in energy homeostasis and the maintenance of body temperature. Previous work suggests that brain-derived neurotrophic factor (BDNF) is involved in BAT thermogenesis, but the underlying neural circuits and molecular mechanism remain largely unknown. This is in part due to the difficulties in manipulating BDNF expression in different brain regions through different promoters and the lack of tools to identify neurons in the brain specifically involved in BAT thermogenesis. Methods We have created several lines of mutant mice in which BDNF transcription from a specific promoter was selectively disrupted by replacing Bdnf with green fluorescent protein (GFP; Bdnf-e1, -e4, and -e6−/− mice). As such, cells expressing Bdnf-e1, -e4, or -e6 were labeled with GFP. To identify BAT-connected thermogenesis neurons in brain, we applied the retrograde pseudorabies virus labeling method from BAT. We also used chemogenetic tools to manipulate specific neurons coupled with BAT temperature recording. Moreover, we developed a new TrkB agonist antibody to rescue the BAT thermogenesis deficits. Results We show that selective disruption of Bdnf expression from promoter 1 (Bdnf-e1) resulted in severe obesity and deficits of BAT-mediated thermogenesis. Body temperature response to cold was impaired in Bdnf-e1−/− mice. BAT expression of Ucp1 and Pcg1a, genes known to regulate thermogenesis, was also reduced, accompanying a decrease in the sympathetic activity of BAT. Staining of cells expressing Bdnf-e1 transcript, combined with transsynaptic, retrograde-tracing labeling of BAT-connected neurons, identified a group of excitatory neurons in lateral hypothalamus (LH) critical for thermogenesis regulation. Moreover, an adaptive thermogenesis defect in Bdnf-e1−/− mice was rescued by injecting an agonistic antibody for TrkB, the BDNF receptor, into LH. Remarkably, activation of the excitatory neurons (VGLUT2+) in LH through chemogenetic tools resulted in a rise of BAT temperature. Conclusions These results reveal a specific role of BDNF promoter I in thermogenesis regulation and define a small subset of neurons in LH that contribute to such regulation. Only Bdnf-e1−/−, but not Bdnf-e4−/− or Bdnf-e6−/−, mutant mice exhibited deficiencies of BAT thermogenesis. Neurons that are both Bdnf-e1 expressing and BAT-connected were found only in LH. BAT-connected neurons in LH are glutamatergic. Activation of the LH glutamatergic neurons resulted in an increase in BAT temperature. Administration of TrkB agonist antibody in LH rescued thermogenesis deficits.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengcheng Chu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Zhu Q, Liu X, Glazier BJ, Krolick KN, Yang S, He J, Lo CC, Shi H. Differential Sympathetic Activation of Adipose Tissues by Brain-Derived Neurotrophic Factor. Biomolecules 2019; 9:biom9090452. [PMID: 31492038 PMCID: PMC6769916 DOI: 10.3390/biom9090452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Centrally administered brain-derived neurotrophic factor (BDNF) decreases body adiposity beyond what can be accounted for by decreased food intake, implying enhanced lipid metabolism by BDNF. Consistent with this notion, intracerebroventricular (icv) injection of BDNF in rats increased the expression of lipolytic enzymes in white adipose tissues (WAT) and increased circulating concentrations of lipolytic products without changing the levels of adrenal gland hormones. This suggests that central BDNF-induced lipid mobilization is likely due to sympathetic neural activation, rather than activation of the adrenocortical or adrenomedullary system. We hypothesized that BDNF activated sympathetic innervation of adipose tissues to regulate lipolysis. Rats with unilateral denervation of interscapular brown adipose tissue (BAT) and different WAT depots received icv injections of saline or BDNF. Both intact and denervated adipose tissues were exposed to the same circulating factors, but denervated adipose tissues did not receive neural signals. Norepinephrine (NE) turnover (NETO) of BAT and WAT was assessed as a measure of sympathetic activity. Findings revealed that central BDNF treatment induced a change in NETO in some but not all the adipose tissues tested. Specifically, greater NETO rates were found in BAT and gonadal epididymal WAT (EWAT), but not in inguinal WAT (IWAT) or retroperitoneal WAT (RWAT), of BDNF-treated rats compared to saline-treated rats. Furthermore, intact innervation was necessary for BDNF-induced NETO in BAT and EWAT. In addition, BDNF increased the expression of lipolytic enzymes in both intact and denervated EWAT and IWAT, suggesting that BDNF-induced WAT lipolysis was independent of intact innervation. To summarize, centrally administered BDNF selectively provoked sympathetic drives to BAT and EWAT that was dependent on intact innervation, while BDNF also increased lipolysis in a manner independent of intact innervation.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Xian Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | | | - Shangyuwen Yang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Jingyan He
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
22
|
Rana S, Mirza S, Rahmani S. The BDNF rs6265 variant may interact with overweight and obesity to influence obesity-related physical, metabolic and behavioural traits in Pakistani individuals. Ann Hum Biol 2019; 45:496-505. [DOI: 10.1080/03014460.2018.1561947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sobia Rana
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Saad Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Soma Rahmani
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
23
|
McAllan L, Maynard KR, Kardian AS, Stayton AS, Fox SL, Stephenson EJ, Kinney CE, Alshibli NK, Gomes CK, Pierre JF, Puchowicz MA, Bridges D, Martinowich K, Han JC. Disruption of brain-derived neurotrophic factor production from individual promoters generates distinct body composition phenotypes in mice. Am J Physiol Endocrinol Metab 2018; 315:E1168-E1184. [PMID: 30253111 PMCID: PMC6336959 DOI: 10.1152/ajpendo.00205.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key neuropeptide in the central regulation of energy balance. The Bdnf gene contains nine promoters, each producing specific mRNA transcripts that encode a common protein. We sought to assess the phenotypic outcomes of disrupting BDNF production from individual Bdnf promoters. Mice with an intact coding region but selective disruption of BDNF production from Bdnf promoters I, II, IV, or VI (Bdnf-e1-/-, -e2-/-, -e4-/-, and -e6-/-) were created by inserting an enhanced green fluorescent protein-STOP cassette upstream of the targeted promoter splice donor site. Body composition was measured by MRI weekly from age 4 to 22 wk. Energy expenditure was measured by indirect calorimetry at 18 wk. Food intake was measured in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding was conducted. Weight gain, lean mass, fat mass, and percent fat of Bdnf-e1-/- and Bdnf-e2-/- mice (both sexes) were significantly increased compared with wild-type littermates. For Bdnf-e4-/- and Bdnf-e6-/- mice, obesity was not observed with either chow or high-fat diet. Food intake was increased in Bdnf-e1-/- and Bdnf-e2-/- mice, and pair feeding prevented obesity. Mutant and wild-type littermates for each strain (both sexes) had similar total energy expenditure after adjustment for body composition. These findings suggest that the obesity phenotype observed in Bdnf-e1-/- and Bdnf-e2-/- mice is attributable to hyperphagia and not altered energy expenditure. Our findings show that disruption of BDNF from specific promoters leads to distinct body composition effects, with disruption from promoters I or II, but not IV or VI, inducing obesity.
Collapse
Affiliation(s)
- Liam McAllan
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Alisha S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Amanda S Stayton
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Shelby L Fox
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Erin J Stephenson
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Clint E Kinney
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Noor K Alshibli
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Charles K Gomes
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
| | - Dave Bridges
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Joan C Han
- Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital , Memphis, Tennessee
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
24
|
Yang S, Li S, Li XJ. MANF: A New Player in the Control of Energy Homeostasis, and Beyond. Front Physiol 2018; 9:1725. [PMID: 30555354 PMCID: PMC6282101 DOI: 10.3389/fphys.2018.01725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023] Open
Abstract
All human behaviors, including the control of energy homeostasis, are ultimately mediated by neuronal activities in the brain. Neurotrophic factors represent a protein family that plays important roles in regulating neuronal development, function, and survival. It has been well established that canonical neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), play important roles in the central regulation of energy homeostasis. Recently, a class of non-canonical neurotrophic factors, represented by mesencephalic astrocyte-derived neurotrophic factor (MANF), has been discovered. MANF is structurally and functionally distinct from those canonical neurotrophic factors, hence raising the issue of MANF being non-canonical. Nonetheless, emerging evidence suggests that MANF is critically involved in many neuronal activities. Here, we review our current understanding about the functions of MANF in the brain, with a primary focus on the control of energy homeostasis.
Collapse
Affiliation(s)
- Su Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Shihua Li
- GHM Institute of CNS Regeneration, Jinan University Guangzhou, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
25
|
Orlando G, Leone S, Ferrante C, Chiavaroli A, Mollica A, Stefanucci A, Macedonio G, Dimmito MP, Leporini L, Menghini L, Brunetti L, Recinella L. Effects of Kisspeptin-10 on Hypothalamic Neuropeptides and Neurotransmitters Involved in Appetite Control. Molecules 2018; 23:molecules23123071. [PMID: 30477219 PMCID: PMC6321454 DOI: 10.3390/molecules23123071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Besides its role as key regulator in gonadotropin releasing hormone secretion, reproductive function, and puberty onset, kisspeptin has been proposed to act as a bridge between energy homeostasis and reproduction. In the present study, to characterize the role of hypothalamic kisspeptin as metabolic regulator, we evaluated the effects of kisspeptin-10 on neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) gene expression and the extracellular dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytriptamine, 5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIIA) concentrations in rat hypothalamic (Hypo-E22) cells. Our study showed that kisspeptin-10 in the concentration range 1 nM–10 μM was well tolerated by the Hypo-E22 cell line. Moreover, kisspeptin-10 (100 nM–10 μM) concentration independently increased the gene expression of NPY while BDNF was inhibited only at the concentration of 10 μM. Finally, kisspeptin-10 decreased 5-HT and DA, leaving unaffected NE levels. The inhibitory effect on DA and 5-HT is consistent with the increased peptide-induced DOPAC/DA and 5-HIIA/5-HT ratios. In conclusion, our current findings suggesting the increased NPY together with decreased BDNF and 5-HT activity following kisspeptin-10 would be consistent with a possible orexigenic effect induced by the peptide.
Collapse
Affiliation(s)
- Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Annalisa Chiavaroli
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Adriano Mollica
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Azzurra Stefanucci
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Giorgia Macedonio
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Marilisa Pia Dimmito
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Lidia Leporini
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
26
|
Rodriguez AL, Whitehurst M, Fico BG, Dodge KM, Ferrandi PJ, Pena G, Adelman A, Huang CJ. Acute high-intensity interval exercise induces greater levels of serum brain-derived neurotrophic factor in obese individuals. Exp Biol Med (Maywood) 2018; 243:1153-1160. [PMID: 30453773 DOI: 10.1177/1535370218812191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Obesity may attenuate the expression of brain-derived neurotrophic factor (BDNF), thereby increasing the risk of cognitive dysfunction. High-intensity interval exercise (HIIE) has been shown to be as or more effective than continuous moderate-intensity exercise (CME) in promoting the expression of BDNF in normal-weight individuals. Therefore, the primary purpose of this study was to examine whether or not acute HIIE could be utilized as a practical model to explore the BDNF response in obese versus normal-weight subjects when compared to acute CME. The potential relationship of exercise-induced BDNF with blood lactate and cortisol was also examined. Twelve male subjects (six obese and six normal-weight) participated in a counterbalanced and caloric equated experiment: HIIE (30 min, 4 intervals of 4 min at 80%–90% of VO2max with 3 min of active recovery at 50–60% VO2max) and CME (38 min at 50%–60% VO2max). Blood samples were collected prior to, immediately following exercise, and 1 h into recovery for measurements of serum BDNF, blood lactate, and plasma cortisol. Our results showed that the BDNF response to acute HIIE was greater than CME in obese subjects when compared to normal-weight subjects. Similarly, although acute HIIE induced greater blood lactate and plasma cortisol levels than CME, obese subjects produced less blood lactate, but no difference in cortisol than normal-weight subjects. These findings suggest that acute HIIE may be a more effective protocol to upregulate BDNF expression in an obese population, independent of increased lactate and cortisol levels. Impact statement High-intensity interval exercise (HIIE) has been shown to be a time-efficient exercise strategy that provides similar or superior physiological benefits as traditional continuous moderate-intensity exercise (CME). Our previous study demonstrated an equivalent elevation on the BDNF response in both obese and normal-weight individuals following 30 min of acute CME. To discover a time-efficient exercise strategy to improve brain health in an obese population, the present study found that obese individuals elicit a greater level of BDNF following acute HIIE versus CME than normal-weight individuals. These findings indicate that acute HIIE may be an effective strategy to upregulate BDNF expression in obese individuals.
Collapse
Affiliation(s)
- Alexandra L Rodriguez
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael Whitehurst
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Brandon G Fico
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Kinesiology and Health Education, University of Texas, Austin, TX 78712, USA
| | - Katelyn M Dodge
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Peter J Ferrandi
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, USA
| | - Gabriel Pena
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Avraham Adelman
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Chun-Jung Huang
- Department of Kinesiology and Health Education, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
27
|
Jabbari M, Kheirouri S, Alizadeh M. Decreased Serum Levels of Ghrelin and Brain-Derived Neurotrophic Factor in Premenopausal Women With Metabolic Syndrome. Lab Med 2018; 49:140-146. [PMID: 29346609 DOI: 10.1093/labmed/lmx087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective We aimed to investigate the association between serum levels of ghrelin and brain-derived neurotrophic factor (BDNF) with MetS and its components in premenopausal women. Methods 43 patients with MetS and 43 healthy controls participated in this study. Participants' body mass index (BMI), waist circumference (WC), systolic and diastolic blood pressure (SBP and DBP) were measured. Serum levels of total cholesterol (TC), triglyceride (TG), low and high density lipoprotein cholesterol (LDL-C and HDL-C), fasting blood sugar (FBS), insulin, BDNF and ghrelin determined. Homeostasis model assessment insulin resistance index (HOMA-IR) was also calculated. Results Participants in MetS group had higher waist-to-hip ratios, elevated SBP and DBP, and higher serum levels of TG, FBS and insulin when compared with the control group. Serum ghrelin and BDNF levels were significantly lower in participants with MetS than in the healthier control subjects. There was a strong, positive correlation between serum ghrelin and BDNF levels. Both proteins negatively correlated with TG, FBS, HOMA-IR and positively with HDL-C. Furthermore, serum BDNF levels negatively associated with insulin levels. Conclusions The findings indicate that variations occur in the circulating level of ghrelin and BDNF proteins in MetS patients. A strong correlation between serum ghrelin and BDNF suggests that production, release or practice of these 2 proteins might be related mechanically.
Collapse
Affiliation(s)
- Masoumeh Jabbari
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF. Sci Rep 2018; 8:1781. [PMID: 29379096 PMCID: PMC5789051 DOI: 10.1038/s41598-018-19886-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/08/2018] [Indexed: 01/18/2023] Open
Abstract
Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of “brownization”. In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.
Collapse
|
29
|
Klockars OA, Waas JR, Klockars A, Levine AS, Olszewski PK. Neural Basis of Ventromedial Hypothalamic Oxytocin-Driven Decrease in Appetite. Neuroscience 2017; 366:54-61. [DOI: 10.1016/j.neuroscience.2017.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 02/03/2023]
|
30
|
Frank AP, Palmer BF, Clegg DJ. Do estrogens enhance activation of brown and beiging of adipose tissues? Physiol Behav 2017; 187:24-31. [PMID: 28988965 DOI: 10.1016/j.physbeh.2017.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023]
Abstract
Obesity and its associated co-morbidities are worldwide public health concerns. Obesity is characterized by excessive adipose tissue accumulation; however, it is important to recognize that human and rodent adipose tissues are made up of several distinct adipose tissue sub-types. White adipose tissue (WAT) is considered the prototypical fat cell, due to its capacity and capability to store large amounts of lipid. In contrast, brown adipose tissue (BAT) oxidizes substrates to generate heat. BAT contains more mitochondria than WAT and express uncoupling protein-1 (UCP1), which mediates BAT thermogenesis. A third sub-type of adipose tissue, Brown-in-white (BRITE)/beige adipocytes arise from WAT upon adrenergic stimulation and resembles BAT functionally. The energy burning feature of BAT/beige cells, combined with evidence of an inverse-correlation between BAT/beige adipose tissue and obesity have given rise to the hypothesis that obesity may be linked to BAT/beige 'malfunction'. Females have more BAT and perhaps an enhanced capacity to beige their adipose tissue when compared to males. Multiple signal pathways are capable of activating BAT thermogenesis and beiging of WAT; here, we discuss the potential role of estrogens in enhancing and mediating these factors to enhance adipose tissue thermogenesis.
Collapse
Affiliation(s)
- Aaron P Frank
- Biomedical Research Division, Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Deborah J Clegg
- Biomedical Research Division, Diabetes and Obesity Research Institute, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
31
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Contreras C, Nogueiras R, Diéguez C, Rahmouni K, López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol 2017; 12:854-863. [PMID: 28448947 PMCID: PMC5406580 DOI: 10.1016/j.redox.2017.04.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known as browning. Several peripheral signals relaying information about energy status act in the brain, particularly the hypothalamus, to regulate thermogenesis in BAT and browning of WAT. Different hypothalamic areas have the capacity to regulate the thermogenic process in brown and beige adipocytes through the sympathetic nervous system (SNS). This review discusses important concepts and discoveries about the central control of thermogenesis as a trip that starts in the hypothalamus, and taking the sympathetic roads to reach brown and beige fat to modulate thermogenic functions.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
33
|
Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol Cell Endocrinol 2016; 438:107-115. [PMID: 27498420 DOI: 10.1016/j.mce.2016.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) has been also considered as the main thermogenic organ responsible of maintenance body temperature through heat production. However, a new type of thermogenic fat has been characterized during the last years, the beige or brite fat, that is developed from white adipose tissue (WAT) in response to different stimuli by a process known as browning. The activities of brown and beige adipocytes ameliorate metabolic disease, including obesity in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease. The hypothalamus is the main central place orchestrating the outflow signals that drive the sympathetic nerve activity to BAT and WAT, controlling heat production and energy homeostasis. Recent data have revealed new hypothalamic molecular mechanisms, such as hypothalamic AMP-activated protein kinase (AMPK), that control both thermogenesis and browning. This review provides an overview of the factors influencing BAT and WAT thermogenesis, with special focus on the integration of peripheral information on hypothalamic circuits controlling thermoregulation.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
34
|
Abstract
Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center,
Albuquerque, New Mexico, USA
| |
Collapse
|
35
|
Inter-organ regulation of adipose tissue browning. Cell Mol Life Sci 2016; 74:1765-1776. [PMID: 27866221 DOI: 10.1007/s00018-016-2420-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/05/2023]
Abstract
Adaptive thermogenesis is an important component of energy expenditure. Brown adipocytes are best known for their ability to convert chemical energy into heat. Beige cells are brown-like adipocytes that arise in white adipose tissue in response to certain environmental cues to dissipate heat and improve metabolic homeostasis. A large body of intrinsic factors and external signals are critical for the function of beige adipocytes. In this review, we discuss recent advances in our understanding of neuronal, hormonal, and metabolic regulation of the development and activation of beige adipocytes, with a focus on the regulation of beige adipocytes by other organs, tissues, and cells. Understanding the cellular and molecular mechanisms of inter-organ regulation of adipose tissue browning may provide an avenue for combating obesity and associated diseases.
Collapse
|
36
|
Abstract
Energy balance--that is, the relationship between energy intake and energy expenditure--is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity.
Collapse
Affiliation(s)
- Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| |
Collapse
|
37
|
Teske JA, Perez-Leighton CE, Noble EE, Wang C, Billington CJ, Kotz CM. Effect of Housing Types on Growth, Feeding, Physical Activity, and Anxiety-Like Behavior in Male Sprague-Dawley Rats. Front Nutr 2016; 3:4. [PMID: 26870735 PMCID: PMC4740365 DOI: 10.3389/fnut.2016.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 01/15/2016] [Indexed: 01/15/2023] Open
Abstract
Background Animal welfare and accurate data collection are equally important in rodent research. Housing influences study outcomes and can challenge studies that monitor feeding, so housing choice needs to be evidence-based. The goal of these studies was to (1) compare established measures of well-being between rodents housed in wire grid-bottom floors with a resting platform compared to solid-bottom floors with bedding and (2) determine whether presence of a chewable device (Nylabone) affects orexin-A-induced hyperphagia. Methods Rodents were crossed over to the alternate housing twice after 2-week periods. Time required to complete food intake measurements was recorded as an indicator of feasibility. Food intake stimulated by orexin-A was compared with and without the Nylabone. Blood corticosterone and hypothalamic BDNF were assessed. Results Housing had no effect on growth, energy expenditure, corticosterone, hypothalamic BDNF, behavior, and anxiety measures. Food intake was disrupted after housing cross-over. Time required to complete food intake measurements was significantly higher for solid-bottom bedded cages. The Nylabone had no effect on orexin-A-stimulated feeding. Conclusion Well-being is not significantly different between rodents housed on grid-bottom floors and those in solid-bottom-bedded cages based on overall growth and feeding but alternating between housing confounds measures of feeding.
Collapse
Affiliation(s)
- Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA; Minneapolis VA Health Care System, Minneapolis, MN, USA; Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Claudio Esteban Perez-Leighton
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA; Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile
| | - Emily E Noble
- Department of Integrative Biology and Physiology, University of California Los Angeles , Los Angeles, CA , USA
| | - Chuanfeng Wang
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Charles J Billington
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Catherine M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA; Geriatric Research Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, MN, USA
| |
Collapse
|
38
|
Jiang Y, Denbow C, Meiri N, Denbow DM. Epigenetic-Imprinting Changes Caused by Neonatal Fasting Stress Protect From Future Fasting Stress. J Neuroendocrinol 2016; 28. [PMID: 26542089 DOI: 10.1111/jne.12333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/17/2015] [Accepted: 10/31/2015] [Indexed: 12/18/2022]
Abstract
Unfavourable nutritional conditions during the neonatal critical period can cause both acute metabolic disorders and severe metabolic syndromes in later life. These phenomena have been tightly related to the epigenetic modification controlling the balance between satiety and hunger in the hypothalamus. In the present study, we investigated epigenetic modification associated with both the fasting stress effects and the short-term resilience to fasting stress in the hypothalamic paraventricular nucleus (PVN) of chicks. Fasting for 24 h at 3 days of age (D) (i.e. D3) significantly increased global methylation at lysine 27 of histone 3 (H3K27) and its specific histone methyltransferase (HMT) expression level in the PVN. Because global methylation could not fully reveal the changes at specific genes, the regulation of the gene for brain-derived neurotrophic factor (Bdnf), which was recently also found to have an anorexigenic effect, was evaluated as a potential target. Chromatin immunoprecipitation assay analysis revealed that tri- (me3) and di-methylated (me2) H3K27 exhibited an instant (on D4 only) and latent increase (on both D11 and D41), respectively, at the putative promoter of Bdnf after 24 h of fasting on D3. This indicated that fasting could regulate energy-expenditure-related genes via modifying methylation at H3K27, which we suspected might be a protective mechanism for keeping the inner environment homeostatic. To test this hypothesis, a short-term repetitive fasting stress was applied to chickens, which were fasted for 24 h either on D10 only or on both D3 and D10. It was found that pre-existing fasting on D3 could induce a short-term fasting resilience, which rescued the reduction of Bdnf expression from future fasting on D10. We call this phenomenon the ‘molecular memory’, which was mainly conducted by HMTs and H3K27me2/me3 in the PVN. In conclusion, chicks respond to fasting with dynamic methylation at H3K27 in the PVN during the neonatal critical period. This allows the PVN to form a ‘molecular memory’, which keeps the individual inner environment homeostatic and resilient to future fasting over the short term.
Collapse
|
39
|
Han J. Rare Syndromes and Common Variants of the Brain-Derived Neurotrophic Factor Gene in Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:75-95. [DOI: 10.1016/bs.pmbts.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Ozek C, Zimmer DJ, De Jonghe BC, Kalb RG, Bence KK. Ablation of intact hypothalamic and/or hindbrain TrkB signaling leads to perturbations in energy balance. Mol Metab 2015; 4:867-80. [PMID: 26629410 PMCID: PMC4632115 DOI: 10.1016/j.molmet.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), play a paramount role in the central regulation of energy balance. Despite the substantial body of genetic evidence implicating BDNF- or TrkB-deficiency in human obesity, the critical brain region(s) contributing to the endogenous role of BDNF/TrkB signaling in metabolic control remain unknown. METHODS We assessed the importance of intact hypothalamic or hindbrain TrkB signaling in central regulation of energy balance by generating Nkx2.1-Ntrk2-/- and Phox2b-Ntrk2+/- mice, respectively, and comparing metabolic parameters (body weight, adiposity, food intake, energy expenditure and glucose homeostasis) under high-fat diet or chow fed conditions. RESULTS Our data show that when fed a high-fat diet, male and female Nkx2.1-Ntrk2-/- mice have significantly increased body weight and adiposity that is likely driven by reduced locomotor activity and core body temperature. When maintained on a chow diet, female Nkx2.1-Ntrk2-/- mice exhibit an increased body weight and adiposity phenotype more robust than in males, which is accompanied by hyperphagia that precedes the onset of a body weight difference. In addition, under both diet conditions, Nkx2.1-Ntrk2-/- mice show increased blood glucose, serum insulin and leptin levels. Mice with complete hindbrain TrkB-deficiency (Phox2b-Ntrk2-/-) are perinatal lethal, potentially indicating a vital role for TrkB in visceral motor neurons that control cardiovascular, respiratory, and digestive functions during development. Phox2b-Ntrk2+/- heterozygous mice are similar in body weight, adiposity and glucose homeostasis parameters compared to wild type littermate controls when maintained on a high-fat or chow diet. Interestingly, despite the absence of a body weight difference, Phox2b-Ntrk2+/- heterozygous mice exhibit pronounced hyperphagia. CONCLUSION Taken together, our findings suggest that the hypothalamus is a key brain region involved in endogenous BDNF/TrkB signaling and central metabolic control and that endogenous hindbrain TrkB likely plays a role in modulating food intake and survival of mice. Our findings also show that female mice lacking TrkB in the hypothalamus have a more robust metabolic phenotype.
Collapse
Key Words
- Agrp, agouti-related peptide
- BAT, brown adipose tissue
- BDNF
- BDNF, brain-derived neurotrophic factor
- Cidea, cell death-inducing DFFA-like effector a
- Cre, Cre recombinase
- DVC, dorsal vagal complex
- Elovl3, elongation of very long fatty acids-like 3
- GTT, glucose tolerance test
- HFD, high-fat diet
- HPA axis, hypothalamic-pituitary-adrenal axis
- Hindbrain
- Hypothalamus
- LepR, leptin receptor
- Mc4R, melanocortin 4 receptor
- NTS, nucleus of the solitary tract
- Nkx2.1, Nk2 homeobox 1 protein
- Npy, neuropeptide Y
- Obesity
- PVH, paraventricular nucleus of the hypothalamus
- Pgc1α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- Phox2b, paired-like homeobox 2b protein
- Pomc, pro-opiomelanocortin
- Pparγ, peroxisome proliferator-activated receptor gamma
- Prdm16, PR domain containing 16
- TrkB
- TrkB, tropomyosin receptor kinase B
- Ucp1, uncoupling protein 1
- VMH, ventromedial nucleus of the hypothalamus
- eWAT, epididymal white adipose tissue
Collapse
Affiliation(s)
- Ceren Ozek
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Derek J Zimmer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert G Kalb
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kendra K Bence
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
42
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of "brown-like" adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Section of Comparative Medicine, Yale University School of Medicine, P.O. Box 208016, New Haven, CT 06520-8016, USA,
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Ozek C, Kanoski SE, Zhang ZY, Grill HJ, Bence KK. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling. J Biol Chem 2014; 289:31682-31692. [PMID: 25288805 DOI: 10.1074/jbc.m114.603621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neuronal protein-tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here, we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways, whereas PTP1B inhibition augments TrkB signaling. Notably, brains of Ptpn1(-/-) mice exhibit enhanced TrkB phosphorylation, and Ptpn1(-/-) mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.
Collapse
Affiliation(s)
- Ceren Ozek
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California 90089, and
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana 46202
| | - Harvey J Grill
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kendra K Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,.
| |
Collapse
|
45
|
Rahman MM, Kerskens CM, Chattarji S, O'Mara SM. Chronic immobilization stress occludes in vivo cortical activation in an animal model of panic induced by carbon dioxide inhalation. Front Behav Neurosci 2014; 8:311. [PMID: 25278852 PMCID: PMC4165356 DOI: 10.3389/fnbeh.2014.00311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/25/2014] [Indexed: 11/13/2022] Open
Abstract
Breathing high concentrations of carbon dioxide (CO2) can trigger panic and anxiety in humans. CO2 inhalation has been hypothesized to activate neural systems similar to those underlying fear learning, especially those involving the amygdala. Amygdala activity is also upregulated by stress. Recently, however, a separate pathway has been proposed for interoceptive panic and anxiety signals, as patients exhibited CO2-inhalation induced panic responses despite bilateral lesions of the amygdala. This paradoxical observation has raised the possibility that cortical circuits may underlie these responses. We sought to examine these divergent models by comparing in vivo brain activation in unstressed and chronically-stressed rats breathing CO2. Regional cerebral blood flow measurements using functional Magnetic Resonance Imaging (fMRI) in lightly-anaesthetized rats showed especially strong activation of the somatosensory cortex by CO2 inhalation in the unstressed group. Strikingly, prior exposure to chronic stress occluded this effect on cortical activity. This lends support to recent clinical observations and highlights the importance of looking beyond the traditional focus on limbic structures, such as the hippocampus and amygdala, to investigate a role for cortical areas in panic and anxiety in humans.
Collapse
Affiliation(s)
| | - Christian M Kerskens
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Sumantra Chattarji
- National Center for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
46
|
Boughton CK, Murphy KG. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity. Br J Pharmacol 2014; 170:1333-48. [PMID: 23121386 DOI: 10.1111/bph.12037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- C K Boughton
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
47
|
Noble EE, Billington CJ, Kotz CM, Wang C. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure. Am J Physiol Regul Integr Comp Physiol 2014; 307:R737-45. [PMID: 24990860 DOI: 10.1152/ajpregu.00118.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central oxytocin reduces food intake and increases energy expenditure. The ventromedial hypothalamic nucleus (VMN) is associated with energy balance and contains a high density of oxytocin receptors. We hypothesized that oxytocin in the VMN is a negative regulator of energy balance acting to reduce feeding and increase energy expenditure. To test this idea, oxytocin or vehicle was injected directly into the VMN of Sprague-Dawley rats during fasted and nonfasted conditions. Energy expenditure (via indirect calorimetry) and spontaneous physical activity (SPA) were recorded simultaneously. Animals were also exposed to a conditioned taste aversion test, to determine whether oxytocin's effects on food intake were associated with malaise. When food was available during testing, oxytocin-induced elevations in energy expenditure lasted for 1 h, after which overall energy expenditure was reduced. In the absence of food during the testing period, oxytocin similarly increased energy expenditure during the first hour, but differences in 12-h energy expenditure were eliminated, implying that the differences may have been due to the thermic effects of feeding (digestion, absorption, and metabolic processing). Oxytocin acutely elevated SPA and reduced feeding at doses that did not cause a conditioned taste aversion during both the fed and fasted states. Together, these data suggest that oxytocin in the VMN promotes satiety and acutely elevates energy expenditure and SPA and implicates the VMN as a relevant site for the antiobesity effects of oxytocin.
Collapse
Affiliation(s)
- Emily E Noble
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and
| | - Charles J Billington
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Department of Medicine, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Department of Neuroscience, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - ChuanFeng Wang
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and Minneapolis VA Health Care System, Minneapolis, Minnesota
| |
Collapse
|
48
|
Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 2014; 19:741-756. [PMID: 24630813 PMCID: PMC4016184 DOI: 10.1016/j.cmet.2014.02.007] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermogenesis, the production of heat energy, is the specific, neurally regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| | - Christopher J Madden
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| | - Domenico Tupone
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| |
Collapse
|
49
|
Abstract
Complex interactions between the brain and peripheral tissues mediate the effective control of energy balance and body weight. Hypothalamic and hindbrain neural circuits integrate peripheral signals informing the nutritional status of the animal and in response regulate nutrient intake and energy utilization. Obesity and its many medical complications emerge from the dysregulation of energy homeostasis. Excessive weight gain might also arise from alterations in reward systems of the brain that drive consumption of calorie dense, palatable foods in the absence of an energy requirement. Several neurotrophins, most notably brain-derived neurotrophic factor, have been implicated in the molecular and cellular processes underlying body weight regulation. Here, we review investigations interrogating their roles in energy balance and reward centers of the brain impacting feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- M Rios
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA,
| |
Collapse
|
50
|
Effect of Short-Term Thermal Conditioning on Physiological and Behavioral Responses to Subsequent Acute Heat Exposure in Chicks. J Poult Sci 2014. [DOI: 10.2141/jpsa.0130040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|