1
|
Sandrelli RM, Porter ES, Gamperl AK. Hyperoxia does not improve the acute upper thermal tolerance of a tropical marine fish (Lutjanus apodus). J Exp Biol 2024; 227:jeb247703. [PMID: 39369300 PMCID: PMC11574356 DOI: 10.1242/jeb.247703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Fish can experience hyperoxia in shallow environments due to photosynthetic activity and this has been suggested to provide them with a metabolic refuge during acute warming. However, this hypothesis has never been tested on a tropical marine species. Thus, we fitted 29°C-acclimated wild schoolmaster snapper (Lutjanus apodus; a species known to experience diel hyperoxia in mangrove creeks and coastal waters) with Transonic® flow probes and exposed them to an acute increase in temperature (at 1°C h-1) in respirometers under normoxia and hyperoxia (150% air saturation), until their critical thermal maximum (CTmax). The CTmax of both groups was ∼39°C, and no differences in maximum cardiac function were recorded as the fish were warmed. However, temperature-induced factorial aerobic scope was significantly greater in fish tested under hyperoxia. These data suggest that hyperoxia will not protect coastal tropical fish species during marine heat waves, despite its effects on metabolic scope/capacity.
Collapse
Affiliation(s)
- Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| |
Collapse
|
2
|
Van Wert JC, Ekström AT, Gilbert MJH, Hendriks BJ, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Coronary circulation enhances the aerobic performance of wild Pacific salmon. J Exp Biol 2024; 227:jeb247422. [PMID: 38841879 PMCID: PMC11418299 DOI: 10.1242/jeb.247422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.
Collapse
Affiliation(s)
- Jacey C. Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Andreas T. Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Matthew J. H. Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian J. Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4,Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, Aquatic Research Cooperative Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4,Canada
| | - Erika J. Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Gilbert MJH, Hardison EA, Farrell AP, Eliason EJ, Anttila K. Measuring maximum heart rate to study cardiac thermal performance and heat tolerance in fishes. J Exp Biol 2024; 227:jeb247928. [PMID: 39450710 DOI: 10.1242/jeb.247928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2-3), but this response is blunted with further warming (Q10∼1-2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Emily A Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katja Anttila
- University of Turku, Department of Biology, 20014 Turku, Finland
| |
Collapse
|
4
|
Kuchenmüller LL, Hoots EC, Clark TD. Hyperoxia disproportionally benefits the aerobic performance of large fish at elevated temperature. J Exp Biol 2024; 227:jeb247887. [PMID: 39234663 DOI: 10.1242/jeb.247887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely owing to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.
Collapse
Affiliation(s)
- Luis L Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Elizabeth C Hoots
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
5
|
Morgenroth D, McArley T, Khan J, Sandblom E. Mechanisms of enhanced cardiorespiratory performance under hyperoxia differ with exposure duration in yellowtail kingfish. Proc Biol Sci 2024; 291:20232557. [PMID: 38889794 DOI: 10.1098/rspb.2023.2557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperoxia has been shown to expand the aerobic capacity of some fishes, although there have been very few studies examining the underlying mechanisms and how they vary across different exposure durations. Here, we investigated the cardiorespiratory function of yellowtail kingfish (Seriola lalandi) acutely (~20 h) and chronically (3-5 weeks) acclimated to hyperoxia (~200% air saturation). Our results show that the aerobic performance of kingfish is limited in normoxia and increases with environmental hyperoxia. The aerobic scope was elevated in both hyperoxia treatments driven by a ~33% increase in maximum O2 uptake (MO2max), although the mechanisms differed across treatments. Fish acutely transferred to hyperoxia primarily elevated tissue O2 extraction, while increased stroke volume-mediated maximum cardiac output was the main driving factor in chronically acclimated fish. Still, an improved O2 delivery to the heart in chronic hyperoxia was not the only explanatory factor as such. Here, maximum cardiac output only increased in chronic hyperoxia compared with normoxia when plastic ventricular growth occurred, as increased stroke volume was partly enabled by an ~8%-12% larger relative ventricular mass. Our findings suggest that hyperoxia may be used long term to boost cardiorespiratory function potentially rendering fish more resilient to metabolically challenging events and stages in their life cycle.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg 405 30, Sweden
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg 405 30, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg 405 30, Sweden
| | - Javed Khan
- National Institute of Water and Atmospheric Research, Northland Marine Research Centre, PO Box 147, Ruakaka 0151, New Zealand
- CH4 Global, 48 Greys Avenue, Auckland 1010, New Zealand
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, Gothenburg 405 30, Sweden
| |
Collapse
|
6
|
Ekström A, Hendriks B, Van Wert JC, Gilbert MJH, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Impairing cardiac oxygen supply in swimming coho salmon compromises their heart function and tolerance to acute warming. Sci Rep 2023; 13:21204. [PMID: 38040741 PMCID: PMC10692232 DOI: 10.1038/s41598-023-47713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Climatic warming elevates mortality for many salmonid populations during their physically challenging up-river spawning migrations, yet, the mechanisms underlying the increased mortality remain elusive. One hypothesis posits that a cardiac oxygen insufficiency impairs the heart's capacity to pump sufficient oxygen to body tissues to sustain up-river swimming, especially in warm water when oxygen availability declines and cardiac and whole-animal oxygen demand increases. We tested this hypothesis by measuring cardiac and metabolic (cardiorespiratory) performance, and assessing the upper thermal tolerance of coho salmon (Oncorhynchus kisutch) during sustained swimming and acute warming. By surgically ligating the coronary artery, which naturally accumulates arteriosclerotic lesions in migrating salmon, we partially impaired oxygen supply to the heart. Coronary ligation caused drastic cardiac impairment during swimming, even at benign temperatures, and substantially constrained cardiorespiratory performance during swimming and progressive warming compared to sham-operated control fish. Furthermore, upper thermal tolerance during swimming was markedly reduced (by 4.4 °C) following ligation. While the cardiorespiratory capacity of female salmon was generally lower at higher temperatures compared to males, upper thermal tolerance during swimming was similar between sexes within treatment groups. Cardiac oxygen supply is a crucial determinant for the migratory capacity of salmon facing climatic environmental warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 40530, Gothenburg, Sweden.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jacey C Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| | - Matthew J H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony P Farrell
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| |
Collapse
|
7
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Farrell AP. Getting to the heart of anatomical diversity and phenotypic plasticity: fish hearts are an optimal organ model in need of greater mechanistic study. J Exp Biol 2023; 226:jeb245582. [PMID: 37578108 DOI: 10.1242/jeb.245582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Natural selection has produced many vertebrate 'solutions' for the cardiac life-support system, especially among the approximately 30,000 species of fishes. For example, across species, fish have the greatest range for central arterial blood pressure and relative ventricular mass of any vertebrate group. This enormous cardiac diversity is excellent ground material for mechanistic explorations. Added to this species diversity is the emerging field of population-specific diversity, which is revealing that cardiac design and function can be tailored to a fish population's local environmental conditions. Such information is important to conservation biologists and ecologists, as well as physiologists. Furthermore, the cardiac structure and function of an individual adult fish are extremely pliable (through phenotypic plasticity), which is typically beneficial to the heart's function when environmental conditions are variable. Consequently, exploring factors that trigger cardiac remodelling with acclimation to new environments represents a marvellous opportunity for performing mechanistic studies that minimize the genetic differences that accompany cross-species comparisons. What makes the heart an especially good system for the investigation of phenotypic plasticity and species diversity is that its function can be readily evaluated at the organ level using established methodologies, unlike most other organ systems. Although the fish heart has many merits as an organ-level model to provide a mechanistic understanding of phenotypic plasticity and species diversity, bringing this potential to fruition will require productive research collaborations among physiologists, geneticists, developmental biologists and ecologists.
Collapse
|
9
|
Cowan ZL, Andreassen AH, De Bonville J, Green L, Binning SA, Silva-Garay L, Jutfelt F, Sundin J. A novel method for measuring acute thermal tolerance in fish embryos. CONSERVATION PHYSIOLOGY 2023; 11:coad061. [PMID: 37565236 PMCID: PMC10410291 DOI: 10.1093/conphys/coad061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
Aquatic ectotherms are vulnerable to thermal stress, with embryos predicted to be more sensitive than juveniles and adults. When examining the vulnerability of species and life stages to warming, comparable methodology must be used to obtain robust conclusions. Critical thermal methodology is commonly used to characterize acute thermal tolerances in fishes, with critical thermal maximum (CTmax) referring to the acute upper thermal tolerance limit. At this temperature, fish exhibit loss of controlled locomotion due to a temperature-induced collapse of vital physiological functions. While it is relatively easy to monitor behavioural responses and measure CTmax in larval and adult fish, this is more challenging in embryos, leading to a lack of data on this life stage, or that studies rely on potentially incomparable metrics. Here, we present a novel method for measuring CTmax in fish embryos, defined by the temperature at which embryos stop moving. Additionally, we compare this measurement with the temperature of the embryos' last heartbeat, which has previously been proposed as a method for measuring embryonic CTmax. We found that, like other life stages, late-stage embryos exhibited a period of increased activity, peaking approximately 2-3°C before CTmax. Measurements of CTmax based on last movement are more conservative and easier to record in later developmental stages than measurements based on last heartbeat, and they also work well with large and small embryos. Importantly, CTmax measurements based on last movement in embryos are similar to measurements from larvae and adults based on loss of locomotory control. Using last heartbeat as CTmax in embryos likely overestimates acute thermal tolerance, as the heart is still beating when loss of response/equilibrium is reached in larvae/adults. The last movement technique described here allows for comparisons of acute thermal tolerance of embryos between species and across life stages, and as a response variable to treatments.
Collapse
Affiliation(s)
- Zara-Louise Cowan
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
| | - Anna H Andreassen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
| | - Jeremy De Bonville
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av. Théres̀e-Lavoie-Roux, Montréal, H2V 0B3, Canada
| | - Leon Green
- Department of Biology and Environmental Sciences, Faculty of Natural Sciences, University of Gothenburg, Kristineberg Center, Fiskebäckskil, 451 78, Sweden
| | - Sandra A Binning
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av. Théres̀e-Lavoie-Roux, Montréal, H2V 0B3, Canada
| | - Lorena Silva-Garay
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
| | - Fredrik Jutfelt
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
- Department of Biology and Environmental Sciences, Faculty of Natural Sciences, University of Gothenburg, Kristineberg Center, Fiskebäckskil, 451 78, Sweden
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, 178 93, Sweden
| |
Collapse
|
10
|
Booth JM, Giomi F, Daffonchio D, McQuaid CD, Fusi M. Disturbance of primary producer communities disrupts the thermal limits of the associated aquatic fauna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162135. [PMID: 36775146 DOI: 10.1016/j.scitotenv.2023.162135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Environmental fluctuation forms a framework of variability within which species have evolved. Environmental fluctuation includes predictability, such as diel cycles of aquatic oxygen fluctuation driven by primary producers. Oxygen availability and fluctuation shape the physiological responses of aquatic animals to warming, so that, in theory, oxygen fluctuation could influence their thermal ecology. We describe annual oxygen variability in agricultural drainage channels and show that disruption of oxygen fluctuation through dredging of plants reduces the thermal tolerance of freshwater animals. We compared the temperature responses of snails, amphipods, leeches and mussels exposed to either natural oxygen fluctuation or constant oxygen in situ under different acclimation periods. Oxygen saturation in channel water ranged from c. 0 % saturation at night to >300 % during the day. Temperature showed normal seasonal variation and was almost synchronous with daily oxygen fluctuation. A dredging event in 2020 dramatically reduced dissolved oxygen variability and the correlation between oxygen and temperature was lost. The tolerance of invertebrates to thermal stress was significantly lower when natural fluctuation in oxygen availability was reduced and decoupled from temperature. This highlights the importance of natural cycles of variability and the need to include finer scale effects, including indirect biological effects, in modelling the ecosystem-level consequences of climate change. Furthermore, restoration and management of primary producers in aquatic habitats could be important to improve the thermal protection of aquatic invertebrates and their resistance to environmental variation imposed by climate change.
Collapse
Affiliation(s)
- J M Booth
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.
| | - F Giomi
- Via Maniciati, 6, Padova, Italy
| | - D Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - C D McQuaid
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - M Fusi
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK; Present address: Joint Nature Conservation Committee, Peterborough PE1 1JY, UK.
| |
Collapse
|
11
|
Anttila K, Mauduit F, Kanerva M, Götting M, Nikinmaa M, Claireaux G. Cardiovascular oxygen transport and peripheral oxygen extraction capacity contribute to acute heat tolerance in European seabass. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111340. [PMID: 36347467 DOI: 10.1016/j.cbpa.2022.111340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
This study evaluated whether different parameters describing cardiovascular function, energy metabolism, oxygen transport and oxidative stress were related to the critical thermal maximum (CTMAX) of European seabass (Dicentrarchus labrax) and if there were differential changes in these parameters during and after heat shock in animals with different CTMAX in order to characterize which physiological features make seabass vulnerable to heat waves. Seabass (n = 621) were tested for CTMAX and the physiological parameters were measured in individuals with good or poor temperature tolerance before and after a heat shock (change in temperature from 15 °C to 28 °C in 1.5 h). Fish with good thermal tolerance had larger ventricles with higher maximal heart rate during the heat shock than individuals with poor tolerance. Furthermore, they initially had a high ventricular Ca2+-ATPase activity, which was reduced to a similar level as in fish with poor tolerance following heat shock. The activity of heart lactate dehydrogenase increased in fish with high tolerance, when they were exposed to heat shock, while the aerobic enzyme activity did not differ between groups. The tolerant individuals had smaller red muscle fibers with higher myoglobin content than the poorly tolerant ones. The poorly tolerant individuals had higher hematocrit, which increased with heat shock in both groups. The poorly tolerant individuals had also higher activity of enzymes related to oxidative stress especially after heat shock. In general, CTMAX was not depending on merely one physiological factor but several organ and cellular parameters were related to the CTMAX of seabass and when working in combination they might protect the highly tolerant seabass from future heat waves.
Collapse
Affiliation(s)
- Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Florian Mauduit
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| | - Mirella Kanerva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Miriam Götting
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| |
Collapse
|
12
|
Skeeles MR, Scheuffele H, Clark TD. Chronic experimental hyperoxia elevates aerobic scope: a valid method to test for physiological oxygen limitations in fish. JOURNAL OF FISH BIOLOGY 2022; 101:1595-1600. [PMID: 36069991 PMCID: PMC10087569 DOI: 10.1111/jfb.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Experimental hyperoxia has been shown to enhance the maximum oxygen uptake capacity of fishes under acute conditions, potentially offering an avenue to test prominent physiological hypotheses attempting to explain impacts of climate warming on fish populations (e.g., gill-oxygen limitation driving declines in fish size). Such benefits of experimental hyperoxia must persist under chronic conditions if it is to provide a valid manipulation to test the relevant hypotheses, yet the long-term benefits of experimental hyperoxia to oxygen uptake capacity have not been examined. Here, the authors measured aerobic metabolic performance of Galaxias maculatus upon acute exposure to hyperoxia (150% air saturation) and after 5 months of acclimation, at both 15°C and 20°C. Acute hyperoxia elevated aerobic scope by 74%-94% relative to normoxic controls, and an elevation of 58%-73% persisted after 5 months of hyperoxia acclimation. When hyperoxia-acclimated fish were acutely transitioned back to normoxia, they maintained superior aerobic performance compared with normoxic controls, suggesting an acclimation of the underlying metabolic structures/processes. In demonstrating the long-term benefits of experimental hyperoxia on the aerobic performance of a fish, the authors encourage the use of such approaches to disentangle the role of oxygen in driving the responses of fish populations to climate warming.
Collapse
Affiliation(s)
- Michael R. Skeeles
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Hanna Scheuffele
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Timothy D. Clark
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
13
|
Abstract
Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.
Collapse
|
14
|
McArley TJ, Morgenroth D, Zena LA, Ekström AT, Sandblom E. Prevalence and mechanisms of environmental hyperoxia-induced thermal tolerance in fishes. Proc Biol Sci 2022; 289:20220840. [PMID: 35975439 PMCID: PMC9382203 DOI: 10.1098/rspb.2022.0840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has suggested environmental hyperoxia (O2 supersaturation) can boost cardiorespiratory performance in aquatic ectotherms, thereby increasing resilience to extreme heat waves associated with climate change. Here, using rainbow trout (Oncorhynchus mykiss) as a model species, we analysed whether improved cardiorespiratory performance can explain the increased thermal tolerance of fish in hyperoxia (200% air saturation). Moreover, we collated available literature data to assess the prevalence and magnitude of hyperoxia-induced thermal tolerance across fish species. During acute warming, O2 consumption rate was substantially elevated under hyperoxia relative to normoxia beyond 23°C. This was partly driven by higher cardiac output resulting from improved cardiac contractility. Notably, hyperoxia mitigated the rise in plasma lactate at temperatures approaching upper limits and elevated the critical thermal maximum (+0.87°C). Together, these findings show, at least in rainbow trout, that hyperoxia-induced thermal tolerance results from expanded tissue O2 supply capacity driven by enhanced cardiac performance. We show 50% of the fishes so far examined have increased critical thermal limits in hyperoxia (range: 0.4-1.8°C). This finding indicates environmental hyperoxia could improve the ability of a large number of fishes to cope with extreme acute warming, thereby increasing resilience to extreme heat wave events resulting from climate change.
Collapse
Affiliation(s)
- T. J. McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - D. Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - L. A. Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - A. T. Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - E. Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
15
|
Blasco FR, Taylor EW, Leite CAC, Monteiro DA, Rantin FT, McKenzie DJ. Tolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptake. J Exp Biol 2022; 225:276171. [PMID: 35909333 DOI: 10.1242/jeb.244287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
It has been proposed that larger individuals within fish species may be more sensitive to global warming, due to limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21 - 313g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26 °C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.
Collapse
Affiliation(s)
- F R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, 14801-903, Araraquara SP, Brazil
| | - E W Taylor
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,School of Biosciences, University of Birmingham, B15 2TT, UK
| | - C A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France
| |
Collapse
|
16
|
Muir CA, Garner SR, Damjanovski S, Neff BD. Temperature-dependent plasticity mediates heart morphology and thermal performance of cardiac function in juvenile Atlantic salmon (Salmo salar). J Exp Biol 2022; 225:276049. [PMID: 35860948 DOI: 10.1242/jeb.244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
In many fishes, upper thermal tolerance is thought to be limited in part by the heart's ability to meet increased oxygen demands during periods of high temperature. Temperature-dependent plasticity within the cardiovascular system may help fishes cope with the thermal stress imposed by increasing water temperatures. In this study, we examined plasticity in heart morphology and function in juvenile Atlantic salmon (Salmo salar) reared under control (+0°C) or elevated (+4°C) temperatures. Using noninvasive Doppler echocardiography, we measured the effect of acute warming on maximum heart rate, stroke distance, and derived cardiac output. A 4°C increase in average developmental temperature resulted in a>5°C increase in the Arrhenius breakpoint temperature for maximum heart rate and enabled the hearts of these fish to continue beating rhythmically to temperatures approximately 2°C higher than control fish. However, these differences in thermal performance were not associated with plasticity in maximum cardiovascular capacity, as peak measures of heart rate, stroke distance, and derived cardiac output did not differ between temperature treatments. Histological analysis of the heart revealed that while ventricular roundness and relative ventricle size did not differ between treatments, the proportion of compact myocardium in the ventricular wall was significantly greater in fish raised at elevated temperatures. Our findings contribute to the growing understanding of how the thermal environment can affect phenotypes later in life and identifies a morphological strategy that may help fishes cope with acute thermal stress.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, ON, Canada
| | - Shawn R Garner
- Department of Biology, Western University, London, ON, Canada
| | | | - Bryan D Neff
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
17
|
Mottola G, Nikinmaa M, Anttila K. Copper exposure improves the upper thermal tolerance in a sex-specific manner, irrespective of fish thermal history. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106145. [PMID: 35338914 DOI: 10.1016/j.aquatox.2022.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ectotherms can respond to climate change via evolutionary adaptation, usually resulting in an increase of their upper thermal tolerance. But whether such adaptation influences the phenotypic plasticity of thermal tolerance when encountering further environmental stressors is not clear yet. This is crucial to understand because organisms experience multiple stressors, besides warming climate, in their natural environment and pollution is one of those. Here, we studied the phenotypic plasticity of thermal tolerance in three-spined stickleback populations inhabiting spatially replicated thermally polluted and pristine areas before and after exposing them to a sublethal concentration of copper for one week. We found that the upper thermal tolerance and its phenotypic plasticity after copper exposure did not depend on the thermal history of fish, suggesting that five decades of thermal pollution did not result in evolutionary adaptation to thermal tolerance. The upper thermal tolerance of fish was, on the other hand, increased by ∼ 1.5 °C after 1-week copper exposure in a sex-specific manner, with males having higher plasticity. To our knowledge this is the first study that shows an improvement of the upper thermal tolerance as a result of metal exposure. The results suggest that three-spined sticklebacks are having high plasticity and they are capable of surviving in a multiple-stressor scenario in the wild and that male sticklebacks seem more resilient to fluctuating environmental conditions than female.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland.
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland
| |
Collapse
|
18
|
Ekström A, Prystay TS, Abrams AEI, Carbajal A, Holder PE, Zolderdo AJ, Sandblom E, Cooke SJ. Impairment of branchial and coronary blood flow reduces reproductive fitness, but not cardiac performance in paternal smallmouth bass (Micropterus dolomieu). Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111165. [PMID: 35167975 DOI: 10.1016/j.cbpa.2022.111165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022]
Abstract
The capacity to extract oxygen from the water, and the ability of the heart to drive tissue oxygen transport, are fundamental determinants of important life-history performance traits in fish. Cardiac performance is in turn dependent on the heart's own oxygen supply, which in some teleost species is partly delivered via a coronary circulation originating directly from the gills that perfuses the heart, and is crucial for cardiac, metabolic and locomotory capacities. It is currently unknown, however, how a compromised branchial blood flow (e.g., by angling-induced hook damage to the gills), constraining oxygen uptake and coronary blood flow, affects the energetically demanding parental care behaviours and reproductive fitness in fish. Here, we tested the hypothesis that blocking ¼ of the branchial blood flow and abolishing coronary blood flow would negatively affect parental care behaviours, cardiac performance (heart rate metrics, via implanted Star-Oddi heart rate loggers) and reproductive fitness of paternal smallmouth bass (Micropterus dolomieu). Our findings reveal that branchial/coronary ligation compromised reproductive fitness, as reflected by a lower proportion of broods reaching free-swimming fry and a tendency for a higher nest abandonment rate relative to sham operated control fish. While this was associated with a tendency for a reduced aggression in ligated fish, parental care behaviours were largely unaffected by the ligation. Moreover, the ligation did not impair any of the heart rate performance metrics. Our findings highlight that gill damage may compromise reproductive output of smallmouth bass populations during the spawning season. Yet, the mechanism(s) behind this finding remains elusive.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Tanya S Prystay
- Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| | - Alice E I Abrams
- Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| | - Annaïs Carbajal
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Peter E Holder
- Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| | - Aaron J Zolderdo
- Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada; Department of Biology, Queen's University Biological Station, Elgin, ON, Canada
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
19
|
Adams OA, Zhang Y, Gilbert MH, Lawrence CS, Snow M, Farrell AP. An unusually high upper thermal acclimation potential for rainbow trout. CONSERVATION PHYSIOLOGY 2022; 10:coab101. [PMID: 35492409 PMCID: PMC9040278 DOI: 10.1093/conphys/coab101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/02/2023]
Abstract
Thermal acclimation, a compensatory physiological response, is central to species survival especially during the current era of global warming. By providing the most comprehensive assessment to date for the cardiorespiratory phenotype of rainbow trout (Oncorhynchus mykiss) at six acclimation temperatures from 15°C to 25°C, we tested the hypothesis that, compared with other strains of rainbow trout, an Australian H-strain of rainbow trout has been selectively inbred to have an unusually high and broad thermal acclimation potential. Using a field setting at the breeding hatchery in Western Australia, thermal performance curves were generated for a warm-adapted H-strain by measuring growth, feed conversion efficiency, specific dynamic action, whole-animal oxygen uptake (ṀO2) during normoxia and hypoxia, the critical maximum temperature and the electrocardiographic response to acute warming. Appreciable growth and aerobic capacity were possible up to 23°C. However, growth fell off drastically at 25°C in concert with increases in the time required to digest a meal, its total oxygen cost and its peak ṀO2. The upper thermal tipping points for appetite and food conversion efficiency corresponded with a decrease in the ability to increase heart rate during warming and an increase in the cost to digest a meal. Also, comparison of upper thermal tipping points provides compelling evidence that limitations to increasing heart rate during acute warming occurred well below the critical thermal maximum (CTmax) and that the faltering ability of the heart to deliver oxygen at different acclimation temperatures is not reliably predicted by CTmax for the H-strain of rainbow trout. We, therefore, reasoned the remarkably high thermal acclimation potential revealed here for the Australian H-strain of rainbow trout reflected the existing genetic variation within the founder Californian population, which was then subjected to selective inbreeding in association with severe heat challenges. This is an encouraging discovery for those with conservation concerns for rainbow trout and other fish species. Indeed, those trying to predict the impact of global warming should more fully consider the possibility that the standing intra-specific genetic variation within a fish species could provide a high thermal acclimation potential, similar to that shown here for rainbow trout.
Collapse
Affiliation(s)
- Olivia A Adams
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yangfan Zhang
- Corresponding author: Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada and Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Matthew H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Craig S Lawrence
- Faculty of Science, School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael Snow
- Aquatic Life Industries, Perth, Western Australia, Australia
| | - Anthony P Farrell
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
McArley TJ, Morgenroth D, Zena LA, Ekström AT, Sandblom E. Normoxic limitation of maximal oxygen consumption rate, aerobic scope and cardiac performance in exhaustively exercised rainbow trout (Oncorhynchus mykiss). J Exp Biol 2021; 224:271087. [PMID: 34323276 DOI: 10.1242/jeb.242614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
In fish, maximum O2 consumption rate (ṀO2,max) and aerobic scope can be expanded following exhaustive exercise in hyperoxia; however, the mechanisms explaining this are yet to be identified. Here, in exhaustively exercised rainbow trout (Oncorhynchus mykiss), we assessed the influence of hyperoxia on ṀO2,max, aerobic scope, cardiac function and blood parameters to address this knowledge gap. Relative to normoxia, ṀO2,max was 33% higher under hyperoxia, and this drove a similar increase in aerobic scope. Cardiac output was significantly elevated under hyperoxia at ṀO2,max because of increased stroke volume, indicating that hyperoxia released a constraint on cardiac contractility apparent with normoxia. Thus, hyperoxia improved maximal cardiac performance, thereby enhancing tissue O2 delivery and allowing a higher ṀO2,max. Venous blood O2 partial pressure (PvO2) was elevated in hyperoxia at ṀO2,max, suggesting a contribution of improved luminal O2 supply in enhanced cardiac contractility. Additionally, despite reduced haemoglobin and higher PvO2, hyperoxia treated fish retained a higher arterio-venous O2 content difference at ṀO2,max. This may have been possible because of hyperoxia offsetting declines in arterial oxygenation that are known to occur following exhaustive exercise in normoxia. If this occurs, increased contractility at ṀO2,max with hyperoxia may also relate to an improved O2 supply to the compact myocardium via the coronary artery. Our findings show ṀO2,max and aerobic scope may be limited in normoxia following exhaustive exercise as a result of constrained maximal cardiac performance and highlight the need to further examine whether or not exhaustive exercise protocols are suitable for eliciting ṀO2,max and estimating aerobic scope in rainbow trout.
Collapse
Affiliation(s)
- Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas T Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
21
|
Jutfelt F, Norin T, Åsheim ER, Rowsey LE, Andreassen AH, Morgan R, Clark TD, Speers‐Roesch B. ‘Aerobic scope protection’ reduces ectotherm growth under warming. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13811] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources Technical University of Denmark Kgs. Lyngby Denmark
| | - Eirik R. Åsheim
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Organismal and Evolutionary Biology Research Programme Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Lauren E. Rowsey
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| | - Anna H. Andreassen
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Rachael Morgan
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Timothy D. Clark
- School of Life and Environmental Sciences Deakin University Geelong Vic. Australia
| | - Ben Speers‐Roesch
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| |
Collapse
|
22
|
O'Brien KM, Joyce W, Crockett EL, Axelsson M, Egginton S, Farrell AP. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. J Exp Biol 2021; 224:268390. [PMID: 34042975 DOI: 10.1242/jeb.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology , University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Stuart Egginton
- School of Biomedical Sciences , University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
23
|
Morgenroth D, McArley T, Gräns A, Axelsson M, Sandblom E, Ekström A. Coronary blood flow influences tolerance to environmental extremes in fish. J Exp Biol 2021; 224:jeb.239970. [PMID: 33688058 DOI: 10.1242/jeb.239970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Approximately half of all fishes have, in addition to the luminal venous O2 supply, a coronary circulation supplying the heart with fully oxygenated blood. Yet, it is not fully understood how coronary O2 delivery affects tolerance to environmental extremes such as warming and hypoxia. Hypoxia reduces arterial oxygenation, while warming increases overall tissue O2 demand. Thus, as both stressors are associated with reduced venous O2 supply to the heart, we hypothesised that coronary flow benefits hypoxia and warming tolerance. To test this hypothesis, we blocked coronary blood flow (via surgical coronary ligation) in rainbow trout (Oncorhynchus mykiss) and assessed how in vivo cardiorespiratory performance and whole-animal tolerance to acute hypoxia and warming was affected. While coronary ligation reduced routine stroke volume relative to trout with intact coronaries, cardiac output was maintained by an increase in heart rate. However, in hypoxia, coronary-ligated trout were unable to increase stroke volume to maintain cardiac output when bradycardia developed, which was associated with a slightly reduced hypoxia tolerance. Moreover, during acute warming, coronary ligation caused cardiac function to collapse at lower temperatures and reduced overall heat tolerance relative to trout with intact coronary arteries. We also found a positive relationship between individual hypoxia and heat tolerance across treatment groups, and tolerance to both environmental stressors was positively correlated with cardiac performance. Collectively, our findings show that coronary perfusion improves cardiac O2 supply and therefore cardiovascular function at environmental extremes, which benefits tolerance to natural and anthropogenically induced environmental perturbations.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
24
|
Ekström A, Sundell E, Morgenroth D, McArley T, Gårdmark A, Huss M, Sandblom E. Cardiorespiratory adjustments to chronic environmental warming improve hypoxia tolerance in European perch ( Perca fluviatilis). J Exp Biol 2021; 224:jeb.241554. [PMID: 33568442 DOI: 10.1242/jeb.241554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022]
Abstract
Aquatic hypoxia will become increasingly prevalent in the future as a result of eutrophication combined with climate warming. While short-term warming typically constrains fish hypoxia tolerance, many fishes cope with warming by adjusting physiological traits through thermal acclimation. Yet, little is known about how such adjustments affect tolerance to hypoxia. We examined European perch (Perca fluviatilis) from the Biotest enclosure (23°C, Biotest population), a unique ∼1 km2 ecosystem artificially warmed by cooling water from a nuclear power plant, and an adjacent reference site (16-18°C, reference population). Specifically, we evaluated how acute and chronic warming affect routine oxygen consumption rate (Ṁ O2,routine) and cardiovascular performance in acute hypoxia, alongside assessment of the thermal acclimation of the aerobic contribution to hypoxia tolerance (critical O2 tension for Ṁ O2,routine: P crit) and absolute hypoxia tolerance (O2 tension at loss of equilibrium; P LOE). Chronic adjustments (possibly across lifetime or generations) alleviated energetic costs of warming in Biotest perch by depressing Ṁ O2,routine and cardiac output, and by increasing blood O2 carrying capacity relative to reference perch acutely warmed to 23°C. These adjustments were associated with improved maintenance of cardiovascular function and Ṁ O2,routine in hypoxia (i.e. reduced P crit). However, while P crit was only partially thermally compensated in Biotest perch, they had superior absolute hypoxia tolerance (i.e. lowest P LOE) relative to reference perch irrespective of temperature. We show that European perch can thermally adjust physiological traits to safeguard and even improve hypoxia tolerance during chronic environmental warming. This points to cautious optimism that eurythermal fish species may be resilient to the imposition of impaired hypoxia tolerance with climate warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Erika Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, 742 42 Öregrund, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, 742 42 Öregrund, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
25
|
Adrenergic tone benefits cardiac performance and warming tolerance in two teleost fishes that lack a coronary circulation. J Comp Physiol B 2021; 191:701-709. [PMID: 33738526 PMCID: PMC8241749 DOI: 10.1007/s00360-021-01359-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/14/2023]
Abstract
Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CTmax) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.
Collapse
|
26
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
27
|
Gerber L, Clow KA, Gamperl AK. Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon ( Salmo salar). J Exp Biol 2021; 224:jeb236257. [PMID: 33288533 DOI: 10.1242/jeb.236257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In fish, the capacity of thermal acclimation to preserve cardiac mitochondrial function under future warming scenarios is important to understand given the central roles that cardiac energy metabolism and performance play in this taxa's thermal tolerance. We acclimated Atlantic salmon to 12 and 20°C (for >2 months), and investigated the effects of acute and chronic warming on cardiac mitochondrial respiration and reactive oxygen species (ROS) production (release rate) using high-resolution fluorespirometry. Further, we compared the sensitivity of mitochondrial respiration to nitric oxide (i.e. the NO IC50), and assessed the mitochondrial response to anoxia-reoxygenation (AR). Acute exposure to 20°C increased maximal mitochondrial respiration by ∼55%; however, the mitochondria's complex I respiratory control ratio was 17% lower and ROS production was increased by ≥60%. Acclimation to 20°C: (1) preserved mitochondrial coupling and aerobic capacity; (2) decreased the mitochondria's ROS production by ∼30%; (3) increased the mitochondria's NO IC50 by ∼23%; and (4) improved mitochondrial membrane integrity at 20°C. AR did not affect mitochondrial function at 12°C, but acute exposure to 20°C and AR depressed maximal mitochondrial respiration (by ∼9%) and coupling (by ∼16%) without impacting ROS production. Finally, warm acclimation did not improve the capacity of mitochondria to recover from AR, indicating that there was no 'cross-tolerance' between these challenges. Our findings provide compelling evidence that thermal plasticity of cardiac mitochondrial function contributes to the Atlantic salmon's capability to survive at ≥20°C for prolonged periods, but call into question whether this plasticity may allow them to withstand high temperatures when combined with other stressors.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
28
|
Gilbert MJH, Farrell AP. The thermal acclimation potential of maximum heart rate and cardiac heat tolerance in Arctic char (Salvelinus alpinus), a northern cold-water specialist. J Therm Biol 2020; 95:102816. [PMID: 33454044 DOI: 10.1016/j.jtherbio.2020.102816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/30/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Increasing heart rate (ƒH) is a central, if not primary mechanism used by fishes to support their elevated tissue oxygen consumption during acute warming. Thermal acclimation can adjust this acute response to improve cardiac performance and heat tolerance under the prevailing temperatures. We predict that such acclimation will be particularly important in regions undergoing rapid environmental change such as the Arctic. Therefore, we acclimated Arctic char (Salvelinus alpinus), a high latitude, cold-adapted salmonid, to ecologically relevant temperatures (2, 6, 10, 14 and 18 °C) and examined how thermal acclimation influenced their cardiac heat tolerance by measuring the maximum heart rate (ƒHmax) response to acute warming. As expected, acute warming increased ƒHmax in all Arctic char before ƒHmax reached a peak and then became arrhythmic. The peak ƒHmax, and the temperature at which peak ƒHmax (Tpeak) and that at which arrhythmia first occurred (Tarr) all increased progressively (+33%, 49% and 35%, respectively) with acclimation temperature from 2 to 14 °C. When compared at the same test temperature ƒHmax also decreased by as much as 29% with increasing acclimation temperature, indicating significant thermal compensation. The upper temperature at which fish first lost their equilibrium (critical thermal maximum: CTmax) also increased with acclimation temperature, albeit to a lesser extent (+11%). Importantly, Arctic char experienced mortality after several weeks of acclimation at 18 °C and survivors did not have elevated cardiac thermal tolerance. Collectively, these findings suggest that if wild Arctic char have access to suitable temperatures (<18 °C) for a sufficient duration, warm acclimation can potentially mitigate some of the cardiorespiratory impairments previously documented during acute heat exposure.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada; Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
29
|
Evans ER, Farnoud AM, O'Brien KM, Crockett EL. Thermal profiles reveal stark contrasts in properties of biological membranes from heart among Antarctic notothenioid fishes which vary in expression of hemoglobin and myoglobin. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110539. [PMID: 33242660 DOI: 10.1016/j.cbpb.2020.110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023]
Abstract
Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae. We determined membrane fluidity and structural integrity by quantifying fluorescence depolarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and leakage of 5(6)-carboxyfluorescein, respectively, over a temperature range from ambient (0 °C) to 20 °C. Compositions of membrane phospholipids and cholesterol contents were also quantified. Membranes from all four species of icefishes exhibited greater fluidity than membranes from the red-blooded species N. coriiceps. Thermal sensitivity of fluidity did not vary among species. The greatest thermal sensitivity to leakage occurred between 0 and 5 °C for all species, while membranes from the icefish, Chaenocephalus aceratus (Hb-/Mb-) displayed leakage that was nearly 1.5-fold greater than leakage in N. coriiceps (Hb+/Mb+). Contents of phosphatidylethanolamine (PE) were approximately 1.5-fold greater in icefishes than in red-blooded fishes, and phospholipids had a higher degree of unsaturation in icefishes than in Hb + notothenioids. Cholesterol contents were lowest in Champsocephalus gunnari (Hb-/Mb-) and highest in the two Hb+/Mb + species, G. gibberifrons and N. coriiceps. Our results reveal marked differences in membrane properties and indicate a breach in membrane fluidity and structural integrity at a lower temperature in icefishes than in red-blooded notothenioids.
Collapse
Affiliation(s)
- Elizabeth R Evans
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | - Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
| | | |
Collapse
|
30
|
Ern R, Chung D, Frieder CA, Madsen N, Speers-Roesch B. Oxygen-dependence of upper thermal limits in crustaceans from different thermal habitats. J Therm Biol 2020; 93:102732. [PMID: 33077143 DOI: 10.1016/j.jtherbio.2020.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.
Collapse
Affiliation(s)
- Rasmus Ern
- Aalborg University, Department of Chemistry and Bioscience, Denmark.
| | - Dillon Chung
- National Heart Lung and Blood Institute, National Institutes of Health, United States
| | - Christina A Frieder
- University of Southern California, Department of Biological Sciences, United States
| | - Niels Madsen
- Aalborg University, Department of Chemistry and Bioscience, Denmark
| | - Ben Speers-Roesch
- University of New Brunswick, Saint John, Department of Biological Sciences, Canada
| |
Collapse
|
31
|
Pichaud N, Ekström A, Breton S, Sundström F, Rowinski P, Blier PU, Sandblom E. Adjustments of cardiac mitochondrial phenotype in a warmer thermal habitat is associated with oxidative stress in European perch, Perca fluviatilis. Sci Rep 2020; 10:17697. [PMID: 33077851 PMCID: PMC7572411 DOI: 10.1038/s41598-020-74788-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are playing key roles in setting the thermal limits of fish, but how these organelles participate in selection mechanisms during extreme thermal events associated with climate warming in natural populations is unclear. Here, we investigated the thermal effects on mitochondrial metabolism, oxidative stress, and mitochondrial gene expression in cardiac tissues of European perch (Perca fluviatilis) collected from an artificially heated ecosystem, the "Biotest enclosure", and an adjacent reference area in the Baltic sea with normal temperatures (~ 23 °C and ~ 16 °C, respectively, at the time of capture in summer). Fish were sampled one month after a heat wave that caused the Biotest temperatures to peak at ~ 31.5 °C, causing significant mortality. When assayed at 23 °C, Biotest perch maintained high mitochondrial capacities, while reference perch displayed depressed mitochondrial functions relative to measurements at 16 °C. Moreover, mitochondrial gene expression of nd4 (mitochondrial subunit of complex I) was higher in Biotest fish, likely explaining the increased respiration rates observed in this population. Nonetheless, cardiac tissue from Biotest perch displayed higher levels of oxidative damage, which may have resulted from their chronically warm habitat, as well as the extreme temperatures encountered during the preceding summer heat wave. We conclude that eurythermal fish such as perch are able to adjust and maintain mitochondrial capacities of highly aerobic organs such as the heart when exposed to a warming environment as predicted with climate change. However, this might come at the expense of exacerbated oxidative stress, potentially threatening performance in nature.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada. .,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada.
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Fredrik Sundström
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Piotr Rowinski
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
32
|
Haverinen J, Vornanen M. Reduced ventricular excitability causes atrioventricular block and depression of heart rate in fish at critically high temperatures. J Exp Biol 2020; 223:jeb225227. [PMID: 32434803 DOI: 10.1242/jeb.225227] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
At critically high temperature, cardiac output in fish collapses as a result of depression of heart rate (bradycardia). However, the cause of bradycardia remains unresolved. To investigate this, rainbow trout (Oncorhynchus mykiss; acclimated at 12°C) were exposed to acute warming while electrocardiograms were recorded. From 12°C to 25.3°C, electrical excitation between different parts of the heart was coordinated, but above 25.3°C, atrial and ventricular beating rates became partly dissociated because of 2:1 atrioventricular (AV) block. With further warming, atrial rate increased to a peak value of 188±22 beats min-1 at 27°C, whereas the ventricle rate peaked at 124±10 beats min-1 at 25.3°C and thereafter dropped to 111±15 beats min-1 at 27°C. In single ventricular myocytes, warming from 12°C to 25°C attenuated electrical excitability as evidenced by increases in rheobase current and the size of critical depolarization required to trigger action potential. Depression of excitability was caused by temperature-induced decrease in input resistance (sarcolemmal K+ leak via the outward IK1 current) of resting myocytes and decrease in inward charge transfer by the Na+ current (INa) of active myocytes. Collectively, these findings show that at critically high temperatures AV block causes ventricular bradycardia owing to the increased excitation threshold of the ventricle, which is due to changes in the passive (resting ion leak) and active (inward charge movement) electrical properties of ventricular myocytes. The sequence of events from the level of ion channels to cardiac function in vivo provides a mechanistic explanation for the depression of cardiac output in fish at critically high temperature.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, 80101 Joensuu, Finland
| |
Collapse
|
33
|
Pichaud N, Ekström A, Breton S, Sundström F, Rowinski P, Blier PU, Sandblom E. Cardiac mitochondrial plasticity and thermal sensitivity in a fish inhabiting an artificially heated ecosystem. Sci Rep 2019; 9:17832. [PMID: 31780821 PMCID: PMC6883045 DOI: 10.1038/s41598-019-54165-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/06/2019] [Indexed: 12/03/2022] Open
Abstract
Some evidence suggests that cardiac mitochondrial functions might be involved in the resilience of ectotherms such as fish to environmental warming. Here, we investigated the effects of acute and chronic changes in thermal regimes on cardiac mitochondrial plasticity and thermal sensitivity in perch (Perca fluviatilis) from an artificially heated ecosystem; the “Biotest enclosure” (~25 °C), and from an adjacent area in the Baltic Sea with normal temperatures (reference, ~16 °C). We evaluated cardiac mitochondrial respiration at assay temperatures of 16 and 25 °C, as well as activities of lactate dehydrogenase (LDH) and citrate synthase (CS) in Biotest and reference perch following 8 months laboratory-acclimation to either 16 or 25 °C. While both populations exhibited higher acute mitochondrial thermal sensitivity when acclimated to their natural habitat temperatures, this sensitivity was lost when Biotest and reference fish were acclimated to 16 and 25 °C, respectively. Moreover, reference fish displayed patterns of metabolic thermal compensation when acclimated to 25 °C, whereas no changes were observed in Biotest perch acclimated to 16 °C, suggesting that cardiac mitochondrial metabolism of Biotest fish expresses local adaptation. This study highlights the adaptive responses of cardiac mitochondria to environmental warming, which can impact on fish survival and distribution in a warming climate.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada. .,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1.
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Fredrik Sundström
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Piotr Rowinski
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| |
Collapse
|
34
|
Gerber L, Clow KA, Katan T, Emam M, Leeuwis RHJ, Parrish CC, Gamperl AK. Cardiac mitochondrial function, nitric oxide sensitivity and lipid composition following hypoxia acclimation in sablefish. ACTA ACUST UNITED AC 2019; 222:jeb.208074. [PMID: 31645375 DOI: 10.1242/jeb.208074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
In fishes, the effect of O2 limitation on cardiac mitochondrial function remains largely unexplored. The sablefish (Anoplopoma fimbria) encounters considerable variations in environmental oxygen availability, and is an interesting model for studying the effects of hypoxia on fish cardiorespiratory function. We investigated how in vivo hypoxia acclimation (6 months at 40% then 3 weeks at 20% air saturation) and in vitro anoxia-reoxygenation affected sablefish cardiac mitochondrial respiration and reactive oxygen species (ROS) release rates using high-resolution fluorespirometry. Further, we investigated how hypoxia acclimation affected the sensitivity of mitochondrial respiration to nitric oxide (NO), and compared mitochondrial lipid and fatty acid (FA) composition between groups. Hypoxia acclimation did not alter mitochondrial coupled or uncoupled respiration, or respiratory control ratio, ROS release rates, P 50 or superoxide dismutase activity. However, it increased citrate synthase activity (by ∼20%), increased the sensitivity of mitochondrial respiration to NO inhibition (i.e., the NO IC50 was 25% lower), and enhanced the recovery of respiration (by 21%) and reduced ROS release rates (by 25-30%) post-anoxia. In addition, hypoxia acclimation altered mitochondrial FA composition [increasing arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3) proportions by 11 and 14%, respectively], and SIMPER analysis revealed that the phospholipid:sterol ratio was the largest contributor (24%) to the dissimilarity between treatments. Overall, these results suggest that hypoxia acclimation may protect sablefish cardiac bioenergetic function during or after periods of O2 limitation, and that this may be related to alterations in mitochondrial sensitivity to NO and to adaptive changes in membrane composition (fluidity).
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | | | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
35
|
Leo E, Graeve M, Storch D, Pörtner HO, Mark FC. Impact of ocean acidification and warming on mitochondrial enzymes and membrane lipids in two Gadoid species. Polar Biol 2019. [DOI: 10.1007/s00300-019-02600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Ekström A, Gräns A, Sandblom E. Can´t beat the heat? Importance of cardiac control and coronary perfusion for heat tolerance in rainbow trout. J Comp Physiol B 2019; 189:10.1007/s00360-019-01243-7. [PMID: 31707423 DOI: 10.1007/s00360-019-01243-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Coronary perfusion and cardiac autonomic regulation may benefit myocardial oxygen delivery and thermal performance of the teleost heart, and thus influence whole animal heat tolerance. Yet, no study has examined how coronary perfusion affects cardiac output during warming in vivo. Moreover, while β-adrenergic stimulation could protect cardiac contractility, and cholinergic decrease in heart rate may enhance myocardial oxygen diffusion at critically high temperatures, previous studies in rainbow trout (Oncorhynchus mykiss) using pharmacological antagonists to block cholinergic and β-adrenergic regulation showed contradictory results with regard to cardiac performance and heat tolerance. This could reflect intra-specific differences in the extent to which altered coronary perfusion buffered potential negative effects of the pharmacological blockade. Here, we first tested how cardiac performance and the critical thermal maximum (CTmax) were affected following a coronary ligation. We then assessed how these performances were influenced by pharmacological cholinergic or β-adrenergic blockade, hypothesising that the effects of the pharmacological treatment would be more pronounced in coronary ligated trout compared to trout with intact coronaries. Coronary blockade reduced CTmax by 1.5 °C, constrained stroke volume and cardiac output across temperatures, led to earlier cardiac failure and was associated with reduced blood oxygen-carrying capacity. Nonetheless, CTmax and the temperatures for cardiac failure were not affected by autonomic blockade. Collectively, our data show that coronary perfusion improves heat tolerance and cardiac performance in trout, while evidence for beneficial effects of altered cardiac autonomic tone during warming remains inconclusive.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden.
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Göteborg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30, Göteborg, Sweden
| |
Collapse
|
37
|
Marchant JL, Farrell AP. Membrane and calcium clock mechanisms contribute variably as a function of temperature to setting cardiac pacemaker rate in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 95:1265-1274. [PMID: 31429079 DOI: 10.1111/jfb.14126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax ) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.
Collapse
Affiliation(s)
- James L Marchant
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P Farrell
- Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Jutfelt F, Roche DG, Clark TD, Norin T, Binning SA, Speers-Roesch B, Amcoff M, Morgan R, Andreassen AH, Sundin J. Brain cooling marginally increases acute upper thermal tolerance in Atlantic cod. ACTA ACUST UNITED AC 2019; 222:jeb.208249. [PMID: 31527178 DOI: 10.1242/jeb.208249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
Physiological mechanisms determining thermal limits in fishes are debated but remain elusive. It has been hypothesised that motor function loss, observed as loss of equilibrium during acute warming, is due to direct thermal effects on brain neuronal function. To test this, we mounted cooling plates on the heads of Atlantic cod (Gadus morhua) and quantified whether local brain cooling increased whole-organism acute upper thermal tolerance. Brain cooling reduced brain temperature by 2-6°C below ambient water temperature and increased thermal tolerance by 0.5 and 0.6°C on average relative to instrumented and uninstrumented controls, respectively, suggesting that direct thermal effects on brain neurons may contribute to setting upper thermal limits in fish. However, the improvement in thermal tolerance with brain cooling was small relative to the difference in brain temperature, demonstrating that other mechanisms (e.g. failure of spinal and peripheral neurons, or muscle) may also contribute to controlling acute thermal tolerance.
Collapse
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Dominique G Roche
- Département d'Éco-Éthologie, Institut de Biologie, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.,Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Timothy D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3216, Australia
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sandra A Binning
- Département d'Éco-Éthologie, Institut de Biologie, Université de Neuchâtel, 2000 Neuchâtel, Switzerland.,Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 2S9
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada, E2L 4L5
| | - Mirjam Amcoff
- Department of Zoology/Functional Zoomorphology, Stockholm University, 106 91 Stockholm, Sweden
| | - Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anna H Andreassen
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Josefin Sundin
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
39
|
Morgenroth D, Ekström A, Hjelmstedt P, Gräns A, Axelsson M, Sandblom E. Hemodynamic responses to warming in euryhaline rainbow trout: implications of the osmo-respiratory compromise. ACTA ACUST UNITED AC 2019; 222:jeb.207522. [PMID: 31395678 DOI: 10.1242/jeb.207522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
In seawater, rainbow trout (Oncorhynchus mykiss) drink and absorb water through the gastrointestinal tract to compensate for water passively lost to the hyperosmotic environment. Concomitantly, they exhibit elevated cardiac output and a doubling of gastrointestinal blood flow to provide additional O2 to the gut and increase convective flux of absorbed ions and water. Yet, it is unknown how warming waters, which elevate tissue O2 demand and the rate of diffusion of ions and water across the gills (i.e. the osmo-respiratory compromise), affects these processes. We measured cardiovascular and blood variables of rainbow trout acclimated to freshwater and seawater during acute warming from 11 to 17°C. Relative to freshwater-acclimated trout, cardiac output was 34% and 55% higher in seawater-acclimated trout at 11 and 17°C, respectively, which allowed them to increase gastrointestinal blood flow significantly more during warming (increases of 75% in seawater vs. 31% in freshwater). These adjustments likely served to mitigate the impact of warming on osmotic balance, as changes in ionic and osmotic blood composition were minor. Furthermore, seawater-acclimated trout seemingly had a lower tissue O2 extraction, explaining why trout acclimated to freshwater and seawater often exhibit similar metabolic rates, despite a higher cardiac output in seawater. Our results highlight a novel role of gastrointestinal blood perfusion in the osmo-respiratory compromise in fish, and improve our understanding of the physiological changes euryhaline fishes must undergo when faced with interacting environmental challenges such as transient warming events.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Per Hjelmstedt
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
40
|
Ekström A, Axelsson M, Gräns A, Brijs J, Sandblom E. Importance of the coronary circulation for cardiac and metabolic performance in rainbow trout ( Oncorhynchus mykiss). Biol Lett 2019; 14:rsbl.2018.0063. [PMID: 30045901 DOI: 10.1098/rsbl.2018.0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/26/2018] [Indexed: 02/02/2023] Open
Abstract
Cardiac oxygenation is achieved via both coronary arterial and luminal venous oxygen supply routes in many fish species. However, the relative importance of these supplies for cardiac and aerobic metabolic performance is not fully understood. Here, we investigated how coronary artery ligation in rainbow trout (Oncorhynchus mykiss), implanted with heart rate loggers, affected cardiorespiratory performance in vivo While coronary ligation significantly elevated resting heart rate, the standard metabolic rate was unchanged compared to sham-treated controls. However, coronary ligation reduced the maximum metabolic rate while heart rate remained unchanged following enforced exercise. Thus, coronary ligation reduced metabolic and heart rate scopes by 29% and 74%, respectively. Our findings highlight the importance of coronary oxygen supply for overall cardiorespiratory performance in salmonid fish, and suggest that pathological conditions that impair coronary flow (e.g. coronary arteriosclerosis) constrain the ability of fish to cope with metabolically demanding challenges such as spawning migrations and environmental warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Joyce W, White DW, Raven PB, Wang T. Weighing the evidence for using vascular conductance, not resistance, in comparative cardiovascular physiology. J Exp Biol 2019; 222:222/6/jeb197426. [DOI: 10.1242/jeb.197426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ABSTRACT
Vascular resistance and conductance are reciprocal indices of vascular tone that are often assumed to be interchangeable. However, in most animals in vivo, blood flow (i.e. cardiac output) typically varies much more than arterial blood pressure. When blood flow changes at a constant pressure, the relationship between conductance and blood flow is linear, whereas the relationship between resistance and blood flow is non-linear. Thus, for a given change in blood flow, the change in resistance depends on the starting point, whereas the attendant change in conductance is proportional to the change in blood flow regardless of the starting conditions. By comparing the effects of physical activity at different temperatures or between species – concepts at the heart of comparative cardiovascular physiology – we demonstrate that the difference between choosing resistance or conductance can be marked. We also explain here how the ratio of conductance in the pulmonary and systemic circulations provides a more intuitive description of cardiac shunt patterns in the reptilian cardiovascular system than the more commonly used ratio of resistance. Finally, we posit that, although the decision to use conductance or resistance should be made on a case-by-case basis, in most circumstances, conductance is a more faithful portrayal of cardiovascular regulation in vertebrates.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Daniel W. White
- School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Peter B. Raven
- Department of Physiology and Anatomy, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Leeuwis RHJ, Nash GW, Sandrelli RM, Zanuzzo FS, Gamperl AK. The environmental tolerances and metabolic physiology of sablefish (Anoplopoma fimbria). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:140-148. [PMID: 30743060 DOI: 10.1016/j.cbpa.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
Given the potential impacts of global warming, such as increases in temperature and the frequency/severity of hypoxia in marine ecosystems, it is important to study the impacts of these environmental challenges on sea-cage reared aquaculture species. This study focuses on the sablefish (Anoplopoma fimbria), an emerging aquaculture species that has a unique ecology in the wild. For instance, adults inhabit oxygen minimum zones and cool waters at depths up to 1500 m. Using Atlantic salmon (Salmo salar) (~1132 g adults) as a comparative species, we used intermittent-flow respirometry to characterize the tolerance and metabolic response of sablefish (~10 g juveniles and ~675 g adults) to acute increases in temperature (2 °C h-1) and decreases in oxygen level (~10% air saturation h-1). Adult sablefish were much more hypoxia tolerant than adult salmon [O2 level at loss of equilibrium ~5.4% vs. ~24.2% air saturation, respectively]. In addition, sablefish could withstand upper temperatures only slightly lower than salmon [critical thermal maximum (CTmax) ~24.9 °C vs. ~26.2 °C, respectively]. Sablefish juveniles were both less hypoxia and thermally tolerant than adults [critical O2 tension ~18.9% vs. ~15.8% air saturation; CTmax ~22.7 vs. ~24.9 °C, respectively]. Interestingly, many of these differences in environmental tolerance could not be explained by differences in metabolic parameters (aerobic scope or routine metabolic rate). Our findings show that sablefish are tolerant of high temperatures, and very tolerant of hypoxia, traits that are advantageous for an aquaculture species in the era of climate change.
Collapse
Affiliation(s)
- Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
43
|
McArley TJ, Hickey AJR, Herbert NA. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.189993. [PMID: 30254026 DOI: 10.1242/jeb.189993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
Abstract
Daytime low tides that lead to high-temperature events in stranded rock pools often co-occur with algae-mediated hyperoxia as a result of strong solar radiation. Recent evidence shows aerobic metabolic scope (MS) can be expanded under hyperoxia in fish but so far this possibility has not been examined in intertidal species despite being an ecologically relevant scenario. Furthermore, it is unknown whether hyperoxia increases the upper thermal tolerance limits of intertidal fish and, therefore, their ability to withstand extreme high-temperature events. Therefore, we measured the metabolic response (mass-specific rate of oxygen consumption, Ṁ O2 ) to thermal ramping (21-29°C) and the upper thermal tolerance limit (U TL) of two intertidal triplefin fishes (Bellapiscis medius and Forsterygion lapillum) under hyperoxia and normoxia. Hyperoxia increased maximal oxygen consumption (Ṁ O2,max) and MS of each species at ambient temperature (21°C) but also after thermal ramping to elevated temperatures such as those observed in rock pools (29°C). While hyperoxia did not provide a biologically meaningful increase in upper thermal tolerance of either species (>31°C under all conditions), the observed expansion of MS at 29°C under hyperoxia could potentially benefit the aerobic performance, and hence the growth and feeding potential, etc., of intertidal fish at non-critical temperatures. That hyperoxia does not increase upper thermal tolerance in a meaningful way is cause for concern as climate change is expected to drive more extreme rock pool temperatures in the future and this could present a major challenge for these species.
Collapse
Affiliation(s)
- Tristan J McArley
- Institute of Marine Science, University of Auckland, Leigh, Warkworth 0941, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Thomas Building, Auckland 1010, New Zealand
| | - Neill A Herbert
- Institute of Marine Science, University of Auckland, Leigh, Warkworth 0941, New Zealand
| |
Collapse
|
44
|
O'Brien KM, Rix AS, Egginton S, Farrell AP, Crockett EL, Schlauch K, Woolsey R, Hoffman M, Merriman S. Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes. J Exp Biol 2018; 221:jeb177816. [PMID: 29895681 PMCID: PMC6104818 DOI: 10.1242/jeb.177816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Anna S Rix
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | - Karen Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Rebekah Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Megan Hoffman
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Sean Merriman
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
45
|
Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ, Lefevre S, Nilsson GE, Metcalfe NB, Hickey AJR, Brijs J, Speers-Roesch B, Roche DG, Gamperl AK, Raby GD, Morgan R, Esbaugh AJ, Gräns A, Axelsson M, Ekström A, Sandblom E, Binning SA, Hicks JW, Seebacher F, Jørgensen C, Killen SS, Schulte PM, Clark TD. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. ACTA ACUST UNITED AC 2018; 221:221/1/jeb169615. [PMID: 29321291 DOI: 10.1242/jeb.169615] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Tommy Norin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rasmus Ern
- Department of Chemistry and Bioscience - Section for Environmental Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Johannes Overgaard
- Department of Bioscience, Zoophysiology, Aarhus University, 8000 Aarhus, Denmark
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, 8000 Aarhus, Denmark
| | - David J McKenzie
- UMR9190 Centre for Marine Biodiversity Exploitation and Conservation, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Sjannie Lefevre
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Göran E Nilsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada, E2L 4L5
| | - Dominique G Roche
- Département d'Éco-Éthologie, Institut de Biologie, Universite de Neuchatel, 2000 Neuchatel, Switzerland
| | - A Kurt Gamperl
- Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada, A1C 5S7
| | - Graham D Raby
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada, N9B 3P4
| | - Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 31 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Sandra A Binning
- Département d'Éco-Éthologie, Institut de Biologie, Universite de Neuchatel, 2000 Neuchatel, Switzerland.,Département de Sciences Biologiques, Universite de Montreal, Montreal, QC, Canada, H2V 2S9
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697-2525, USA
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Timothy D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria 3216, Australia
| |
Collapse
|
46
|
Bowden AJ, Andrewartha SJ, Elliott NG, Frappell PB, Clark TD. Negligible differences in metabolism and thermal tolerance between diploid and triploid Atlantic salmon (Salmo salar L.). J Exp Biol 2018; 221:jeb.166975. [DOI: 10.1242/jeb.166975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/29/2017] [Indexed: 01/06/2023]
Abstract
The mechanisms that underlie thermal tolerance in aquatic ectotherms remain unresolved. Triploid fish have been reported to exhibit lower thermal tolerance than diploids, offering a potential model organism to better understand the physiological drivers of thermal tolerance. Here, we compared triploid and diploid juvenile Atlantic salmon (Salmo salar) in freshwater to investigate the proposed link between aerobic capacity and thermal tolerance. We measured specific growth rates (SGR) and resting (aerobic) metabolic rates (RMR) in freshwater at 3, 7 and 9 weeks of acclimation to either 10, 14 or 18°C. Additionally, maximum metabolic rates (MMR) were measured at 3 and 7 weeks of acclimation, and critical thermal maxima (CTmax) were measured at 9 weeks. Mass, SGR, and RMR differed between ploidies across all temperatures at the beginning of the acclimation period, but all three metrics converged between ploidies by week 7. Aerobic scope (MMR – RMR) remained consistent across ploidies, acclimation temperatures, and time. At 9 weeks, CTmax was independent of ploidy, but correlated positively with acclimation temperature despite the similar aerobic scope between acclimation groups. Our findings suggest that acute thermal tolerance is not modulated by aerobic scope, and the altered genome of triploid Atlantic salmon does not translate to reduced thermal tolerance of juvenile fish in freshwater.
Collapse
Affiliation(s)
- A. J. Bowden
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | | - N. G. Elliott
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | - P. B. Frappell
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - T. D. Clark
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria, Australia
| |
Collapse
|
47
|
Pörtner HO, Bock C, Mark FC. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J Exp Biol 2017; 220:2685-2696. [DOI: 10.1242/jeb.134585] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Observations of climate impacts on ecosystems highlight the need for an understanding of organismal thermal ranges and their implications at the ecosystem level. Where changes in aquatic animal populations have been observed, the integrative concept of oxygen- and capacity-limited thermal tolerance (OCLTT) has successfully characterised the onset of thermal limits to performance and field abundance. The OCLTT concept addresses the molecular to whole-animal mechanisms that define thermal constraints on the capacity for oxygen supply to the organism in relation to oxygen demand. The resulting ‘total excess aerobic power budget’ supports an animal's performance (e.g. comprising motor activity, reproduction and growth) within an individual's thermal range. The aerobic power budget is often approximated through measurements of aerobic scope for activity (i.e. the maximum difference between resting and the highest exercise-induced rate of oxygen consumption), whereas most animals in the field rely on lower (i.e. routine) modes of activity. At thermal limits, OCLTT also integrates protective mechanisms that extend time-limited tolerance to temperature extremes – mechanisms such as chaperones, anaerobic metabolism and antioxidative defence. Here, we briefly summarise the OCLTT concept and update it by addressing the role of routine metabolism. We highlight potential pitfalls in applying the concept and discuss the variables measured that led to the development of OCLTT. We propose that OCLTT explains why thermal vulnerability is highest at the whole-animal level and lowest at the molecular level. We also discuss how OCLTT captures the thermal constraints on the evolution of aquatic animal life and supports an understanding of the benefits of transitioning from water to land.
Collapse
Affiliation(s)
- Hans-O. Pörtner
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| | - Christian Bock
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| | - Felix C. Mark
- Section of Integrative Ecophysiology, Biosciences, Alfred-Wegener-Institute, Bremerhaven D-27570, Germany
| |
Collapse
|
48
|
Zhang Y, Gilbert MJH. Comment on 'Measurement and relevance of maximum metabolic rate in fishes by Norin & Clark (2016)'. JOURNAL OF FISH BIOLOGY 2017; 91:397-402. [PMID: 28776701 DOI: 10.1111/jfb.13291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Y Zhang
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - M J H Gilbert
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
49
|
Jensen DL, Overgaard J, Wang T, Gesser H, Malte H. Temperature effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis). J Therm Biol 2017; 68:162-169. [PMID: 28797476 DOI: 10.1016/j.jtherbio.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Several recent studies have highlighted how impaired cardiac performance at high temperatures and in hypoxia may compromise the capacity for oxygen transport. Thus, at high temperatures impaired cardiac capacity is proposed to reduce oxygen transport to a degree that lowers aerobic scope and compromises thermal tolerance (the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis). To investigate this hypothesis, we measured aerobic and cardiac performance of a eurythermal freshwater teleost, the European perch (Perca fluviatilis). Rates of oxygen consumption were measured during rest and activity at temperatures between 5°C and 27°C, and we evaluated cardiac function by in vivo measurements of heart rate and in vitro studies to determine contractility of myocardial strips. Aerobic scope increased progressively from 5°C to 21°C, after which it levelled off. Heart rate showed a similar response. We found little difference between resting and active heart rate at high temperature suggesting that increased cardiac scope during activity is primarily related to changes in stroke volume. To examine the effects of temperature on cardiac capacity, we measured isometric force development in electrically paced myocardial preparations during different combinations of temperature, pacing frequency, oxygenation and adrenergic stimulation. The force-frequency product increased markedly upon adrenergic stimulation at 21 and 27°C (with higher effects at 21°C) and the cardiac preparations were highly sensitive to hypoxia. These findings suggest that at (critically) high temperatures, cardiac output may diminish due to a decreased effect of adrenergic stimulation and that this effect may be further exacerbated if the heart becomes hypoxic. Hence cardiac limitations may contribute to the inability to increase aerobic scope at high temperatures in the European perch (Perca fluviatilis).
Collapse
Affiliation(s)
| | - Johannes Overgaard
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Hans Gesser
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
50
|
Leo E, Kunz KL, Schmidt M, Storch D, Pörtner HO, Mark FC. Mitochondrial acclimation potential to ocean acidification and warming of Polar cod ( Boreogadus saida) and Atlantic cod ( Gadus morhua). Front Zool 2017; 14:21. [PMID: 28416963 PMCID: PMC5391599 DOI: 10.1186/s12983-017-0205-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Ocean acidification and warming are happening fast in the Arctic but little is known about the effects of ocean acidification and warming on the physiological performance and survival of Arctic fish. Results In this study we investigated the metabolic background of performance through analyses of cardiac mitochondrial function in response to control and elevated water temperatures and PCO2 of two gadoid fish species, Polar cod (Boreogadus saida), an endemic Arctic species, and Atlantic cod (Gadus morhua), which is a temperate to cold eurytherm and currently expanding into Arctic waters in the wake of ocean warming. We studied their responses to the above-mentioned drivers and their acclimation potential through analysing the cardiac mitochondrial function in permeabilised cardiac muscle fibres after 4 months of incubation at different temperatures (Polar cod: 0, 3, 6, 8 °C and Atlantic cod: 3, 8, 12, 16 °C), combined with exposure to present (400μatm) and year 2100 (1170μatm) levels of CO2. OXPHOS, proton leak and ATP production efficiency in Polar cod were similar in the groups acclimated at 400μatm and 1170μatm of CO2, while incubation at 8 °C evoked increased proton leak resulting in decreased ATP production efficiency and decreased Complex IV capacity. In contrast, OXPHOS of Atlantic cod increased with temperature without compromising the ATP production efficiency, whereas the combination of high temperature and high PCO2 depressed OXPHOS and ATP production efficiency. Conclusions Polar cod mitochondrial efficiency decreased at 8 °C while Atlantic cod mitochondria were more resilient to elevated temperature; however, this resilience was constrained by high PCO2. In line with its lower habitat temperature and higher degree of stenothermy, Polar cod has a lower acclimation potential to warming than Atlantic cod.
Collapse
Affiliation(s)
- Elettra Leo
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany
| | - Kristina L Kunz
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany.,Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bentho-Pelagic Processes, Am Alten Hafen 26, D-27568 Bremerhaven, Germany
| | - Matthias Schmidt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany
| | - Daniela Storch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Hans-O Pörtner
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany.,University of Bremen, Fachbereich 2, NW 2/Leobener Strasse, D-28359 Bremen, Germany
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Integrative Ecophysiology, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|