1
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| |
Collapse
|
2
|
Cruz MT, Dezfuli G, Murphy EC, Vicini S, Sahibzada N, Gillis RA. GABA B Receptor Signaling in the Dorsal Motor Nucleus of the Vagus Stimulates Gastric Motility via a Cholinergic Pathway. Front Neurosci 2019; 13:967. [PMID: 31572117 PMCID: PMC6751316 DOI: 10.3389/fnins.2019.00967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Central nervous system regulation of the gastric tone and motility is primarily mediated via preganglionic neurons of the dorsal motor nucleus of the vagus (DMV). This is thought to occur by simultaneous engagement of both independent excitatory and inhibitory pathways from the DMV and has been proposed to underlie the opposing effects seen on gastric tone and motility in a number of in vivo models. Contrary to this view, we have been unable to find any evidence for this "dual effector" pathway. Since this possibility is so fundamental to how the brain-gut axis may interact in light of both peripheral and central demands, we decided to explore it further in two separate animal models previously used in conjunction with GABAB signaling to report the existence of a "dual effector" pathway. Using anesthetized rats or ferrets, we microinjected baclofen (7.5 pmol; n = 6), a GABAB agonist into the DMV of rats or intravenously administered it (0.5 mg/kg; n = 4) in ferrets. In rats, unilateral microinjection of baclofen into the DMV caused a robust dose-dependent increase in gastric tone and motility that was abolished by ipsilateral vagotomy and counteracted by pretreatment with atropine (0.1 mg/kg; IV). Similarly, as microinjection in the rats, IV administration of baclofen (0.5 mg/kg) in the ferrets induced its characteristic excitatory effects on gastric tone and motility, which were blocked by either pre- or post-treatment with atropine (0.1 mg/kg; IV). Altogether, our data provide evidence that the gastric musculature (other than the gastric sphincters) is regulated by a "single effector" DMV pathway using acetylcholine.
Collapse
Affiliation(s)
| | | | | | | | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | | |
Collapse
|
3
|
Collares EF, Vinagre AM, Collares-Buzato CB. Dipyrone in association with atropine inhibits the effect on gastric emptying induced by hypoglycemia in rats. Braz J Med Biol Res 2017; 50:e5948. [PMID: 28876363 PMCID: PMC5579963 DOI: 10.1590/1414-431x20175948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 06/27/2017] [Indexed: 11/21/2022] Open
Abstract
Atropine (AT) and dipyrone (Dp) induce a delay of gastric emptying (GE) of liquids in rats by inhibiting muscarinic receptors and activating β2-adrenergic receptors, respectively. The objective of the present study was to determine the effects of pretreatment with AT and Dp, given alone or in combination, on the effect of hypoglycemia in the liquid GE in rats. Male Wistar adult rats (280-310 g) were pretreated intravenously with AT, Dp, AT plus Dp or their vehicle and then treated 30 min later with iv insulin or its vehicle (n=8-10 animals/group). Thirty min after treatment, GE was evaluated by determining, in awake rats, the percent gastric retention (%GR) of a saline meal labeled with phenol red administered by gavage. The results indicated that insulin induced hypoglycemia in a dose-dependent manner resulting in a significant reduction in %GR of liquid only at the highest dose tested (1 U/kg). Pretreatment with AT significantly increased %GR in the rats treated with 1 U/kg insulin. Surprisingly, after pretreatment with AT, the group treated with the lowest dose of insulin (0.25 U/kg) displayed significantly lower %GR compared to its control (vehicle-treated group), which was not seen in the non-pretreated animals. Pretreatment with Dp alone at the dose of 40 mg/kg induced an increase in %GR in both vehicle and 0.25 U/kg-treated rats. A higher dose of Dp alone (80 mg/kg) significantly reduced the effect of a marked hypoglycemia induced by 1 U/kg of insulin on GE while in combination with AT the effect was completely abolished. The results with AT suggest that moderate hypoglycemia may render the inhibitory mechanisms of GE ineffective while Dp alone and in combination with AT significantly overcame the effect of hypoglycemia on GE.
Collapse
Affiliation(s)
- E F Collares
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Núcleo de Medicina e Cirurgia Experimental, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A M Vinagre
- Núcleo de Medicina e Cirurgia Experimental, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - C B Collares-Buzato
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
4
|
Troy AE, Simmonds SS, Stocker SD, Browning KN. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents. J Physiol 2015; 594:99-114. [PMID: 26456775 DOI: 10.1113/jp271558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Glucose regulates the density and function of 5-HT3 receptors on gastric vagal afferent neurones. Diet-induced obesity compromises the excitability and responsiveness of vagal afferents. In this study, we assessed whether exposure to a high fat diet (HFD) compromises the glucose-dependent modulation of 5-HT responses in gastric vagal afferents prior to the development of obesity. We show that HFD does not alter the response of gastric vagal afferent nerves and neurones to 5-HT but attenuates the ability of glucose to amplify 5-HT3-induced responses. These results suggest that glucose-dependent vagal afferent signalling is compromised by relatively short periods of exposure to HFD well in advance of the development of obesity or glycaemic dysregulation. Glucose regulates the density and function of 5-HT3 receptors on gastric vagal afferent neurones. Since diet-induced obesity attenuates the responsiveness of gastric vagal afferents to several neurohormones, the aim of the present study was to determine whether high fat diet (HFD) compromises the glucose-dependent modulation of 5-HT responses in gastric vagal afferents prior to the development of obesity. Rats were fed control or HFD (14% or 60% kilocalories from fat, respectively) for up to 8 weeks. Neurophysiological recordings assessed the ability of 5-HT to increase anterior gastric vagal afferent nerve (VAN) activity in vivo before and after acute hyperglycaemia, while electrophysiological recordings from gastric-projecting nodose neurones assessed the ability of glucose to modulate the 5-HT response in vitro. Immunocytochemical studies determined alterations in the neuronal distribution of 5-HT3 receptors. 5-HT and cholecystokinin (CCK) induced dose-dependent increases in VAN activity in all rats; HFD attenuated the response to CCK, but not 5-HT. The 5-HT-induced response was amplified by acute hyperglycaemia in control, but not HFD, rats. Similarly, although 5-HT induced an inward current in both control and HFD gastric nodose neurones in vitro, the 5-HT response and receptor distribution was amplified by acute hyperglycaemia only in control rats. These data suggest that, while HFD does not affect the response of gastric-projecting vagal afferents to 5-HT, it attenuates the ability of glucose to amplify 5-HT effects. This suggests that glucose-dependent vagal afferent signalling is compromised by short periods of exposure to HFD well in advance of obesity or glycaemic dysregulation.
Collapse
Affiliation(s)
- Amanda E Troy
- Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Sarah S Simmonds
- Department of Cellular and Integrative Physiology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Sean D Stocker
- Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA.,Department of Cellular and Integrative Physiology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
5
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
6
|
Browning KN. Modulation of gastrointestinal vagal neurocircuits by hyperglycemia. Front Neurosci 2013; 7:217. [PMID: 24324393 PMCID: PMC3840437 DOI: 10.3389/fnins.2013.00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 12/17/2022] Open
Abstract
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
7
|
Babic T, Troy AE, Fortna SR, Browning KN. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons. Neurogastroenterol Motil 2012; 24:e476-88. [PMID: 22845622 PMCID: PMC3440531 DOI: 10.1111/j.1365-2982.2012.01987.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, and indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT(3) receptors. METHODS Whole-cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs' solution containing different concentrations of d-glucose (1.25-20 mmol L(-1)) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT(3) receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. KEY RESULTS Increasing or decreasing extracellular d-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current and the proportion of 5-HT(3) receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5 μmol L(-1)) suggesting involvement of a protein-trafficking pathway. Furthermore, l-glucose did not mimic the response of d-glucose implying that metabolic events downstream of neuronal glucose uptake are required to observe the modulation of 5-HT(3) receptor mediated responses. CONCLUSIONS & INFERENCES These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged.
Collapse
Affiliation(s)
- T Babic
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
8
|
Min DK, Tuor UI, Koopmans HS, Chelikani PK. Changes in differential functional magnetic resonance signals in the rodent brain elicited by mixed-nutrient or protein-enriched meals. Gastroenterology 2011; 141:1832-41. [PMID: 21802388 DOI: 10.1053/j.gastro.2011.07.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/12/2011] [Accepted: 07/06/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS The hypothalamus and brain stem have important roles in regulating food intake; the roles of other nonhomeostatic centers in detecting nutrient content of ingested food have been poorly characterized. We used blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) to map brain regions that are responsive to intragastric infusion of isocaloric amounts of a mixed nutrient or protein, and assessed the role of blood glucose in the observed BOLD signal changes. METHODS Brain images were acquired, using a 9.4 T MRI system, from anesthetized rats during intragastric infusion of saline (n = 7), or 12 kcal of a mixed nutrient (n = 13) or protein (n = 6). Nutrient-induced changes in blood parameters and the effects of intravenous infusion of saline or glucose (n = 5/treatment) on BOLD fMRI signal changes were also evaluated. Intragastric nutrient infusion reduced the BOLD fMRI signal intensity in homeostatic (hypothalamus, nucleus tractus solitarius) and nonhomeostatic (thalamus, hippocampus, caudate putamen, cerebral cortex, cerebellum) centers; these effects were mimicked qualitatively by intravenous glucose. In contrast to a mixed meal, protein load reduced the BOLD fMRI signal in the amygdala. BOLD fMRI signal changes were inversely correlated with circulating concentrations of amylin, insulin, peptide YY, and glucagon-like peptide-1. CONCLUSIONS The caloric content of a meal is signaled from the gut to the brain and affects activity in homeostatic and non-homeostatic centers; blood glucose concentrations have an important role. The satiety effects of protein are associated with activity changes specifically in the amygdala.
Collapse
Affiliation(s)
- David K Min
- Gastrointestinal Research Group, Calvin, Phoebe and Joan Snyder Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
9
|
Browning KN, Travagli RA. Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci 2011; 161:6-13. [PMID: 21147043 PMCID: PMC3061976 DOI: 10.1016/j.autneu.2010.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022]
Abstract
The afferent vagus transmits sensory information from the gastrointestinal (GI) tract and other viscera to the brainstem via a glutamatergic synapse at the level of the nucleus of the solitary tract (NTS). Second order NTS neurons integrate this sensory information with inputs from other CNS regions that regulate autonomic functions and homeostasis. Glutamatergic and GABAergic neurons are responsible for conveying the integrated response to other nuclei, including the adjacent dorsal motor nucleus of the vagus (DMV). The preganglionic neurons in the DMV are the source of the parasympathetic motor response back to the GI tract. The glutamatergic synapse between the NTS and DMV is unlikely to be tonically active in regulating gastric motility and tone although almost all neurotransmitters tested so far modulate transmission at this synapse. In contrast, the tonic inhibitory GABAergic input from the NTS to the DMV appears to be critical in setting the tone of gastric motility and, under basal conditions, is unaffected by many neurotransmitters or neurohormones. This review is based, in part, on a presentation by Dr Browning at the 2009 ISAN meeting in Sydney, Australia and discusses how neurohormones and macronutrients modulate glutamatergic transmission to NTS neurons and GABAergic transmission to DMV neurons in relation to sensory information that is received from the GI tract. These neurohormones and macronutrients appear to exert efficient "on-demand" control of the motor output from the DMV in response to ever-changing demands required to maintain homeostasis.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033, USA.
| | | |
Collapse
|
10
|
Stengel A, Coskun T, Goebel M, Wang L, Craft L, Alsina-Fernandez J, Rivier J, Taché Y. Central injection of the stable somatostatin analog ODT8-SST induces a somatostatin2 receptor-mediated orexigenic effect: role of neuropeptide Y and opioid signaling pathways in rats. Endocrinology 2010; 151:4224-35. [PMID: 20610566 PMCID: PMC2940496 DOI: 10.1210/en.2010-0195] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Somatostatin and octreotide injected into the brain have been reported to modulate food intake. However, little is known regarding the underlying mechanisms. The stable oligosomatostatin analog, des-AA(1,2,4,5,12,13)-[DTrp(8)]-somatostatin (ODT8-SST), like somatostatin, binds to all five somatostatin receptors (sst(1-5)). We characterized the effects of ODT8-SST injected intracerebroventricularly (i.c.v.) on food consumption and related mechanisms of action in freely fed rats. ODT8-SST (0.3 and 1 microg per rat, i.c.v.) injected during the light or dark phase induced an early onset (within 1 h) and long-lasting (4 h) increase in food intake in nonfasted rats. By contrast, i.p. injection (0.3-3 mg/kg) or i.c.v. injection of selective sst(1) or sst(4) agonists (1 microg per rat) had no effect. The 2 h food intake response during the light phase was blocked by i.c.v. injection of a sst(2) antagonist, the neuropeptide Y (NPY) Y(1) receptor antagonist, BIBP-3226, and ip injection of the mu-opioid receptor antagonist, naloxone, and not associated with changes in plasma ghrelin levels. ODT8-SST (1 microg per rat, i.c.v.) stimulated gastric emptying of a solid meal which was also blocked by naloxone. The increased food intake was accompanied by a sustained increase in respiratory quotient, energy expenditure, and drinking as well as mu-opioid receptor-independent grooming behavior and hyperthermia, while ambulatory movements were not altered after ODT8-SST (1 microg per rat, i.c.v.). These data show that ODT8-SST acts primarily through brain sst(2) receptors to induce a long-lasting orexigenic effect that involves the activation of Y(1) and opiate-receptors, accompanied by enhanced gastric transit and energy expenditure suggesting a modulation of NPYergic and opioidergic orexigenic systems by brain sst(2) receptors.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/administration & dosage
- Anti-Anxiety Agents/pharmacology
- Arginine/administration & dosage
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Body Temperature/drug effects
- Eating/drug effects
- Eating/physiology
- Energy Metabolism/drug effects
- Gastric Emptying/drug effects
- Grooming/drug effects
- Injections, Intraperitoneal
- Injections, Intraventricular
- Male
- Mice
- Mice, Inbred C57BL
- Naloxone/administration & dosage
- Naloxone/pharmacology
- Peptide Fragments/administration & dosage
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/physiology
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/antagonists & inhibitors
- Receptors, Somatostatin/physiology
- Somatostatin/administration & dosage
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Medicine, Center for Ulcer Research and Education, Digestive Diseases Division, University of California Los Angeles, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Mönnikes H, Lambrecht NWG, Taché Y. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology 2009; 150:4911-9. [PMID: 19797401 PMCID: PMC2775975 DOI: 10.1210/en.2009-0578] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nesfatin-1, derived from nucleobindin2, is expressed in the hypothalamus and reported in one study to reduce food intake (FI) in rats. To characterize the central anorexigenic action of nesfatin-1 and whether gastric emptying (GE) is altered, we injected nesfatin-1 into the lateral brain ventricle (intracerebroventricular, icv) or fourth ventricle (4v) in chronically cannulated rats or into the cisterna magna (intracisternal, ic) under short anesthesia and compared with ip injection. Nesfatin-1 (0.05 microg/rat, icv) decreased 2-3 h and 3-6 h dark-phase FI by 87 and 45%, respectively, whereas ip administration (2 microg/rat) had no effect. The corticotropin-releasing factor (CRF)(1)/CRF(2) antagonist astressin-B or the CRF(2) antagonist astressin(2)-B abolished icv nesfatin-1's anorexigenic action, whereas an astressin(2)-B analog, devoid of CRF-receptor binding affinity, did not. Nesfatin-1 icv induced a dose-dependent reduction of GE by 26 and 43% that was not modified by icv astressin(2)-B. Nesfatin-1 into the 4v (0.05 microg/rat) or ic (0.5 microg/rat) decreased cumulative dark-phase FI by 29 and 60% at 1 h and by 41 and 37% between 3 and 5 h, respectively. This effect was neither altered by ic astressin(2)-B nor associated with changes in GE. Cholecystokinin (ip) induced Fos expression in 43% of nesfatin-1 neurons in the paraventricular hypothalamic nucleus and 24% of those in the nucleus tractus solitarius. These data indicate that nesfatin-1 acts centrally to reduce dark phase FI through CRF(2)-receptor-dependent pathways after forebrain injection and CRF(2)-receptor-independent pathways after hindbrain injection. Activation of nesfatin-1 neurons by cholecystokinin at sites regulating food intake may suggest a role in gut peptide satiation effect.
Collapse
Affiliation(s)
- Andreas Stengel
- Center for Neurovisceral Sciences and Women's Health CURE, Building 115, Room 117, Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, California 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Holmes GM, Browning KN, Tong M, Qualls-Creekmore E, Travagli RA. Vagally mediated effects of glucagon-like peptide 1: in vitro and in vivo gastric actions. J Physiol 2009; 587:4749-59. [PMID: 19675064 PMCID: PMC2768027 DOI: 10.1113/jphysiol.2009.175067] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/03/2009] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a neuropeptide released following meal ingestion that, among other effects, decreases gastric tone and motility. The central targets and mechanism of action of GLP-1 on gastric neurocircuits have not, however, been fully investigated. A high density of GLP-1 containing neurones and receptors are present in brainstem vagal circuits, suggesting that the gastroinhibition may be vagally mediated. We aimed to investigate: (1) the response of identified gastric-projecting neurones of the dorsal motor nucleus of the vagus (DMV) to GLP-1 and its analogues; (2) the effects of brainstem application of GLP-1 on gastric tone; and (3) the vagal pathway utilized by GLP-1 to induce gastroinhibition. We conducted our experiments using whole-cell recordings from identified gastric-projecting DMV neurones and microinjection in the dorsal vagal complex (DVC) of anaesthetized rats while monitoring gastric tone. Perfusion with GLP-1 induced a concentration-dependent excitation of a subpopulation of gastric-projecting DMV neurones. The GLP-1 effects were mimicked by exendin-4 and antagonized by exendin-9-39. In an anaesthetized rat preparation, application of exendin-4 to the DVC decreased gastric tone in a concentration-dependent manner. The gastroinhibitory effects of exendin-4 were unaffected by systemic pretreatment with the pro-motility muscarinic agonist bethanechol, but were abolished by systemic administration of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), or by bilateral vagotomy. Our data indicate that GLP-1 activates selective receptors to excite DMV neurones mainly and that the gastroinhibition observed following application of GLP-1 in the DVC is due to the activation of an inhibitory non-adrenergic, non-cholinergic input to the stomach.
Collapse
Affiliation(s)
- Gregory M Holmes
- Neuroscience, PBRC-Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
13
|
Holmes GM, Tong M, Travagli RA. Effects of brain stem cholecystokinin-8s on gastric tone and esophageal-gastric reflex. Am J Physiol Gastrointest Liver Physiol 2009; 296:G621-31. [PMID: 19136379 PMCID: PMC2660178 DOI: 10.1152/ajpgi.90567.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 12/29/2008] [Indexed: 01/31/2023]
Abstract
The actions of cholecystokinin (CCK) on gastrointestinal functions occur mainly via paracrine effects on peripheral sensory vagal fibers, which engage vago-vagal brain stem circuits to convey effector responses back to the gastrointestinal tract. Recent evidence suggests, however, that CCK also affects brain stem structures directly. Many electrophysiological studies, including our own, have shown that brain stem vagal circuits are excited by sulfated CCK (CCK-8s) directly, and we have further demonstrated that CCK-8s induces a remarkable degree of plasticity in GABAergic brain stem synapses. In the present study, we used fasted, anesthetized Sprague-Dawley rats to investigate the effects of brain stem administration of CCK-8s on gastric tone before and after activation of the esophageal-gastric reflex. CCK-8s microinjected in the dorsal vagal complex (DVC) or applied on the floor of the fourth ventricle induced an immediate and transient decrease in gastric tone. Upon recovery of gastric tone to baseline values, the gastric relaxation induced by esophageal distension was attenuated or even reversed. The effects of CCK-8s were antagonized by vagotomy or fourth ventricular, but not intravenous, administration of the CCK-A antagonist lorglumide, suggesting a central, not peripheral, site of action. The gastric relaxation induced by DVC microinjection of CCK-8s was unaffected by pretreatment with systemic bethanecol but was completely blocked by NG-nitro-L-arginine methyl ester, suggesting a nitrergic mechanism of action. These data suggest that 1) brain stem application of CCK-8s induces a vagally mediated gastric relaxation; 2) the CCK-8s-induced gastric relaxation is mediated via activation of nonadrenergic, noncholinergic pathways; and 3) CCK-8s reverses the esophageal-gastric reflex transiently.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
14
|
Herman MA, Cruz MT, Sahibzada N, Verbalis J, Gillis RA. GABA signaling in the nucleus tractus solitarius sets the level of activity in dorsal motor nucleus of the vagus cholinergic neurons in the vagovagal circuit. Am J Physiol Gastrointest Liver Physiol 2009; 296:G101-11. [PMID: 19008339 PMCID: PMC2636929 DOI: 10.1152/ajpgi.90504.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been proposed that there is an "apparent monosynaptic" connection between gastric vagal afferent nerve terminals and inhibitory projection neurons in the nucleus tractus solitarius (NTS) and that two efferent parallel pathways from the dorsal motor nucleus of the vagus (DMV) influence peripheral organs associated with these reflexes (6). The purpose of our study was to verify the validity of these views as they relate to basal control of gastric motility. To test the validity of a direct connection of vagal afferent terminals (known to release l-glutamate) directly impacting second-order projection neurons, we evaluated the effect of GABA(A) receptor blockade in the area of the medial subnucleus of the tractus solitarius (mNTS) on gastric motility. Microinjection of bicuculline methiodide into the mNTS produced robust decreases in gastric motility (-1.6 +/- 0.2 mmHg, P < 0.05, n = 23), which were prevented by cervical vagotomy and by pretreatment with kynurenic acid microinjected into the mNTS. Kynurenic acid per se had no effect on gastric motility. However, after GABA(A) receptor blockade in the mNTS, kynurenic acid produced a robust increase in gastric motility. To test for the contribution of two parallel efferent DMV pathways, we assessed the effect of either intravenous atropine methylbromide or N(G)-nitro-l-arginine methyl ester on baseline motility and on decreases in gastric motility induced by GABA(A) receptor blockade in the mNTS. Only atropine methylbromide altered baseline motility and prevented the effects of GABA(A) receptor blockade on gastric motility. Our data demonstrate the presence of intra-NTS GABAergic signaling between the vagal afferent nerve terminals and inhibitory projection neurons in the NTS and that the cholinergic-cholinergic excitatory pathway comprises the functionally relevant efferent arm of the vagovagal circuit.
Collapse
Affiliation(s)
- Melissa A. Herman
- Interdisciplinary Program in Neuroscience, Department of Pharmacology, and Department of Medicine, Georgetown University, Washington, DC
| | - Maureen T. Cruz
- Interdisciplinary Program in Neuroscience, Department of Pharmacology, and Department of Medicine, Georgetown University, Washington, DC
| | - Niaz Sahibzada
- Interdisciplinary Program in Neuroscience, Department of Pharmacology, and Department of Medicine, Georgetown University, Washington, DC
| | - Joseph Verbalis
- Interdisciplinary Program in Neuroscience, Department of Pharmacology, and Department of Medicine, Georgetown University, Washington, DC
| | - Richard A. Gillis
- Interdisciplinary Program in Neuroscience, Department of Pharmacology, and Department of Medicine, Georgetown University, Washington, DC
| |
Collapse
|
15
|
Zhou SY, Lu YX, Yao H, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1201-9. [PMID: 18460697 PMCID: PMC3221413 DOI: 10.1152/ajpgi.00309.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dorsal motor nucleus of the vagus (DMV) contains preganglionic neurons that control gastric motility and secretion. Stimulation of different parts of the DMV results in a decrease or an increase in gastric motor activities, suggesting a spatial organization of vagal preganglionic neurons in the DMV. Little is known about how these preganglionic neurons in the DMV synapse with different groups of intragastric motor neurons to mediate contraction or relaxation of the stomach. We used pharmacological and immunohistochemical methods to characterize intragastric neural pathways involved in mediating gastric contraction and relaxation in rats. Microinjections of L-glutamate (L-Glu) into the rostral or caudal DMV produced gastric contraction and relaxation, respectively, in a dose-related manner. Intravenous infusion of hexamethonium blocked these actions, suggesting mediation via preganglionic cholinergic pathways. Atropine inhibited gastric contraction by 85.5 +/- 4.5%. Gastric relaxation was reduced by intravenous administration of N(G)-nitro-L-arginine methyl ester (L-NAME; 52.5 +/- 11.9%) or VIP antagonist (56.3 +/- 14.9%). Combined administration of L-NAME and VIP antagonist inhibited gastric relaxation evoked by L-Glu (87.8 +/- 4.3%). Immunohistochemical studies demonstrated choline acetyltransferase immunoreactivity in response to L-Glu microinjection into the rostral DMV in 88% of c-Fos-positive intragastric myenteric neurons. Microinjection of L-Glu into the caudal DMV evoked expression of nitric oxide (NO) synthase and VIP immunoreactivity in 81 and 39%, respectively, of all c-Fos-positive intragastric myenteric neurons. These data indicate spatial organization of the DMV. Depending on the location, microinjection of L-Glu into the DMV may stimulate intragastric myenteric cholinergic neurons or NO/VIP neurons to mediate gastric contraction and relaxation.
Collapse
Affiliation(s)
- Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
16
|
Cruz MT, Murphy EC, Sahibzada N, Verbalis JG, Gillis RA. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat. Am J Physiol Regul Integr Comp Physiol 2006; 292:R291-307. [PMID: 16990483 DOI: 10.1152/ajpregu.00863.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our primary purpose was to characterize vagal pathways controlling gastric motility by microinjecting l-glutamate into the dorsal motor nucleus of the vagus (DMV) in the rat. An intragastric balloon was used to monitor motility. In 39 out of 43 experiments, microinjection of l-glutamate into different areas of the DMV rostral to calamus scriptorius (CS) resulted in vagally mediated excitatory effects on motility. We observed little evidence for inhibitory effects, even with intravenous atropine or with activation of gastric muscle muscarinic receptors by intravenous bethanechol. Inhibition of nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME) HCl did not augment DMV-evoked excitatory effects on gastric motility. Microinjection of l-glutamate into the DMV caudal to CS produced vagally mediated gastric inhibition that was resistant to l-NAME. l-Glutamate microinjected into the medial subnucleus of the tractus solitarius (mNTS) also produced vagally mediated inhibition of gastric motility. Motility responses evoked from the DMV were always blocked by ipsilateral vagotomy, while responses evoked from the mNTS required bilateral vagotomy to be blocked. Microinjection of oxytocin into the DMV inhibited gastric motility, but the effect was never blocked by ipsilateral vagotomy, suggesting that the effect may have been due to diffusion of oxytocin to the mNTS. Microinjection of substance P and N-methyl-d-aspartate into the DMV also produced inhibitory effects attributable to excitation of nearby mNTS neurons. Our results do not support previous studies indicating parallel vagal excitatory and inhibitory pathways originating in the DMV rostral to CS. Our results do support previous findings of vagal inhibitory pathways originating in the DMV caudal to CS.
Collapse
Affiliation(s)
- Maureen T Cruz
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
17
|
Ferreira M, Sahibzada N, Shi M, Niedringhaus M, Wester MR, Jones AR, Verbalis JG, Gillis RA. Hindbrain chemical mediators of reflex-induced inhibition of gastric tone produced by esophageal distension and intravenous nicotine. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1482-95. [PMID: 16051723 DOI: 10.1152/ajpregu.00003.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to activate a vagovagal reflex by using esophageal distension and nicotine and test whether hindbrain nitric oxide and norepinephrine are involved in this reflex function. We used double-labeling immunocytochemical methods to determine whether esophageal distension (and nicotine) activates c-Fos expression in nitrergic and noradrenergic neurons in the nucleus tractus solitarii (NTS). We also studied c-Fos expression in the dorsal motor nucleus of the vagus (DMV) neurons projecting to the periphery. Esophageal distension caused 19.7 +/- 2.3% of the noradrenergic NTS neurons located 0.60 mm rostral to the calamus scriptorius (CS) to be activated but had little effect on c-Fos in DMV neurons. Intravenous administration of nicotine caused 19.7 +/- 4.2% of the noradrenergic NTS neurons 0.90 mm rostral to CS to be activated and, as reported previously, had no effect on c-Fos expression in DMV neurons. To determine whether norepinephrine and nitric oxide were central mediators of esophageal distension-induced decrease in intragastric pressure (balloon recording), N(G)-nitro-L-arginine methyl ester microinjected into the NTS (n = 5), but not into the DMV, blocked the vagovagal reflex. Conversely, alpha2-adrenergic blockers microinjected into the DMV (n = 7), but not into the NTS, blocked the vagovagal reflex. These data, in combination with our earlier pharmacological microinjection data with nicotine, indicate that both esophageal distension and nicotine produce nitric oxide in the NTS, which then activates noradrenergic neurons that terminate on and inhibit DMV neurons.
Collapse
Affiliation(s)
- Manuel Ferreira
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Rd., NW, Washington, Distric of Columbia 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zheng Z, Lewis MW, Travagli RA. In vitro analysis of the effects of cholecystokinin on rat brain stem motoneurons. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1066-73. [PMID: 15591159 PMCID: PMC3062480 DOI: 10.1152/ajpgi.00497.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using whole cell patch clamp in thin brain stem slices, we tested the effects of cholecystokinin (CCK) on identified gastric-projecting neurons of the rat dorsal motor nucleus of the vagus (DMV). Perfusion with the sulfated form of CCK octapeptide (CCK8s, 30 pM-300 nM, EC50 approximately 4 nM) induced a concentration-dependent inward current in 35 and 41% of corpus- and antrum/pylorus-projecting DMV neurons, respectively. Conversely, none of the fundus-projecting DMV neurons responded to perfusion with CCK8s. The CCK8s-induced inward current was accompanied by a 65 +/- 17% increase in membrane input resistance and reversed at 90 +/- 4 mV, indicating that the excitatory effects of CCK8s were mediated by the closure of a potassium conductance. Pretreatment with the synaptic blocker TTX (0.3-1 microM) reduced the CCK8s-induced current, suggesting that a portion of the CCK8s-induced current was mediated indirectly via an action on presynaptic neurons apposing the DMV membrane. Pretreatment with the selective CCK-A receptor antagonist lorglumide (0.3-3 microM) attenuated the CCK8s-induced inward current in a concentration-dependent manner, with a maximum inhibition of 69 +/- 12% obtained with 3 microM lorglumide. Conversely, pretreatment with the selective CCK-B antagonist triglumide did not attenuate the CCK8s-induced inward current; pretreatment with triglumide (3 microM) and lorglumide (1 microM) attenuated the CCK8s-induced current to the same extent as pretreatment with lorglumide alone. Immunohistochemical experiments showed that CCK-A receptors were localized on the membrane of 34, 65, and 60% of fundus-, corpus-, and antrum/pylorus-projecting DMV neurons, respectively. Our data indicate that CCK-A receptors are present on a subpopulation of gastric-projecting neurons and that their activation leads to excitation of the DMV membrane.
Collapse
Affiliation(s)
- Zhongling Zheng
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, Louisiana 70808, USA
| | | | | |
Collapse
|