1
|
Osuna-Lopez F, Herrera-Zamora JM, Reyes-Méndez ME, Aguilar-Roblero RA, Sánchez-Pastor EA, Navarro-Polanco RA, Moreno-Galindo EG, Alamilla J. Age-, region-, and day/night-related variation of the chloride reversal potential in the rat suprachiasmatic nucleus. J Neurosci Res 2024; 102:e25373. [PMID: 39101281 DOI: 10.1002/jnr.25373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/06/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The master control of mammalian circadian rhythms is the suprachiasmatic nucleus (SCN), which is formed by the ventral and dorsal regions. In SCN neurons, GABA has an important function and even excitatory actions in adulthood. However, the physiological role of this neurotransmitter in the developing SCN is unknown. Here, we recorded GABAergic postsynaptic currents (in the perforated-patch configuration using gramicidin) to determine the chloride reversal potential (ECl) and also assessed the immunological expression of the Na-K-Cl cotransporter 1 (NKCC1) at early ages of the rat (postnatal days (P) 3 to 25), during the day and night, in the two SCN regions. We detected that ECl greatly varied with age and depending on the SCN region and time of day. Broadly speaking, ECl was more hyperpolarized with age, except for the oldest age studied (P20-25) in both day and night in the ventral SCN, where it was less negative. Likewise, ECl was more hyperpolarized in the dorsal SCN both during the day and at night; while ECl was more negative at night both in the ventral and the dorsal SCN. Moreover, the total NKCC1 fluorescent expression was higher during the day than at night. These results imply that NKCC1 regulates the circadian and developmental fluctuations in the [Cl-]i to fine-tune ECl, which is crucial for either excitatory or inhibitory GABAergic actions to occur in the SCN.
Collapse
Affiliation(s)
- Fernando Osuna-Lopez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Miriam E Reyes-Méndez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Raúl A Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | | | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT)-Universidad de Colima, Colima, Mexico
| |
Collapse
|
2
|
Cicekci F, Sargin M, Siki FO. How does circadian rhythm affect postoperative pain after pediatric acute appendicitis surgery? Anesth Pain Med (Seoul) 2024; 19:125-133. [PMID: 38725167 PMCID: PMC11089292 DOI: 10.17085/apm.23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the relationship between postoperative pain and circadian rhythm after pediatric acute appendicitis surgery. METHODS Two hundred patients, aged 6-18 years, undergoing acute appendicitis surgery were included in this prospective observational study. The patients were divided into four groups according to the time they underwent surgery: the night group, 01:01-07:00; morning group, 07:01-13:00; afternoon group, 13:01-19:00; and evening group, 19:01-01:00. Intraoperative and postoperative vital signs, postoperative 24-h Wong-Baker Faces Pain Rating Scale (FACEs) scores, and the amount of analgesic required were recorded. RESULTS A total of 186 patients were analyzed in the study. There was no statistically significant difference in the demographic characteristics of the patient groups. Additionally, no differences were observed in intraoperative and postoperative vital signs among the four groups. However, patients in the night group had significantly higher FACEs values than those in the other groups at each time point (1st, 3rd, 6th, and 12th h) up to 12 h (P = 0.007, P = 0.023, P = 0.048, and P = 0.003, respectively). The amount of analgesic required in the night group was statistically higher than in the other groups until 12 h (P = 0.002, P < 0.001, P = 0.002, and P = 0.004, respectively). CONCLUSIONS A relationship was found between acute appendicitis operations performed at night (01:01 to 07:00) under general anesthesia and circadian rhythm in children. We believe that considering circadian time in the relief of postoperative pain would be beneficial.
Collapse
Affiliation(s)
- Faruk Cicekci
- Department of Anesthesiology and Reanimation, Selcuk University School of Medicine, Konya, Türkiye
| | - Mehmet Sargin
- Department of Anesthesiology and Reanimation, Selcuk University School of Medicine, Konya, Türkiye
| | - Fatma Ozcan Siki
- Department of Anesthesiology and Reanimation, Selcuk University School of Medicine, Konya, Türkiye
| |
Collapse
|
3
|
Xu Y, Ma Q, Du H, Yang C, Lin G. Postoperative Delirium in Neurosurgical Patients: Recent Insights into the Pathogenesis. Brain Sci 2022; 12:brainsci12101371. [PMID: 36291305 PMCID: PMC9599232 DOI: 10.3390/brainsci12101371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative delirium (POD) is a complication characterized by disturbances in attention, awareness, and cognitive function that occur shortly after surgery or emergence from anesthesia. Since it occurs prevalently in neurosurgical patients and poses great threats to the well-being of patients, much emphasis is placed on POD in neurosurgical units. However, there are intricate theories about its pathogenesis and limited pharmacological interventions for POD. In this study, we review the recent insights into its pathogenesis, mainly based on studies within five years, and the five dominant pathological theories that account for the development of POD, with the intention of furthering our understanding and boosting its clinical management.
Collapse
Affiliation(s)
- Yinuo Xu
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haiming Du
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
- North America Medical Education Foundation, Union City, CA 94587, USA
- Correspondence: (C.Y.); (G.L.); Tel.: +86-135-1108-7060 (C.Y.); +86-135-5240-0103 (G.L.)
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (C.Y.); (G.L.); Tel.: +86-135-1108-7060 (C.Y.); +86-135-5240-0103 (G.L.)
| |
Collapse
|
4
|
Pearson JA, Voisey AC, Boest-Bjerg K, Wong FS, Wen L. Circadian Rhythm Modulation of Microbes During Health and Infection. Front Microbiol 2021; 12:721004. [PMID: 34512600 PMCID: PMC8430216 DOI: 10.3389/fmicb.2021.721004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander Christopher Voisey
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kathrine Boest-Bjerg
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
6
|
Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev 2021; 123:48-60. [PMID: 33440199 DOI: 10.1016/j.neubiorev.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
The master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus provides a temporal pattern of sleep and wake that - like many other behavioural and physiological rhythms - is oppositely phased in nocturnal and diurnal animals. The SCN primarily uses environmental light, perceived through the retina, to synchronize its endogenous circadian rhythms with the exact 24 h light/dark cycle of the outside world. The light responsiveness of the SCN is maximal during the night in both nocturnal and diurnal species. Behavioural arousal during the resting period not only perturbs sleep homeostasis, but also acts as a potent non-photic synchronizing cue. The feedback action of arousal on the SCN is mediated by processes involving several brain nuclei and neurotransmitters, which ultimately change the molecular functions of SCN pacemaker cells. Arousing stimuli during the sleeping period differentially affect the circadian system of nocturnal and diurnal species, as evidenced by the different circadian windows of sensitivity to behavioural arousal. In addition, arousing stimuli reduce and increase light resetting in nocturnal and diurnal species, respectively. It is important to address further question of circadian impairments associated with shift work and trans-meridian travel not only in the standard nocturnal laboratory animals but also in diurnal animal models.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | - Hanan Bouâouda
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| |
Collapse
|
7
|
McNeill JK, Walton JC, Ryu V, Albers HE. The Excitatory Effects of GABA within the Suprachiasmatic Nucleus: Regulation of Na-K-2Cl Cotransporters (NKCCs) by Environmental Lighting Conditions. J Biol Rhythms 2020; 35:275-286. [PMID: 32406304 DOI: 10.1177/0748730420924271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) contains a pacemaker that generates circadian rhythms and entrains them with the 24-h light-dark cycle (LD). The SCN is composed of 16,000 to 20,000 heterogeneous neurons in bilaterally paired nuclei. γ-amino butyric acid (GABA) is the primary neurochemical signal within the SCN and plays a key role in regulating circadian function. While GABA is the primary inhibitory neurotransmitter in the brain, there is now evidence that GABA can also exert excitatory effects in the adult brain. Cation chloride cotransporters determine the effects of GABA on chloride equilibrium, thereby determining whether GABA produces hyperpolarizing or depolarizing actions following activation of GABAA receptors. The activity of Na-K-2Cl cotransporter1 (NKCC1), the most prevalent chloride influx cotransporter isoform in the brain, plays a critical role in determining whether GABA has depolarizing effects. In the present study, we tested the hypothesis that NKCC1 protein expression in the SCN is regulated by environmental lighting and displays daily and circadian changes in the intact circadian system of the Syrian hamster. In hamsters housed in constant light (LL), the overall NKCC1 immunoreactivity (NKCC1-ir) in the SCN was significantly greater than in hamsters housed in LD or constant darkness (DD), although NKCC1 protein levels in the SCN were not different between hamsters housed in LD and DD. In hamsters housed in LD cycles, no differences in NKCC1-ir within the SCN were observed over the 24-h cycle. NKCC1 protein in the SCN was found to vary significantly over the circadian cycle in hamsters housed in free-running conditions. Overall, NKCC1 protein was greater in the ventral SCN than in the dorsal SCN, although no significant differences were observed across lighting conditions or time of day in either subregion. These data support the hypothesis that NKCC1 protein expression can be regulated by environmental lighting and circadian mechanisms within the SCN.
Collapse
Affiliation(s)
- John K McNeill
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
| | - James C Walton
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
| | - Vitaly Ryu
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
| | - H Elliott Albers
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
| |
Collapse
|
8
|
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiol Rev 2020; 100:1415-1454. [PMID: 32163720 DOI: 10.1152/physrev.00027.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals synchronize to the environmental day-night cycle by means of an internal circadian clock in the brain. In mammals, this timekeeping mechanism is housed in the suprachiasmatic nucleus (SCN) of the hypothalamus and is entrained by light input from the retina. One output of the SCN is a neural code for circadian time, which arises from the collective activity of neurons within the SCN circuit and comprises two fundamental components: 1) periodic alterations in the spontaneous excitability of individual neurons that result in higher firing rates during the day and lower firing rates at night, and 2) synchronization of these cellular oscillations throughout the SCN. In this review, we summarize current evidence for the identity of ion channels in SCN neurons and the mechanisms by which they set the rhythmic parameters of the time code. During the day, voltage-dependent and independent Na+ and Ca2+ currents, as well as several K+ currents, contribute to increased membrane excitability and therefore higher firing frequency. At night, an increase in different K+ currents, including Ca2+-activated BK currents, contribute to membrane hyperpolarization and decreased firing. Layered on top of these intrinsically regulated changes in membrane excitability, more than a dozen neuromodulators influence action potential activity and rhythmicity in SCN neurons, facilitating both synchronization and plasticity of the neural code.
Collapse
Affiliation(s)
- Jenna R M Harvey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The alteration of circadian rhythms in the postoperative period has been demonstrated to influence the outcomes. With this narrative review we would revise how anesthesia, surgery and intensive care can interfere with the circadian clock, how this could impact on the postsurgical period and how to limit the disruption of the internal clock. RECENT FINDINGS Anesthesia affects the clock in relation to the day-time administration and the type of anesthetics, N-methyl-D-aspartate receptor antagonists or gamma-aminobutyric acid receptors agonists. Surgery causes stress and trauma with consequent alteration in the circadian release of cortisol, cytokines and melatonin. ICU represents a further challenge for the patient internal clock because of sedation, immobility, mechanical ventilation and alarms noise. SUMMARY The synergic effect of anesthesia, surgery and postoperative intensive care on circadian rhythms require a careful approach to the patient considering a role for therapies and interventions aimed to re-establish the normal circadian rhythms. Over time, approach like the Awakening and Breathing Coordination, Delirium Monitoring and Management, Early Mobility and Family engagement and empowerment bundle can implement the clinical practice.
Collapse
|
10
|
|
11
|
McNeill JK, Walton JC, Albers HE. Functional Significance of the Excitatory Effects of GABA in the Suprachiasmatic Nucleus. J Biol Rhythms 2018; 33:376-387. [PMID: 29974800 DOI: 10.1177/0748730418782820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over 90% of neurons within the suprachiasmatic nucleus (SCN) express γ-aminobutyric acid (GABA). Although GABA is primarily an inhibitory neurotransmitter, in vitro studies suggest that the activation of GABAA receptors (GABAAR) elicits excitation in the adult SCN. The ratio of excitatory to inhibitory responses to GABA depends on the balance of chloride influx by Na+-K+-Cl- cotransporter 1 (NKCC1) and chloride efflux by K+-Cl- cotransporters (KCCs). Excitatory responses to GABA can be blocked by inhibition of the inward chloride cotransporter, NKCC1, with the loop diuretic bumetanide. Here we investigated the role of NKCC1 activity in phase shifting the circadian pacemaker in response to photic and nonphotic signals in male Syrian hamsters housed in constant darkness. In the early subjective night (CT 13.5), injection of bumetanide into the SCN reduced light-induced phase delays. However, during the late subjective night (CT 19), bumetanide administration did not alter light-induced phase advances. Injection of bumetanide during the subjective day (CT 6) did not alter the phase of free-running circadian rhythms but attenuated phase advances induced by injection of the GABAAR agonist muscimol into the SCN. These data support the hypothesis that the excitatory effects of endogenously released GABA contribute to the ability of light to induce phase delays, thereby contributing to the most important function of the circadian system, its entrainment with the day-night cycle. Further, the finding that bumetanide inhibits the phase-advancing effects of muscimol during the subjective day supports the hypothesis that the excitatory responses to GABA also contribute to the ability of nonphotic stimuli to phase shift the circadian pacemaker.
Collapse
Affiliation(s)
- John K McNeill
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - James C Walton
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - H Elliott Albers
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
How does general anaesthesia affect the circadian clock? Sleep Med Rev 2018; 37:35-44. [DOI: 10.1016/j.smrv.2016.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
|
13
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
14
|
Ramkisoensing A, Meijer JH. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health. Front Neurol 2015; 6:128. [PMID: 26097465 PMCID: PMC4456861 DOI: 10.3389/fneur.2015.00128] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders.
Collapse
Affiliation(s)
- Ashna Ramkisoensing
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
15
|
Hummer DL, Ehlen JC, Larkin TE, McNeill JK, Pamplin JR, Walker CA, Walker PV, Dhanraj DR, Albers HE. Sustained activation of GABAA receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors. Eur J Neurosci 2015; 42:1830-8. [PMID: 25865743 DOI: 10.1111/ejn.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
Abstract
The suprachiasmatic nucleus (SCN) contains a circadian clock that generates endogenous rhythmicity and entrains that rhythmicity with the day-night cycle. The neurochemical events that transduce photic input within the SCN and mediate entrainment by resetting the molecular clock have yet to be defined. Because GABA is contained in nearly all SCN neurons we tested the hypothesis that GABA serves as this signal in studies employing Syrian hamsters (Mesocricetus auratus). Activation of GABAA receptors was found to be necessary and sufficient for light to induce phase delays of the clock. Remarkably, the sustained activation of GABAA receptors for more than three consecutive hours was necessary to phase-delay the clock. The duration of GABAA receptor activation required to induce phase delays would not have been predicted by either the prevalent theory of circadian entrainment or by expectations regarding the duration of ionotropic receptor activation necessary to produce functional responses. Taken together, these data identify a novel neurochemical mechanism essential for phase-delaying the 'master' circadian clock within the SCN as well as identifying an unprecedented action of an amino acid neurotransmitter involving the sustained activation of ionotropic receptors.
Collapse
Affiliation(s)
- Daniel L Hummer
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - J Christopher Ehlen
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tony E Larkin
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Department of Psychology, Morehouse College, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - John K McNeill
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - John R Pamplin
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - Colton A Walker
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | | | - Daryl R Dhanraj
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Chakir I, Dumont S, Pévet P, Ouarour A, Challet E, Vuillez P. The circadian gene Clock oscillates in the suprachiasmatic nuclei of the diurnal rodent Barbary striped grass mouse, Lemniscomys barbarus: a general feature of diurnality? Brain Res 2014; 1594:165-72. [PMID: 25449886 DOI: 10.1016/j.brainres.2014.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
A major challenge in the field of circadian rhythms is to understand the neural mechanisms controlling the oppositely phased temporal organization of physiology and behaviour between night- and day-active animals. Most identified components of the master clock in the suprachiasmatic nuclei (SCN), called circadian genes, display similar oscillations according to the time of day, independent of the temporal niche. This has led to the predominant view that the switch between night- and day-active animals occurs downstream of the master clock, likely also involving differential feedback of behavioral cues onto the SCN. The Barbary striped grass mouse, Lemniscomys barbarus is known as a day-active Muridae. Here we show that this rodent, when housed in constant darkness, displays a temporal rhythmicity of metabolism matching its diurnal behaviour (i.e., high levels of plasma leptin and hepatic glycogen during subjective midday and dusk, respectively). Regarding clockwork in their SCN, these mice show peaks in the mRNA profiles of the circadian gene Period1 (Per1) and the clock-controlled gene Vasopressin (Avp), which occur during the middle and late subjective day, respectively, in accordance with many observations in both diurnal and nocturnal species. Strikingly, expression of the circadian gene Clock in the SCN of the Barbary striped grass mouse was not constitutive as in nocturnal rodents, but it was rhythmic. As this is also the case for the other diurnal species investigated in the literature (sheep, marmoset, and quail), a hypothesis is that the transcriptional control of Clock within the SCN participates in the mechanisms underlying diurnality and nocturnality.
Collapse
Affiliation(s)
- Ibtissam Chakir
- Faculty of Science, Laboratory of Biology and Health, Abdelmalek Essaâdi University, BP2121, Tetouan 93002, Morocco; Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Stéphanie Dumont
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Ali Ouarour
- Faculty of Science, Laboratory of Biology and Health, Abdelmalek Essaâdi University, BP2121, Tetouan 93002, Morocco
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France
| | - Patrick Vuillez
- Regulation of Circadian Clocks Team, Institute for Cellular and Integrative Neurosciences, UPR3212, CNRS and University of Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Mansuy V, Risold PY, Glauser M, Fraichard A, Pralong FP. Expression of the GABAA receptor associated protein Gec1 is circadian and dependent upon the cellular clock machinery in GnRH secreting GnV-3 cells. Mol Cell Endocrinol 2009; 307:68-76. [PMID: 19524128 DOI: 10.1016/j.mce.2009.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 11/23/2022]
Abstract
The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons. We also confirmed that the clock genes per1, cry1 and bmal1 are expressed and oscillate in GnRH secreting GnV-3 cells. Then we could show that gec1 is expressed in GnV-3 cells, and oscillates in a manner temporally related to the oscillations of the clock transcription factors. Furthermore, we could demonstrate that these oscillations depend upon Per1 expression. Finally, we observed that GABA(A) receptor levels at the GnV-3 cell membrane are timely modulated following serum shock. Together, these data demonstrate that gec1 expression is dependent upon the circadian clock machinery in GnRH-expressing neurons, and suggest for the first time that the level of GABA(A) receptor at the cell membrane may be under timely regulation. Overall, they provide a potential mechanism for the circadian regulation of GnRH secretion by GABA, and may also be relevant to the general understanding of circadian rhythms.
Collapse
Affiliation(s)
- Virginie Mansuy
- Services of Endocrinology, Diabetology, and Metabolism of the University Hospital of Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Ehlen JC, Paul KN. Regulation of light's action in the mammalian circadian clock: role of the extrasynaptic GABAA receptor. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1606-12. [PMID: 19244580 DOI: 10.1152/ajpregu.90878.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GABA(A) receptor agonists act in the suprachiasmatic nucleus (SCN) to reset circadian rhythms during the day but inhibit the ability of light to reset rhythms during the night. In the present study, we examined whether these paradoxical differences in the effect of GABA(A) receptor stimulation on the circadian system are mediated by separate GABA(A) receptor subtypes. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a GABA(A) receptor agonist, preferentially activates GABA(A) receptors in extrasynaptic locations. THIP, muscimol (a GABA(A) agonist), or vehicle were microinjected into the SCN region of Syrian hamsters free-running in constant darkness during the mid-subjective day, early subjective night, or late subjective night. The subjective night injections were followed by a light pulse or sham control. Behavioral phase shifts of wheel running rhythms and both Period1 (Per1) and Per2 mRNA levels in the SCN were assessed. Animals that received THIP during the subjective day did not exhibit significant phase alterations. During the early and late subjective night, however, THIP abolished the phase-shifting effects of light and the ability of light to increase Per1 and Per2 mRNA levels. The ability of N-methyl-d-aspartic acid to phase-shift wheel running rhythms was also attenuated by THIP. Together these data demonstrate that THIP does not produce phase shifts during the subjective day, but does inhibit the ability of light to produce phase shifts. Thus, extrasynaptic GABA(A) receptors appear to play a role in regulating light input to the SCN, while a different population of GABA(A) receptors appears to be responsible for daytime effects of GABA.
Collapse
Affiliation(s)
- J Christopher Ehlen
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | |
Collapse
|
19
|
Cuesta M, Clesse D, Pévet P, Challet E. From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav 2009; 55:338-47. [PMID: 19027018 DOI: 10.1016/j.yhbeh.2008.10.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/23/2008] [Accepted: 10/25/2008] [Indexed: 01/01/2023]
Abstract
Mammalian species can be defined as diurnal or nocturnal, depending on the temporal niche during which they are active. Even if general activity occurs during nighttime in nocturnal rodents, there is a patchwork of general activity patterns in diurnal rodents, including frequent bimodality (so-called crepuscular pattern, i.e., dawn and dusk peaks of activity) and a switch to a nocturnal pattern under certain circumstances. This raises the question of whether crepuscular species have a bimodal or diurnal - as opposed to nocturnal - physiology. To this end, we investigated several daily behavioral, hormonal and neurochemical rhythms in the diurnal Sudanian grass rat (Arvicanthis ansorgei) and the nocturnal Long-Evans rat (Rattus norvegicus). Daily rhythms of general activity, wheel-running activity and body temperature, with or without blocked wheel, were diurnal and bimodal for A. ansorgei, and nocturnal and unimodal for Long-Evans rats. Moreover, A. ansorgei and Long-Evans rats exposed to light-dark cycles were respectively more and less active, compared to conditions of constant darkness. In contrast to other diurnal rodents, wheel availability in A. ansorgei did not switch their general activity pattern. Daily, unimodal rhythm of plasma leptin was in phase-opposition between the two rodent species. In the hippocampus, a daily, unimodal rhythm of serotonin in A. ansorgei occurred 7 h earlier than that in Long-Evans rats, whereas a daily, unimodal rhythm of dopamine was unexpectedly concomitant in both species. Multiparameter analysis demonstrates that in spite of bimodal rhythms linked with locomotor activity, A. ansorgei have a diurnally oriented physiology.
Collapse
Affiliation(s)
- Marc Cuesta
- Département de Neurobiologie des Rythmes, Institut de Neurosciences Cellulaires et Intégratives, UMR7168, CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
20
|
Vosko AM, Hagenauer MH, Hummer DL, Lee TM. Period gene expression in the diurnal degu (Octodon degus) differs from the nocturnal laboratory rat (Rattus norvegicus). Am J Physiol Regul Integr Comp Physiol 2008; 296:R353-61. [PMID: 19036829 DOI: 10.1152/ajpregu.90392.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent data suggest that both nocturnal and diurnal mammals generate circadian rhythms using similarly phased feedback loops involving Period genes in the suprachiasmatic nuclei (SCN) of the hypothalamus. These molecular oscillations also exist in the brain outside of the SCN, but the relationship between SCN and extra-SCN oscillations is unclear. We hypothesized that a comparison of "diurnal" and "nocturnal" central nervous system Per rhythms would uncover differences in the underlying circadian mechanisms between these two chronotypes. Therefore, this study compared the 24-h oscillatory patterns of Per1 and Per2 mRNA in the SCN and putative striatum and cortex of Octodon degus (degu), a diurnal hystricognath rodent, with those of the nocturnal laboratory rat, Rattus norvegicus. The brains of adult male degus and rats were collected at 2-h intervals across 24 h in entrained light-dark and constant darkness conditions, and sections were analyzed via in situ hybridization. In the SCN, degu Per1 and Per2 hybridization signal exhibited 24-h oscillatory patterns similar in phasing to those seen in other rodents, with peaks occurring during the light period and troughs during the dark period. However, Per1 remained elevated for five fewer hours in the degu than in the rat, and Per2 remained elevated for two fewer hours in the degu. In brain areas outside of the SCN, the phase of Per2 hybridization signal rhythms in the degu were 180 degrees out of phase with those found in the rat, and Per1 hybridization signal lacked significant rhythmicity. These results suggest that, while certain basic components of the transcriptional-translational feedback loop generating circadian rhythms are similar in diurnal and nocturnal mammals, there are variations that may reflect adaptations to circadian niche.
Collapse
Affiliation(s)
- Andrew M Vosko
- Department of Psychology, University of Michigan, 530 Church St., Ann Arbor, MI 48109-1043, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Novak CM, Ehlen JC, Albers HE. Photic and nonphotic inputs to the diurnal circadian clock. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291010701683482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Ehlen JC, Novak CM, Karom MC, Gamble KL, Albers HE. Interactions of GABA A receptor activation and light on period mRNA expression in the suprachiasmatic nucleus. J Biol Rhythms 2008; 23:16-25. [PMID: 18258754 DOI: 10.1177/0748730407310785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of gamma-aminobutyric acid (GABA) A receptors in the suprachiasmatic nucleus (SCN) resets the circadian clock during the day and inhibits the ability of light to reset the clock at night. Light in turn acts during the day to inhibit the phase-resetting effects of GABA. Some evidence suggests that Period mRNA changes in the SCN are responsible for these interactions between light and GABA. Here, the hypothesis that light and the GABA A receptor interact by altering the expression of Period 1 and/or Period 2 mRNA in the SCN is tested. The GABA A agonist muscimol was injected near the SCN just prior to a light pulse, during the mid-subjective day and the early and late subjective night. Changes in Period 1 and Period 2 mRNA were measured in the SCN by in situ hybridization. Light-induced Period 1 mRNA was inhibited by GABA A receptor activation in the early and late subjective night, while Period 2 mRNA was only inhibited during the late night. During the subjective day, light had no effect on the ability of muscimol to suppress Period 1 mRNA hybridization signal. Thus, light and GABA A receptor activation inhibit each other's ability to induce behavioral phase shifts throughout the subjective day and night. However, only in the late night are these behavioral effects correlated with changes in Period gene expression. Together, our data support the hypothesis that the interacting effects of light and GABA are the result of the opposing actions of these stimuli on Period mRNA, but only during the subjective night.
Collapse
|
24
|
Abstract
Daily rhythmicity, including timing of wakefulness and hormone secretion, is mainly controlled by a master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN clockwork involves various clock genes, with specific temporal patterns of expression that are similar in nocturnal and diurnal species (e.g. the clock gene Per1 in the SCN peaks at midday in both categories). Timing of sensitivity to light is roughly similar, during nighttime, in diurnal and nocturnal species. Molecular mechanisms of photic resetting are also comparable in both species categories. By contrast, in animals housed in constant light, exposure to darkness can reset the SCN clock, mostly during the resting period, i.e. at opposite circadian times between diurnal and nocturnal species. Nonphotic stimuli, such as scheduled voluntary exercise, food shortage, exogenous melatonin, or serotonergic receptor activation, are also capable of shifting the master clock and/or modulating photic synchronization. Comparison between day- and night-active species allows classifications of nonphotic cues in two, arousal-independent and arousal-dependent, families of factors. Arousal-independent factors, such as melatonin (always secreted during nighttime, independently of daily activity pattern) or gamma-aminobutyric acid (GABA), have shifting effects at the same circadian times in both nocturnal and diurnal rodents. By contrast, arousal-dependent factors, such as serotonin (its cerebral levels follow activity pattern), induce phase shifts only during resting and have opposite modulating effects on photic resetting between diurnal and nocturnal species. Contrary to light and arousal-independent nonphotic cues, arousal-dependent nonphotic stimuli provide synchronizing feedback signals to the SCN clock in circadian antiphase between nocturnal and diurnal animals.
Collapse
Affiliation(s)
- Etienne Challet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (UMR 7168/LC2), University Louis Pasteur, 5 rue Blaise Pascal, Strasbourg, France.
| |
Collapse
|
25
|
Mendoza J, Revel FG, Pévet P, Challet E. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents. Eur J Neurosci 2007; 25:3080-90. [PMID: 17561821 DOI: 10.1111/j.1460-9568.2007.05548.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The master circadian clock in mammals, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, is entrained by light and behavioural stimulation. In addition, the SCN can be reset by dark pulses in nocturnal rodents under constant light conditions. Here, the shifting effects of a dark pulse on the SCN clock were detailed at both a behavioural and molecular level in a nocturnal rodent (Syrian hamster), and were compared to those of a diurnal rodent (Arvicanthis ansorgei). Four-hour dark pulses led to phase advances in the circadian rhythm of locomotor activity from subjective midday to dusk in hamsters, but from subjective dusk to midnight in Arvicanthis. Moreover, dark pulses had no resetting effect during the middle of the subjective night in hamsters, while such a dead shifting zone occurred during most of the subjective day in Arvicanthis. The behavioural phase advances in both hamsters and Arvicanthis were most often accompanied by marked downregulation of the clock genes Per1 and/or Per2 in the SCN, and also by changes in the transforming growth factor-alpha expression, a neuropeptide that suppresses daytime activity in nocturnal mammals. Despite that both hamsters and Arvicanthis showed dark-induced phase advances at circadian time-12, Per1 gene and its protein PER1 were downregulated in Arvicanthis but not in hamsters. Altogether these results show that dark resetting of the SCN is always associated with downregulation of Per1 and/or Per2 expression, and mostly occurs during resting. Thus, the circadian window of sensitivity to dark differs between nocturnal and diurnal rodents.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institut de Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes UMR7168/LC2, CNRS et Université Louis Pasteur, 67084 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
26
|
Castillo-Ruiz A, Nunez AA. Cholinergic projections to the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Brain Res 2007; 1151:91-101. [PMID: 17397808 DOI: 10.1016/j.brainres.2007.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/21/2007] [Accepted: 03/05/2007] [Indexed: 11/18/2022]
Abstract
In nocturnal species cholinergic agonists alter circadian rhythm phase when injected intraventricularly or directly into the suprachiasmatic nucleus (SCN), but the phase shifts obtained differ depending upon the site being injected. Cholinergic projections reach the SCN of nocturnal laboratory rats, however, nothing is known about these projections in diurnal rodents. The first objective of this study was to evaluate the hypothesis that cholinergic projections to the SCN are only present in nocturnal species. The second objective was to evaluate the hypothesis that the lower part of the subparaventricular zone (LSPV) is a candidate for being a site that mediates the phase shifts observed when cholinergic agonists are injected intraventricularly. These hypotheses were tested in the diurnal unstriped Nile grass rat (Arvicanthis niloticus) and the nocturnal laboratory rat. Additionally, we evaluated if the light-dark (LD) cycle had an effect on the expression of the vesicular acetylcholine transporter (VAChT) in the SCN, LSPV, and in two control areas. Animals were kept in a 12:12 LD cycle and perfused at six time points. VAChT immunoreactivity was observed in the SCN, LSPV, and in the control areas of both species. The SCN and LSPV showed a differential distribution and density of cholinergic projections between the two species, but similar temporal patterns of VAChT expression were found across species. These results provide evidence for a differential cholinergic stimulation of the SCN between grass rats and laboratory rats that may reflect a rewiring of neural projections brought about by the adoption of a diurnal activity profile.
Collapse
Affiliation(s)
- Alexandra Castillo-Ruiz
- Department of Psychology, Behavioral Neuroscience Interest Group, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
27
|
Novak CM, Ehlen JC, Paul KN, Fukuhara C, Albers HE. Light and GABAAreceptor activation alterPeriodmRNA levels in the SCN of diurnal Nile grass rats. Eur J Neurosci 2006; 24:2843-52. [PMID: 17156208 DOI: 10.1111/j.1460-9568.2006.05166.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined Period (Per) mRNA rhythms in the suprachiasmatic nucleus (SCN) of a diurnal rodent and assessed how phase-shifting stimuli acutely affect SCN Per mRNA using semiquantitative in situ hybridization. First, Per1 and Per2 varied rhythmically in the SCN over the course of one circadian cycle in constant darkness: Per1 mRNA was highest in the early to mid-subjective day, while Per2 mRNA levels peaked in the late subjective day. Second, acute light exposure in the early subjective night significantly increased both Per1 and Per2 mRNA. Third, Per2 but not Per1 levels decreased 1 and 2 h after injection of the gamma-aminobutyric acid (GABA)(A) receptor agonist muscimol into the SCN during the subjective day. Fourth, muscimol also reduced the light-induced Per2 in the early subjective night, but Per1 induction by light was not significantly affected. Consistent with previous studies, these data demonstrate that diurnal and nocturnal animals show very similar daily patterns of Per mRNA and light-induced Per increases in the SCN. As with light, muscimol alters circadian phase, and daytime phase alterations induced by muscimol are associated with significant decreases in Per2 mRNA. In diurnal animals, muscimol-induced decreases in Per are associated with phase delays rather than advances. The direction of the daytime phase shift may be determined by the relative suppression of Per1 vs. Per2 in SCN cells. As in nocturnal animals, changes in Per1 and Per2 mRNA by photic and non-photic stimuli appear to be associated with circadian phase alteration.
Collapse
Affiliation(s)
- Colleen M Novak
- Endocrine Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA.
| | | | | | | | | |
Collapse
|
28
|
Novak CM, Zhang M, Levine JA. Neuromedin U in the paraventricular and arcuate hypothalamic nuclei increases non-exercise activity thermogenesis. J Neuroendocrinol 2006; 18:594-601. [PMID: 16867180 DOI: 10.1111/j.1365-2826.2006.01454.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain neuromedin U (NMU) has been associated with the regulation of both energy intake and expenditure. We hypothesized that NMU induces changes in spontaneous physical activity and nonexercise activity thermogenesis (NEAT) through its actions on hypothalamic nuclei. We applied increasing doses of NMU directly to the paraventricular (PVN) and arcuate hypothalamic nuclei using chronic unilateral guide cannulae. In both nuclei, NMU significantly and dose-dependently increased physical activity and NEAT. Moreover, NMU increased physical activity and NEAT during the first hour of the dark phase, indicating that the reduction of sleep is unlikely to account for the increased physical activity seen with NMU treatment. As a positive control, we demonstrated that paraventricular NMU also significantly decreased food intake, as well as body weight. These data demonstrate that NMU is positively associated with NEAT through its actions in the PVN and arcuate nucleus. In co-ordination with its suppressive effects on feeding, the NEAT-activating effects of NMU make it a potential candidate in the combat of obesity.
Collapse
Affiliation(s)
- C M Novak
- Endocrine Research Unit, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
29
|
Morin LP, Allen CN. The circadian visual system, 2005. BRAIN RESEARCH REVIEWS 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
30
|
Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab 2006; 290:E396-403. [PMID: 16188908 DOI: 10.1152/ajpendo.00293.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin.
Collapse
Affiliation(s)
- Colleen M Novak
- Endocrine Research Unit, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
31
|
Mrosovsky N, Hattar S. Diurnal mice (Mus musculus) and other examples of temporal niche switching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:1011-24. [PMID: 16163543 DOI: 10.1007/s00359-005-0017-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 11/25/2022]
Abstract
Examples are presented of nocturnal animals becoming diurnal or vice versa as a result of mutations, genetic manipulations, or brain lesions. Understanding these cases could give insight into mechanisms employed when switches of temporal niche occur as part of the life cycle, or in response to circumstances such as availability of food. A two-process account of niche switching is advocated, involving both a change in clock-controlled outputs and a change in the direct response to light (i.e. masking). An emerging theme from this review is the suggestion that retinal inputs have a greater role in switching than suspected previously.
Collapse
Affiliation(s)
- N Mrosovsky
- Department of Zoology, University of Toronto, ON, M5S3G5, Canada.
| | | |
Collapse
|
32
|
Refinetti R. The Nile grass rat as a laboratory animal. Lab Anim (NY) 2004; 33:54-7. [PMID: 15457203 DOI: 10.1038/laban1004-54] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Accepted: 06/03/2004] [Indexed: 11/08/2022]
Abstract
Rodents are the subjects of the overwhelming majority of laboratory animal studies, and most laboratory rodents are nocturnal. The availability of a suitable diurnal rodent would provide a more effective animal model for biomedical research applicable to humans. The author describes several characteristics of the Nile grass rat that make this diurnal murid rodent an attractive laboratory animal.
Collapse
Affiliation(s)
- Roberto Refinetti
- University of South Carolina, 807 Hampton St., Walterboro, SC 29488, USA.
| |
Collapse
|
33
|
Novak CM, Ehlen JC, Huhman KL, Albers HE. GABA(B) receptor activation in the suprachiasmatic nucleus of diurnal and nocturnal rodents. Brain Res Bull 2004; 63:531-5. [PMID: 15249119 DOI: 10.1016/j.brainresbull.2004.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/03/2004] [Indexed: 11/18/2022]
Abstract
Diurnal (day-active) and nocturnal (night-active) animals have very different daily activity patterns. We recently demonstrated that the suprachiasmatic nucleus (SCN) responds to GABAergic stimulation differently in diurnal and nocturnal animals. Specifically, GABAA receptor activation with muscimol during the subjective day causes phase delays in diurnal grass rats while producing phase advances in nocturnal hamsters. The aim of the following experiments was to determine if diurnal and nocturnal animals differ in their response to GABAB receptor activation in the SCN. Baclofen, a GABAB receptor agonist, was microinjected into the SCN region of grass rats or hamsters under free-running conditions and phase alterations were analyzed. Changes in phase were not detected after baclofen treatment during the subjective day in either grass rats or hamsters. During the night, however, GABAB receptor activation significantly decreased the ability of light to induce phase delays in grass rats. Taken together with previous data from our laboratory, these results demonstrate that, in both hamsters and grass rats, GABAB receptor activation in the SCN significantly affects circadian phase during the night, but not during the day.
Collapse
Affiliation(s)
- C M Novak
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | |
Collapse
|
34
|
Lee TM. Growing evidence that some aspects of SCN function differ in nocturnal and diurnal rodents. Am J Physiol Regul Integr Comp Physiol 2004; 286:R814-5. [PMID: 15068966 DOI: 10.1152/ajpregu.00024.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|