1
|
Furman M, Sihotsky V, Virag M, Kopolovets I, Nemethova M, Mucha R. Quantitative analysis of selected genetic markers of induced brain stroke ischemic tolerance detected in human blood. Brain Res 2023; 1821:148590. [PMID: 37739332 DOI: 10.1016/j.brainres.2023.148590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
A brain stroke is a serious disease and the second leading cause of death in the European Union. Carotid stenosis accounts for 15% of all ischemic cerebral strokes. However, there is currently no effective screening for carotid disease. Analysis of the DNA from peripheral blood is increasingly being used for several disease diagnoses. The potentially beneficial therapeutic method of inducing tissue tolerance to ischemia has so far been studied mainly in animal models. The aim of this study is to investigate changes in the gene expression of selected markers of brain ischemia during carotid endarterectomy, considered in this study as an activator of ischemic tolerance. During the carotid endarterectomy, there is a short-term occlusion of the internal carotid artery. Using the RT-qPCR method, we detected changes in the early identified gene markers of brain ischemia (ADM, CDKN1A, GADD45G, IL6, TM4SF1) in peripheral blood during sub lethal cerebral ischemia caused by carotid endarterectomy. Patients underwenting surgical procedure were divided into three groups: asymptomatic, symptomatic, and those who underwent carotid endarterectomy after an acute stroke. The results were compared to a negative/control group. Carotid endarterectomy had an impact on the expression of all monitored biomarkers. We observed statistically significant changes (p value 0.05-0.001) when comparing the groups among themselves, as well as the presence of ischemic tolerance of brain tissue to ischemic attacks. In conclusion, ADM, GADD45G, and TM4SF1 were affected in symptomatic patients, GADD45G and IL6 in acute patients, and CDKN1A and ADM in asymptomatic group after application of carotid endarterectomy.
Collapse
Affiliation(s)
- Marek Furman
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Vladimir Sihotsky
- Eastern Slovak Institute of Cardiovascular Diseases and Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Ondavska 8, 040 01 Kosice, Slovakia
| | - Michal Virag
- Eastern Slovak Institute of Cardiovascular Diseases and Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Ondavska 8, 040 01 Kosice, Slovakia
| | - Ivan Kopolovets
- Eastern Slovak Institute of Cardiovascular Diseases and Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Ondavska 8, 040 01 Kosice, Slovakia
| | - Miroslava Nemethova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Rastislav Mucha
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia.
| |
Collapse
|
2
|
Mirhadi E, Kesharwani P, Johnston TP, Sahebkar A. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension. Drug Discov Today 2023; 28:103599. [PMID: 37116826 DOI: 10.1016/j.drudis.2023.103599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Nanomedicine has emerged as a field in which there are opportunities to improve the diagnosis, treatment and prevention of incurable diseases. Pulmonary arterial hypertension (PAH) is known as a severe and fatal disease affecting children and adults. Conventional treatments have not produced optimal effectiveness in treating this condition. Several reasons for this include drug instability, poor solubility of the drug and a shortened duration of pharmacological action. The present review focuses on new approaches for delivering anti-PAH drugs using nanotechnology with the aim of overcoming these shortcomings and increasing their efficacy. Solid-lipid nanoparticles, liposomes, metal-organic frameworks and polymeric nanoparticles have demonstrated advantages for the potential treatment of PAH, including increased drug bioavailability, drug solubility and accumulation in the lungs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Shafie N, Kordi N, Gadruni K, SalehFard Z, Jung F, Heidari N. Cardiac rehabilitation in coronary artery bypass grafting patients: Effect of eight weeks of moderate-intensity continuous training versus high-intensity interval training. Clin Hemorheol Microcirc 2023; 83:305-314. [PMID: 36683497 DOI: 10.3233/ch-221605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Physical training in patients with heart failure can affect hemodynamic, cardiac and angiogenesis parameters. OBJECTIVE The aim of the present study was to investigate the effects of traditional moderate-intensity rehabilitation training and interval training on some angiogenesis factors in coronary artery bypass graft (CABG) patients. METHODS Thirty CABG patients (mean age±SD, 55±3 years) were randomly assigned to one of three groups: high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) or the control group. After the initial assessments, eligible patients in the experimental groups (HIIT and MICT) performed exercise training for 8 weeks, while the control group did not. Angiogenesis and angiostatic indices, including pro-adrenomedullin (pro-ADM), basic fibroblast growth factor (bFGF), and endostatin, were then measured. RESULTS The results showed no significant difference between pro-ADM in the HIIT and MICT groups (P = 0.99), but a significant difference was found between MICT and the control group and between HIIT and the control group (P = 0.001). There is also no significant difference between the bFGF levels in the HIIT and MICT training groups (P = 1.00), but the changes in this factor between the training groups and the control group were significant (P = 0.001). There was a significant difference between the levels of endostatin in all three groups. CONCLUSIONS Two methods of cardiac rehabilitation (HIIT and MICT) may be useful for the recovery of patients with coronary artery bypass grafting. This improvement manifested itself in changes in angiogenesis and angiostatic indices in this study. However, more extensive studies are needed to investigate the effects of these two types of rehabilitation programs on other indicators of angiogenesis and angiostatic.
Collapse
Affiliation(s)
- Neda Shafie
- Department of Sport Physiology, Faculty of Sport Sciences, The University of Mazandaran, Babolsar, Iran
| | - Negin Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Keivan Gadruni
- Faculty of Physical Education, University of Tabriz, Tabriz, Iran; Kurdistan Education Office, Ministry of Education, Kurdistan, Iran; Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba SalehFard
- Department of Sport Physiology, School of Physical Education and Sport Sciences, Alzahra University, Tehran, Iran
| | - Friedrich Jung
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Naser Heidari
- Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran
| |
Collapse
|
4
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
5
|
Sherwood TA, Rodgers ML, Tarnecki AM, Wetzel DL. Characterization of the differential expressed genes and transcriptomic pathway analysis in the liver of sub-adult red drum (Sciaenops ocellatus) exposed to Deepwater Horizon chemically dispersed oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112098. [PMID: 33662787 DOI: 10.1016/j.ecoenv.2021.112098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon blowout resulted in the second-largest quantity of chemical dispersants used as a countermeasure for an open water oil spill in the Gulf of Mexico. Of which, the efficacy of dispersant as a mitigation strategy and its toxic effects on aquatic fauna remains controversial. To enhance our understanding of potential sub-lethal effects of exposure to chemically dispersed-oil, sub-adult red drum (Sciaenops ocellatus) were continuously exposed to a Corexit 9500: DWH crude oil chemically enhanced water accommodated fraction (CEWAF) for 3-days and transcriptomic responses were assessed in the liver. Differential expressed gene (DEG) analysis demonstrated that 63 genes were significantly impacted in the CEWAF exposed fish. Of these, 37 were upregulated and 26 downregulated. The upregulated genes were primarily involved in metabolism and oxidative stress, whereas several immune genes were downregulated. Quantitative real-time RT-PCR further confirmed upregulation of cytochrome P450 and glutathione S-transferase, along with downregulation of fucolectin 2 and chemokine C-C motif ligand 20. Ingenuity Pathway Analysis (IPA) predicted 120 pathways significantly altered in the CEWAF exposed red drum. The aryl hydrocarbon receptor pathway was significantly activated, while pathways associated with immune and cellular homeostasis were primarily suppressed. The results of this study indicate that CEWAF exposure significantly affects gene expression and alters signaling of biological pathways important in detoxification, immunity, and normal cellular physiology, which can have potential consequences on organismal fitness.
Collapse
Affiliation(s)
- Tracy A Sherwood
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA.
| | - Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Andrea M Tarnecki
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Dana L Wetzel
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| |
Collapse
|
6
|
Tanaka M, Kakihara S, Hirabayashi K, Imai A, Toriyama Y, Iesato Y, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Tanaka M, Cui N, Wei Y, Zhao Y, Aruga K, Yamauchi A, Murata T, Shindo T. Adrenomedullin-Receptor Activity-Modifying Protein 2 System Ameliorates Subretinal Fibrosis by Suppressing Epithelial-Mesenchymal Transition in Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:652-668. [PMID: 33385343 DOI: 10.1016/j.ajpath.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment. Anti-vascular endothelial growth factor drugs used to treat AMD carry the risk of inducing subretinal fibrosis. We investigated the use of adrenomedullin (AM), a vasoactive peptide, and its receptor activity-modifying protein 2, RAMP2, which regulate vascular homeostasis and suppress fibrosis. The therapeutic potential of the AM-RAMP2 system was evaluated after laser-induced choroidal neovascularization (LI-CNV), a mouse model of AMD. Neovascular formation, subretinal fibrosis, and macrophage invasion were all enhanced in both AM and RAMP2 knockout mice compared with those in wild-type mice. These pathologic changes were suppressed by intravitreal injection of AM. Comprehensive gene expression analysis of the choroid after LI-CNV with or without AM administration revealed that fibrosis-related molecules, including Tgfb, Cxcr4, Ccn2, and Thbs1, were all down-regulated by AM. In retinal pigment epithelial cells, co-administration of transforming growth factor-β and tumor necrosis factor-α induced epithelial-mesenchymal transition, which was also prevented by AM. Finally, transforming growth factor-β and C-X-C chemokine receptor type 4 (CXCR4) inhibitors eliminated the difference in subretinal fibrosis between RAMP2 knockout and wild-type mice. These findings suggest the AM-RAMP2 system suppresses subretinal fibrosis in LI-CNV by suppressing epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Masaaki Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | | | - Akira Imai
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Yuichi Toriyama
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Yasuhiro Iesato
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nanqi Cui
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yangxuan Wei
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kohsuke Aruga
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Yamauchi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| |
Collapse
|
7
|
Ihara M, Washida K, Yoshimoto T, Saito S. Adrenomedullin: A vasoactive agent for sporadic and hereditary vascular cognitive impairment. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100007. [PMID: 36324729 PMCID: PMC9616331 DOI: 10.1016/j.cccb.2021.100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 04/16/2023]
Abstract
Adrenomedullin (AM) is an endogenous peptide mainly secreted from endothelial cells, which has multiple physiological actions such as anti-inflammation, vasodilation, vascular permeability regulation and angiogenesis. Blood AM levels are upregulated in a variety of pathological states including sepsis, severe COVID-19, acute ischemic stroke and vascular cognitive impairment with white matter changes, likely serving as a compensatory biological defense response against infection and ischemia. AM is currently being tested in clinical trials for ulcerative colitis, Crohn's disease, severe COVID-19 for its anti-inflammatory properties and in ischemic stroke for its additional angiogenic action. AM has been proposed as a therapeutic option for vascular cognitive impairment as its arteriogenic and angiogenic properties are thought to contribute to a slowing of cognitive decline in mice after chronic cerebral hypoperfusion. As AM promotes differentiation of oligodendrocyte precursor cells into mature oligodendrocytes under hypoxic conditions, AM could also be used in the treatment of CADASIL, where reduced oxygen delivery is thought to lead to the death of hypoxia-prone oligodendrocytes. AM therefore holds potential as an innovative therapeutic drug, which may regenerate blood vessels, while controlling inflammation in cerebrovascular diseases.
Collapse
|
8
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
9
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
10
|
Pawlak JB, Caron KM. Lymphatic Programing and Specialization in Hybrid Vessels. Front Physiol 2020; 11:114. [PMID: 32153423 PMCID: PMC7044189 DOI: 10.3389/fphys.2020.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Building on a large body of existing blood vascular research, advances in lymphatic research have helped kindle broader investigations into vascular diversity and endothelial plasticity. While the endothelium of blood and lymphatic vessels can be distinguished by a variety of molecular markers, the endothelia of uniquely diverse vascular beds can possess distinctly heterogeneous or hybrid expression patterns. These expression patterns can then provide further insight on the development of these vessels and how they perform their specialized function. In this review we examine five highly specialized hybrid vessel beds that adopt partial lymphatic programing for their specialized vascular functions: the high endothelial venules of secondary lymphoid organs, the liver sinusoid, the Schlemm’s canal of the eye, the renal ascending vasa recta, and the remodeled placental spiral artery. We summarize the morphology and endothelial expression pattern of these vessels, compare them to each other, and interrogate their specialized functions within the broader blood and lymphatic vascular systems.
Collapse
Affiliation(s)
- John B Pawlak
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Matsumoto L, Hirota Y, Saito-Fujita T, Takeda N, Tanaka T, Hiraoka T, Akaeda S, Fujita H, Shimizu-Hirota R, Igaue S, Matsuo M, Haraguchi H, Saito-Kanatani M, Fujii T, Osuga Y. HIF2α in the uterine stroma permits embryo invasion and luminal epithelium detachment. J Clin Invest 2018; 128:3186-3197. [PMID: 29911998 DOI: 10.1172/jci98931] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/01/2018] [Indexed: 01/21/2023] Open
Abstract
Although it has been reported that hypoxia inducible factor 2 α (Hif2a), a major transcriptional factor inducible by low oxygen tension, is expressed in the mouse uterus during embryo implantation, its role in pregnancy outcomes remains unclear. This study aimed to clarify functions of uterine HIF using transgenic mouse models. Mice with deletion of Hif2a in the whole uterus (Hif2a-uKO mice) showed infertility due to implantation failure. Supplementation with progesterone (P4) and leukemia inhibitory factor (LIF) restored decidual growth arrest and aberrant position of implantation sites in Hif2a-uKO mice, respectively, but did not rescue pregnancy failure. Histological analyses in Hif2a-uKO mice revealed persistence of the intact luminal epithelium, which blocked direct contact between stroma and embryo, inactivation of PI3K-AKT pathway (embryonic survival signal), and failed embryo invasion. Mice with stromal deletion of Hif2a (Hif2a-sKO mice) showed infertility with impaired embryo invasion and those with epithelial deletion of Hif2a (Hif2a-eKO mice) showed normal fertility, suggesting the importance of stromal HIF2α in embryo invasion. This was reflected in reduced expression of membrane type 2 metalloproteinase (MT2-MMP), lysyl oxidase (LOX), VEGF, and adrenomedullin (ADM) in Hif2a-uKO stroma at the attachment site, suggesting that stromal HIF2α regulates these mediators to support blastocyst invasion. These findings provide new insight that stromal HIF2α allows trophoblast invasion through detachment of the luminal epithelium and activation of an embryonic survival signal.
Collapse
Affiliation(s)
- Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Bunkyo-ku, Tokyo, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Fujita
- Department of Future Medical Science, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center of Preventive Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Shota Igaue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mayuko Saito-Kanatani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Kang I, Lee BC, Choi SW, Lee JY, Kim JJ, Kim BE, Kim DH, Lee SE, Shin N, Seo Y, Kim HS, Kim DI, Kang KS. Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia. Exp Mol Med 2018; 50:1-15. [PMID: 29674661 PMCID: PMC5938050 DOI: 10.1038/s12276-017-0014-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023] Open
Abstract
With the rapidly growing demand for mesenchymal stem cell (MSC) therapy, numerous strategies using MSCs for different diseases have been studied and reported. Because of their immunosuppressive properties, MSCs are commonly used as an allogeneic treatment. However, for the many donors who could potentially be used, it is important to understand the capacity for therapeutic usage with donor-to-donor heterogeneity. In this study, we aimed to investigate MSCs as a promising therapeutic strategy for critical limb ischemia. We evaluated MSCs from two donors (#55 and #64) and analyzed the capacity for angiogenesis through in vivo and in vitro assays to compare the therapeutic effect between different donors. We emphasized the importance of intra-population heterogeneity of MSCs on therapeutic usage by evaluating the effects of hypoxia on activating cellular angiogenesis in MSCs. The precondition of hypoxia in MSCs is known to enhance therapeutic efficacy. Our study suggests that sensitivity to hypoxic conditions is different between cells originating from different donors, and this difference affects the contribution to angiogenesis. The bioinformatics analysis of different donors under hypoxic culture conditions identified intrinsic variability in gene expression patterns and suggests alternative potential genetic factors ANGPTL4, ADM, SLC2A3, and CDON as guaranteed general indicators for further stem cell therapy.
Collapse
Affiliation(s)
- Insung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Chul Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bo-Eun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Eun Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Hyung-Sik Kim
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.,Pusan National University School of Medicine, Busan, 49241, Republic of Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Yanqin Y, Shaohua C, Jing T, Nan L. Caffeoylquinic Acid Enhances Proliferation of Oligodendrocyte Precursor Cells. Transl Neurosci 2017; 8:111-116. [PMID: 29104800 PMCID: PMC5662754 DOI: 10.1515/tnsci-2017-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
This report evaluates the protective effect of caffeoylquinic acid (CA) injury to oligodendrocyte precursor cells (OPCs) by promoting the formation of oligodendrocytes. Neonatal rat brain was used to isolate primary OPCs and non-lethal CoCl2 was used to induce hypoxic stress to inhibit the differentiation of OPCs. Differentiation of OPCs was estimated by survival assay and the expressions of myelin-basic-protein (MBP). Moreover, the effect of CA on the Akt signanling pathway was also estimated in the presence and absence of LY294002 (PI3K/Akt inhibitor) and adrenomedullin (AM) receptor antagonist (AM22-52) by using western blot assay. It was observed that CA enhances the differentiation OPCs in CoCl2 induced hypoxic stress condition. However treatment with CA in presence of LY294002 and AM22-52 was not able to enhance the differentiation of OPCs. Moreover treatment with CA significantly enhances the phosphorylation of Akt and presence of LY294002 and AM22-52 inhibits it. This report concludes that CA effectively attenuates the injury of white matter (OPCs) by enhancing the differentiation of OPCs. It enhances the formation of oligodendrocytes by activating AM receptor and thereby accelerates the regeneration of neuron in pathological condition.
Collapse
Affiliation(s)
- Ying Yanqin
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030China
| | - Chen Shaohua
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030China
| | - Tang Jing
- Department of Pediatrics, Jinzhou Maternal and Children Healthy Care Hospital, Jinzhou, 434020China
| | - Li Nan
- Department of intensive care unit, The first hospital of Jilin University, Changchun, 130021China
| |
Collapse
|
14
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
15
|
Holm H, Nägga K, Nilsson ED, Ricci F, Cinosi E, Melander O, Hansson O, Bachus E, Magnusson M, Fedorowski A. N-Terminal Prosomatostatin and Risk of Vascular Dementia. Cerebrovasc Dis 2017; 44:259-265. [PMID: 28854435 DOI: 10.1159/000479940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased somatostatin plasma concentration has been found in patients with vascular dementia. However, it is unknown whether or not somatostatin levels may predict dementia development in the general population. To this end, we sought to assess the association of circulating N-terminal prosomatostatin (NT-proSST) with incident dementia among community-dwelling older adults. METHODS In the prospective population-based Malmö Preventive Project, 5,347 study participants (mean age: 69 ± 6years; 70% men) provided plasma for the determination of NT-proSST concentration. Of these, 373 participants (7%) were diagnosed with dementia (120 Alzheimer's disease, 83 vascular, 102 mixed, and 68 other aetiology) during a follow-up period of 4.6 ± 1.3 years. The association of NT-proSST with the risk of dementia and its subtypes was studied using multivariable-adjusted Cox regression models controlling for age, gender, body mass index, systolic blood pressure, antihypertensive treatment, smoking, diabetes, lipid levels and prevalent stroke. RESULTS Higher levels of NT-proSST were significantly associated with an increased risk of vascular dementia (hazard ratio [HR] per 1 SD: 1.29; 95% CI 1.05-1.59; p = 0.016), whereas no association was observed with Alzheimer's disease (HR per 1 SD: 0.99; 95% CI 0.81-1.20; p = 0.91), all-cause dementia (HR per 1 SD: 1.04; 95% CI 0.94-1.16; p = 0.44), and mixed dementia (HR per 1 SD: 0.98; 95% CI 0.79-1.21; p = 0.84). Levels of NT-proSST above 563 pmol/L (highest quartile) conferred distinctly increased risk of vascular dementia (HR 1.66; 95% CI 1.05-2.63; p = 0.029) compared with lower values. CONCLUSIONS Higher levels of circulating N-terminal-prosomatostatin are associated with increased incidence of vascular dementia. Our findings might be of importance for the understanding of dementia development in older adults.
Collapse
Affiliation(s)
- Hannes Holm
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Imai A, Toriyama Y, Iesato Y, Hirabayashi K, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Tanaka M, Liu T, Xian X, Zhai L, Dai K, Tanimura K, Liu T, Cui N, Yamauchi A, Murata T, Shindo T. Adrenomedullin Suppresses Vascular Endothelial Growth Factor-Induced Vascular Hyperpermeability and Inflammation in Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:999-1015. [PMID: 28322199 DOI: 10.1016/j.ajpath.2017.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 11/29/2022]
Abstract
Diabetic macular edema (DME) is caused by blood-retinal barrier breakdown associated with retinal vascular hyperpermeability and inflammation, and it is the major cause of visual dysfunction in diabetic retinopathy. Adrenomedullin (ADM) is an endogenous peptide first identified as a strong vasodilator. ADM is expressed in the eyes and is up-regulated in various eye diseases, although the pathophysiological significance is largely unknown. We investigated the effect of ADM on DME. In Kimba mice, which overexpress human vascular endothelial growth factor in their retinas, the capillary dropout, vascular leakage, and vascular fragility characteristic of diabetic retinopathy were observed. Intravitreal or systemic administration of ADM to Kimba mice ameliorated both the capillary dropout and vascular leakage. Evaluation of the transendothelial electrical resistance and fluorescein isothiocyanate-dextran permeability of an endothelial cell monolayer using TR-iBRB retinal capillary endothelial cells revealed that vascular endothelial growth factor enhanced vascular permeability but that co-administration of ADM suppressed the effect, in part by enhancing tight junction formation between endothelial cells. In addition, a comprehensive PCR array analysis showed that ADM administration suppressed various molecules related to inflammation and NF-κB signaling within retinas. From these results, we suggest that by exerting inhibitory effects on retinal inflammation, vascular permeability, and blood-retinal barrier breakdown, ADM could serve as a novel therapeutic agent for the treatment of DME.
Collapse
Affiliation(s)
- Akira Imai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yuichi Toriyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yasuhiro Iesato
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Kazutaka Hirabayashi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Tian Liu
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Xian Xian
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Liuyu Zhai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Kun Dai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Keiya Tanimura
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Teng Liu
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Nanqi Cui
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | | | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan.
| |
Collapse
|
17
|
Adrenomedullin Promotes the Proliferation and Inhibits Apoptosis of Dental Pulp Stem Cells Involved in Divergence Pathways. J Endod 2016; 42:1347-54. [DOI: 10.1016/j.joen.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
|
18
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
19
|
Zhang S, Patel A, Moorthy B, Shivanna B. Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells. Biochem Biophys Res Commun 2015. [PMID: 26196743 DOI: 10.1016/j.bbrc.2015.07.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of premature infants that is characterized by alveolar simplification and decreased lung angiogenesis. Hyperoxia-induced oxidative stress and inflammation contributes to the development of BPD in premature infants. Adrenomedullin (AM) is an endogenous peptide with potent angiogenic, anti-oxidant, and anti-inflammatory properties. Whether AM regulates hyperoxic injury in fetal primary human lung cells is unknown. Therefore, we tested the hypothesis that AM-deficient fetal primary human pulmonary microvascular endothelial cells (HPMEC) will have increased oxidative stress, inflammation, and cytotoxicity compared to AM-sufficient HPMEC upon exposure to hyperoxia. Adrenomedullin gene (Adm) was knocked down in HPMEC by siRNA-mediated transfection and the resultant AM-sufficient and -deficient cells were evaluated for hyperoxia-induced oxidative stress, inflammation, cytotoxicity, and Akt activation. AM-deficient HPMEC had significantly increased hyperoxia-induced reactive oxygen species (ROS) generation and cytotoxicity compared to AM-sufficient HPMEC. Additionally, AM-deficient cell culture supernatants had increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, AM deficiency was associated with an abrogated Akt activation upon exposure to hyperoxia. These findings support the hypothesis that AM deficiency potentiates hyperoxic injury in primary human fetal HPMEC via mechanisms entailing Akt activation.
Collapse
Affiliation(s)
- Shaojie Zhang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ananddeep Patel
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Wu XY, Hao CP, Ling M, Guo CH, Ma W. Hypoxia-induced apoptosis is blocked by adrenomedullin via upregulation of Bcl-2 in human osteosarcoma cells. Oncol Rep 2015; 34:787-94. [PMID: 26035796 DOI: 10.3892/or.2015.4011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/11/2015] [Indexed: 11/06/2022] Open
Abstract
Adrenomedullin (ADM), a multifunctional regulatory peptide, is potentially induced by hypoxia in physiological and pathological tissues, including many types of malignant tumors. Recent research has demonstrated that ADM expression is highly associated with the prognosis and disease severity of human osteosarcoma. However, the effect of ADM on the apoptosis of osteosarcoma cells and its possible mechanism remain to be elucidated. In the present study, we observed that mRNA and protein levels of ADM were increased in human osteosarcoma SOSP-F5M2 cells under a hypoxic microenvironment induced by cobalt chloride (CoCl2) in a time-dependent manner. Treatment with ADM significantly blunted hypoxic-induced apoptosis, evaluated by Hoechst 33342 staining and Annexin V-FITC/PI labeling. The expression of B-cell lymphoma-2 (Bcl-2) was increased by administration of ADM; meanwhile, this effect was reversed by exogenously adding U0126, a selective inhibitor of MEK or ADM22-52 (ADM-specific receptor antagonist). These results demonstrated that ADM acted as a survival factor to inhibit hypoxic-induced apoptosis via interacting with its receptors CRLR-RAMP (2,3) in osteosarcoma cells. The anti-apoptotic function of ADM was found to be mediated by upregulation of the expression of Bcl-2 partially through activation of the MEK/ERK1/2 signaling pathway. Therefore, targeting of the ADM/ADM acceptors/ERK1/2/Bcl-2 pathway may provide a potential strategy through which to induce the apoptosis of osteosarcoma cells.
Collapse
Affiliation(s)
- Xue-Yuan Wu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Cui-Pei Hao
- Department of Gynaecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ming Ling
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chi-Hua Guo
- Department of Orthopedics, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Ma
- Department of Orthopedics, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Maki T, Takahashi Y, Miyamoto N, Liang AC, Ihara M, Lo EH, Arai K. Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro. Stem Cell Res 2015; 15:68-74. [PMID: 26002630 DOI: 10.1016/j.scr.2015.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/25/2015] [Accepted: 05/03/2015] [Indexed: 12/28/2022] Open
Abstract
Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl(2) treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, and the AM receptor antagonist AM(22-52) canceled the AM-induced OPC differentiation. In addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost oligodendrocyte regeneration in CNS disorders.
Collapse
Affiliation(s)
- Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, MA General Hospital, Harvard Medical School, USA
| | - Yoko Takahashi
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, MA General Hospital, Harvard Medical School, USA; Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, MA General Hospital, Harvard Medical School, USA
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, MA General Hospital, Harvard Medical School, USA
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, MA General Hospital, Harvard Medical School, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, MA General Hospital, Harvard Medical School, USA.
| |
Collapse
|
22
|
Koyama T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Shindo T. Adrenomedullin-RAMP2 System in Vascular Endothelial Cells. J Atheroscler Thromb 2015; 22:647-53. [DOI: 10.5551/jat.29967] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| |
Collapse
|
23
|
Dincer UD. Fetal exposure to a diabetic intrauterine environment resulted in a failure of cord blood endothelial progenitor cell adaptation against chronic hypoxia. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 8:1-14. [PMID: 25565870 PMCID: PMC4275114 DOI: 10.2147/sccaa.s73658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gestational diabetes mellitus (GDM) has long-term health consequences, and fetal exposure to a diabetic intrauterine environment increases cardiovascular risk for her adult offspring. Some part of this could be related to their endothelial progenitor cells (EPCs). Understanding the vessel-forming ability of human umbilical cord blood (HUCB)-derived endothelial colony-forming cells (ECFCs) against pathological stress such as GDM response to hypoxia could generate new therapeutic strategies. This study aims to investigate the role of chronic hypoxia in EPCs functional and vessel-forming ability in GDM subjects. Each ECFC was expressed in endothelial and pro-angiogenic specific markers, namely endothelial nitric oxide synthase (eNOS), platelet (PECAM-1) endothelial cell adhesion molecule 1, vascular endothelial-cadherin CdH5 (Ca-dependent cell adhesion molecule), vascular endothelial growth factor A, (VEGFA) and insulin-like growth factor 1 (IGF1). Chronic hypoxia did not affect CdH5, but PECAM1 MRNA expressions were increased in control and GDM subjects. Control hypoxic and GDM normoxic VEGFA MRNA expressions and hypoxia-inducible factor 1-alpha (HIF1α) protein expressions were significantly increased in HUCB ECFCs. GDM resulted in most failure of HUCB ECFC adaptation and eNOS protein expressions against chronic hypoxia. Chronic hypoxia resulted in an overall decline in HUCB ECFCs’ proliferative ability due to reduction of clonogenic capacity and diminished vessel formation. Furthermore, GDM also resulted in most failure of cord blood ECFC adaptation against chronic hypoxic environment.
Collapse
Affiliation(s)
- U Deniz Dincer
- Department of Basic and Clinical Pharmacology, School of Medicine, Bezmialem Vakif University (BAVU), Fatih/Istanbul, Turkey
| |
Collapse
|
24
|
Adrenomedullin-RAMP2 system suppresses ER stress-induced tubule cell death and is involved in kidney protection. PLoS One 2014; 9:e87667. [PMID: 24505304 PMCID: PMC3914859 DOI: 10.1371/journal.pone.0087667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/29/2013] [Indexed: 11/19/2022] Open
Abstract
Various bioactive peptides have been implicated in the homeostasis of organs and tissues. Adrenomedullin (AM) is a peptide with various bioactivities. AM-receptor, calcitonin-receptor-like receptor (CLR) associates with one of the subtypes of the accessory proteins, RAMPs. Among the RAMP subisoforms, only RAMP2 knockout mice (−/−) reproduce the phenotype of embryonic lethality of AM−/−, illustrating the importance of the AM-RAMP2-signaling system. Although AM and RAMP2 are abundantly expressed in kidney, their function there remains largely unknown. We used genetically modified mice to assess the pathophysiological functions of the AM-RAMP2 system. RAMP2+/− mice and their wild-type littermates were used in a streptozotocin (STZ)-induced renal injury model. The effect of STZ on glomeruli did not differ between the 2 types of mice. On the other hand, damage to the proximal urinary tubules was greater in RAMP2+/−. Tubular injury in RAMP2+/− was resistant to correction of blood glucose by insulin administration. We examined the effect of STZ on human renal proximal tubule epithelial cells (RPTECs), which express glucose transporter 2 (GLUT2), the glucose transporter that specifically takes up STZ. STZ activated the endoplasmic reticulum (ER) stress sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK). AM suppressed PERK activation, its downstream signaling, and CCAAT/enhancer-binding homologous protein (CHOP)-induced cell death. We confirmed that the tubular damage was caused by ER stress-induced cell death using tunicamycin (TUN), which directly evokes ER stress. In RAMP2+/− kidneys, TUN caused severe injury with enhanced ER stress. In wild-type mice, TUN-induced tubular damage was reversed by AM administration. On the other hand, in RAMP2+/−, the rescue effect of exogenous AM was lost. These results indicate that the AM-RAMP2 system suppresses ER stress-induced tubule cell death, thereby exerting a protective effect on kidney. The AM-RAMP2 system thus has the potential to serve as a therapeutic target in kidney disease.
Collapse
|
25
|
Liu J, Yan J, Greer JM, Read SJ, Henderson RD, Rose SE, Coulthard A, McCombe PA. Correlation of Adrenomedullin gene expression in peripheral blood leukocytes with severity of ischemic stroke. Int J Neurosci 2013; 124:271-80. [DOI: 10.3109/00207454.2013.837462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Koyama T, Ochoa-Callejero L, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Arai T, Yoshizawa T, Iesato Y, Lei Y, Uetake R, Okimura A, Yamauchi A, Tanaka M, Igarashi K, Toriyama Y, Kawate H, Adams RH, Kawakami H, Mochizuki N, Martínez A, Shindo T. Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation 2013; 127:842-53. [PMID: 23355623 DOI: 10.1161/circulationaha.112.000756] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. METHODS AND RESULTS We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. CONCLUSIONS Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.
Collapse
Affiliation(s)
- Teruhide Koyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshizawa T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Iesato Y, Koyama T, Uetake R, Yang L, Yamauchi A, Tanaka M, Toriyama Y, Igarashi K, Nakada T, Kashihara T, Yamada M, Kawakami H, Nakanishi H, Taguchi R, Nakanishi T, Akazawa H, Shindo T. Novel regulation of cardiac metabolism and homeostasis by the adrenomedullin-receptor activity-modifying protein 2 system. Hypertension 2013; 61:341-51. [PMID: 23297372 DOI: 10.1161/hypertensionaha.111.00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adrenomedullin (AM) was identified as a vasodilating and hypotensive peptide mainly produced by the cardiovascular system. The AM receptor calcitonin receptor-like receptor associates with receptor activity-modifying protein (RAMP), one of the subtypes of regulatory proteins. Among knockout mice ((-/-)) of RAMPs, only RAMP2(-/-) is embryonically lethal with cardiovascular abnormalities that are the same as AM(-/-). This suggests that the AM-RAMP2 system is particularly important for the cardiovascular system. Although AM and RAMP2 are highly expressed in the heart from embryo to adulthood, their analysis has been limited by the embryonic lethality of AM(-/-) and RAMP2(-/-). For this study, we generated inducible cardiac myocyte-specific RAMP2(-/-) (C-RAMP2(-/-)). C-RAMP2(-/-) exhibited dilated cardiomyopathy-like heart failure with cardiac dilatation and myofibril disruption. C-RAMP2(-/-) hearts also showed changes in mitochondrial structure and downregulation of mitochondria-related genes involved in oxidative phosphorylation, β-oxidation, and reactive oxygen species regulation. Furthermore, the heart failure was preceded by changes in peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis. Metabolome and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) imaging analyses revealed early downregulation of cardiolipin, a mitochondrial membrane-specific lipid. Furthermore, primary-cultured cardiac myocytes from C-RAMP2(-/-) showed reduced mitochondrial membrane potential and enhanced reactive oxygen species production in a RAMP2 deletion-dependent manner. C-RAMP2(-/-) showed downregulated activation of cAMP response element binding protein (CREB), one of the main regulators of mitochondria-related genes. These data demonstrate that the AM-RAMP2 system is essential for cardiac metabolism and homeostasis. The AM-RAMP2 system is a promising therapeutic target of heart failure.
Collapse
Affiliation(s)
- Takahiro Yoshizawa
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Soo RA, Yong WP, Innocenti F. Systemic therapies for pancreatic cancer--the role of pharmacogenetics. Curr Drug Targets 2012; 13:811-28. [PMID: 22458528 DOI: 10.2174/138945012800564068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 02/23/2012] [Accepted: 03/27/2012] [Indexed: 12/17/2022]
Abstract
Effective systemic treatment of pancreatic cancer remains a major challenge, with progress hampered by drug resistance and treatment related toxicities. Currently available cytotoxic agents as monotherapy or in combination have provided only a modest survival benefit for patients with advanced disease. Disappointing phase III results with gemcitabine-based combinations in patients with advanced pancreatic cancer might be related to poor efficacy of systemic therapies in unselected patients. Future research strategies should prioritize identification of predictive markers through pharmacogenetic investigations. The individualization of patient treatment through pharmacogenetics may help to improve outcome by maximizing efficacy whilst lowering toxicity. This review provides an update on the pharmacogenetics of pancreatic cancer treatment and its influence on treatment benefits and toxicity.
Collapse
Affiliation(s)
- Ross A Soo
- Department of Hematology-Oncology, National University Health System, Singapore
| | | | | |
Collapse
|
29
|
Soo RA, Yong WP, Innocenti F. Systemic therapies for pancreatic cancer--the role of pharmacogenetics. Curr Drug Targets 2012. [PMID: 22458528 DOI: 10.1016/j.pestbp.2011.02.012.investigations] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effective systemic treatment of pancreatic cancer remains a major challenge, with progress hampered by drug resistance and treatment related toxicities. Currently available cytotoxic agents as monotherapy or in combination have provided only a modest survival benefit for patients with advanced disease. Disappointing phase III results with gemcitabine-based combinations in patients with advanced pancreatic cancer might be related to poor efficacy of systemic therapies in unselected patients. Future research strategies should prioritize identification of predictive markers through pharmacogenetic investigations. The individualization of patient treatment through pharmacogenetics may help to improve outcome by maximizing efficacy whilst lowering toxicity. This review provides an update on the pharmacogenetics of pancreatic cancer treatment and its influence on treatment benefits and toxicity.
Collapse
Affiliation(s)
- Ross A Soo
- Department of Hematology-Oncology, National University Health System, Singapore
| | | | | |
Collapse
|
30
|
Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y, Caron KM. Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J 2012; 27:590-600. [PMID: 23099649 DOI: 10.1096/fj.12-214080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adrenomedullin (AM) is a potent lymphangiogenic factor that promotes lymphatic endothelial cell (LEC) proliferation through a pharmacologically tractable G-protein-coupled receptor. Numerous types of human cancers have increased levels of AM; however, the functional consequences of this fact have not been characterized. Therefore, we evaluated whether modulating adrenomedullin (Adm) gene dosage within tumor cells affects lymphangiogenesis. Murine Lewis lung carcinoma (LLC) cells that overexpress or underexpress Adm were injected subcutaneously into C57BL/6 mice, and tumors were evaluated for growth and vascularization. A dosage range from ∼10 to 200% of wild-type Adm expression did not affect LLC proliferation in vitro or in vivo, nor did it affect angiogenesis. Notably, the dosage of Adm markedly and significantly influenced tumor lymphangiogenesis. Reduced Adm expression in tumors decreased the proliferation of LECs and the number of lymphatic vessels, while elevated tumor Adm expression led to enlarged lymphatic vessels. Moreover, overexpression of Adm in tumors induced sentinel lymph node lymphangiogenesis and led to an increased incidence of Ki67-positive foci within the lung. These data show that tumor-secreted AM is a critical factor for driving both tumor and lymph node lymphangiogenesis. Thus, pharmacological targeting of AM signaling may provide a new avenue for inhibition of tumor lymphangiogenesis.
Collapse
Affiliation(s)
- Natalie O Karpinich
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | | | | | | | | | | |
Collapse
|
31
|
mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 2012; 7:e37807. [PMID: 23115614 PMCID: PMC3480355 DOI: 10.1371/journal.pone.0037807] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/24/2012] [Indexed: 12/25/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most lethal form of thyroid neoplasia and represents the end stage of thyroid tumor progression. No effective treatment exists so far. ATC frequently derive from papillary thyroid carcinomas (PTC), which have a good prognosis. In this study, we analyzed the mRNA expression profiles of 59 thyroid tumors (11 ATC and 48 PTC) by microarrays. ATC and PTC showed largely overlapping mRNA expression profiles with most genes regulated in all ATC being also regulated in several PTC. 43% of the probes regulated in all the PTC are similarly regulated in all ATC. Many genes modulations observed in PTC are amplified in ATC. This illustrates the fact that ATC mostly derived from PTC. A molecular signature of aggressiveness composed of 9 genes clearly separates the two tumors. Moreover, this study demonstrates gene regulations corresponding to the ATC or PTC phenotypes like inflammatory reaction, epithelial to mesenchymal transition (EMT) and invasion, high proliferation rate, dedifferentiation, calcification and fibrosis processes, high glucose metabolism and glycolysis, lactate generation and chemoresistance. The main qualitative differences between the two tumor types bear on the much stronger EMT, dedifferentiation and glycolytic phenotypes showed by the ATC.
Collapse
|
32
|
Martínez-Herrero S, Larráyoz IM, Ochoa-Callejero L, García-Sanmartín J, Martínez A. Adrenomedullin as a growth and cell fate regulatory factor for adult neural stem cells. Stem Cells Int 2012; 2012:804717. [PMID: 23049570 PMCID: PMC3462413 DOI: 10.1155/2012/804717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/10/2023] Open
Abstract
The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin (AM). AM, a 52-amino acid peptide which exerts a plethora of physiological functions, acts as a growth and cell fate regulatory factor for adult neural stem and progenitor cells. AM regulates the proliferation rate and the differentiation into neurons, astrocytes, and oligodendrocytes of stem/progenitor cells, probably through the PI3K/Akt pathway. The active peptides derived from the AM gene are able to regulate the cytoskeleton dynamics, which is extremely important for mature neural cell morphogenesis. In addition, a defective cytoskeleton may impair cell cycle and migration, so AM may contribute to neural stem cell growth regulation by allowing cells to pass through mitosis. Regulation of AM levels may contribute to program stem cells for their use in medical therapies.
Collapse
Affiliation(s)
| | - Ignacio M. Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | | | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
33
|
Zhang W, Wang LJ, Xiao F, Wei Y, Ke W, Xin HB. Intermedin: a novel regulator for vascular remodeling and tumor vessel normalization by regulating vascular endothelial-cadherin and extracellular signal-regulated kinase. Arterioscler Thromb Vasc Biol 2012; 32:2721-32. [PMID: 22922959 DOI: 10.1161/atvbaha.112.300185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Intermedin (IMD), a member of calcitonin family, was suggested to play a role in angiogenesis and cancer. The aim of this study was to investigate the role of IMD in the angiogenic process and the underlying mechanism, and the possibility for it to be used as a target for angiogenesis-based anticancer therapies. METHODS AND RESULTS Using in vivo and in vitro 3-dimensional angiogenic models, we found that IMD induced a well-ordered vasculature with hierarchical structure and had a synergistic effect with vascular endothelial growth factor. Using RNA interference, real-time polymerase chain reaction, and Western blot analysis, we found that IMD alleviated the undesirable effects of vascular endothelial growth factor by restricting the excessive vessel sprouting and uneven lumen formation through the regulation of vascular endothelial-cadherin and identified its receptor on the endothelial cells. Both mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt activation were involved in the effects. Furthermore, using experimental tumor models, we demonstrated that IMD was involved in tumor angiogenesis, and the blockade of IMD severely impaired blood supply and eventually inhibited tumor growth. CONCLUSIONS We demonstrated that IMD played a critical role in the vascular remodeling process and tumor angiogenesis and may serve as a novel target for the development of angiogenesis-based anticancer therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
34
|
Kuwasako K, Kitamura K, Nagata S, Kato J. [Circulation control by adrenomedullin 1 receptor complex]. Nihon Yakurigaku Zasshi 2012; 140:8-13. [PMID: 22790226 DOI: 10.1254/fpj.140.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
35
|
Larrayoz IM, Ochoa-Callejero L, García-Sanmartín J, Vicario-Abejón C, Martínez A. Role of adrenomedullin in the growth and differentiation of stem and progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:175-234. [PMID: 22608560 DOI: 10.1016/b978-0-12-394308-8.00005-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells have captured the imagination of the general public by their potential as new therapeutic tools in the fight against degenerative diseases. This potential is based on their capability for self-renewal and at the same time for producing progenitor cells that will eventually provide the building blocks for tissue and organ regeneration. These processes are carefully orchestrated in the organism by means of a series of molecular cues. An emerging molecule which is responsible for some of these physiological responses is adrenomedullin, a 52-amino acid regulatory peptide which increases proliferation and regulates cell fate of stem cells of different origins. Adrenomedullin binds to specific membrane receptors in stem cells and induces several intracellular pathways such as those involving cAMP, Akt, or MAPK. Regulation of adrenomedullin levels may help in directing the growth and differentiation of stem cells for applications (e.g., cell therapy) both in vitro and in vivo.
Collapse
Affiliation(s)
- Ignacio M Larrayoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | | | | | | |
Collapse
|
36
|
Karpinich NO, Hoopes SL, Kechele DO, Lenhart PM, Caron KM. Adrenomedullin Function in Vascular Endothelial Cells: Insights from Genetic Mouse Models. Curr Hypertens Rev 2011; 7:228-239. [PMID: 22582036 PMCID: PMC3349984 DOI: 10.2174/157340211799304761] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/18/2011] [Accepted: 08/21/2011] [Indexed: 01/29/2023]
Abstract
Adrenomedullin is a highly conserved peptide implicated in a variety of physiological processes ranging from pregnancy and embryonic development to tumor progression. This review highlights past and present studies that have contributed to our current appreciation of the important roles adrenomedullin plays in both normal and disease conditions. We provide a particular emphasis on the functions of adrenomedullin in vascular endothelial cells and how experimental approaches in genetic mouse models have helped to drive the field forward.
Collapse
Affiliation(s)
- Natalie O Karpinich
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
37
|
Franco-Montoya ML, Boucherat O, Thibault C, Chailley-Heu B, Incitti R, Delacourt C, Bourbon JR. Profiling target genes of FGF18 in the postnatal mouse lung: possible relevance for alveolar development. Physiol Genomics 2011; 43:1226-40. [PMID: 21878612 DOI: 10.1152/physiolgenomics.00034.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Better understanding alveolarization mechanisms could help improve prevention and treatment of diseases characterized by reduced alveolar number. Although signaling through fibroblast growth factor (FGF) receptors is essential for alveolarization, involved ligands are unidentified. FGF18, the expression of which peaks coincidentally with alveolar septation, is likely to be involved. Herein, a mouse model with inducible, lung-targeted FGF18 transgene was used to advance the onset of FGF18 expression peak, and genome-wide expression changes were determined by comparison with littermate controls. Quantitative RT-PCR was used to confirm expression changes of selected up- and downregulated genes and to determine their expression profiles in the course of lung postnatal development. This allowed identifying so-far unknown target genes of the factor, among which a number are known to be involved in alveolarization. The major target was adrenomedullin, a promoter of lung angiogenesis and alveolar development, whose transcript was increased 6.9-fold. Other genes involved in angiogenesis presented marked expression increases, including Wnt2 and cullin2. Although it appeared to favor cell migration notably through enhanced expression of Snai1/2, FGF18 also induced various changes consistent with prevention of epithelial-mesenchymal transition. Together with antifibrotic effects driven by induction of E prostanoid receptor 2 and repression of numerous myofibroblast markers, this could prevent alveolar septation-driving mechanisms from becoming excessive and deleterious. Last, FGF18 up- or downregulated genes of extracellular matrix components and epithelial cell markers previously shown to be up- or downregulated during alveolarization. These findings therefore argue for an involvement of FGF18 in the control of various developmental events during the alveolar stage.
Collapse
|
38
|
Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Takei Y, Kato J. Shared and separate functions of the RAMP-based adrenomedullin receptors. Peptides 2011; 32:1540-50. [PMID: 21645567 DOI: 10.1016/j.peptides.2011.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM) is a novel hypotensive peptide that exerts a variety of strongly protective effects against multiorgan damage. AM-specific receptors were first identified as heterodimers composed of calcitonin-receptor-like receptor (CLR), a G protein coupled receptor, and one of two receptor activity-modifying proteins (RAMP2 or RAMP3), which are accessory proteins containing a single transmembrane domain. RAMPs are required for the surface delivery of CLR and the determination of its phenotype. CLR/RAMP2 (AM₁ receptor) is more highly AM-specific than CLR/RAMP3 (AM₂ receptor). Although there have been no reports showing differences in intracellular signaling via the two AM receptors, in vitro studies have shed light on their distinct trafficking and functionality. In addition, the tissue distributions of RAMP2 and RAMP3 differ, and their gene expression is differentially altered under pathophysiological conditions, which is suggestive of the separate roles played by AM₁ and AM₂ receptors in vivo. Both AM and the AM₁ receptor, but not the AM₂ receptor, are crucial for the development of the fetal cardiovascular system and are able to effectively protect against various vascular diseases. However, AM₂ receptors reportedly play an important role in maintaining a normal body weight in old age and may be involved in immune function. In this review article, we focus on the shared and separate functions of the AM receptor subtypes and also discuss the potential for related drug discovery. In addition, we mention their possible function as receptors for AM2 (or intermedin), an AM-related peptide whose biological functions are similar to those of AM.
Collapse
Affiliation(s)
- Kenji Kuwasako
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Angiogenic roles of adrenomedullin through vascular endothelial growth factor induction. Neuroreport 2011; 22:442-7. [DOI: 10.1097/wnr.0b013e32834757e4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Sustained-release adrenomedullin ointment accelerates wound healing of pressure ulcers. ACTA ACUST UNITED AC 2011; 168:21-6. [DOI: 10.1016/j.regpep.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/03/2011] [Accepted: 02/18/2011] [Indexed: 11/23/2022]
|
41
|
Guidolin D, Albertin G, Oselladore B, Sorato E, Rebuffat P, Mascarin A, Ribatti D. The pro-angiogenic activity of urotensin-II on human vascular endothelial cells involves ERK1/2 and PI3K signaling pathways. ACTA ACUST UNITED AC 2010; 162:26-32. [PMID: 20171992 DOI: 10.1016/j.regpep.2010.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/17/2009] [Accepted: 02/11/2010] [Indexed: 02/07/2023]
Abstract
Human vascular endothelial cells express the urotensin-II (U-II) receptor and exhibit a strong in vitro angiogenic response to the peptide. Thus, in the present study an in vitro model, based on human umbilical vein endothelial cells (HUVEC) cultured on Matrigel, was used to characterize more in detail the signaling pathways that control the pro-angiogenic action of U-II. The activation of the U-II receptor (UT) was associated with an increase of intracellular calcium concentration. Both calcium rise and pro-angiogenic effect of the peptide can be blocked by U73122, a selective inhibitor of phospholipase-C, indicating that the signal transduction from UT mainly involves the phospholipase-C/IP(3) pathway. As far as the downstream signaling pathways are concerned, western blot analyses and experiments with specific inhibitors indicated that the U-II-induced self-organization of the cells into capillary-like structures was PKC dependent and involved the activation of the ERK1/2, but not p38-MAPK, transduction pathway. Interestingly, the pharmacological inhibition of PI3K (obtained with LY294002), hindered the capacity of U-II to induce a proangiogenic effect on HUVEC, suggesting that PI3K-dependent pathways also play a role in regulating the process.
Collapse
Affiliation(s)
- Diego Guidolin
- Departments of Human Anatomy and Physiology (Section of Anatomy), University of Padova Medical School, Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Smith RS, Gao L, Bledsoe G, Chao L, Chao J. Intermedin is a new angiogenic growth factor. Am J Physiol Heart Circ Physiol 2009; 297:H1040-7. [PMID: 19592612 DOI: 10.1152/ajpheart.00404.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermedin (IMD) is a newly discovered peptide closely related to adrenomedullin. We recently reported that IMD gene delivery prevented kidney damage and capillary loss in a rat model of chronic renal injury. In this study, we evaluated the role of IMD in angiogenesis in the ischemic hindlimb. Adenovirus containing human IMD or control adenovirus (Ad.Null) was injected into the adductor muscles of rats immediately after femoral artery ligation. The expression of human IMD was detected in the skeletal muscle 5 days after the viral injection. Blood perfusion in the ischemic hindlimb was monitored by laser-Doppler imaging from 1 to 3 wk after gene delivery. When compared with animals receiving Ad.Null, those with IMD gene transfer resulted in a time-dependent increase in blood perfusion. IMD gene delivery also increased capillary and arteriole density in ischemic hindlimb, identified by anti-CD-31 and alpha-smooth muscle actin immunostaining. Angiogenesis promoted by IMD was confirmed by increased capillary formation and hemoglobin content in Matrigel implants containing IMD peptide in mice. In cultured endothelial cells, IMD induced cell migration and tube formation, and these effects were blocked by the inhibition of extracellular signal-regulated kinase (ERK), Akt, nitric oxide (NO) synthase (NOS), vascular endothelial growth factor receptor-2 (VEGFR-2), and anti-IMD-neutralizing antibody. IMD was found to increase the phosphorylation of ERK, Akt, and endothelial NOS, as well as to augment NO formation, VEGF, and VEGFR-2 synthesis. Taken together, these results indicate that IMD enhances angiogenesis through ERK, Akt/NOS/NO, and VEGF/VEGFR-2 signaling pathways and raises the potential of IMD gene or peptide administration in the modulation of endothelial dysfunction.
Collapse
Affiliation(s)
- Robert S Smith
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425-2211, USA
| | | | | | | | | |
Collapse
|
43
|
Intratracheal gene transfer of adrenomedullin using polyplex nanomicelles attenuates monocrotaline-induced pulmonary hypertension in rats. Mol Ther 2009; 17:1180-6. [PMID: 19337232 DOI: 10.1038/mt.2009.63] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive PAH and right ventricular failure. Despite recent advances in therapeutic approaches using prostanoids, endothelin antagonists, and so on, PAH remains a challenging condition. To develop a novel therapeutic approach, we have established a nonviral gene delivery system of poly(ethylene glycol) (PEG)-based block catiomers, which form a polyplex nanomicelle with a nanoscaled core-shell structure in the presence of DNA. The polyplex nanomicelle from PEG-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-P[Asp(DET)]), having ethylenediamine units at the side chain, showed ~100-fold increase in luciferase transgene expression activity in mouse lung via intratracheal administration with a minimal toxicity compared with the polyplex from linear poly(ethylenimine) (LPEI). The transfection activity was highest on day 3 after administration and remained detectable until day 14. PEG-b-P[Asp(DET)] polyplex nanomicelles were formulated with a therapeutic plasmid bearing the human adrenomedullin (AM) gene and intratracheally administered to rats with monocrotaline-induced pulmonary hypertension. The right ventricular pressure significantly decreased 3 days after administration as confirmed by a notable increase of pulmonary human AM mRNA levels. Intratracheal administration of PEG-b-P[Asp-(DET)] polyplex nanomicelles showed remarkable therapeutic efficacy with PAH animal models without compromising biocompatibility.
Collapse
|
44
|
Sekiguchi H, Ii M, Losordo DW. The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. J Cell Physiol 2009; 219:235-42. [PMID: 19115244 DOI: 10.1002/jcp.21672] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial progenitor cells (EPCs) are a subset of the total mononuclear cell population (tMNCs) that possess an enhanced potential for differentiation within the endothelial-cell lineage. Typically, EPCs are selected from tMNCs via the expression of both hematopoietic stem-cell markers and endothelial-cell markers, such as CD34, or by culturing tMNCs in media selective for endothelial cells. Both EPCs and tMNCs participate in vascular growth and regeneration, and their potential use for treatment of myocardial injury or disease has been evaluated in early-phase clinical studies. Direct comparisons between EPCs and tMNCs are rare, but the available evidence appears to favor EPCs, particularly CD34+ cells, and the potency of EPCs may be increased as much as 30-fold through genetic modification. However, these observations must be interpreted with caution because clinical investigations of EPC therapy are ongoing. We anticipate that with continued development, EPC therapy will become a safe and effective treatment option for patients with acute myocardial infarction or chronic ischemic disease.
Collapse
Affiliation(s)
- Haruki Sekiguchi
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
45
|
Dunworth WP, Caron KM. G protein-coupled receptors as potential drug targets for lymphangiogenesis and lymphatic vascular diseases. Arterioscler Thromb Vasc Biol 2009; 29:650-6. [PMID: 19265032 DOI: 10.1161/atvbaha.109.185066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are widely expressed cell surface receptors that have been successfully exploited for the treatment of a variety of human diseases. Recent studies in genetically engineered mouse models have led to the identification of several GPCRs important for lymphatic vascular development and function. The adrenomedullin receptor, which consists of an oligomer between calcitonin receptor-like receptor and receptor activity modifying protein 2, is required for normal lymphatic vascular development and regulates lymphatic capillary permeability in mice. Numerous studies also suggest that lysophospholipid receptors are involved in the development of lymphatic vessels and lymphatic endothelial cell permeability. Given our current lack of pharmacological targets for the treatment of lymphatic vascular diseases like lymphedema, the continued identification and study of GPCRs in lymphatic endothelial cells may eventually lead to major breakthroughs and new pharmacological strategies for the treatment of lymphedema.
Collapse
Affiliation(s)
- William P Dunworth
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
46
|
Sadler AJ, Pugazhendhi D, Darbre PD. Use of global gene expression patterns in mechanistic studies of oestrogen action in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 2009; 114:21-32. [PMID: 19167489 DOI: 10.1016/j.jsbmb.2008.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/31/2008] [Indexed: 12/11/2022]
Abstract
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are downregulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated > or =2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times.
Collapse
Affiliation(s)
- A J Sadler
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | | | | |
Collapse
|
47
|
Schultheis AM, Lurje G, Rhodes KE, Zhang W, Yang D, Garcia AA, Morgan R, Gandara D, Scudder S, Oza A, Hirte H, Fleming G, Roman L, Lenz HJ. Polymorphisms and clinical outcome in recurrent ovarian cancer treated with cyclophosphamide and bevacizumab. Clin Cancer Res 2009; 14:7554-63. [PMID: 19010874 DOI: 10.1158/1078-0432.ccr-08-0351] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE This study was designed to evaluate the associations between angiogenesis gene polymorphisms and clinical outcome in ovarian cancer patients treated with low-dose cyclophosphamide and bevacizumab. EXPERIMENTAL DESIGN Seventy recurrent/metastatic epithelial ovarian cancer patients were enrolled in a phase II clinical trial. Genomic DNA was available from 53 blood samples. Polymorphisms were analyzed using the PCR-RFLP protocol. A 5' end 33P gammaATP-labeled PCR protocol was used to analyze dinucleotide repeats. RESULTS Patients genotyped A/A or A/T for the IL-8 T-251A gene polymorphism had a statistically significant lower response rate (19%; 0%) than those homozygous T/T (50%; P = 0.006, Fisher's exact test). Patients carrying a minimum one C allele (C/C; C/T) of the CXCR2 C+785T polymorphism showed a median progression-free survival (PFS) of 7.4 months compared with the PFS of 3.7 months for those homozygous T/T (P = 0.026, log-rank test). Patients with the VEGF C+936T polymorphism C/T genotype had a longer median PFS of 11.8 months, compared with those with the C/C and T/T genotype, which had median PFS of 5.5 months and 3.2 months, respectively (P = 0.061, log-rank test). Patients carrying both AM 3'end alleles < 14 CA repeats had the shortest median PFS of 3.4 months; patients with at least one allele > 14 repeats or both alleles > 14 repeats showed a median PFS of 6.4 months and 7.2 months, respectively (P = 0.008, log-rank test). CONCLUSION Our data suggest that the IL-8 A-251T polymorphism may be a molecular predictor of response to bevacizumab-based chemotherapy. The CXCR2 C+785T, VEGF C+936T single nucleotide polymorphisms and the AM 3' dinucleotide repeat polymorphisms may be molecular markers for PFS in ovarian cancer patients.
Collapse
Affiliation(s)
- Anne M Schultheis
- University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Recent investigations have suggested that it might be possible to reverse the pathology of pulmonary arterial hypertension (PAH), a disorder that can be rapidly progressive and fatal despite current treatments including i.v. prostacyclin. This review will address the cellular and molecular processes implicated in clinical, genetic, and experimental studies as underlying the pulmonary vascular abnormalities associated with PAH. Emerging treatments are aimed at inducing apoptosis of abnormal vascular cells that obstruct blood flow and at promoting regeneration of "lost" distal vasculature.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305-5162, USA.
| |
Collapse
|
49
|
Rabinovitch M. Pathobiology of pulmonary hypertension. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:369-99. [PMID: 18039104 DOI: 10.1146/annurev.pathol.2.010506.092033] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A variety of conditions can lead to the development of pulmonary arterial hypertension (PAH). Current treatments can improve symptoms and reduce the severity of the hemodynamic abnormality, but most patients remain quite limited, and deterioration in their condition necessitates a lung transplant. This review discusses current experimental and clinical studies that investigate the pathobiology of PAH. An emerging theme is the consideration of ways in which one might reverse the advanced occlusive structural changes in the pulmonary circulation causing PAH. The current debate concerning the role of regeneration through stem cells is presented. This review also highlights investigations in a number of laboratories relating the pathobiology of PAH to mutations causing loss of function of bone morphogenetic protein receptor II in patients with familial PAH, as well as sporadic cases.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
50
|
Jin D, Harada K, Ohnishi S, Yamahara K, Kangawa K, Nagaya N. Adrenomedullin induces lymphangiogenesis and ameliorates secondary lymphoedema. Cardiovasc Res 2008; 80:339-45. [PMID: 18708640 DOI: 10.1093/cvr/cvn228] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Adrenomedullin (AM) is a multifunctional peptide hormone that plays a significant role in vasodilation and angiogenesis. Lymphoedema is a common but refractory disorder that is difficult to be treated with conventional therapy. We therefore investigated whether AM promotes lymphangiogenesis and improves lymphoedema. METHODS AND RESULTS The effects of AM on lymphatic endothelial cells (LEC) were investigated. AM promoted proliferation, migration, and network formation of cultured human lymphatic microvascular endothelial cells (HLMVEC). AM increased intracellular cyclic adenosine monophosphate (cAMP) level in HLMVEC. The cell proliferation induced by AM was inhibited by a cAMP antagonist and mitogen-activated protein kinase kinase (MEK) inhibitors. Phosphorylated extracellular signal-regulated kinase (ERK) in HLMVEC was increased by AM. Continuous administration of AM (0.05 microg/kg/min) to BALB/c mice with tail lymphoedema resulted in a decrease in lymphoedema thickness. AM treatment increased the number of lymphatic vessels and blood vessels in the injury site. CONCLUSION AM promoted LEC proliferation at least in part through the cAMP/MEK/ERK pathway, and infusion of AM induced lymphangiogenesis and improved lymphoedema in mice.
Collapse
Affiliation(s)
- Donghao Jin
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|