1
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
2
|
Sjúrðarson T, Bejder J, Breenfeldt Andersen A, Bonne T, Kyhl K, Róin T, Patursson P, Oddmarsdóttir Gregersen N, Skoradal M, Schliemann M, Lindegaard M, Weihe P, Mohr M, Nordsborg NB. Effect of angiotensin-converting enzyme inhibition on cardiovascular adaptation to exercise training. Physiol Rep 2022; 10:e15382. [PMID: 35822425 PMCID: PMC9277514 DOI: 10.14814/phy2.15382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) activity may be one determinant of adaptability to exercise training, but well-controlled studies in humans without confounding conditions are lacking. Thus, the purpose of the present study was to investigate whether ACE inhibition affects cardiovascular adaptations to exercise training in healthy humans. Healthy participants of both genders (40 ± 7 years) completed a randomized, double-blind, placebo-controlled trial. Eight weeks of exercise training combined with placebo (PLA, n = 25) or ACE inhibitor (ACEi, n = 23) treatment was carried out. Before and after the intervention, cardiovascular characteristics were investigated. Mean arterial blood pressure was reduced (p < 0.001) by -5.5 [-8.4; -2.6] mmHg in ACEi , whereas the 0.7 [-2.0; 3.5] mmHg fluctuation in PLA was non-significant. Maximal oxygen uptake increased (p < 0.001) irrespective of ACE inhibitor treatment by 13 [8; 17] % in ACEi and 13 [9; 17] % in PLA. In addition, skeletal muscle endurance increased (p < 0.001) to a similar extent in both groups, with magnitudes of 82 [55; 113] % in ACEi and 74 [48; 105] % in PLA. In contrast, left atrial volume decreased (p < 0.05) by -9 [-16; -2] % in ACEi , but increased (p < 0.01) by 14 [5; 23] % in PLA. Total hemoglobin mass was reduced (p < 0.01) by -3 [-6; -1] % in ACEi , while a non-significant numeric increase of 2 [-0.4; 4] % existed in PLA. The lean mass remained constant in ACEi but increased (p < 0.001) by 3 [2; 4] % in PLA. In healthy middle-aged adults, 8 weeks of high-intensity exercise training increases maximal oxygen uptake and skeletal muscle endurance irrespective of ACE inhibitor treatment. However, ACE inhibitor treatment counteracts exercise training-induced increases in lean mass and left atrial volume. ACE inhibitor treatment compromises total hemoglobin mass.
Collapse
Affiliation(s)
- Tórur Sjúrðarson
- Center of Health Science, Faculty of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
- Department of Nutrition, Exercise, and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Jacob Bejder
- Department of Nutrition, Exercise, and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | | | - Thomas Bonne
- Department of Nutrition, Exercise, and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Kasper Kyhl
- Department of Cardiology at Copenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Tóra Róin
- Center of Health Science, Faculty of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Poula Patursson
- Department of Surgery, The Faroese Hospital SystemTórshavnFaroe Islands
| | | | - May‐Britt Skoradal
- Center of Health Science, Faculty of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
| | - Michael Schliemann
- Department of Nutrition, Exercise, and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Malte Lindegaard
- Department of Nutrition, Exercise, and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| | - Pál Weihe
- Center of Health Science, Faculty of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
- Department of Occupational Medicine and Public HealthThe Faroese Hospital SystemTórshavnFaroe Islands
| | - Magni Mohr
- Center of Health Science, Faculty of Health ScienceUniversity of the Faroe IslandsTórshavnFaroe Islands
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC)Faculty of Health Sciences, University of Southern DenmarkOdenseDenmark
| | - Nikolai B. Nordsborg
- Department of Nutrition, Exercise, and Sports (NEXS)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Improving the comprehension of sarcopenic state determinants: An multivariate approach involving hormonal, nutritional, lifestyle and genetic variables. Mech Ageing Dev 2018; 173:21-28. [PMID: 29807051 DOI: 10.1016/j.mad.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 12/16/2022]
Abstract
It is known that sarcopenia is a multifaceted phenomenon, which involves genetic, nutritional, hormonal and living habits aspects. Then, an integrated analysis, as a multivariate approach, could improve the comprehension about the determinants of sarcopenic state in old adults. The present study aimed to investigate the interaction among serum vitamin D, daily caloric and protein intake, lifestyle habits, ACE I/D gene polymorphism and sarcopenic state in community-dwelling old adults. One hundred one community-dwelling old adults were clinically stratified as sarcopenic or non-sarcopenic. Serum vitamin D, daily caloric and protein intake, lifestyle habits (smoking, physical activity level and sedentary behavior) and ACE I/D gene polymorphism were recorded. A multivariate logistic regression technique was applied to investigate the interaction among the selected independent variables and the sarcopenic state. The independent variables age, smoking, serum Vitamin D and ACE I/D polymorphism achieved the statistical criteria to be inserted in the multivariate analysis. After a stepwise procedure from the multivariate logistic regression, the variables age, serum Vitamin D and ACE I/D polymorphism remained, together, in the final model. Sarcopenic state was significantly associated to older age, II-genotype and low serum Vitamin D in old adults from 60 years old.
Collapse
|
4
|
Springer J, von Haehling S. ACE Inhibitors and Sarcopenia: Covering All the BASEs? Drugs Aging 2018; 33:839-840. [PMID: 27830566 DOI: 10.1007/s40266-016-0417-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jochen Springer
- Department of Cardiology and Pneumology, Institute of Innovative Clinical Trials, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Institute of Innovative Clinical Trials, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
5
|
Miller BF, Hamilton KL, Majeed ZR, Abshire SM, Confides AL, Hayek AM, Hunt ER, Shipman P, Peelor FF, Butterfield TA, Dupont‐Versteegden EE. Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb. J Physiol 2018; 596:83-103. [PMID: 29090454 PMCID: PMC5746529 DOI: 10.1113/jp275089] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Muscle fibre cross sectional area is enhanced with massage in the form of cyclic compressive loading during regrowth after atrophy. Massage enhances protein synthesis of the myofibrillar and cytosolic, but not the mitochondrial fraction, in muscle during regrowth. Focal adhesion kinase activation and satellite cell number are elevated in muscles undergoing massage during regrowth. Muscle fibre cross sectional area and protein synthesis of the myofibrillar fraction, but not DNA synthesis, are elevated in muscle of the contralateral non-massaged limb. Massage in the form of cyclic compressive loading is a potential anabolic intervention during muscle regrowth after atrophy. ABSTRACT Massage, in the form of cyclic compressive loading (CCL), is associated with multiple health benefits, but its potential anabolic effect on atrophied muscle has not been investigated. We hypothesized that the mechanical activity associated with CCL induces an anabolic effect in skeletal muscle undergoing regrowth after a period of atrophy. Fischer-Brown Norway rats at 10 months of age were hindlimb unloaded for a period of 2 weeks. The rats were then allowed reambulation with CCL applied at a 4.5 N load at 0.5 Hz frequency for 30 min every other day for four bouts during a regrowth period of 8 days. Muscle fibre cross sectional area was enhanced by 18% with massage during regrowth compared to reloading alone, and this was accompanied by elevated myofibrillar and cytosolic protein as well as DNA synthesis. Focal adhesion kinase phosphorylation indicated that CCL increased mechanical stimulation, while a higher number of Pax7+ cells likely explains the elevated DNA synthesis. Surprisingly, the contralateral non-massaged limb exhibited a comparable 17% higher muscle fibre size compared to reloading alone, and myofibrillar protein synthesis, but not DNA synthesis, was also elevated. We conclude that massage in the form of CCL induces an anabolic response in muscles regrowing after an atrophy-inducing event. We suggest that massage can be used as an intervention to aid in the regrowth of muscle lost during immobilization.
Collapse
Affiliation(s)
- Benjamin F. Miller
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Karyn L. Hamilton
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Zana R. Majeed
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Sarah M. Abshire
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Amy L. Confides
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Amanda M. Hayek
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Emily R. Hunt
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Patrick Shipman
- Department of MathematicsColorado State UniversityFort CollinsCO80523‐1582USA
| | - Frederick F. Peelor
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Timothy A. Butterfield
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Esther E. Dupont‐Versteegden
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| |
Collapse
|
6
|
Santos-Lozano A, Santamarina A, Pareja-Galeano H, Sanchis-Gomar F, Fiuza-Luces C, Cristi-Montero C, Bernal-Pino A, Lucia A, Garatachea N. The genetics of exceptional longevity: Insights from centenarians. Maturitas 2016; 90:49-57. [PMID: 27282794 DOI: 10.1016/j.maturitas.2016.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 01/07/2023]
Abstract
As the world population ages, so the prevalence increases of individuals aged 100 years or more, known as centenarians. Reaching this age has been described as exceptional longevity (EL) and is attributed to both genetic and environmental factors. Many genetic variations known to affect life expectancy exist in centenarians. This review of studies conducted on centenarians and supercentenarians (older than 110 years) updates knowledge of the impacts on longevity of the twenty most widely investigated single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Alejandro Santos-Lozano
- Research Institute of Hospital 12 de Octubre ('i+12'), Madrid, Spain; GIDFYS, Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
| | | | - Helios Pareja-Galeano
- Research Institute of Hospital 12 de Octubre ('i+12'), Madrid, Spain; European University of Madrid, Madrid, Spain
| | | | | | - Carlos Cristi-Montero
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Alejandro Lucia
- Research Institute of Hospital 12 de Octubre ('i+12'), Madrid, Spain; European University of Madrid, Madrid, Spain
| | - Nuria Garatachea
- Research Institute of Hospital 12 de Octubre ('i+12'), Madrid, Spain; Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte, GENUD (Growth, Exercise, Nutrition and Development) research group, Instituto Agroalimentario de Aragón -IA2- (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
7
|
Huey KA, Smith SA, Sulaeman A, Breen EC. Skeletal myofiber VEGF is necessary for myogenic and contractile adaptations to functional overload of the plantaris in adult mice. J Appl Physiol (1985) 2015; 120:188-95. [PMID: 26542520 DOI: 10.1152/japplphysiol.00638.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
The ability to enhance muscle size and function is important for overall health. In this study, skeletal myofiber vascular endothelial growth factor (VEGF) was hypothesized to regulate hypertrophy, capillarity, and contractile function in response to functional overload (FO). Adult myofiber-specific VEGF gene-ablated mice (skmVEGF(-/-)) and wild-type (WT) littermates underwent plantaris FO or sham surgery (SHAM). Mass, morphology, in vivo function, IGF-1, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and Akt were measured at 7, 14, and 30 days. FO resulted in hypertrophy in both genotypes, but fiber sizes were 13% and 23% smaller after 14 and 30 days, respectively, and mass 15% less after 30 days in skmVEGF(-/-) than WT. FO increased isometric force after 30 days in WT and decreased in skmVEGF(-/-) after 7 and 14 days. FO also resulted in a reduction in specific force and this differed between genotypes at 14 days. Fatigue resistance improved only in 14-day WT mice. Capillary density was decreased by FO in both genotypes. However, capillary-to-fiber ratios were 19% and 15% lower in skmVEGF(-/-) than WT at the 14- and 30-day time points, respectively. IGF-1 was increased by FO at all time points and was 45% and 40% greater in skmVEGF(-/-) than WT after 7 and 14 days, respectively. bFGF, HGF, total Akt, and phospho-Akt, independent of VEGF expression, and VEGF levels in WT were increased after 7 days of FO. These findings suggest VEGF-dependent capillary maintenance supports muscle growth and function in overloaded muscle and is not rescued by compensatory IGF-1 expression.
Collapse
Affiliation(s)
- Kimberly A Huey
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Sophia A Smith
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Alexis Sulaeman
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
8
|
Nicklas BJ. Heterogeneity of Physical Function Responses to Exercise in Older Adults: Possible Contribution of Variation in the Angiotensin-1 Converting Enzyme (ACE) Gene? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 5:575-84. [PMID: 26162198 DOI: 10.1177/1745691610383512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Behavioral exercise interventions, aimed at improving either aerobic endurance or muscular strength, are currently the only therapy found, on average, to consistently retard loss of physical function in aging adults. However, not all individuals experience the same magnitude of benefit from a given exercise treatment, and certain persons may respond more favorably to a particular mode of exercise than another. Research now shows that genetic predisposition is one of the factors accounting for interindividual differences in responses to exercise as well as differences in the propensity to engage in exercise. This article discusses how a common variant in a single gene (the angiotensin-1 converting enzyme gene) could emerge as a prospective tool to identify older individuals more likely to benefit from and adhere to a specific type of exercise activity over another type.
Collapse
Affiliation(s)
- Barbara J Nicklas
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| |
Collapse
|
9
|
Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev 2015; 35:437-63. [PMID: 25764065 DOI: 10.1002/med.21343] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Claudio Cabello-Verrugio
- Laboratorio de Biología y Fisiopatología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
10
|
Simon CB, Lee-McMullen B, Phelan D, Gilkes J, Carter CS, Buford TW. The renin-angiotensin system and prevention of age-related functional decline: where are we now? AGE (DORDRECHT, NETHERLANDS) 2015; 37:9753. [PMID: 25663422 PMCID: PMC4320995 DOI: 10.1007/s11357-015-9753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/27/2015] [Indexed: 05/19/2023]
Abstract
Declining physical function is a major health problem for older adults as it is associated with multiple comorbidities and mortality. Exercise has been shown to improve physical function, though response to exercise is variable. Conversely, drugs targeting the renin-angiotensin system (RAS) pathway, including angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs), are also reported to improve physical function. In the past decade, significant strides have been made to understand the complexity and specificity of the RAS system as it pertains to physical function in older adults. Prior findings have also determined that interactions between antihypertensive medications and exercise may influence physical function above and beyond either factor alone. We review the latest research on RAS, exercise, and physical function for older adults. We also outline future research aims in this area, including genetic influences and clinical phenotyping, for the purpose of maintaining or improving physical function through tailored treatments.
Collapse
Affiliation(s)
- Corey B. Simon
- />Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL USA
| | - Brittany Lee-McMullen
- />Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL USA
| | - Dane Phelan
- />Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL USA
| | - Janine Gilkes
- />Department of Medicine, College of Medicine, University of Florida, Gainesville, FL USA
| | - Christy S. Carter
- />Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL USA
| | - Thomas W. Buford
- />Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL USA
- />Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL USA
| |
Collapse
|
11
|
Buford TW, Hsu FC, Brinkley TE, Carter CS, Church TS, Dodson JA, Goodpaster BH, McDermott MM, Nicklas BJ, Yank V, Johnson JA, Pahor M. Genetic influence on exercise-induced changes in physical function among mobility-limited older adults. Physiol Genomics 2014; 46:149-58. [PMID: 24423970 DOI: 10.1152/physiolgenomics.00169.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To date, physical exercise is the only intervention consistently demonstrated to attenuate age-related declines in physical function. However, variability exists in seniors' responsiveness to training. One potential source of variability is the insertion (I allele) or deletion (D allele) of a 287 bp fragment in intron 16 of the angiotensin-converting enzyme (ACE) gene. This polymorphism is known to influence a variety of physiological adaptions to exercise. However, evidence is inconclusive regarding the influence of this polymorphism on older adults' functional responses to exercise. This study aimed to evaluate the association of ACE I/D genotypes with changes in physical function among Caucasian older adults (n = 283) following 12 mo of either structured, multimodal physical activity or health education. Measures of physical function included usual-paced gait speed and performance on the Short Physical Performance Battery (SPPB). After checking Hardy-Weinberg equilibrium, we used using linear regression to evaluate the genotype*treatment interaction for each outcome. Covariates included clinic site, body mass index, age, sex, baseline score, comorbidity, and use of angiotensin receptor blockers or ACE inhibitors. Genotype frequencies [II (19.4%), ID (42.4%), DD (38.2%)] were in Hardy-Weinberg equilibrium (P > 0.05). The genotype*treatment interaction was statistically significant for both gait speed (P = 0.002) and SPPB (P = 0.020). Exercise improved gait speed by 0.06 ± 0.01 m/sec and SPPB score by 0.72 ± 0.16 points among those with at least one D allele (ID/DD carriers), but function was not improved among II carriers. Thus, ACE I/D genotype appears to play a role in modulating functional responses to exercise training in seniors.
Collapse
Affiliation(s)
- Thomas W Buford
- University of Florida, College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gorman JL, Liu STK, Slopack D, Shariati K, Hasanee A, Olenich S, Olfert IM, Haas TL. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS One 2014; 9:e85537. [PMID: 24416421 PMCID: PMC3887063 DOI: 10.1371/journal.pone.0085537] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensinogen/metabolism
- Animals
- Cell Line
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Losartan/pharmacology
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Knockout
- Microvessels/cytology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Neovascularization, Physiologic/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Jennifer L. Gorman
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sammy T. K. Liu
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Dara Slopack
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Khashayar Shariati
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Adam Hasanee
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sara Olenich
- West Virginia University School of Medicine, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, Morgantown, West Virginia, United States of America
| | - I. Mark Olfert
- West Virginia University School of Medicine, Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, Morgantown, West Virginia, United States of America
| | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Eider J, Cieszczyk P, Ficek K, Leonska-Duniec A, Sawczuk M, Maciejewska-Karlowska A, Zarebska A. The association between D allele of the ACE gene and power performance in Polish elite athletes. Sci Sports 2013. [DOI: 10.1016/j.scispo.2012.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Yoshida T, Galvez S, Tiwari S, Rezk BM, Semprun-Prieto L, Higashi Y, Sukhanov S, Yablonka-Reuveni Z, Delafontaine P. Angiotensin II inhibits satellite cell proliferation and prevents skeletal muscle regeneration. J Biol Chem 2013; 288:23823-32. [PMID: 23831688 DOI: 10.1074/jbc.m112.449074] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5(nLacZ/+) mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, Bishop DJ. Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Med 2013; 43:803-17. [DOI: 10.1007/s40279-013-0059-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Garatachea N, Lucía A. Genes and the ageing muscle: a review on genetic association studies. AGE (DORDRECHT, NETHERLANDS) 2013; 35:207-233. [PMID: 22037866 PMCID: PMC3543750 DOI: 10.1007/s11357-011-9327-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
Western populations are living longer. Ageing decline in muscle mass and strength (i.e. sarcopenia) is becoming a growing public health problem, as it contributes to the decreased capacity for independent living. It is thus important to determine those genetic factors that interact with ageing and thus modulate functional capacity and skeletal muscle phenotypes in older people. It would be also clinically relevant to identify 'unfavourable' genotypes associated with accelerated sarcopenia. In this review, we summarized published information on the potential associations between some genetic polymorphisms and muscle phenotypes in older people. A special emphasis was placed on those candidate polymorphisms that have been more extensively studied, i.e. angiotensin-converting enzyme (ACE) gene I/D, α-actinin-3 (ACTN3) R577X, and myostatin (MSTN) K153R, among others. Although previous heritability studies have indicated that there is an important genetic contribution to individual variability in muscle phenotypes among old people, published data on specific gene variants are controversial. The ACTN3 R577X polymorphism could influence muscle function in old women, yet there is controversy with regards to which allele (R or X) might play a 'favourable' role. Though more research is needed, up-to-date MSTN genotype is possibly the strongest candidate to explain variance among muscle phenotypes in the elderly. Future studies should take into account the association between muscle phenotypes in this population and complex gene-gene and gene-environment interactions.
Collapse
|
17
|
Garatachea N, Lucia A. Genes, physical fitness and ageing. Ageing Res Rev 2013; 12:90-102. [PMID: 23022740 DOI: 10.1016/j.arr.2012.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Persons aged 80 years and older are the fastest growing segment of the population. As more individuals live longer, we should try to understand the mechanisms involved in healthy ageing and preserving functional independence in later life. In elderly people, functional independence is directly dependent on physical fitness, and ageing is inevitably associated with the declining functions of systems and organs (heart, lungs, blood vessels, skeletal muscles) that determine physical fitness. Thus, age-related diminished physical fitness contributes to the development of sarcopenia, frailty or disability, all of which severely deteriorate independent living and thus quality of life. Ageing is a complex process involving many variables that interact with one another, including - besides lifestyle factors or chronic diseases - genetics. Thus, several studies have examined the contribution of genetic endowment to a decline in physical fitness and subsequent loss of independence in later life. In this review, we compile information, including data from heritability, candidate-gene association, linkage and genome-wide association studies, on genetic factors that could influence physical fitness in the elderly.
Collapse
Affiliation(s)
- Nuria Garatachea
- Faculty of Health and Sport Science, University of Zaragoza, Huesca, Spain.
| | | |
Collapse
|
18
|
Calve S, Isaac J, Gumucio JP, Mendias CL. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am J Physiol Cell Physiol 2012; 303:C577-88. [PMID: 22785117 DOI: 10.1152/ajpcell.00057.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronic acid (HA) is a component of the extracellular matrix (ECM) in most vertebrate tissues and is thought to play a significant role during development, wound healing, and regeneration. In vitro studies have shown that HA enhances muscle progenitor cell recruitment and inhibits premature myotube fusion, implicating a role for this glycosaminoglycan in functional repair. However, the spatiotemporal distribution of HA during muscle growth and repair was unknown. We hypothesized that inducing hypertrophy via synergist ablation would increase the expression of HA and the HA synthases (HAS1-HAS3). We found that HA and HAS1-HAS3 were significantly upregulated within the plantaris muscle in response to Achilles tenectomy. HA concentration significantly increased 2.8-fold after 2 days but decreased towards levels comparable to age-matched controls by 14 days. Using immunohistochemistry, we found the colocalization of HAS1-HAS3 with macrophages, blood vessel epithelia, and fibroblasts varied in response to time and/or tenectomy. At the level of gene expression, only HAS1 and HAS2 significantly increased with respect to both time and tenectomy. The profiles of additional genes that influence ECM composition during muscle repair, tenascin-C, type I collagen, the HA-degrading hyaluronidases (Hyal) and matrix metalloproteinases (MMP) were also investigated. Hyal1 and Hyal2 were highly expressed in skeletal muscle but did not change after tenectomy; however, indicators of hypertrophy, MMP-2 and MMP-14, were significantly upregulated from 2 to 14 days. These results indicate that HA levels dynamically change in response to a hypertrophic stimulus and various cells may participate in this mechanism of skeletal muscle adaptation.
Collapse
Affiliation(s)
- Sarah Calve
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | |
Collapse
|
19
|
Neal A, Boldrin L, Morgan JE. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration. PLoS One 2012; 7:e37950. [PMID: 22662253 PMCID: PMC3360677 DOI: 10.1371/journal.pone.0037950] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration.
Collapse
Affiliation(s)
- Alice Neal
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, United Kingdom
- * E-mail: (AN); (JEM)
| | - Luisa Boldrin
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Jennifer Elizabeth Morgan
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (AN); (JEM)
| |
Collapse
|
20
|
McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 2011; 138:3657-66. [PMID: 21828094 DOI: 10.1242/dev.068858] [Citation(s) in RCA: 476] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.
Collapse
Affiliation(s)
- John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnston APW, Bellamy LM, Lisio MD, Parise G. Captopril treatment induces hyperplasia but inhibits myonuclear accretion following severe myotrauma in murine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R363-9. [DOI: 10.1152/ajpregu.00766.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of ANG II in skeletal muscle and satellite cell regulation is largely unknown. Cardiotoxin (CTX) was used to investigate whether muscle injury activates a local ANG II signaling system. Following injury, immunohistochelmistry (IHC) analysis revealed a robust increase in the intensity of angiotensinogen and angiotensin type 1 (AT1) receptor expression. As regeneration proceeded, however, AT1 and angiotensinogen were downregulated. Nuclear accretion and fiber formation were also assessed during muscle regeneration in mice treated with captopril (an angiotensin-converting enzyme inhibitor). When ANG II formation was blocked through the use of captopril, we observed a significantly reduced accretion of nuclei into myofibers (−25%), while tibialis anterior total fiber number was significantly increased +37%. This phenotype appeared to be due to alterations in satellite cell differentiation kinetics; captopril treatment led to sustained mRNA expression of markers associated with quiescence and proliferation (Myf5, Pax7) and simultaneously delayed or inhibited the expression of myogenin. IHC staining supported these findings, revealing that captopril treatment resulted in a strong trend ( P = 0.06) for a decrease in the proportion of myogenin-positive myoblasts. Furthermore, these observations were associated with a delay in muscle fiber maturation; captopril treatment resulted in sustained expression of embryonic myosin heavy chain. Collectively, these findings demonstrate that localized skeletal muscle angiotensin signaling is important to muscle fiber formation, myonuclear accretion, and satellite cell function.
Collapse
Affiliation(s)
| | | | | | - Gianni Parise
- Departments of 1Kinesiology and Medical Physics and
- Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Williams AD, Anderson MJ, Selig S, Carey MF, Febbraio MA, Hayes A, Toia D, Harrap SB, Hare DL. Differential response to resistance training in CHF according to ACE genotype. Int J Cardiol 2011; 149:330-4. [DOI: 10.1016/j.ijcard.2010.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/08/2009] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
|
23
|
Johnston APW, Baker J, Bellamy LM, McKay BR, De Lisio M, Parise G. Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS One 2010; 5:e15212. [PMID: 21203566 PMCID: PMC3006204 DOI: 10.1371/journal.pone.0015212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/01/2010] [Indexed: 12/17/2022] Open
Abstract
The role of angiotensin II (Ang II) in skeletal muscle is poorly understood. We report that pharmacological inhibition of Ang II signaling or ablation of the AT1a receptor significantly impaired skeletal muscle growth following myotrauma, in vivo, likely due to impaired satellite cell activation and chemotaxis. In vitro experiments demonstrated that Ang II treatment activated quiescent myoblasts as evidenced by the upregulation of myogenic regulatory factors, increased number of β-gal+, Myf5-LacZ myoblasts and the acquisition of cellular motility. Furthermore, exogenous treatment with Ang II significantly increased the chemotactic capacity of C2C12 and primary cells while AT1a−/− myoblasts demonstrated a severe impairment in basal migration and were not responsive to Ang II treatment. Additionally, Ang II interacted with myoblasts in a paracrine-mediated fashion as 4 h of cyclic mechanical stimulation resulted in Ang II-induced migration of cocultured myoblasts. Ang II-induced chemotaxis appeared to be regulated by multiple mechanisms including reorganization of the actin cytoskeleton and augmentation of MMP2 activity. Collectively, these results highlight a novel role for Ang II and ACE inhibitors in the regulation of skeletal muscle growth and satellite cell function.
Collapse
Affiliation(s)
| | - Jeff Baker
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | | | - Bryon R. McKay
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Michael De Lisio
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Canada
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
24
|
Abstract
Skeletal muscle is an important link to an individual’s health and quality of life. The primary clinical interest in skeletal muscle is muscle strength. Muscle strength is a complex trait, influenced by biological, morphological, psychological, and environmental factors. Muscle strength is highly variable among individuals and has a strong genetic component. Though several genetic variants have been associated with muscle strength, genes comprising this genetic component are generally unknown. Research examining associations between genetic variants and muscle strength suffers from scientific challenges such as lack of replication, population stratification, and complexity of defining muscle phenotypes. Additionally, non-scientific challenges such as privacy and protection of genetic information and the questionable value of direct-to-consumer genetic marketing exist. How these challenges will influence research examining genetics and muscle strength is uncertain. Findings from this research may lead to improved treatment for muscle-related disease as well as improved health and quality of life. This may be realized through the development of genetic profiles that clinicians can implement into personalized treatment plans. This review will summarize the current literature regarding genetic variation and muscle strength. The authors’ focus will be on the muscle strength response to resistance training. Additionally, the authors discuss challenges and implications of this research.
Collapse
Affiliation(s)
- Matthew Kostek
- Department of Kinesiology, University of Connecticut, Storrs, CT,
| | - Monica J. Hubal
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| | - Linda S. Pescatello
- Department of Kinesiology & Human Performance Laboratory, NEAG School of Education, University of Connecticut, Storrs, CT
| |
Collapse
|
25
|
Johnston APW, Baker J, De Lisio M, Parise G. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system. J Renin Angiotensin Aldosterone Syst 2010; 12:75-84. [DOI: 10.1177/1470320310381795] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A paucity of information exists regarding the presence of local renin—angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT1) and type 2 (AT2). Renin transcripts were never detected, however, mRNA for the ‘renin-like’ enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT1 appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT 1 and AT2. Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.
Collapse
Affiliation(s)
| | - Jeff Baker
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Michael De Lisio
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Canada, Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada,
| |
Collapse
|
26
|
McCauley T, Mastana SS, Folland JP. ACE I/D and ACTN3 R/X polymorphisms and muscle function and muscularity of older Caucasian men. Eur J Appl Physiol 2010; 109:269-77. [DOI: 10.1007/s00421-009-1340-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
27
|
Abstract
PURPOSE OF REVIEW Muscle protein synthesis (MPS) and muscle protein breakdown are simultaneous ongoing processes. Here, we examine evidence for how protein quality can affect exercise-induced muscle protein anabolism or protein balance (MPS minus muscle protein breakdown). Evidence is highlighted showing differences in the responses of MPS, and muscle protein accretion, with ingestion of milk-based and soy-based proteins in young and elderly persons. RECENT FINDINGS Protein consumption, and the accompanying hyperaminoacidemia, stimulates an increase in MPS and a small suppression of muscle protein breakdown. Beyond the feeding-induced rise in MPS, small incremental addition of new muscle protein mass occurs following intense resistance exercise which over time (i.e. resistance training) leads to muscle hypertrophy. Athletes make use of the paradigm of resistance training and eating to maximize the gains in their skeletal muscle mass. Importantly, however, metabolically active skeletal muscle can offset the morbidities associated with the sarcopenia of aging such as type II diabetes, decline in aerobic fitness and the reduction in metabolic rate that can lead to fat mass accumulation. SUMMARY Recent evidence suggests that consumption of different proteins can affect the amplitude and possibly duration of MPS increases after feeding and this effect interacts and is possibly accentuated with resistance exercise.
Collapse
Affiliation(s)
- Jason E Tang
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
28
|
Lees SJ, Childs TE, Booth FW. p21(Cip1) expression is increased in ambient oxygen, compared to estimated physiological (5%) levels in rat muscle precursor cell culture. Cell Prolif 2008; 41:193-207. [PMID: 18336467 DOI: 10.1111/j.1365-2184.2008.00512.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE While it is common practice to culture cells in the presence of ambient oxygen (approximately 21% O2), O2 level observed in the physiological environment is often much lower. Previous efforts to culture a variety of different stem cells, including muscle precursor cells (MPC), under O2 conditions that better mimic in vivo conditions have resulted in enhanced proliferation. In the present study, we hypothesized that 20% O2 in culture represents a sufficient stimulus to cause increased expression of two key negative regulators of the cell-cycle Cip/Kip family of cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), in MPCs. MATERIALS AND METHODS MPCs were isolated from Fischer 344 x Brown Norway F(1) hybrid male rats and O2 was adjusted in culture using a tri-gas incubator. RESULTS 5-Bromo-2'-deoxyuridine incorporation, cell number and nuclear proliferating cell nuclear antigen expression were all decreased after 48 h culture in 20% O2, compared to 5% O2. Twenty per cent O2 had no effect on either p27(Kip1) promoter activity or protein expression. Although p21(Cip1) promoter activity remained unchanged between 5% and 20% O2, there were significant increases in both p21(Cip1) mRNA and protein expression. Furthermore, 20% O2 caused an increase in p21(Cip1) mRNA stability and p53 transcription factor activity. CONCLUSION These findings are considered important because they reveal p21(Cip1) as a critical regulatory protein that needs to be considered when interpreting proliferation data from MPCs studied in culture. In addition, O2-dependent regulation of MPC proliferation is relevant to conditions, including sarcopenia, heart failure, cancer and muscular dystrophy, where increased oxidative stress exists.
Collapse
Affiliation(s)
- S J Lees
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
29
|
McCauley T, Mastana SS, Hossack J, Macdonald M, Folland JP. Human angiotensin-converting enzyme I/D and alpha-actinin 3 R577X genotypes and muscle functional and contractile properties. Exp Physiol 2008; 94:81-9. [PMID: 18676575 DOI: 10.1113/expphysiol.2008.043075] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The angiotensin-converting enzyme (ACE) I/D and alpha-actinin 3 (ACTN3) R/X polymorphisms have been suggested to influence variations in skeletal muscle function. This study investigated the association between ACE I/D and ACTN3 R/X polymorphisms and muscle strength and contractile properties in young UK Caucasian men. Measurements of the knee extensor muscles were taken from 79 recreationally active but non-strength-trained males on two occasions. Isometric knee extensor strength was measured using a conventional strength-testing chair. Maximal twitches were electrically evoked by percutaneous stimulation to assess time-to-peak tension, half-relaxation time and peak rate of force development. The torque-velocity relationship was measured at four angular velocities (0, 30, 90 and 240 deg s(-1)) using isokinetic dynamometry, and the relative torque at high velocity was calculated (torque at 240 deg s(-1) as a percentage of that at 30 deg s(-1)). The ACE I/D and ACTN3 R/X polymorphisms were genotyped from whole blood by polymerase chain reaction. Serum ACE activity was assayed from serum using automated spectrophotometry. Physical characteristics were independent of either genotype. Absolute and relative high-velocity torque were not influenced by ACE or ACTN3 genotypes. Isometric strength and the time course of a maximal twitch were independent of ACE and ACTN3 genotypes. Serum ACE activity was significantly dependent on ACE genotype (P < 0.001), but was not associated with any measure of functional or contractile properties. Knee extensor functional and contractile properties, including high-velocity strength, were not influenced by ACE and ACTN3 polymorphisms in a cohort of UK Caucasian males. Any influence of these individual polymorphisms on human skeletal muscle does not appear to be of sufficient magnitude to influence function in free-living UK Caucasian men.
Collapse
Affiliation(s)
- Tracey McCauley
- School of Sport and Exercise Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire LE11 3TU, UK.
| | | | | | | | | |
Collapse
|
30
|
Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, Hurley BF, Roth SM. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sports Exerc 2008; 40:677-83. [PMID: 18317377 PMCID: PMC2984550 DOI: 10.1249/mss.0b013e318161eab9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Previous studies have linked an insertion/deletion polymorphism in the angiotensin-converting enzyme (ACE) gene with variability in muscle strength responses to strength training (ST), though conclusions have been inconsistent across investigations. Moreover, most previous studies have not investigated the influence of sex on the association of ACE I/D genotype with muscle phenotypes. The purpose of this study was to investigate the association of ACE genotype with muscle phenotypes before and after ST in older men and women. METHODS Eighty-six inactive men and 139 inactive women, ages 50-85 yr (mean: 62 yr), were studied before and after 10 wk of unilateral knee extensor ST. The one-repetition maximum (1RM) test was used to assess knee extensor muscle strength, and computed tomography was used to measure quadriceps muscle volume (MV). Differences were compared among ACE genotype groups (II vs ID vs DD). RESULTS Across the entire cohort at baseline, ACE genotype was significantly associated with total lean mass and body weight, with higher values in DD genotype carriers (both P < 0.05). At baseline, DD genotype carriers exhibited significantly greater MV compared with II genotype carriers for both the trained leg (men: 1828 +/- 44 vs 1629 +/- 70; women: 1299 +/- 34 vs 1233 +/- 49; P = 0.02) and untrained leg (men: 1801 +/- 46 vs 1559 +/- 72; women: 1268 +/- 36 vs 1189 +/- 51; P = 0.01), with no significant genotype x sex interaction. No ACE genotype associations were observed for the 1RM or MV adaptations to ST in either men or women. CONCLUSIONS In the present study, ACE genotype was associated with baseline differences in muscle volume, but it was not associated with the muscle hypertrophic response to ST.
Collapse
Affiliation(s)
- David E Charbonneau
- Department of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gordon SE, Westerkamp CM, Savage KJ, Hickner RC, George SC, Fick CA, McCormick KM. Basal, but not overload-induced, myonuclear addition is attenuated by NG-nitro-l-arginine methyl ester (l-NAME) administration. Can J Physiol Pharmacol 2007; 85:646-51. [PMID: 17823627 DOI: 10.1139/y07-024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the effect of blocking nitric oxide synthase (NOS) activity via NG-nitro-l-arginine methyl ester (l-NAME) on myonuclear addition in skeletal muscle under basal and overloaded conditions. Female Sprague–Dawley rats (approx. 220 g) were placed into 1 of the following 4 groups (n = 7–9/group): 7-day skeletal muscle overload (O), sham operation (S), skeletal muscle overload with l-NAME treatment (OLN), and sham operation with l-NAME treatment (SLN). Plantaris muscles were overloaded via bilateral surgical ablation of the gastrocnemius muscles and l-NAME (0.75 mg/mL) was administered in the animals’ daily drinking water starting 2 days prior to surgery and continued until sacrifice. Myonuclear addition was assessed as subsarcolemmal incorporation of nuclei labeled with 5-bromo-2′-deoxyuridine (approx. 25 mg·(kg body mass)–1·day–1) delivered via osmotic pump during the overload period. As expected, muscle wet mass, total protein content, fiber cross-sectional area, and myonuclear addition were significantly higher (p ≤ 0.05) in O vs. S; however, only the increase in wet mass and total protein content (per body mass) were attenuated by l-NAME administration. Interestingly, l-NAME significantly reduced myonuclear addition by 75% in nonoverloaded muscles (SLN vs. S). Muscle hepatocyte growth factor protein content increased with overload, but was unaffected by l-NAME in either loading state. These data indicate that NOS inhibition in rat plantaris muscle attenuates myonuclear addition under basal, but not overloaded, conditions.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Bromodeoxyuridine/metabolism
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Drinking
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Female
- Hepatocyte Growth Factor/metabolism
- Immunohistochemistry
- Intranuclear Inclusion Bodies/drug effects
- Intranuclear Inclusion Bodies/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- NG-Nitroarginine Methyl Ester/administration & dosage
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Rats
- Rats, Sprague-Dawley
- Sarcolemma/drug effects
- Sarcolemma/metabolism
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Time Factors
Collapse
Affiliation(s)
- Scott E Gordon
- Human Performance Laboratory, Department of Exercise and Sport Science, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | |
Collapse
|