1
|
Salamanca N, Herrera M, de la Roca E. Amino Acids as Dietary Additives for Enhancing Fish Welfare in Aquaculture. Animals (Basel) 2025; 15:1293. [PMID: 40362110 PMCID: PMC12070871 DOI: 10.3390/ani15091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The interest in fish welfare within aquaculture facilities has significantly increased over the past decade, recognizing the fundamental role of animal welfare in the quality of aquaculture products. It has been shown that stress in fish can affect their health, causing pathologies and immune failures, while stress-free fish grow faster and healthier. This has prompted aquaculture farmers to adopt strategies that reduce stress, improve water quality, and optimize stocking densities, thereby enhancing fish welfare. A key area is the role of amino acids in improving fish welfare. Amino acids, such as histidine, isoleucine, leucine, and tryptophan, are essential for various physiological processes, including neurotransmitter formation, energy metabolism, and immune function. Amino acids like tryptophan, arginine, and methionine play a crucial role in mitigating the effects of stress, improving immune function, and reducing oxidative stress. In the present review, the main roles of those amino acids related to fish stress have been shown, analyzing the physiological pathways involved in the link between amino acid ingestion and metabolization and stress responses.
Collapse
Affiliation(s)
- Natalia Salamanca
- Escuela Superior de Ingeniería, University of Huelva, 21071 Huelva, Spain
| | - Marcelino Herrera
- IFAPA Centro Agua del Pino, El Rompido-Punta Umbria rd., 21459 Cartaya, Spain;
| | - Elena de la Roca
- IFAPA Centro Agua del Pino, El Rompido-Punta Umbria rd., 21459 Cartaya, Spain;
| |
Collapse
|
2
|
Sonsalla MM, Babygirija R, Johnson M, Cai S, Cole M, Yeh CY, Grunow I, Liu Y, Vertein D, Calubag MF, Trautman ME, Green CL, Rigby MJ, Puglielli L, Lamming DW. Acarbose ameliorates Western diet-induced metabolic and cognitive impairments in the 3xTg mouse model of Alzheimer's disease. GeroScience 2025; 47:1569-1591. [PMID: 39271570 PMCID: PMC11978593 DOI: 10.1007/s11357-024-01337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition in females, suggesting that the benefits of acarbose on AD may be largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a WD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline Johnson
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Samuel Cai
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mari Cole
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Yang Liu
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Diana Vertein
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave, MFCB Rm 4147, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
- University of Wisconsin-Madison Comprehensive Diabetes Center, Madison, WI, 53705, USA.
| |
Collapse
|
3
|
Zhao J, Yang Z, Liu H, Yang C, Chen Y, Cao Q, Jiang J. Dietary Methionine Hydroxy Analog Regulates Hepatic Lipid Metabolism via SIRT1/AMPK Signaling Pathways in Largemouth Bass Micropterus salmodies. BIOLOGY 2025; 14:227. [PMID: 40136484 PMCID: PMC11939594 DOI: 10.3390/biology14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
This experiment was arranged to explore the impacts of dietary MHA on liver lipid metabolism in largemouth bass. A total of 480 fish (14.49 ± 0.13 g) were randomly allocated into four groups, each with three replicates. They were then given four different diets containing graded levels of MHA (0.0, 3.0, 6.0, and 9.0 g/kg) for 84 days. The results showed that dietary MHA increased hepatic lipid vacuoles and lipid content (p < 0.05). Dietary supplementation with MHA 9.0 g/kg diets increased the activities of acetyl-coA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-coA desaturase 1 (SCD-1). Dietary MHA up-regulated the mRNA expressions of liver lipid synthesis (ACC, FAS, SCD-1 and SREBP-1c) (p < 0.05). Furthermore, compared with the 0.0 g/kg diet group, the group supplemented with 9.0 g/kg MHA in the diet exhibited a significant decrease in the activities of liver lipid-oxidation-related enzymes (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD-1), as well as HSL and CPT1) and the gene expressions of ATGL, HSLa, HSLb, CPT1a, and PPARα (p < 0.05). Additionally, the mRNA expressions and protein levels of SIRT1 and AMPK in the 9.0 g/kg MHA-supplemented group were significantly lower than those in the 0.0 g/kg diet group (p < 0.05). Overall, the present results suggested that dietary MHA could increase lipid accumulation through regulating SIRT1/AMPK signaling pathways in the livers of largemouth bass.
Collapse
Affiliation(s)
- Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
| | - Zhongjie Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
| | - Chao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
| | - Yujun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (Z.Y.); (H.L.); (C.Y.); (Y.C.)
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
4
|
Souza Matos M, Sil A, Riedel G, Platt B, Delibegovic M. Effects of age and dietary methionine restriction on cognitive and behavioural phenotypes in the rTg4510 mouse model of frontotemporal dementia. Neurobiol Aging 2025; 146:24-37. [PMID: 39577250 DOI: 10.1016/j.neurobiolaging.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Metabolic disorders such as diabetes and obesity are linked to neurodegenerative diseases, with evidence of lower brain glucose metabolism and insulin resistance in dementia patients. Dietary methionine restriction (MR) is a nutritional intervention that enhances insulin sensitivity and delays ageing-associated metabolic alterations, however, its impact on neurodegenerative diseases is not fully understood. Here, we examined the behavioural and metabolic phenotypes of a murine tauopathy model (rTg4510), which overexpresses human P301L mutated tau, at 6 and 12 months of age, assessing the impact of an 8-week dietary MR in the older group. While rTg4510 mice displayed progressive behavioural and motor impairments at both ages, MR led to significant benefits in the 12-month-old cohort, improving motor coordination, short-term memory, and social recognition. These effects were accompanied by increased glycolysis markers and FGF21R1 levels in the hippocampus, alongside unaltered glucose metabolism/adiposity. Overall, our results reveal the impact of MR on an FTD-mouse model, suggesting this as a potential therapeutic intervention to delay and/or improve the progression of tau-related disease.
Collapse
Affiliation(s)
- Marina Souza Matos
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; Aberdeen Cardiovascular and Diabetes Centre, Aberdeen, United Kingdom.
| | - Annesha Sil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; Aberdeen Cardiovascular and Diabetes Centre, Aberdeen, United Kingdom.
| |
Collapse
|
5
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
6
|
Kip P, Sluiter TJ, MacArthur MR, Tao M, Kruit N, Mitchell SJ, Jung J, Kooijman S, Gorham J, Seidman JG, Quax PHA, Decano JL, Aikawa M, Ozaki CK, Mitchell JR, de Vries MR. Preoperative methionine restriction induces perivascular adipose tissue browning and improves vein graft remodeling in male mice. Nat Commun 2024; 15:9652. [PMID: 39511181 PMCID: PMC11544300 DOI: 10.1038/s41467-024-53844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Short-term preoperative methionine restriction (MetR) is a promising translatable strategy to mitigate surgical injury response. However, its application to improve post-interventional vascular remodeling remains underexplored. Here we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and pathologic vascular remodeling following vein graft surgery in male mice. RNA sequencing reveals that MetR enhances browning in arterial (thoracic aorta) perivascular adipose tissue (PVAT) and induces it in venous (caval vein) PVAT. Specifically, Ppara is highly upregulated in PVAT-adipocytes upon MetR. Furthermore, MetR dampens the postoperative pro-inflammatory response to surgery in PVAT-macrophages in vivo and in vitro. This study shows that the detrimental effects of dysfunctional PVAT on vascular remodeling can be reversed by MetR, and identifies pathways involved in MetR-induced browning of PVAT. Furthermore, we demonstrate the potential of short-term preoperative MetR as a simple intervention to ameliorate vascular remodeling after vascular surgery.
Collapse
Affiliation(s)
- Peter Kip
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs J Sluiter
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ming Tao
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicky Kruit
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Jonathan Jung
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Julius L Decano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margreet R de Vries
- Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Einthoven Laboratory for Experimental Vascular Medicine and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
8
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
9
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Sonsalla MM, Babygirija R, Johnson M, Cai S, Cole M, Yeh CY, Grunow I, Liu Y, Vertein D, Calubag MF, Trautman ME, Green CL, Rigby MJ, Puglielli L, Lamming DW. Acarbose ameliorates Western diet-induced metabolic and cognitive impairments in the 3xTg mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600472. [PMID: 39005334 PMCID: PMC11244897 DOI: 10.1101/2024.06.27.600472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition, suggesting that the benefits of acarbose on AD are largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a Western diet.
Collapse
|
11
|
Mann CG, MacArthur MR, Zhang J, Gong S, AbuSalim JE, Hunter CJ, Lu W, Agius T, Longchamp A, Allagnat F, Rabinowitz J, Mitchell JR, De Bock K, Mitchell SJ. Sulfur Amino Acid Restriction Enhances Exercise Capacity in Mice by Boosting Fat Oxidation in Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601041. [PMID: 39005372 PMCID: PMC11244859 DOI: 10.1101/2024.06.27.601041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity. Indirect calorimetry showed that SAAR increased lipid oxidation at rest and delayed the onset of carbohydrate utilization during exercise. Transcriptomic analysis revealed increased expression of genes involved in fatty acid catabolism especially in glycolytic muscle following SAAR. These findings were functionally supported by increased fatty acid circulatory turnover flux and muscle β-oxidation. Reducing lipid uptake from circulation through endothelial cell (EC)-specific CD36 deletion attenuated the running phenotype. Mechanistically, VEGF-signaling inhibition prevented exercise increases following SAAR, without affecting angiogenesis, implicating noncanonical VEGF signaling and EC CD36-dependent fatty acid transport in regulating exercise capacity by influencing muscle substrate availability.
Collapse
Affiliation(s)
- Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Songlin Gong
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jenna E AbuSalim
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Craig J. Hunter
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Joshua Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Sarah J Mitchell
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of pathology in a mouse model of Alzheimer's disease. Nat Commun 2024; 15:5217. [PMID: 38890307 PMCID: PMC11189507 DOI: 10.1038/s41467-024-49589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jessica H Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dominique A Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of Alzheimer's disease in mice. RESEARCH SQUARE 2024:rs.3.rs-3342413. [PMID: 37790423 PMCID: PMC10543316 DOI: 10.21203/rs.3.rs-3342413/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J. Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dominique A. Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M. Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Babygirija R, Sonsalla MM, Mill J, James I, Han JH, Green CL, Calubag MF, Wade G, Tobon A, Michael J, Trautman MM, Matoska R, Yeh CY, Grunow I, Pak HH, Rigby MJ, Baldwin DA, Niemi NM, Denu JM, Puglielli L, Simcox J, Lamming DW. Protein restriction slows the development and progression of Alzheimer's disease in mice. RESEARCH SQUARE 2024:rs.3.rs-3342413. [PMID: 37790423 PMCID: PMC10543316 DOI: 10.21203/rs.3.rs-3342413/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice and rescuing the glucose intolerance of 3xTg females. We found that PR induces sex-specific alterations in circulating metabolites and in the brain metabolome and lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.
Collapse
Affiliation(s)
- Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jessica H. Han
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Tobon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - John Michael
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michaela M. Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Matoska
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J. Rigby
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dominique A. Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M. Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Judith Simcox
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI
- Comparative Biomedical Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Nagarajan A, Lasher AT, Morrow CD, Sun LY. Long term methionine restriction: Influence on gut microbiome and metabolic characteristics. Aging Cell 2024; 23:e14051. [PMID: 38279509 PMCID: PMC10928566 DOI: 10.1111/acel.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 01/28/2024] Open
Abstract
The Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age. MR mice have reduced body weight, fat mass percentage, and bone mineral density while having increased lean mass percentage. MR mice also have increased insulin sensitivity along with increasing indirect calorimetry markers such as energy expenditure, oxygen consumption, carbon dioxide production, and glucose oxidation. Fecal samples were collected at 1 week, 18 weeks, and 57 weeks after the diet onset for 16S rRNA amplicon sequencing to study the gut microbiome composition. Alpha and beta diversity metrics detected changes occurring due to the timepoint variable, but no changes were detected due to the diet variable. The results from LEfSe analysis surprisingly showed that more bacterial taxa changes were linked to age rather than diet. Interestingly, we found that the long-term MR diet feeding induced smaller changes compared to short-term feeding. Specific taxa changes due to the diet were observed at the 1 or 18-week time points, including Ileibacterium, Odoribacter, Lachnoclostridium, Marinifilaceae, and Lactobacillaceae. Furthermore, there were consistent aging-associated changes across both groups, with an increase in Ileibacterium and Erysipelotrichaceae with age, while Eubacterium_coprostanoligenes_group, Ruminococcaceae, Peptococcaceae, and Peptococcus decreased with age.
Collapse
Affiliation(s)
- Akash Nagarajan
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Casey D. Morrow
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
16
|
Olsen T, Stolt E, Øvrebø B, Elshorbagy A, Tore EC, Lee-Ødegård S, Troensegaard H, Johannessen H, Doeland B, Vo AAD, Dahl AF, Svendsen K, Thoresen M, Refsum H, Rising R, Barvíková K, van Greevenbroek M, Kožich V, Retterstøl K, Vinknes KJ. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J Transl Med 2024; 22:40. [PMID: 38195568 PMCID: PMC10775517 DOI: 10.1186/s12967-023-04833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS SAAR led to a ~ 20% greater weight loss compared to controls (β 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elena C Tore
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Johannessen
- Department of Paedriatic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Beate Doeland
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna A D Vo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anja F Dahl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Izquierdo VDS, da Silva Menezes B, Lopes MG, Malaguez EG, Lopes F, Pereira FM, Brauner CC, Moriel P, Corrêa MN, Schmitt E. Rumen-protected methionine modulates body temperature and reduces the incidence of heat stress temperatures during the hottest hours of the day of grazing heat-stressed Bos indicus beef cows. Anim Sci J 2024; 95:e13980. [PMID: 39054255 DOI: 10.1111/asj.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
This study evaluated the effects of supplementation of rumen-protected methionine (RPM) on body thermoregulation and conception rate of Nelore cows exposed to high temperature-humidity index (THI). On -31 days before the artificial insemination protocol, 562 lactating, multiparous cows were assigned to receive (MG) or not (CG) RPM supplementation (3 g/cow mixed into 100 g of mineral supplement). Both groups remained in tropical pastures and received supplementation for 77 days. A subset of cows (n = 142) remained with an intravaginal thermometer collecting intravaginal temperature (IT). The respective minimum, average, and maximum environmental THI were 72.8, 78.0, and 83.3. Effects of treatment × hour of the day were detected (P < 0.0001) for IT. From 1330 to 1730 h and 1830 to 1900 h, IT was higher (P < 0.05) for CG versus MG cows when exposed to moderate and high THI. The supplementation with RPM did not affect conception rate (CG = 64.4% vs. MG = 58.2%; P > 0.05). In conclusion, 3 g of RPM supplementation lowered internal body temperature and possibly altered critical THI threshold in Nelore cows with no impact on reproduction.
Collapse
Affiliation(s)
- Vinicius de Souza Izquierdo
- Range Cattle Research and Education Center, University of Florida, Ona, Florida
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bernardo da Silva Menezes
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Zootecnia FAEM UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Matheus Gomes Lopes
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Elanco São Paulo, São Paulo, Brazil
| | - Edgard Gonçalves Malaguez
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Zootecnia FAEM UFPel, Pelotas, Rio Grande do Sul, Brazil
| | | | | | - Cassio Cassal Brauner
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Zootecnia FAEM UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, Florida
| | - Marcio Nunes Corrêa
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Eduardo Schmitt
- Center for Research, Education and Extension in Livestock (NUPEEC), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Zootecnia FAEM UFPel, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Yu H, Niu Y, Lei X, Xie C, Yan X. Multi-Omics Analysis Reveals Sphingomyelin Accumulation, Glycerolipids Loss, and Disorders of Lipid Metabolism Regulated by Leucine Deprivation in the Liver of Mice. Mol Nutr Food Res 2024; 68:e2300567. [PMID: 38059795 DOI: 10.1002/mnfr.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Branched-chain amino acids, especially leucine, have been reported to play a role in regulating lipid metabolism. This study aims to examine the effects of leucine deprivation on hepatic lipid metabolism. METHODS AND RESULTS C57BL/6 mice are fed with a chow diet (control group, n = 8) or a leucine-free diet (-Leu group, n = 8) for 7 days. Histology, lipidomics, targeted metabolomics, and transcriptomics are performed to analyze the liver tissue. Compared to control group, -Leu group exhibits a notably reduced liver weight, accompanied by hepatic injury, and disorders of lipid metabolism. The level of sphingomyelin (SM) is significantly increased in the liver of -Leu group, while the glycerolipids (GL) level is significantly decreased. The expression of sphingomyelin synthase 1 (SGMS1) is upregulated by leucine deprivation in a time-dependent manner, leading to hepatic SM accumulation. Moreover, leucine deprivation results in hepatic GL loss via suppressing fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) expression. CONCLUSION The findings demonstrate that leucine deprivation results in abnormal lipid metabolism in the liver, mainly manifested as SM accumulation and GL loss. These results provide insights into the role of leucine in regulating lipid metabolism.
Collapse
Affiliation(s)
- Haonan Yu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Yaorong Niu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Xinyu Lei
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| | - Chunlin Xie
- National Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangzhou, Guangdong, 510640, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
19
|
Taibl KR, Bellissimo MP, Smith MR, Liu KH, Tran VT, Jones DP, Ziegler TR, Alvarez JA. Characterizing substrate utilization during the fasted state using plasma high-resolution metabolomics. Nutrition 2023; 116:112160. [PMID: 37566924 PMCID: PMC10787037 DOI: 10.1016/j.nut.2023.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES High-resolution metabolomics enables global assessment of metabolites and molecular pathways underlying physiologic processes, including substrate utilization during the fasted state. The clinical index for substrate utilization, respiratory exchange ratio (RER), is measured via indirect calorimetry. The aim of this pilot study was to use metabolomics to identify metabolic pathways and plasma metabolites associated with substrate utilization in healthy, fasted adults. METHODS This cross-sectional study included 33 adults (mean age 27.7 ± 4.9 y, mean body mass index 24.8 ± 4 kg/m2). Participants underwent indirect calorimetry to determine resting RER after an overnight fast. Untargeted metabolomics was performed on fasted plasma samples using dual-column liquid chromatography and ultra-high-resolution mass spectrometry. Linear regression and pathway enrichment analyses identified pathways and metabolites associated with substrate utilization measured with indirect calorimetry. RESULTS RER was significantly associated with 1389 metabolites enriched within 13 metabolic pathways (P < 0.05). Lipid-related findings included general pathways, such as fatty acid activation, and specific pathways, such as C21-steroid hormone biosynthesis and metabolism, butyrate metabolism, and carnitine shuttle. Amino acid pathways included those central to metabolism, such as glucogenic amino acids, and pathways needed to maintain reduction-oxidation reactions, such as methionine and cysteine metabolism. Galactose and pyrimidine metabolism were also associated with RER (all P < 0.05). CONCLUSIONS The fasting plasma metabolome reflects the diverse macronutrient pathways involved in carbohydrate, amino acid, and lipid metabolism during the fasted state in healthy adults. Future studies should consider the utility of metabolomics to profile individual nutrient requirements and compare findings reported here to clinical populations.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Moriah P Bellissimo
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ken H Liu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - ViLinh T Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, United States
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, United States.
| |
Collapse
|
20
|
Klatt KC, Bass K, Speakman JR, Hall KD. Chowing down: diet considerations in rodent models of metabolic disease. LIFE METABOLISM 2023; 2:load013. [PMID: 37485302 PMCID: PMC10361708 DOI: 10.1093/lifemeta/load013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 07/25/2023]
Abstract
Diet plays a substantial role in the etiology, progression, and treatment of chronic disease and is best considered as a multifaceted set of modifiable input variables with pleiotropic effects on a variety of biological pathways spanning multiple organ systems. This brief review discusses key issues related to the design and conduct of diet interventions in rodent models of metabolic disease and their implications for interpreting experiments. We also make specific recommendations to improve rodent diet studies to help better understand the role of diet on metabolic physiology and thereby improve our understanding of metabolic disease.
Collapse
Affiliation(s)
- Kevin C Klatt
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Kevin Bass
- Garrison Institute of Aging, Texas Tech University Health Science Center, Lubbock, TX 79430, United States
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
21
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
22
|
Fang W, Jiang L, Zhu Y, Yang S, Qiu H, Cheng J, Liang Q, Tu ZC, Ye C. Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids. Nat Commun 2023; 14:2504. [PMID: 37130856 PMCID: PMC10154411 DOI: 10.1038/s41467-023-38289-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Methionine restriction (MR) provides metabolic benefits in many organisms. However, mechanisms underlying the MR-induced effect remain incompletely understood. Here, we show in the budding yeast S. cerevisiae that MR relays a signal of S-adenosylmethionine (SAM) deprivation to adapt bioenergetic mitochondria to nitrogenic anabolism. In particular, decreases in cellular SAM constrain lipoate metabolism and protein lipoylation required for the operation of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to incomplete glucose oxidation with an exit of acetyl-CoA and α-ketoglutarate from the TCA cycle to the syntheses of amino acids, such as arginine and leucine. This mitochondrial response achieves a trade-off between energy metabolism and nitrogenic anabolism, which serves as an effector mechanism promoting cell survival under MR.
Collapse
Affiliation(s)
- Wen Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liu Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiou Cheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qingxi Liang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Yang Y, Lu M, Qian J, Xu Y, Li B, Le G, Xie Y. Dietary Methionine Restriction Promotes Fat Browning and Attenuates Hepatic Lipid Accumulation in High-Choline-Fed Mice Associated with the Improvement of Thyroid Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1447-1463. [PMID: 36632677 DOI: 10.1021/acs.jafc.2c05535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aims to explore the influences of a methionine-restricted diet (MRD) on fat browning and hepatic lipid accumulation in mice fed with a high-choline diet (HCD) and their possible mechanisms. ICR mice were randomly divided into three groups and fed with a normal diet (0.86% methionine + 0.20% choline, ND), HCD (0.86% methionine + 1.20% choline), or MRD (0.17% methionine + 1.20% choline) for 90 consecutive days. We found that MRD reduced body weight and fat mass; increased heat production and ambulatory locomotor activity; reduced hepatic and plasma lipid levels, hepatic fatty infiltration area, and adipocyte volume in white and brown adipose tissue; promoted fat browning, especially upregulated gene and protein expression levels of uncoupling protein 1 (UCP1); and promoted fat catabolism and inhibited fat anabolism in the liver and adipose tissue. Moreover, MRD increased antioxidant defenses and reduced inflammatory cytokine levels in the thyroid, blood, and liver. Furthermore, MRD improved thyroid morphological structure, promoted the synthesis and secretion of thyroid hormones, and enhanced the actions of thyroid hormones on its receptor organs (liver and adipose tissue). These findings suggested that MRD promoted fat browning and attenuated hepatic lipid accumulation in HCD mice associated with the improvement of thyroid function.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
24
|
Wu G, Xu J, Wang Q, Fang Z, Fang Y, Jiang Y, Zhang X, Cheng X, Sun J, Le G. Methionine-Restricted Diet: A Feasible Strategy Against Chronic or Aging-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5-19. [PMID: 36571820 DOI: 10.1021/acs.jafc.2c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dietary methionine restriction (MR) has been associated with multifaceted health-promoting effects. MR is conducive to prevention of several chronic diseases and cancer, and extension of lifespan. A growing number of studies on new phenotypes and mechanisms of MR have become available in the past five years, especially in angiogenesis, neurodegenerative diseases, intestinal microbiota, and intestinal barrier function. In this review, we summarize the characteristics and advantages of MR, and current knowledge on the physiological responses and effects of MR on chronic diseases and aging-associated pathologies. Potential mechanisms, in which hydrogen sulfide, fibroblast growth factor 21, gut microbiota, short-chain fatty acids, and so on are involved, are discussed. Moreover, directions for epigenetics and gut microbiota in an MR diet are presented in future perspectives. This review comprehensively summarizes the novel roles and interpretations of the mechanisms underlying MR in the prevention of chronic diseases and aging.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingxuan Xu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Ziyang Fang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yucheng Fang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yujie Jiang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaohong Zhang
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiangrong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, 266021, China
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Feeding of Hermetia illucens Larvae Meal Attenuates Hepatic Lipid Synthesis and Fatty Liver Development in Obese Zucker Rats. Nutrients 2023; 15:nu15020287. [PMID: 36678159 PMCID: PMC9861802 DOI: 10.3390/nu15020287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
The present study tested the hypothesis that dietary insect meal from Hermetia illucens (HI) larvae attenuates the development of liver steatosis and hyperlipidemia in the obese Zucker rat. To test the hypothesis, a 4-week trial with male, obese Zucker rats (n = 30) and male, lean Zucker rats (n = 10) was performed. The obese rats were assigned to three obese groups (group O-C, group O-HI25, group O-HI50) of 10 rats each. The lean rats served as a lean control group (L-C). Group L-C and group O-C were fed a control diet with 20% casein as protein source, whereas 25% and 50% of the protein from casein was replaced with protein from HI larvae meal in the diets of group O-HI25 and O-HI50, respectively. The staining of liver sections with Oil red O revealed an excessive lipid accumulation in the liver of group O-C compared to group L-C, whereas liver lipid accumulation in group O-HI25 and O-HI50 was markedly reduced compared to group O-C. Hepatic concentrations of triglycerides, cholesterol, C14:0, C16:0, C16:1, C18:0, C18:1, the sum of total fatty acids and hepatic mRNA levels of several genes associated with lipid synthesis and plasma concentration of cholesterol were markedly higher in group O-C than in group L-C, but lower in group O-HI50 than in group O-C (p < 0.05). In conclusion, partial replacement of casein by HI larvae meal attenuates liver steatosis and dyslipidemia in obese Zucker rats. This suggests that HI larvae meal serves as a functional food protecting from obesity-induced metabolic disorders.
Collapse
|
26
|
McGilvrey M, Fortier B, Tero B, Cooke D, Cooper E, Walker J, Koza R, Ables G, Liaw L. Effects of dietary methionine restriction on age-related changes in perivascular and beiging adipose tissues in the mouse. Obesity (Silver Spring) 2023; 31:159-170. [PMID: 36513498 PMCID: PMC9780157 DOI: 10.1002/oby.23583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) regulates vascular health. Dietary methionine restriction (MetR) impacts age-related adiposity, and this study addresses its effects in PVAT. METHODS Male C57BL/6 mice at 8, 52, and 102 weeks of age were fed a standard (0.86%) or low-methionine (0.12%) diet for 52 weeks in 8-week-old and 52-week-old mice and for 15 weeks in 102-week-old mice. RESULTS Mice with dietary MetR were resistant to weight gain and maintained a healthy blood profile. Aging increased lipid accumulation, and MetR reversed this phenotype. Notch signaling in inguinal white adipose tissue (iWAT) was decreased by MetR but increased in gonadal white adipose tissue. However, the Notch phenotype of brown adipose tissue (BAT) was not affected by MetR. Uncoupling protein 1 (UCP1) was increased in PVAT, iWAT, and BAT by MetR when initiated in young mice, but this effect was lost in middle-aged mice. CONCLUSIONS Lipid in mouse PVAT peaked at 1 year of age, consistent with peak body mass. MetR reduced body weight, normalized metabolic parameters, and decreased lipid in PVAT in all age cohorts. Mice fed a MetR diet from early maturity to 1 year of age displayed an increased thermogenic adipocyte phenotype in iWAT, PVAT, and BAT, all tissues with thermogenic capacity.
Collapse
Affiliation(s)
- Marissa McGilvrey
- Center for Molecular Medicine, MaineHealth Institute for Research
- Graduate School of Biomedical Science and Engineering, University of Maine
| | - Bethany Fortier
- Center for Molecular Medicine, MaineHealth Institute for Research
- Department of Biological Sciences, University of Southern Maine
| | - Benjamin Tero
- Center for Molecular Medicine, MaineHealth Institute for Research
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc
| | - Emily Cooper
- Center for Molecular Medicine, MaineHealth Institute for Research
| | - Jeffrey Walker
- Department of Biological Sciences, University of Southern Maine
| | - Robert Koza
- Center for Molecular Medicine, MaineHealth Institute for Research
- Graduate School of Biomedical Science and Engineering, University of Maine
| | - Gene Ables
- Orentreich Foundation for the Advancement of Science, Inc
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research
- Department of Biological Sciences, University of Southern Maine
- Graduate School of Biomedical Science and Engineering, University of Maine
| |
Collapse
|
27
|
Lysine or Threonine Deficiency Decreases Body Weight Gain in Growing Rats despite an Increase in Food Intake without Increasing Energy Expenditure in Response to FGF21. Nutrients 2022; 15:nu15010197. [PMID: 36615854 PMCID: PMC9824894 DOI: 10.3390/nu15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.
Collapse
|
28
|
Yang Y, Lu M, Xu Y, Qian J, Le G, Xie Y. Dietary Methionine via Dose-Dependent Inhibition of Short-Chain Fatty Acid Production Capacity Contributed to a Potential Risk of Cognitive Dysfunction in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15225-15243. [PMID: 36413479 DOI: 10.1021/acs.jafc.2c04847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-methionine diets induce impaired learning and memory function, dementia-like neurodegeneration, and Alzheimer's disease, while low-methionine diets improve learning and memory function. We speculated that variations in intestinal microbiota may mediate these diametrically opposed effects; thus, this study aimed to verify this hypothesis. The ICR mice were fed either a low-methionine diet (LM, 0.17% methionine), normal methionine diet (NM, 0.86% methionine), or high-methionine diet (HM, 2.58% methionine) for 11 weeks. We found that HM diets damaged nonspatial recognition memory, working memory, and hippocampus-dependent spatial memory and induced anxiety-like behaviors in mice. LM diets improved nonspatial recognition memory and hippocampus-dependent spatial memory and ameliorated anxiety-like behavior, but the differences did not reach a significant level. Moreover, HM diets significantly decreased the abundance of putative short-chain fatty acid (SCFA)-producing bacteria (Roseburia, Blautia, Faecalibaculum, and Bifidobacterium) and serotonin-producing bacteria (Turicibacter) and significantly increased the abundance of proinflammatory bacteria Escherichia-Shigella. Of note, LM diets reversed the results. Consequently, the SCFA and serotonin levels were significantly decreased with HM diets and significantly increased with LM diets. Furthermore, HM diets induced hippocampal oxidative stress and inflammation and selectively downregulated the hippocampus-dependent memory-related gene expression, whereas LM diets selectively upregulated the hippocampus-dependent memory-related gene expression. In conclusion, dietary methionine via dose-dependent inhibition of SCFA production capacity contributed to a potential risk of cognitive dysfunction in mice.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
29
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
30
|
Fang H, Stone KP, Wanders D, Forney LA, Gettys TW. The Origins, Evolution, and Future of Dietary Methionine Restriction. Annu Rev Nutr 2022; 42:201-226. [PMID: 35588443 PMCID: PMC9936953 DOI: 10.1146/annurev-nutr-062320-111849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Laura A Forney
- Department of Kinesiology, Houston Baptist University, Houston, Texas, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
31
|
Metabolic benefits of methionine restriction in adult mice do not require functional methionine sulfoxide reductase A (MsrA). Sci Rep 2022; 12:5073. [PMID: 35332198 PMCID: PMC8948287 DOI: 10.1038/s41598-022-08978-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/11/2022] [Indexed: 11/27/2022] Open
Abstract
Methionine restriction (MR) extends lifespan and improves several markers of health in rodents. However, the proximate mechanisms of MR on these physiological benefits have not been fully elucidated. The essential amino acid methionine plays numerous biological roles and limiting its availability in the diet directly modulates methionine metabolism. There is growing evidence that redox regulation of methionine has regulatory control on some aspects of cellular function but interactions with MR remain largely unexplored. We tested the functional role of the ubiquitously expressed methionine repair enzyme methionine sulfoxide reductase A (MsrA) on the metabolic benefits of MR in mice. MsrA catalytically reduces both free and protein-bound oxidized methionine, thus playing a key role in its redox state. We tested the extent to which MsrA is required for metabolic effects of MR in adult mice using mice lacking MsrA. As expected, MR in control mice reduced body weight, altered body composition, and improved glucose metabolism. Interestingly, lack of MsrA did not impair the metabolic effects of MR on these outcomes. Moreover, females had blunted MR responses regardless of MsrA status compared to males. Overall, our data suggests that MsrA is not required for the metabolic benefits of MR in adult mice.
Collapse
|
32
|
Abstract
BACKGROUND Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Accumulating evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. SCOPE OF REVIEW We present the currently available evidence regarding the effects of dietary alterations of a single essential amino acid (EAA) on energy balance and relevant signaling mechanisms at both central and peripheral levels. We summarize the association between EAAs and obesity in humans and the clinical use of modifying the dietary EAA composition for therapeutic intervention in obesity. Finally, similar mechanisms underlying diets varying in protein levels and diets altered of a single EAA are described. The current review would expand our understanding of the contribution of protein and amino acids to energy balance control, thus helping discover novel therapeutic approaches for obesity and related diseases. MAJOR CONCLUSIONS Changes in circulating EAA levels, particularly increased branched-chain amino acids (BCAAs), have been reported in obese human and animal models. Alterations in dietary EAA intake result in improvements in fat and weight loss in rodents, and each has its distinct mechanism. For example, leucine deprivation increases energy expenditure, reduces food intake and fat mass, primarily through regulation of the general control nonderepressible 2 (GCN2) and mammalian target of rapamycin (mTOR) signaling. Methionine restriction by 80% decreases fat mass and body weight while developing hyperphagia, primarily through fibroblast growth factor 21 (FGF-21) signaling. Some effects of diets with different protein levels on energy homeostasis are mediated by similar mechanisms. However, reports on the effects and underlying mechanisms of dietary EAA imbalances on human body weight are few, and more investigations are needed in future.
Collapse
Affiliation(s)
- Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
33
|
Green CL, Pak HH, Richardson NE, Flores V, Yu D, Tomasiewicz JL, Dumas SN, Kredell K, Fan JW, Kirsh C, Chaiyakul K, Murphy ME, Babygirija R, Barrett-Wilt GA, Rabinowitz J, Ong IM, Jang C, Simcox J, Lamming DW. Sex and genetic background define the metabolic, physiologic, and molecular response to protein restriction. Cell Metab 2022; 34:209-226.e5. [PMID: 35108511 PMCID: PMC8865085 DOI: 10.1016/j.cmet.2021.12.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Low-protein diets promote metabolic health in humans and rodents. Despite evidence that sex and genetic background are key factors in the response to diet, most protein intake studies examine only a single strain and sex of mice. Using multiple strains and both sexes of mice, we find that improvements in metabolic health in response to reduced dietary protein strongly depend on sex and strain. While some phenotypes were conserved across strains and sexes, including increased glucose tolerance and energy expenditure, we observed high variability in adiposity, insulin sensitivity, and circulating hormones. Using a multi-omics approach, we identified mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype, providing molecular insight into the differential response to protein restriction. Our results highlight the importance of sex and genetic background in the response to dietary protein level, and the potential importance of a personalized medicine approach to dietary interventions.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole E Richardson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deyang Yu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jay L Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Sabrina N Dumas
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Katherine Kredell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Jesse W Fan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charlie Kirsh
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Joshua Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
34
|
Solon-Biet SM, Griffiths L, Fosh S, Le Couteur DG, Simpson SJ, Senior AM. Meta-analysis links dietary branched-chain amino acids to metabolic health in rodents. BMC Biol 2022; 20:19. [PMID: 35031039 PMCID: PMC8760763 DOI: 10.1186/s12915-021-01201-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background The role of dietary branched chain amino acids (BCAAs) and their effect on metabolic health is complex. How dietary BCAA levels and their interaction with background nutrition affect health is unclear. Here, we used meta-analysis and meta-regression, together with the nutritional modelling, to analyse the results of rodent studies that increased the level of dietary BCAAs and measured circulating levels, outcomes related to metabolic health, body mass and food intake. Results Across all studies, increasing dietary BCAAs resulted in increased levels of circulating BCAAs. These effects, however, were heavily moderated by background dietary levels whereby on high BCAA diets, further increases were not reflected in the blood. Impaired glucose tolerance was associated with elevated dietary BCAAs, with the greatest effect occurring with a simultaneous increase in total protein intake. Effects of dietary BCAAs on plasma glucose, insulin, or HOMA emerged only when dietary macronutrient background was considered. We found that elevated dietary BCAAs increases % body fat, with largest increases in adiposity occurring when BCAAs are increased on a high protein, low carbohydrate dietary background. Finally, we found that increased dietary BCAAs were associated with increased food intake when the background diet was low in BCAAs. Conclusion Our data highlights the interaction between BCAAs and background nutrition. We show that the effects of BCAAs on metabolic health cannot be studied in isolation but must be considered as part of complex mixture of dietary components. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01201-2.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Lucy Griffiths
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Sophie Fosh
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimers Institute and Centre for Education and Research on Ageing, Concord Hospital, Sydney, NSW, Australia.,ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. .,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia. .,School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Abstract
Caloric restriction has been known for nearly a century to extend life span and delay age-associated pathology in laboratory animals. More recently, alternative “antiaging” diet modalities have been described that provide new mechanistic insights and potential clinical applications. These include intermittent fasting, fasting-mimicking diets, ketogenic diets, time-restricted feeding, protein restriction, and dietary restriction of specific amino acids. Despite mainstream popularization of some of these diets, many questions remain about their efficacy outside of a laboratory setting. Studies of these interventions support at least partially overlapping mechanisms of action and provide insights into what appear to be highly conserved mechanisms of biological aging.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7470, USA
| |
Collapse
|
36
|
Pak HH, Haws SA, Green CL, Koller M, Lavarias MT, Richardson NE, Yang SE, Dumas SN, Sonsalla M, Bray L, Johnson M, Barnes S, Darley-Usmar V, Zhang J, Yen CLE, Denu JM, Lamming DW. Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat Metab 2021; 3:1327-1341. [PMID: 34663973 PMCID: PMC8544824 DOI: 10.1038/s42255-021-00466-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Calorie restriction (CR) promotes healthy ageing in diverse species. Recently, it has been shown that fasting for a portion of each day has metabolic benefits and promotes lifespan. These findings complicate the interpretation of rodent CR studies, in which animals typically eat only once per day and rapidly consume their food, which collaterally imposes fasting. Here we show that a prolonged fast is necessary for key metabolic, molecular and geroprotective effects of a CR diet. Using a series of feeding regimens, we dissect the effects of calories and fasting, and proceed to demonstrate that fasting alone recapitulates many of the physiological and molecular effects of CR. Our results shed new light on how both when and how much we eat regulate metabolic health and longevity, and demonstrate that daily prolonged fasting, and not solely reduced caloric intake, is likely responsible for the metabolic and geroprotective benefits of a CR diet.
Collapse
Affiliation(s)
- Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Spencer A Haws
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mikaela Koller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mitchell T Lavarias
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicole E Richardson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Shany E Yang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sabrina N Dumas
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lindsey Bray
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle Johnson
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Nathan Shock Center of Excellence in the Basic Biology of Aging, Department of Pathology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Chi-Liang Eric Yen
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Denu
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
37
|
Elkafrawy H, Mehanna R, Ali F, Barghash A, Dessouky I, Jernerén F, Turner C, Refsum H, Elshorbagy A. Extracellular cystine influences human preadipocyte differentiation and correlates with fat mass in healthy adults. Amino Acids 2021; 53:1623-1634. [PMID: 34519922 PMCID: PMC8521515 DOI: 10.1007/s00726-021-03071-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Plasma cysteine is associated with human obesity, but it is unknown whether this is mediated by reduced, disulfide (cystine and mixed-disulfides) or protein-bound (bCys) fractions. We investigated which cysteine fractions are associated with adiposity in vivo and if a relevant fraction influences human adipogenesis in vitro. In the current study, plasma cysteine fractions were correlated with body fat mass in 35 adults. Strong positive correlations with fat mass were observed for cystine and mixed disulfides (r ≥ 0.61, P < 0.001), but not the quantitatively major form, bCys. Primary human preadipocytes were differentiated in media containing cystine concentrations varying from 10-50 μM, a range similar to that in plasma. Increasing extracellular cystine (10-50 μM) enhanced mRNA expression of PPARG2 (to sixfold), PPARG1, PLIN1, SCD1 and CDO1 (P = 0.042- < 0.001). Adipocyte lipid accumulation and lipid-droplet size showed dose-dependent increases from lowest to highest cystine concentrations (P < 0.001), and the malonedialdehyde/total antioxidant capacity increased, suggesting increased oxidative stress. In conclusion, increased cystine concentrations, within the physiological range, are positively associated with both fat mass in healthy adults and human adipogenic differentiation in vitro. The potential role of cystine as a modifiable factor regulating human adipocyte turnover and metabolism deserves further study.
Collapse
Affiliation(s)
- Hagar Elkafrawy
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Radwa Mehanna
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fayrouz Ali
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ayman Barghash
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman Dessouky
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, UK
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
- Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev 2021; 199:111563. [PMID: 34474078 DOI: 10.1016/j.mad.2021.111563] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
Collapse
|
39
|
Fang H, Stone KP, Ghosh S, Forney LA, Gettys TW. The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein. Nutrients 2021; 13:nu13082609. [PMID: 34444768 PMCID: PMC8399679 DOI: 10.3390/nu13082609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction using elemental diets. Although the soy-based control diets supported faster growth compared to casein-based control diets, casein-based protein restriction and soy-based protein restriction produced comparable reductions in body weight and fat deposition, and similar increases in energy intake, energy expenditure, and water intake. In addition, the prototypical effects of dietary MR on hepatic and adipose tissue target genes were similarly regulated by casein- and soy-based protein restriction. The present findings support the feasibility of using restricted intake of diets from various protein sources to produce therapeutically effective implementation of dietary methionine restriction.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (H.F.); (K.P.S.)
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (H.F.); (K.P.S.)
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Laura A. Forney
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA;
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (H.F.); (K.P.S.)
- Correspondence:
| |
Collapse
|
40
|
Babygirija R, Lamming DW. The regulation of healthspan and lifespan by dietary amino acids. TRANSLATIONAL MEDICINE OF AGING 2021; 5:17-30. [PMID: 34263088 PMCID: PMC8277109 DOI: 10.1016/j.tma.2021.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a key macronutrient and source of essential macromolecules, dietary protein plays a significant role in health. For many years, protein-rich diets have been recommended as healthy due to the satiety-inducing and muscle-building effects of protein, as well as the ability of protein calories to displace allegedly unhealthy calories from fats and carbohydrates. However, clinical studies find that consumption of dietary protein is associated with an increased risk of multiple diseases, especially diabetes, while studies in rodents have demonstrated that protein restriction can promote metabolic health and even lifespan. Emerging evidence suggests that the effects of dietary protein on health and longevity are not mediated simply by protein quantity but are instead mediated by protein quality - the specific amino acid composition of the diet. Here, we discuss how dietary protein and specific amino acids including methionine, the branched chain amino acids (leucine, isoleucine, and valine), tryptophan and glycine regulate metabolic health, healthspan, and aging, with attention to the specific molecular mechanisms that may participate in these effects. Finally, we discuss the potential applicability of these findings to promoting healthy aging in humans.
Collapse
Affiliation(s)
- Reji Babygirija
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
41
|
Hepatic Nfe2l2 Is Not an Essential Mediator of the Metabolic Phenotype Produced by Dietary Methionine Restriction. Nutrients 2021; 13:nu13061788. [PMID: 34073838 PMCID: PMC8225036 DOI: 10.3390/nu13061788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The principal sensing of dietary methionine restriction (MR) occurs in the liver, where it activates multiple transcriptional programs that mediate various biological components of the response. Hepatic Fgf21 is a key target and essential endocrine mediator of the metabolic phenotype produced by dietary MR. The transcription factor, Nfe2l2, is also activated by MR and functions in tandem with hepatic Atf4 to transactivate multiple, antioxidative components of the integrated stress response. However, it is unclear whether the transcriptional responses linked to Nfe2l2 activation by dietary MR are essential to the biological efficacy of the diet. Using mice with liver-specific deletion of Nfe2l2 (Nfe2l2fl/(Alb)) and their floxed littermates (Nfe2l2fl/fl) fed either Control or MR diets, the absence of hepatic Nfe2l2 had no effect on the ability of the MR diet to increase FGF21, reduce body weight and adiposity, and increase energy expenditure. Moreover, the primary elements of the hepatic transcriptome were similarly affected by MR in both genotypes, with the only major differences occurring in induction of the P450-associated drug metabolism pathway and the pentose glucuronate interconversion pathway. The biological significance of these pathways is uncertain but we conclude that hepatic Nfe2l2 is not essential in mediating the metabolic effects of dietary MR.
Collapse
|
42
|
Fang H, Stone KP, Forney LA, Sims LC, Gutierrez GC, Ghosh S, Gettys TW. Implementation of dietary methionine restriction using casein after selective, oxidative deletion of methionine. iScience 2021; 24:102470. [PMID: 34113817 PMCID: PMC8169944 DOI: 10.1016/j.isci.2021.102470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023] Open
Abstract
Dietary methionine restriction (MR) is normally implemented using diets formulated from elemental amino acids (AA) that reduce methionine content to ∼0.17%. However, translational implementation of MR with elemental AA-based diets is intractable due to poor palatability. To solve this problem and restrict methionine using intact proteins, casein was subjected to mild oxidation to selectively reduce methionine. Diets were then formulated using oxidized casein, adding back methionine to produce a final concentration of 0.17%. The biological efficacy of dietary MR using the oxidized casein (Ox Cas) diet was compared with the standard elemental MR diet in terms of the behavioral, metabolic, endocrine, and transcriptional responses to the four diets. The Ox Cas MR diet faithfully reproduced the expected physiological, biochemical, and transcriptional responses in liver and inguinal white adipose tissue. Collectively, these findings demonstrate that dietary MR can be effectively implemented using casein after selective oxidative reduction of methionine.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Laura A. Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Landon C. Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Gabriela C. Gutierrez
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Program in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
43
|
Effects of Weight Loss and Moderate-Protein, High-Fiber Diet Consumption on the Fasted Serum Metabolome of Cats. Metabolites 2021; 11:metabo11050324. [PMID: 34070109 PMCID: PMC8158395 DOI: 10.3390/metabo11050324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 01/06/2023] Open
Abstract
Feline obesity elicits a plethora of metabolic responses leading to comorbidities, with potential reversal during weight loss. The specific metabolic alterations and biomarkers of organ dysfunction are not entirely understood. Untargeted, high-throughput metabolomic technologies may allow the identification of biological components that change with weight status in cats, increasing our understanding of feline metabolism. The objective of this study was to utilize untargeted metabolomic techniques to identify biomarkers and gain mechanistic insight into the serum metabolite changes associated with reduced food intake and weight loss in overweight cats. During a four-wk baseline period, cats were fed to maintain body weight. For 18 wk following baseline, cats were fed to lose weight at a rate of ~1.5% body weight/wk. Blood serum metabolites were measured at wk 0, 1, 2, 4, 8, 12, and 16. A total of 535 named metabolites were identified, with up to 269 of them being altered (p- and q-values < 0.05) at any time point. A principal component analysis showed a continual shift in metabolite profile as weight loss progressed, with early changes being distinct from those over the long term. The majority of lipid metabolites decreased with weight loss; however, ketone bodies and small lipid particles increased with weight loss. The majority of carbohydrate metabolites decreased with weight loss. Protein metabolites had a variable result, with some increasing, but others decreasing with weight loss. Metabolic mediators of inflammation, oxidative stress, xenobiotics, and insulin resistance decreased with weight loss. In conclusion, global metabolomics identified biomarkers of reduced food intake and weight loss in cats, including decreased markers of inflammation and/or altered macronutrient metabolism.
Collapse
|
44
|
Pezeshki A, Chelikani PK. Low Protein Diets and Energy Balance: Mechanisms of Action on Energy Intake and Expenditure. Front Nutr 2021; 8:655833. [PMID: 34055853 PMCID: PMC8155302 DOI: 10.3389/fnut.2021.655833] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Low protein diets are associated with increased lifespan and improved cardiometabolic health primarily in rodents, and likely improve human health. There is strong evidence that moderate to severe reduction in dietary protein content markedly influences caloric intake and energy expenditure, which is often followed by a decrease in body weight and adiposity in animal models. While the neuroendocrine signals that trigger hyperphagic responses to protein restriction are better understood, there is accumulating evidence that increased sympathetic flux to brown adipose tissue, fibroblast growth factor-21 and serotonergic signaling are important for the thermogenic effects of low protein diets. This mini-review specifically focuses on the effect of low protein diets with variable carbohydrate and lipid content on energy intake and expenditure, and the underlying mechanisms of actions by these diets. Understanding the mechanisms by which protein restriction influences energy balance may unveil novel approaches for treating metabolic disorders in humans and improve production efficiency in domestic animals.
Collapse
Affiliation(s)
- Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Prasanth K Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States.,Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
45
|
Jonsson WO, Margolies NS, Mirek ET, Zhang Q, Linden MA, Hill CM, Link C, Bithi N, Zalma B, Levy JL, Pettit AP, Miller JW, Hine C, Morrison CD, Gettys TW, Miller BF, Hamilton KL, Wek RC, Anthony TG. Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. J Nutr 2021; 151:785-799. [PMID: 33512502 PMCID: PMC8030708 DOI: 10.1093/jn/nxaa396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Zalma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jordan L Levy
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ashley P Pettit
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Thomas W Gettys
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
46
|
Stone KP, Ghosh S, Kovalik JP, Orgeron M, Wanders D, Sims LC, Gettys TW. The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4. Sci Rep 2021; 11:3765. [PMID: 33580171 PMCID: PMC7880992 DOI: 10.1038/s41598-021-83380-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
The initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4's prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.
Collapse
Affiliation(s)
- Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jean Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Manda Orgeron
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Landon C Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
47
|
Effect of Methionine Restriction on Aging: Its Relationship to Oxidative Stress. Biomedicines 2021; 9:biomedicines9020130. [PMID: 33572965 PMCID: PMC7911310 DOI: 10.3390/biomedicines9020130] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enhanced oxidative stress is closely related to aging and impaired metabolic health and is influenced by diet-derived nutrients and energy. Recent studies have shown that methionine restriction (MetR) is related to longevity and metabolic health in organisms from yeast to rodents. The effect of MetR on lifespan extension and metabolic health is mediated partially through a reduction in oxidative stress. Methionine metabolism is involved in the supply of methyl donors such as S-adenosyl-methionine (SAM), glutathione synthesis and polyamine metabolism. SAM, a methionine metabolite, activates mechanistic target of rapamycin complex 1 and suppresses autophagy; therefore, MetR can induce autophagy. In the process of glutathione synthesis in methionine metabolism, hydrogen sulfide (H2S) is produced through cystathionine-β-synthase and cystathionine-γ-lyase; however, MetR can induce increased H2S production through this pathway. Similarly, MetR can increase the production of polyamines such as spermidine, which are involved in autophagy. In addition, MetR decreases oxidative stress by inhibiting reactive oxygen species production in mitochondria. Thus, MetR can attenuate oxidative stress through multiple mechanisms, consequently associating with lifespan extension and metabolic health. In this review, we summarize the current understanding of the effects of MetR on lifespan extension and metabolic health, focusing on the reduction in oxidative stress.
Collapse
|
48
|
Swaminathan A, Fokin A, Venckūnas T, Degens H. Methionine restriction plus overload improves skeletal muscle and metabolic health in old mice on a high fat diet. Sci Rep 2021; 11:1260. [PMID: 33441954 PMCID: PMC7806605 DOI: 10.1038/s41598-021-81037-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Methionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.
Collapse
Affiliation(s)
- Anandini Swaminathan
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Andrej Fokin
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Tomas Venckūnas
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Hans Degens
- grid.419313.d0000 0000 9487 602XInstitute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania ,grid.25627.340000 0001 0790 5329Department of Life Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
49
|
Effect of Dietary Methionine Deficiency Followed by a Re-Feeding Phase on the Hepatic Antioxidant Activities of Lambs. Animals (Basel) 2020; 11:ani11010007. [PMID: 33374518 PMCID: PMC7822206 DOI: 10.3390/ani11010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Our objective was to investigate the effect of methionine restriction and resuming supply on liver antioxidant response in lambs. The concentrations of methionine and its metabolites and the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive factor, were detected after methionine restriction treatment for 50 days and methionine supply recovery for 29 days. The expression of glutathione (GSH) S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were characterized at the level of transcription and translation. Methionine restriction can directly change the content of methionine and its metabolites in plasma and liver, and affect the redox state of lambs by activating the Nrf2 signaling pathway. Liver tissue can adapt to oxidative environment by upregulating the expression of antioxidant enzymes such as GSH-Px and SOD. Moreover, it was found that there was a lag effect in the recovery of metabolism after methionine supplementation.
Collapse
|
50
|
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020; 5:280. [PMID: 33273451 PMCID: PMC7714782 DOI: 10.1038/s41392-020-00349-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Collapse
|