1
|
Zhang X, He L, Wang L, Wang Y, Yan E, Wan B, Zeng Q, Zhang P, Zhao X, Yin J. CLIC5 promotes myoblast differentiation and skeletal muscle regeneration via the BGN-mediated canonical Wnt/β-catenin signaling pathway. SCIENCE ADVANCES 2024; 10:eadq6795. [PMID: 39999205 PMCID: PMC11468980 DOI: 10.1126/sciadv.adq6795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/10/2024] [Indexed: 02/27/2025]
Abstract
Myoblast differentiation plays a vital role in skeletal muscle regeneration. However, the protein-coding genes controlling this process remain incompletely understood. Here, we showed that chloride intracellular channel 5 (CLIC5) exerts a critical role in mediating myogenesis and skeletal muscle regeneration. Deletion of CLIC5 in skeletal muscle leads to reduced muscle weight and decreases the number and differentiation potential of satellite cells. In vitro, CLIC5 consistently inhibits myoblast proliferation while promoting myotube formation. CLIC5 promotes myogenic differentiation by activating the canonical Wnt/β-catenin signaling pathway in a biglycan (BGN)-dependent manner. CLIC5 deletion impairs muscle regeneration. Paired box gene 7 (Pax7) expression and the activity of BGN-mediated canonical Wnt/β-catenin signaling are reduced in CLIC5-deficient mice. Conversely, increasing CLIC5 levels in skeletal muscles enhances muscle regeneration capacity. In conclusion, our findings underscore CLIC5 as a pivotal regulator of myogenesis and skeletal muscle regeneration, functioning through interaction with BGN to activate the canonical Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiuyu Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengguang Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China
| |
Collapse
|
2
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Johnson AA, Shokhirev MN, Lehallier B. The protein inputs of an ultra-predictive aging clock represent viable anti-aging drug targets. Ageing Res Rev 2021; 70:101404. [PMID: 34242807 DOI: 10.1016/j.arr.2021.101404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Machine learning models capable of predicting age given a set of inputs are referred to as aging clocks. We recently developed an aging clock that utilizes 491 plasma protein inputs, has an exceptional accuracy, and is capable of measuring biological age. Here, we demonstrate that this clock is extremely predictive (r = 0.95) when used to measure age in a novel plasma proteomic dataset derived from 370 human subjects aged 18-69 years. Over-representation analyses of the proteins that make up this clock in the Gene Ontology and Reactome databases predominantly implicated innate and adaptive immune system processes. Immunological drugs and various age-related diseases were enriched in the DrugBank and GLAD4U databases. By performing an extensive literature review, we find that at least 269 (54.8 %) of these inputs regulate lifespan and/or induce changes relevant to age-related disease when manipulated in an animal model. We also show that, in a large plasma proteomic dataset, the majority (57.2 %) of measurable clock proteins significantly change their expression level with human age. Different subsets of proteins were overlapped with distinct epigenetic, transcriptomic, and proteomic aging clocks. These findings indicate that the inputs of this age predictor likely represent a rich source of anti-aging drug targets.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California, United States
| | | |
Collapse
|
4
|
Mao QY, Xie S, Wu LL, Xiang RL, Cai ZG. MicroRNA-mRNA expression profiles and functional network after injection of botulinum toxin type A into submandibular glands. Toxicon 2021; 199:31-40. [PMID: 34052235 DOI: 10.1016/j.toxicon.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Botulinum toxin type A (BTXA) is effective for the treatment of sialorrhea. MicroRNAs (miRNAs) have significant functions in salivary diseases, but the role of miRNAs during BTXA-inhibited salivary secretion is not yet clear. A total of 19 differentially expressed (DE) miRNAs and 1072 DE mRNAs were identified following BTXA injected into submandibular glands of rats (n = 4) through miRNA sequencing and microarray analysis. Bioinformatic analysis identified that several pathways may be associated with the inhibition of salivary secretion, such as the MAPK signalling pathway, tight junctions, and cytokine-cytokine receptor interaction. We predicted the target genes of DE miRNAs and established the miRNA-mRNA interaction network. The intersection of DE mRNAs and target genes of DE miRNAs was performed and seven mRNAs were obtained: Egr2, Paqr9, Zkscan1, Usp6n, Cyb561a3, Zfhx4, and Clic5. These findings explore the mechanism of BTXA in inhibiting salivary secretion and probably will provide new ideas for clinical application.
Collapse
Affiliation(s)
- Qian-Ying Mao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
5
|
Wonkam-Tingang E, Schrauwen I, Esoh KK, Bharadwaj T, Nouel-Saied LM, Acharya A, Nasir A, Adadey SM, Mowla S, Leal SM, Wonkam A. Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment. Genes (Basel) 2020; 11:genes11111249. [PMID: 33114113 PMCID: PMC7690789 DOI: 10.3390/genes11111249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
DNA samples from five members of a multiplex non-consanguineous Cameroonian family, segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing impairment, underwent whole exome sequencing. We identified novel bi-allelic compound heterozygous pathogenic variants in CLIC5. The variants identified, i.e., the missense [NM_016929.5:c.224T>C; p.(L75P)] and the splicing (NM_016929.5:c.63+1G>A), were validated using Sanger sequencing in all seven available family members and co-segregated with hearing impairment (HI) in the three hearing impaired family members. The three affected individuals were compound heterozygous for both variants, and all unaffected individuals were heterozygous for one of the two variants. Both variants were absent from the genome aggregation database (gnomAD), the Single Nucleotide Polymorphism Database (dbSNP), and the UK10K and Greater Middle East (GME) databases, as well as from 122 apparently healthy controls from Cameroon. We also did not identify these pathogenic variants in 118 unrelated sporadic cases of non-syndromic hearing impairment (NSHI) from Cameroon. In silico analysis showed that the missense variant CLIC5-p.(L75P) substitutes a highly conserved amino acid residue (leucine), and is expected to alter the stability, the structure, and the function of the CLIC5 protein, while the splicing variant CLIC5-(c.63+1G>A) is predicted to disrupt a consensus donor splice site and alter the splicing of the pre-mRNA. This study is the second report, worldwide, to describe CLIC5 involvement in human hearing impairment, and thus confirms CLIC5 as a novel non-syndromic hearing impairment gene that should be included in targeted diagnostic gene panels.
Collapse
Affiliation(s)
- Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Kevin K. Esoh
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Liz M. Nouel-Saied
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Anushree Acharya
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea;
| | - Samuel M. Adadey
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana
| | - Shaheen Mowla
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Suzanne M. Leal
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; (I.S.); (T.B.); (L.M.N.-S.); (A.A.); (S.M.L.)
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (E.W.-T.); (K.K.E.); (S.M.A.)
- Correspondence: ; Tel.: +27-21-4066-307
| |
Collapse
|
6
|
Lu J, Zhang L, Zhang D, Matsumoto S, Hiroshima H, Maeda R, Sato M, Toyoda A, Gotoh T, Ohkohchi N. Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation. SENSORS 2018; 18:s18040979. [PMID: 29587448 PMCID: PMC5948591 DOI: 10.3390/s18040979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID) chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes’ remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.
Collapse
Affiliation(s)
- Jian Lu
- Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba 305-8564, Japan.
| | - Lan Zhang
- Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba 305-8564, Japan.
| | - Dapeng Zhang
- Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba 305-8564, Japan.
| | - Sohei Matsumoto
- Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba 305-8564, Japan.
| | - Hiroshi Hiroshima
- Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba 305-8564, Japan.
| | - Ryutaro Maeda
- Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Namiki 1-2-1, Tsukuba 305-8564, Japan.
| | - Mizuho Sato
- College of Agriculture Ibaraki University, Chuo Ami Inashiki 3-21-1, Mito 300-0393, Japan.
| | - Atsushi Toyoda
- College of Agriculture Ibaraki University, Chuo Ami Inashiki 3-21-1, Mito 300-0393, Japan.
| | - Takafumi Gotoh
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Fukuoka 878-0201, Japan.
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | - Nobuhiro Ohkohchi
- Faculty of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8577, Japan.
| |
Collapse
|
7
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
8
|
Sirri R, Sarli G, Bianco C, Bonaldo A, Gatta PP, Fontanillas R, De Vico G, Carella F, Brachelente C, Parma L, Mandrioli L. Retrospective study of pathology-based investigative techniques for the assessment of diet-induced changes in liver and intestine of flatfish. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1364610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rubina Sirri
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| | - Carlo Bianco
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| | - Alessio Bonaldo
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| | - Pier Paolo Gatta
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| | | | - Gionata De Vico
- Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy
| | - Francesca Carella
- Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy
| | - Chiara Brachelente
- Dipartimento di Medicina Veterinaria, University of Perugia, Perugia, Italy
| | - Luca Parma
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| | - Luciana Mandrioli
- Dipartimento di Scienze Mediche Veterinarie, University of Bologna, Ozzano dell’Emilia, Italy
| |
Collapse
|
9
|
Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 2016; 177:41-69. [PMID: 27376874 DOI: 10.1016/j.trsl.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disorder hallmarked by excessive lipid deposits. Based on our recent research on lipid droplet (LD) formation in hepatocytes, we investigated LD-associated gene regulations in NAFLD of different grades, that is, steatosis vs steatohepatitis by comparing liver biopsies from healthy controls (N = 13) and NAFLD patients (N = 102). On average, more than 700 differentially expressed genes (DEGs) were identified of which 146 are mechanistically linked to LD formation. We identified 51 LD-associated DEGs frequently regulated in patient samples (range ≥5 to ≤102) with the liver-receptor homolog-1(NR5A2), that is, a key regulator of cholesterol metabolism being commonly repressed among 100 patients examined. With bland steatosis, notable regulations involved hypoxia-inducible lipid droplet-associated-protein and diacylglycerol-O-acyltransferase-2 renowned for their role in LD-growth. Conversely, nonalcoholic steatohepatitis-associated DEGs coded for epidermal growth factor receptor and TLR4 signaling with decreased expression of the GTPase Rab5 and the lipid phosphohydrolase PPAP2B thus highlighting adaptive responses to inflammation, LDL-mediated endocytosis and lipogenesis, respectively. Studies with steatotic primary human hepatocyte cultures demonstrated induction of LD-associated PLIN2, CIDEC, DNAAF1, whereas repressed expression of CPT1A, ANGPTL4, and PKLR informed on burdened mitochondrial metabolism. Equally, repressed expression of the B-lymphocyte chemoattractant CXCL13 and STAT4 as well as induced FGF21 evidenced amelioration of steatosis-related inflammation. In-vitro/in-vivo patient sample comparisons confirmed C-reactive protein, SOCS3, NR5A2, and SOD2 as commonly regulated. Lastly, STRING network analysis highlighted potential "druggable" targets with PLIN2, CIDEC, and hypoxia-inducible lipid droplet-associated-protein being confirmed by immunofluorescence microscopy. In conclusion, steatosis and steatohepatitis specific gene regulations informed on the pathogenesis of NAFLD to broaden the perspective of targeted therapies.
Collapse
|
10
|
Dandapat A, Perrin BJ, Cabelka C, Razzoli M, Ervasti JM, Bartolomucci A, Lowe DA, Kyba M. High Frequency Hearing Loss and Hyperactivity in DUX4 Transgenic Mice. PLoS One 2016; 11:e0151467. [PMID: 26978271 PMCID: PMC4792399 DOI: 10.1371/journal.pone.0151467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations leading to ectopic expression of the transcription factor DUX4, and encompasses both muscle-related and non-muscle phenotypes. Mouse models bearing this gene represent valuable tools to investigate which pathologies are due to DUX4 expression, and how DUX4 leads to these pathologies. The iDUX4(2.7) mouse contains an X-linked doxycycline-inducible DUX4 gene that shows low level basal expression in the absence of doxycycline, leading to male lethality, generally in embryo, but always before 8 weeks of age. Here, we describe additional non-muscle phenotypes in this animal model. We find that iDUX4(2.7) female carriers are extremely hyperactive, spending large amounts of time ambulating and much less time resting. Rare 3-week old males, although hypophagic, runted and extremely fragile, are capable of high activity, but show periods of catatonic torpor in which animals appear dead and respiration is virtually absent. We also examine a non-muscle phenotype of interest to FSHD, high frequency hearing loss. We find that young iDUX4(2.7) females are significantly impaired in their ability to hear at frequencies above 8 kHz. These phenotypes make the iDUX4(2.7) mouse an attractive model in which to study non-muscle activities of DUX4.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, United States of America
| | - Benjamin J. Perrin
- Department of Biochemistry, University of Minnesota, Minneapolis, 55455, United States of America
| | - Christine Cabelka
- Program in Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, 55455, United States of America
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, 55455, United States of America
| | - James M. Ervasti
- Department of Biochemistry, University of Minnesota, Minneapolis, 55455, United States of America
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, 55455, United States of America
| | - Dawn A. Lowe
- Program in Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, 55455, United States of America
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, 55455, United States of America
| |
Collapse
|
11
|
Seco CZ, Oonk AMM, Domínguez-Ruiz M, Draaisma JMT, Gandía M, Oostrik J, Neveling K, Kunst HPM, Hoefsloot LH, del Castillo I, Pennings RJE, Kremer H, Admiraal RJC, Schraders M. Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet 2014; 23:189-94. [PMID: 24781754 DOI: 10.1038/ejhg.2014.83] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
In a consanguineous Turkish family diagnosed with autosomal recessive nonsyndromic hearing impairment (arNSHI), a homozygous region of 47.4 Mb was shared by the two affected siblings on chromosome 6p21.1-q15. This region contains 247 genes including the known deafness gene MYO6. No pathogenic variants were found in MYO6, neither with sequence analysis of the coding region and splice sites nor with mRNA analysis. Subsequent candidate gene evaluation revealed CLIC5 as an excellent candidate gene. The orthologous mouse gene is mutated in the jitterbug mutant that exhibits progressive hearing impairment and vestibular dysfunction. Mutation analysis of CLIC5 revealed a homozygous nonsense mutation c.96T>A (p.(Cys32Ter)) that segregated with the hearing loss. Further analysis of CLIC5 in 213 arNSHI patients from mostly Dutch and Spanish origin did not reveal any additional pathogenic variants. CLIC5 mutations are thus not a common cause of arNSHI in these populations. The hearing loss in the present family had an onset in early childhood and progressed from mild to severe or even profound before the second decade. Impaired hearing is accompanied by vestibular areflexia and in one of the patients with mild renal dysfunction. Although we demonstrate that CLIC5 is expressed in many other human tissues, no additional symptoms were observed in these patients. In conclusion, our results show that CLIC5 is a novel arNSHI gene involved in progressive hearing impairment, vestibular and possibly mild renal dysfunction in a family of Turkish origin.
Collapse
Affiliation(s)
- Celia Zazo Seco
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands [3] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne M M Oonk
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - María Domínguez-Ruiz
- 1] Servicio de Genética, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jos M T Draaisma
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marta Gandía
- 1] Servicio de Genética, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jaap Oostrik
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands [3] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kornelia Neveling
- 1] Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands [2] Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henricus P M Kunst
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lies H Hoefsloot
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
| | - Ronald J E Pennings
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannie Kremer
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands [3] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands [4] Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald J C Admiraal
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margit Schraders
- 1] Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, Nijmegen, The Netherlands [2] Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands [3] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Prasad V, Lorenz JN, Lasko VM, Nieman ML, Al Moamen NJ, Shull GE. Loss of the AE3 Cl(-)/HCO(-) 3 exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart. Front Physiol 2013; 4:399. [PMID: 24427143 PMCID: PMC3875869 DOI: 10.3389/fphys.2013.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023] Open
Abstract
Cl(-)/HCO(-) 3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO(-) 3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl(-)/HCO(-) 3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after β-adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO(-) 3 extrusion is required for a robust force-frequency response (FFR) during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca(2+)-handling were observed, but Ca(2+)-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca(2+)-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban (PLN), myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure.
Collapse
Affiliation(s)
- Vikram Prasad
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - John N Lorenz
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Valerie M Lasko
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Michelle L Nieman
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Nabeel J Al Moamen
- Genetic Laboratory, Department of Pathology, Salmaniya Medical Complex Manama, Bahrain
| | - Gary E Shull
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
13
|
Prasad V, Lorenz JN, Miller ML, Vairamani K, Nieman ML, Wang Y, Shull GE. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress. J Mol Cell Cardiol 2013; 65:33-42. [PMID: 24080184 PMCID: PMC3883452 DOI: 10.1016/j.yjmcc.2013.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 12/23/2022]
Abstract
Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice.
Collapse
Affiliation(s)
- Vikram Prasad
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - John N. Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Marian L. Miller
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Michelle L. Nieman
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| |
Collapse
|
14
|
Jiang L, Salao K, Li H, Rybicka JM, Yates RM, Luo XW, Shi XX, Kuffner T, Tsai VWW, Husaini Y, Wu L, Brown DA, Grewal T, Brown LJ, Curmi PMG, Breit SN. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification. J Cell Sci 2012; 125:5479-88. [PMID: 22956539 PMCID: PMC3561857 DOI: 10.1242/jcs.110072] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2012] [Indexed: 02/02/2023] Open
Abstract
Intracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox- and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1(-/-) mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1(-/-) macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC1(-/-) mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Lele Jiang
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Kanin Salao
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Hui Li
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Joanna M. Rybicka
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robin M. Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xu Wei Luo
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Xin Xin Shi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Tamara Kuffner
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Vicky Wang-Wei Tsai
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Yasmin Husaini
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Liyun Wu
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - David A. Brown
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Louise J. Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M. G. Curmi
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
- School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Samuel N. Breit
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital and University of New South Wales, Sydney, NSW 2010, Australia
| |
Collapse
|
15
|
Blair HC, Robinson LJ, Huang CLH, Sun L, Friedman PA, Schlesinger PH, Zaidi M. Calcium and bone disease. Biofactors 2011; 37:159-67. [PMID: 21674636 PMCID: PMC3608212 DOI: 10.1002/biof.143] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/18/2010] [Indexed: 11/12/2022]
Abstract
Calcium transport and calcium signaling are of basic importance in bone cells. Bone is the major store of calcium and a key regulatory organ for calcium homeostasis. Bone, in major part, responds to calcium-dependent signals from the parathyroids and via vitamin D metabolites, although bone retains direct response to extracellular calcium if parathyroid regulation is lost. Improved understanding of calcium transporters and calcium-regulated cellular processes has resulted from analysis of genetic defects, including several defects with low or high bone mass. Osteoblasts deposit calcium by mechanisms including phosphate and calcium transport with alkalinization to absorb acid created by mineral deposition; cartilage calcium mineralization occurs by passive diffusion and phosphate production. Calcium mobilization by osteoclasts is mediated by acid secretion. Both bone forming and bone resorbing cells use calcium signals as regulators of differentiation and activity. This has been studied in more detail in osteoclasts, where both osteoclast differentiation and motility are regulated by calcium.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Veterans Affairs Health System, PA, USA.
| | | | | | | | | | | | | |
Collapse
|