1
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet Sci 2022; 9:171. [PMID: 35448669 PMCID: PMC9028514 DOI: 10.3390/vetsci9040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant and ubiquitously expressed neuropeptides in both the central and peripheral nervous systems, and its regulatory effects on feed intake and appetite- have been extensively studied in a wide variety of animals, including mammalian and non-mammalian species. Indeed, NPY has been shown to be involved in the regulation of feed intake and energy homeostasis by exerting stimulatory effects on appetite and feeding behavior in several species including chickens, rabbits, rats and mouse. More recent studies have shown that this neuropeptide and its receptors are expressed in various peripheral tissues, including the thyroid, heart, spleen, adrenal glands, white adipose tissue, muscle and bone. Although well researched centrally, studies investigating the distribution and function of peripherally expressed NPY in avian (non-mammalian vertebrates) species are very limited. Thus, peripherally expressed NPY merits more consideration and further in-depth exploration to fully elucidate its functions, especially in non-mammalian species. The aim of the current review is to provide an integrated synopsis of both centrally and peripherally expressed NPY, with a special focus on the distribution and function of the latter.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| | - Nedra Abdelli
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jalila S. Dridi
- École Universitaire de Kinésithérapie, Université d’Orléans, Rue de Chartres, 45100 Orleans, France;
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| |
Collapse
|
3
|
Wang Q, Wang Q, Melak S, Lin X, Wei W, Zhang L, Chen J. A novel c.-652C>T mutation in UCHL1 gene is associated with the growth performance in Yangzhou goose. Poult Sci 2021; 100:101089. [PMID: 34051408 PMCID: PMC8165569 DOI: 10.1016/j.psj.2021.101089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
As a member of the ubiquitin-dependent proteasome degradation pathway, Ubiquitin carboxyl-terminal hydrolase-L1 (UCHL1) plays a key role in post-translational modification and protein degradation, and it is extensive and important for the regulation of various biological functions of the organism. However, its function remains unclear in goose growth performance. In this study, the full-length genomic DNA and coding region of UCHL1 gene was firstly cloned and characterized in Yangzhou goose. Tissue expression profile revealed that UCHL1 was exclusively expressed in brain and gonads. A novel single nucleotide polymorphisms c.-652C>T which is significantly related to 64-d body weight of Yangzhou goose was found in UCHL1 promoter region by comparative sequencing. Correlation analysis in a population of 405 geese showed that TT genotype individuals had higher body weight than CC individuals in male, but not in female geese. Dual-luciferase reporter assay indicated that the single nucleotide polymorphisms c.-652C>T is located at the core promoter region of UCHL1, and the promoter transcription activity was significantly increased (P < 0.01) when allele C changed to T. Geese with TT genotype had higher mRNA level of UCHL1 in brain tissue than those of CC genotype (P < 0.01). Compared with CC individuals, neuropeptide Y and AdipoR1 mRNA level was significantly higher in TT individuals (P < 0.05), while FAS mRNA level was lower in the TT individuals (P < 0.05). In summary, we identify a novel mutation in the promoter of UCHL1 gene, which can alter transcriptional activity of UCHL1 gene, and affect the growth performance of male goose.
Collapse
Affiliation(s)
- Qin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qiushi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sherif Melak
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangsheng Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Tang S, Xie J, Zhang S, Wu W, Yi B, Zhang H. Atmospheric Ammonia Affects Myofiber Development and Lipid Metabolism in Growing Pig Muscle. Animals (Basel) 2019; 10:ani10010002. [PMID: 31861338 PMCID: PMC7022806 DOI: 10.3390/ani10010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022] Open
Abstract
Ammonia, an aerial pollutant in animal facilities, affects animal health. Recent studies showed that aerial ammonia negatively impacts meat quality but the mechanism remains unknown. To understand how ammonia drives its adverse effects on pig meat quality, 18 crossbred gilts were exposed to 0, 10 or 25 mg/m3 ammonia for 25 days. Ammonia exposure increased fat content in the Longissimus dorsi muscle, and meat color got lighter after 25 mg/m3 ammonia exposure. Analysis of MyHC isoforms showed an increased MyHC IIx but decreased MyHC I after ammonia exposure. Besides, muscular glutamine decreased significantly as aerial ammonia increased. Although hyperammonemia was reported to upregulate MSTN and inhibit downstream mTOR pathway, no changes have been found in the mRNA expression level of MSTN and protein expression level of mTOR signal pathway after ammonia exposure. RNA-Seq showed that 10 mg/m3 ammonia exposure altered genes related to myofiber development (MyoD1, MyoG), whereas 25 mg/m3 ammonia affected genes associated with fatty acid synthesis and β-oxidation (SCD, FADS1, FASN, ACADL). Collectively, our findings showed aerial ammonia exposure appears to regulate myofiber development and lipid metabolism in the skeletal muscle, which results in the negative impacts on meat quality in pigs.
Collapse
Affiliation(s)
- Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 10093, China; (S.T.); (J.X.); (W.W.); (B.Y.)
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 10093, China; (S.T.); (J.X.); (W.W.); (B.Y.)
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA;
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 10093, China; (S.T.); (J.X.); (W.W.); (B.Y.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 10093, China; (S.T.); (J.X.); (W.W.); (B.Y.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 10093, China; (S.T.); (J.X.); (W.W.); (B.Y.)
- Correspondence:
| |
Collapse
|
5
|
Sun L, Liu J, Tian P, Ni Y, Zhao R. The effect of fasting on the appetite-associated factors and energy sensors expression in the hypothalamus of different TI broilers. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tonic immobility (TI) is a behaviour related to fear and stress response. Birds can exhibit a short (STI) or long (LTI) tonic immobility phenotype on the basis in TI duration. In this study, the differences in the hypothalamic appetite-associated factors and energy sensor gene expression between STI and LTI broilers were evaluated under free feed access or 16-h fasting. The results showed that the concentrations of cholesterol, high density lipoprotein-cholesterol, non-esterified fatty acid, malonaldehyde, lactate dehydrogenase, creatine kinase, alanine aminotransferase and aspartate aminotransferase in plasma were significantly increased (P < 0.05) in fasting broilers compared with broilers fed ad libitum, whereas plasma glucose, triglyceride, and total antioxidant capacity concentrations were decreased (P < 0.05). With respect to TI, however, only low density lipoprotein-cholesterol and glutathione peroxidase concentrations in plasma showed significant differences between LTI and STI broilers, with higher concentrations in LTI compared with STI. Real-time PCR results showed that only NPY mRNA expression demonstrated a tendency to increase in STI broilers compared with LTI (P = 0.095). Fasting downregulated SREBP-1 and its target gene FAS but upregulated CPT1 in the hypothalamus. Additionally, levels of hypothalamic p-GR and p-AMPK protein expression decreased after fasting. These results indicate that a 16-h fasting results in a negative energy status, and is accompanied with changes in expression of hypothalamic energy sensor and appetite-associated factors.
Collapse
|
6
|
Flees J, Rajaei-Sharifabadi H, Greene E, Beer L, Hargis BM, Ellestad L, Porter T, Donoghue A, Bottje WG, Dridi S. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front Physiol 2017; 8:919. [PMID: 29230177 PMCID: PMC5711822 DOI: 10.3389/fphys.2017.00919] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M Hargis
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Laura Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Annie Donoghue
- USDA, Agricultural Research Service, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Honda K, Kondo M, Hiramoto D, Saneyasu T, Kamisoyama H. Effects of continuous white light and 12h white-12h blue light-cycles on the expression of clock genes in diencephalon, liver, and skeletal muscle in chicks. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:73-78. [PMID: 28238833 DOI: 10.1016/j.cbpa.2017.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/29/2017] [Accepted: 02/19/2017] [Indexed: 11/27/2022]
Abstract
The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks.
Collapse
Affiliation(s)
- Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Makoto Kondo
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Daichi Hiramoto
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Blankenship K, Gilley A, Piekarski A, Orlowski S, Greene E, Bottje W, Anthony N, Dridi S. Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency. Neuropeptides 2016; 58:31-40. [PMID: 26707635 DOI: 10.1016/j.npep.2015.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Livestock and poultry sectors are facing a combination of challenges, including a substantial increase in global demand for high quality animal protein, general droughts and steady rise in animal feed cost. Thus feed efficiency (FE), which defines the animal's ability to convert feed into body weight, is a vital economic and agricultural trait. Genetic selection for FE has been largely used in chickens and has been applied without knowledge of the underlying molecular mechanisms. Although it has made tremendous progress (breast yield, growth rate, egg production), there have been a number of undesirable changes such as metabolic disorders. In the present study we divergently selected male and female quail for high and low FE and we aimed to characterize the molecular basis of these differences at the central level, with the long-term goal of maximizing FE and avoiding the unfavorable consequences. The FE phenotype in first generation quails seemed to be achieved by reduced feed intake in female and increased body weight gain in males. At the molecular level, we found that the expression of feeding-related hypothalamic genes is gender- and line-dependent. Indeed, the expression of NPY, POMC, CART, CRH, melanocortin system (MC1R, MC2R, MC4R, MC5R), ORX, mTOR and ACCα was significantly decreased, however ORXR1/2, AMPKα1, S6K1 and STAT1, 5 and 6 were increased in high compared to low FE males (P<0.05). These genes did not differ between the two female lines. ADPN gene expression was higher and its receptor Adip-R1 was lower in LFE compared to HFE females (P<0.05). In male however, although there was no difference in ADPN gene expression between the genotypes, Adip-R1 and Adip-R2 mRNA abundances were higher in the LFE compared to HFE line (P<0.05). This study identified several key central feeding-related genes that are differentially expressed between low and high FE male and female quails which might explain the differences in feed intake/body weight gain observed between the two lines. Of particular interest, we provided novel insights into central AMPK-mTOR-ACC transcriptional differences between low and high FE quail which may open new research avenues on their roles in the regulation of energy balance and FE in poultry and livestock species.
Collapse
Affiliation(s)
- Kaley Blankenship
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alex Gilley
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alissa Piekarski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sara Orlowski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Walter Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Nicholas Anthony
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
9
|
Piekarski A, Decuypere E, Buyse J, Dridi S. Chenodeoxycholic acid reduces feed intake and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Gen Comp Endocrinol 2016; 229:74-83. [PMID: 26965947 DOI: 10.1016/j.ygcen.2016.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/15/2016] [Accepted: 03/06/2016] [Indexed: 02/03/2023]
Abstract
Bile acids have recently become an emerging research hot spot in mammals due to their roles as metabolic regulators and molecular signatures controlling whole-body metabolic homeostasis. Such effects are still unknown in avian (non-mammalian) species. We, therefore, undertook this study to determine the effect of chenodeoxycholic acid (CDCA) on growth performance and on the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. Chickens fed with diet-containing 0.1% or 0.5% CDCA for two weeks exhibited a significant and a dose dependent reduction of feed intake and body weight compared to the control (standard diet). These changes were accompanied with a significant decrease in plasma glucose levels at d10 and d15 post-treatment. At molecular levels, CDCA treatment significantly up-regulated the expression of feeding-related hypothalamic neuropeptides (NPY, AgRP, ORX, CRH, Ghrl, and MC1R) and down-regulated the hypothalamic expression of SOCS3. CDCA treatment also decreased the mRNA levels of key hepatic lipogenic genes (FAS, ACCα, ME, ATPcl, and SCD-1) and their related transcription factors SREBP-1/2 and PPARα. In addition, CDCA reduced the hepatic expression of FXR and the adipokine, visfatin, and adiponectin genes compared to the control. Together, our data provide evidence that CDCA alters growth performances in broilers and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic and adipocytokine genes.
Collapse
Affiliation(s)
- Alissa Piekarski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Eddy Decuypere
- Division of Livestock-Nutrition-Quality, KUL, 3001 Leuven, Belgium
| | - Johan Buyse
- Division of Livestock-Nutrition-Quality, KUL, 3001 Leuven, Belgium
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
10
|
Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-Related Genes and Improves Growth Performances in Young Chicks. PLoS One 2015; 10:e0142319. [PMID: 26569484 PMCID: PMC4646505 DOI: 10.1371/journal.pone.0142319] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the present study we determine the effect of chronic mild cold conditioning (CMCC) on growth performances and on the expression of key metabolic-related genes in three metabolically important tissues: brain (main site for feed intake control), liver (main site for lipogenesis) and muscle (main site for thermogenesis). METHODS 80 one-day old male broiler chicks were divided into two weight-matched groups and maintained in two different temperature floor pen rooms (40 birds/room). The temperature of control room was 32°C, while the cold room temperature started at 26.7°C and gradually reduced every day (1°C/day) to reach 19.7°C at the seventh day of the experiment. At day 7, growth performances were recorded (from all birds) and blood samples and tissues were collected (n = 10). The rest of birds were maintained at the same standard environmental condition for two more weeks and growth performances were measured. RESULTS Although feed intake remained unchanged, body weight gain was significantly increased in CMCC compared to the control chicks resulting in a significant low feed conversion ratio (FCR). Circulating cholesterol and creatine kinase levels were higher in CMCC chicks compared to the control group (P<0.05). CMCC significantly decreased the expression of both the hypothalamic orexigenic neuropeptide Y (NPY) and anorexigenic cocaine and amphetamine regulated transcript (CART) in chick brain which may explain the similar feed intake between the two groups. Compared to the control condition, CMCC increased the mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05), the master energy and nutrient sensors, respectively. It also significantly decreased the expression of fatty acid synthase (FAS) gene in chick brain compared to the control. Although their roles are still unknown in avian species, adiponectin (Adpn) and its related receptors (AdipoR1 and 2) were down regulated in the brain of CMCC compared to control chicks (P<0.05). In the liver, CMCC significantly down regulated the expression of lipogenic genes namely FAS, acetyl-CoA carboxylase alpha (ACCα) and malic enzyme (ME) and their related transcription factors sterol regulatory element binding protein 1/2 (SREBP-1 and 2). Hepatic mTOR mRNA levels and phosphorylated mTOR at Ser2448 were down regulated (P<0.05), however phosphorylated ACCαSer79 (inactivation) was up regulated (P<0.05) in CMCC compared to control chicks, indicating that CMCC switch hepatic catabolism on and inhibits hepatic lipogenesis. In the muscle however, CMCC significantly up regulated the expression of carnitine palmitoyltransferase 1 (CPT-1) gene and the mRNA and phosphorylated protein levels of mTOR compared to the control chicks, indicating that CMCC enhanced muscle fatty acid β-oxidation. CONCLUSIONS In conclusion, this is the first report indicating that CMCC may regulate AMPK-mTOR expression in a tissue specific manner and identifying AMPK-mTOR as a potential molecular signature that controls cellular fatty acid utilization (inhibition of hepatic lipogenesis and induction of muscle fatty acid β-oxidation) to enhance growth performance during mild cold acclimation.
Collapse
|
11
|
Fang XL, Zhu XT, Chen SF, Zhang ZQ, Zeng QJ, Deng L, Peng JL, Yu JJ, Wang LN, Wang SB, Gao P, Jiang QY, Shu G. Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: Functions of glucose and lipid metabolism in the feed intake of chickens. Poult Sci 2014; 93:2841-54. [DOI: 10.3382/ps.2014-04047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Lei L, Lixian Z. Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1300-8. [PMID: 25049694 PMCID: PMC4092945 DOI: 10.5713/ajas.2012.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/13/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022]
Abstract
The 5’-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of AMPKα2, AMPKβ1, AMPKβ2, AMPKγ1, Ste20-related adaptor protein β (STRADβ), mouse protein 25α (MO25α) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of AMPKα1, AMPKγ2, LKB1 and neuropeptide Y (NPY). However, the expression of MO25β, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase α (ACCα), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick’s hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.
Collapse
|
13
|
Dridi S, Decuypere E, Buyse J. Cerulenin upregulates heat shock protein-70 gene expression in chicken muscle. Poult Sci 2013; 92:2745-53. [PMID: 24046423 DOI: 10.3382/ps.2013-03242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lines of evidence suggested that systems involved in the regulation of the stress responses and energy homeostasis are highly integrated. Because cerulenin, the natural antibiotic product of the fungus Cephalosporium ceruleans and a broad-spectrum fatty acid synthesis (FAS) inhibitor, has been shown to affect food intake and energy balance, and because the biomarker of stress Hsp-70 gene was found to interact directly with fatty acids, we hypothesized that cerulenin may regulate Hsp-70 gene expression. Therefore, the present study was undertaken to examine this issue. Cerulenin administration significantly (P < 0.05) decreased food intake and induced Hsp-70 mRNA levels in muscle, but not in liver or hypothalamus of 2-wk-old broiler chickens. These changes were accompanied by an unpregulation of muscle uncoupling protein and carnitine palmitoyltransferase 1 mRNA levels. This result indicated that the regulation of Hsp-70 gene expression in normal chickens, as estimated by oxidative stress indices [TBA reacting substances, ferric reducing/antioxidant power, and ceruloplasmin oxidase activity] levels, is tissue-specific. In attempt to discriminate between the effect of cerulenin and cerulenin-reduced food intake on Hsp-70 gene expression, we also evaluated the effect of food deprivation on the same cellular responses. Food deprivation for 16 h did not affect Hsp-70 gene expression in all tissues examined, indicating that the effect of cerulenin is independent of the inhibition of food intake. To ascertain whether the effect of cerulenin is direct or indirect, we carried out in vitro studies. Cerulenin treatment did not affect Hsp-70 gene expression in Leghorn male hepatoma and quail myoblast cell lines, suggesting that the observed effect in vivo may be mediated through the central nervous system.
Collapse
Affiliation(s)
- Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701; and
| | | | | |
Collapse
|
14
|
Cheng G, Palanisamy AP, Evans ZP, Sutter AG, Jin L, Singh I, May H, Schmidt MG, Chavin KD. Cerulenin blockade of fatty acid synthase reverses hepatic steatosis in ob/ob mice. PLoS One 2013; 8:e75980. [PMID: 24086674 PMCID: PMC3785413 DOI: 10.1371/journal.pone.0075980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022] Open
Abstract
Fatty liver or hepatic steatosis is a common health problem associated with abnormal liver function and increased susceptibility to ischemia/reperfusion injury. The objective of this study was to investigate the effect of the fatty acid synthase inhibitor cerulenin on hepatic function in steatotic ob/ob mice. Different dosages of cerulenin were administered intraperitoneally to ob/ob mice for 2 to 7 days. Body weight, serum AST/ALT, hepatic energy state, and gene expression patterns in ob/ob mice were examined. We found that cerulenin treatment markedly improved hepatic function in ob/ob mice. Serum AST/ALT levels were significantly decreased and hepatic ATP levels increased in treated obese mice compared to obese controls, accompanied by fat depletion in the hepatocyte. Expression of peroxisome proliferator-activated receptors α and γ and uncoupling protein 2 were suppressed with cerulenin treatment and paralleled changes in AST/ALT levels. Hepatic glutathione content were increased in some cases and apoptotic activity in the steatotic livers was minimally changed with cerulenin treatment. In conclusion, these results demonstrate that fatty acid synthase blockade constitutes a novel therapeutic strategy for altering hepatic steatosis at non-stressed states in obese livers.
Collapse
Affiliation(s)
- Gang Cheng
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Arun P. Palanisamy
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Zachary P. Evans
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Alton G. Sutter
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lan Jin
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harold May
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael G. Schmidt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth D. Chavin
- Divisions of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
15
|
Song Z, Liu L, Yue Y, Jiao H, Lin H, Sheikhahmadi A, Everaert N, Decuypere E, Buyse J. Fasting alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus). Gen Comp Endocrinol 2012; 178:546-55. [PMID: 22771832 DOI: 10.1016/j.ygcen.2012.06.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/21/2012] [Accepted: 06/24/2012] [Indexed: 12/12/2022]
Abstract
An experiment was conducted to investigate the effects of fasting and re-feeding on hypothalamic 5'-AMP-activated protein kinase (AMPK) levels and (an)orexigenic neuropeptides. Male Arbor Acres chicks (7-day-old, n=160) were allocated to four equal treatment groups: control chicks (fed ad libitum for 48 h, C48), chicks that were fasted for 48 h (F48), chicks that were first fasted for 48 h and then re-fed for 24h (F48C24), and chicks that were fed ad libitum for 72h (C72). Fasting for 48 h significantly (P<0.05) increased the ratio of phosphorylated AMPKα to total AMPKα and phosphorylated LKB1 to total LKB1, whereas re-feeding for 24h reduced these ratios to that of the ad libitum fed C72 chicks. The gene expressions of agouti-related peptide (AgRP), neuropeptide Y (NPY), melanocortin receptor 4, melanin-concentrating hormone, prepro-orexins and carnitine palmitoyltransferase-1 were significantly (P<0.05) increased in the fasted chicks relative to the ad libitum fed C48 group. The gene expression of pro-opiomelanocortin (POMC), as well as cocaine- and amphetamine-regulated transcript (CART) was not affected by the nutritional status. Fasting significantly (P<0.05) decreased the mRNA levels of fatty acid synthase (FAS) and sterol regulatory element binding protein-1 (SREBP-1). The results suggest that the LKB1/AMPK signal pathway is involved in the energy homeostasis of fasted chicks, and its possible role in feed intake regulation might be mediated by the AgRP/NPY rather than the POMC/CART pathway.
Collapse
Affiliation(s)
- Zhigang Song
- Division Livestock-Nutrition-Quality, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shiraishi JI, Tanizawa H, Fujita M, Kawakami SI, Bungo T. Localization of hypothalamic insulin receptor in neonatal chicks: Evidence for insulinergic system control of feeding behavior. Neurosci Lett 2011; 491:177-80. [DOI: 10.1016/j.neulet.2011.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/28/2010] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
|
17
|
|
18
|
Cirsimarin, a potent antilipogenic flavonoid, decreases fat deposition in mice intra-abdominal adipose tissue. Int J Obes (Lond) 2010; 34:1566-75. [PMID: 20458325 DOI: 10.1038/ijo.2010.85] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We previously reported that the flavonoid cirsimarin exerts in vitro a strong lipolytic activity on isolated adipocytes. This study was therefore designed to evaluate in vivo the effects of cirsimarin on white adipose tissue (WAT) accretion in mice. METHODS Male CD1 mice were injected daily with either vehicle (intraperitoneal (i.p.)) or cirsimarin (25 or 50 mg kg(-1) per day, i.p.) for 18 days. Mice were killed and fat pads weighted. Epididymal fat pads were used for cellularity measurement. Effects of cirsimarin treatment on lipolysis and lipogenesis in WAT were assessed. RESULTS Mice treated with 25 or 50 mg kg(-1) per day cirsimarin showed a decrease in retroperitoneal (-29 and -37% respectively, P<0.005) and epididymal (-25 and -28% respectively, P<0.005) fat pad weights compared with controls. This effect was restricted to intra-abdominal WAT as no difference was noticed for subcutaneous inguinal WAT. The decrease in intra-abdominal WAT accretion was due to a decrease in adipose cell diameter (-5 and -8% for 25 and 50 mg kg(-1) per day cirsimarin, respectively) resulting in a 14 and 35% decrease in adipose cell volume while no change was noticed in total adipocyte number. Direct injection of cirsimarin (50 mg kg(-1)) to rats did not trigger lipolysis. In contrast, cirsimarin showed in vivo as well as in vitro a strong antilipogenic activity, which may be the critical aspect of its effects on fat accretion in mice. The inhibitory concentration 50% of cirsimarin on lipogenic activity in isolated adipocytes was found to be 1.28±0.04 μM. Cirsimarin given orally reduced intra-abdominal fat accretion in mice. CONCLUSION Cirsimarin exerts potent antilipogenic effect and decreases adipose tissue deposition in mice. Cirsimarin could therefore be a potential candidate for the treatment of obesity.
Collapse
|
19
|
López M, Tena-Sempere M, Diéguez C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front Neuroendocrinol 2010; 31:113-27. [PMID: 19654017 DOI: 10.1016/j.yfrne.2009.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 02/06/2023]
Abstract
Lesioning and electrical stimulation experiments carried out during the first half of the twentieth century showed that the lateral hypothalamic area (LHA) is involved in the neuroendocrine control of hormone secretion. However, the molecular basis of this phenomenon remained unclear until fifty years later when in 1998, two different laboratories discovered a new family of hypothalamic neuropeptides, the orexins or hypocretins (OX-A/Hcrt1 and OX-B/Hcrt2). Since then, remarkable evidence has revealed that orexins/hypocretins play a prominent role in regulating virtually all the neuroendocrine axes, acting as pivotal signals in the coordination of endocrine responses with regards to sleep, arousal and energy homeostasis. The clinical relevance of these actions is supported by human data showing impairment of virtually all the neuroendocrine axes in orexin/hypocretin-deficient narcoleptic patients. Here, we summarize more than ten years of knowledge about the orexins/hypocretins with particular focus on their role as neuroendocrine regulators. Understanding this aspect of orexin/hypocretin physiology could open new therapeutic possibilities in the treatment of sleep, energy homeostasis and endocrine pathologies.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela - Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain.
| | | | | |
Collapse
|
20
|
Ons E, Gertler A, Buyse J, Lebihan-Duval E, Bordas A, Goddeeris B, Dridi S. Visfatin gene expression in chickens is sex and tissue dependent. Domest Anim Endocrinol 2010; 38:63-74. [PMID: 19786337 DOI: 10.1016/j.domaniend.2009.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/12/2009] [Accepted: 08/28/2009] [Indexed: 01/17/2023]
Abstract
The present study investigated the expression of visfatin mRNA in various tissues of male and female broiler chickens. We also studied the effect of leptin, cerulenin, and food deprivation, known effectors of energy balance and insulin action, on visfatin gene expression in chickens. Using reverse transcription polymerase chain reaction (RT-PCR) and Northern blot analysis, we detected chicken visfatin mRNA transcript in the kidney, hypothalamus, gizzard, liver, pancreas, proventriculus, breast and leg muscle, ovary, testis, lung, intestine, adipose tissue, and heart. Expression of the visfatin gene in various tissues of male and female chickens was determined by real-time quantitative PCR and found to be tissue and sex dependent. In both sexes, compared to other tissues, the visfatin gene is highly expressed in the muscle. Females exhibited greater (P<0.001) abundance of visfatin mRNA in adipose tissue compared to males, whereas compared to females, males showed greater (P<0.05) visfatin mRNA abundance in the kidney. Also, the regulation of visfatin gene expression by leptin, cerulenin, and food deprivation is tissue specific. Leptin decreased (P<0.05) visfatin mRNA abundance in the liver and hypothalamus, but not in muscle. In contrast, cerulenin increased (P<0.01) visfatin gene expression in the liver and in muscle, but not in the hypothalamus. Interestingly, visfatin mRNA levels increased (P<0.05) in the liver after 24-h food deprivation, but not in muscle or in the hypothalamus of genetically selected fat and lean line chickens. Our results showed that the visfatin gene is ubiquitously expressed in chickens with greater abundance in muscle, and that it is regulated in a tissue-specific manner by energy balance-related factors.
Collapse
Affiliation(s)
- E Ons
- Laboratory of Livestock Physiology, Immunology, and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Martinez-Villaluenga C, Dia VP, Berhow M, Bringe NA, Gonzalez de Mejia E. Protein hydrolysates from beta-conglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation in vitro. Mol Nutr Food Res 2009; 53:1007-18. [PMID: 19603404 DOI: 10.1002/mnfr.200800473] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obesity is a worldwide health concern and a well recognized predictor of premature mortality associated with a state of chronic inflammation. The objective was to evaluate the effect of soy protein hydrolysates (SPH) produced from different soybean genotypes by alcalase (SAH) or simulated gastrointestinal digestion (SGIH) on lipid accumulation in 3T3-L1 adipocytes. The anti-inflammatory effect of SPH produced by alcalase on LPS-induced macrophage RAW 264.7 cell line was also investigated. SAH (100 microM) derived from soybean enriched in beta-conglycinin (BC) (up to 47% total protein) decreased lipid accumulation (33-37% inhibition) through downregulation of gene expression of lipoprotein lipase (LPL) and fatty acid synthase (FAS). SGIH (100 microM) inhibited lipid accumulation to a lesser extent (8-14% inhibition) through inhibition of LPL gene expression. SAH (5 microM) decreased the production of nitric oxide (NO) (18-35%) and prostaglandin E(2) (PGE(2)) (47-71%) and the expression of inducible nitric oxide synthase (iNOS) (31-53%) and cycloxygenase-2 (COX-2) (30-52%). This is the first investigation showing that soy hydrolysates inhibit LPS-induced iNOS/NO and COX-2/PGE(2 )pathways in macrophages. Soybeans enriched in BCs can provide hydrolysates that limit fat accumulation in fat cells and inflammatory pathways in vitro and therefore warrant further studies as a healthful food.
Collapse
|
22
|
Buyse J, Janssen S, Geelissen S, Swennen Q, Kaiya H, Darras VM, Dridi S. Ghrelin modulates fatty acid synthase and related transcription factor mRNA levels in a tissue-specific manner in neonatal broiler chicks. Peptides 2009; 30:1342-7. [PMID: 19409434 DOI: 10.1016/j.peptides.2009.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 11/17/2022]
Abstract
The endogenous ligand for the growth hormone (GH) secretagogue receptor ghrelin is a peptide secreted by the stomach of mammals and stimulates food intake and enhances adiposity. In avian species, ghrelin is mainly produced by the proventriculus but reduces food intake whereas its effect on lipogenesis in different tissues is unknown. We therefore investigated the effects of a single intravenous injection of 2.8 microg (1 nmol per chick) recombinant chicken ghrelin in neonatal broiler chicks. Besides food intake and plasma corticosterone levels, mRNA levels of the key lipogenic enzyme fatty acid synthase (FAS) and its related transcription factors sterol regulatory element binding protein-1 (SREBP-1) and peroxisome proliferator-activated receptor-gamma (PPARgamma) were determined in diencephalon, liver and quadriceps femoris muscle before, and 15, 30, and 60 min after injection. Chicken ghrelin administration induced a significant short-term (<30 min) reduction in food intake and markedly elevated plasma corticosterone levels. In diencephalon, FAS, SREBP-1 and PPARgamma mRNA levels were significantly increased within 15 min after ghrelin injection. These observations suggest that central fatty acid metabolism is involved in the anorectic effects of ghrelin. In contrast, hepatic mRNA levels of FAS and both transcription factors were significantly reduced within 30 min after ghrelin injection. In muscle, FAS and transcription factor gene expression was very low and not affected by ghrelin. Overall, our results indicate that ghrelin has opposite effects on FAS and transcription factor mRNA amounts with increased levels in diencephalon (central anorectic effect) and decreased levels in liver (peripheral anti-lipogenic effect) in chickens.
Collapse
Affiliation(s)
- Johan Buyse
- Laboratory of Livestock Physiology, Immunology and Genetics, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
23
|
Fu DH, Liu ZL, Liu JS, Luo Y, Shu Y, Huang SH, Han ZM. Transepithelial transport of Cerulenin across Caco-2 cell monolayers. Eur J Drug Metab Pharmacokinet 2009; 34:67-72. [DOI: 10.1007/bf03191153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Layer and broiler chicks exhibit similar hypothalamic expression of orexigenic neuropeptides but distinct expression of genes related to energy homeostasis and obesity. Brain Res 2009; 1273:18-28. [DOI: 10.1016/j.brainres.2009.03.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/12/2009] [Accepted: 03/22/2009] [Indexed: 11/22/2022]
|
25
|
Behavioral and metabolic effects of central injections of orexins/hypocretins in pigeons (Columba livia). ACTA ACUST UNITED AC 2008; 147:9-18. [DOI: 10.1016/j.regpep.2007.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/08/2007] [Accepted: 12/09/2007] [Indexed: 11/22/2022]
|
26
|
Wan CD, Wang CY, Liu T, Cheng R, Wang HB. Alleviation of ischemia/reperfusion injury in ob/ob mice by inhibiting UCP-2 expression in fatty liver. World J Gastroenterol 2008; 14:590-4. [PMID: 18203292 PMCID: PMC2681151 DOI: 10.3748/wjg.14.590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect of target suppression of uncoupling protein-2 (UCP-2) on ischemia/reperfusion (I/R) injury in fatty liver in ob/ob mice.
METHODS: Plasmids suppressing UCP-2 expression were constructed, and transfected into fatty liver cells cultured in vitro and the ob/ob mouse I/R injury model. Serum tumor necrosis factor (TNF)-α levels, UCP-2 mRNA expression, alanine aminotransferase (ALT) levels in ob/ob mice were tested, and the pathological changes in fatty liver were observed in experimental and control groups.
RESULTS: In ob/ob mouse I/R models, serum TNF-α levels were significantly higher than in normal controls. After the plasmids were transfected into the cultured cells and animal models, expression of UCP-2 mRNA was significantly reduced as compared with that in the control group (21.56 ± 0.15vs 2-0.45 ± 0.15, P < 0.05). In ob/ob mouse models, in which expression of UCP-2 was suppressed, serum ALT levels were significantly lower than those of other groups, and pathological analysis revealed that injury of liver tissues was significantly alleviated.
CONCLUSION: The target suppression of UCP-2 expression in fatty liver can alleviate the I/R injury in the ob/ob mice.
Collapse
|
27
|
Berndt J, Kovacs P, Ruschke K, Klöting N, Fasshauer M, Schön MR, Körner A, Stumvoll M, Blüher M. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia 2007; 50:1472-80. [PMID: 17492427 DOI: 10.1007/s00125-007-0689-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/28/2007] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Increased expression and activity of the lipogenic pathways in adipose tissue may contribute to the development of obesity. As a central enzyme in lipogenesis, the gene encoding fatty acid synthase (FASN) was identified as a candidate gene for determining body fat. In the present study we tested the hypothesis that increased FASN expression links metabolic alterations of excess energy intake, including hyperinsulinaemia, dyslipidaemia and altered adipokine profile to increased body fat mass. SUBJECTS AND METHODS In paired samples of visceral and subcutaneous adipose tissue from 196 participants (lean or obese), we investigated whether FASN mRNA expression (assessed by PCR) in adipose tissue is increased in obesity and related to visceral fat accumulation, measures of insulin sensitivity (euglycaemic-hyperinsulinaemic clamp) and glucose metabolism. RESULTS FASN mRNA expression was increased by 1.7-fold in visceral vs subcutaneous fat. Visceral adipose tissue FASN expression was correlated with FASN protein levels, subcutaneous FASN expression, visceral fat area, fasting plasma insulin, serum concentrations of IL-6, leptin and retinol-binding protein 4 (RBP4), and inversely with measures of insulin sensitivity, independently of age, sex and BMI. Moreover, we found significant correlations between FASN expression and markers of renal function, including serum creatinine and urinary albumin excretion. CONCLUSIONS/INTERPRETATION Increased FASN gene expression in adipose tissue is linked to visceral fat accumulation, impaired insulin sensitivity, increased circulating fasting insulin, IL-6, leptin and RBP4, suggesting an important role of lipogenic pathways in the causal relationship between consequences of excess energy intake and the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- J Berndt
- Department of Internal Medicine III, University of Leipzig, Ph.-Rosenthal-Str. 27, 04103, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|