1
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Tir S, Foster RG, Peirson SN. Evaluation of the Digital Ventilated Cage® system for circadian phenotyping. Sci Rep 2025; 15:3674. [PMID: 39880968 PMCID: PMC11779816 DOI: 10.1038/s41598-025-87530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC®, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber. Home cage activity in C57BL/6J mice was recorded under a range of lighting conditions, along with circadian clock-deficient cryptochrome-deficient mice (Cry1-/-, Cry2-/- double knockout). C57BL/6J mice exhibited a 24 h period under light/dark conditions, with a free-running period of 23.5 h under constant dark, and period lengthening under constant light. Animals displayed expected phase shifting responses to jet-lag and nocturnal light pulses. Sex differences in circadian parameters and phase shifting responses were also observed. Cryptochrome-deficient mice showed subtle changes in activity under light/dark conditions and were arrhythmic under constant dark, as expected. Our results show the suitability of the DVC system for circadian behavioural screens, accurately detecting circadian period, circadian disruption, phase shifts and mice with clock defects. We provide an evaluation of the strengths and limitations of this method, highlighting how the use of the DVC for studying circadian rhythms depends upon the research requirements of the end user.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
3
|
Silva EHA, Santana NNM, Seixas NRM, Bezerra LLF, Silva MMO, Santos SF, Cavalcante JS, Leocadio-Miguel MA, Engelberth RC. Blue light exposure-dependent improvement in robustness of circadian rest-activity rhythm in aged rats. PLoS One 2023; 18:e0292342. [PMID: 37792859 PMCID: PMC10550138 DOI: 10.1371/journal.pone.0292342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The aging effects on circadian rhythms have diverse implications including changes in the pattern of rhythmic expressions, such as a wide fragmentation of the rhythm of rest-activity and decrease in amplitude of activity regulated by the suprachiasmatic nucleus (SCN). The study of blue light on biological aspects has received great current interest due, among some aspects, to its positive effects on psychiatric disorders in humans. This study aims to evaluate the effect of blue light therapy on the SCN functional aspects, through the evaluation of the rest-activity rhythm, in aging rats. For this, 33 sixteen-months-old male Wistar rats underwent continuous records of locomotor activity and were exposed to periods of 6 hours of blue light during the first half of the light phase (Zeitgeber times 0-6) for 14 days. After this, the rats were maintained at 12h:12h light:dark cycle to check the long-term effect of blue light for 14 days. Blue light repeated exposure showed positive effects on the rhythmic variables of locomotor activity in aged rats, particularly the increase in amplitude, elevation of rhythmic robustness, phase advance in acrophase, and greater consolidation of the resting phase. This effect depends on the presence of daily blue light exposure. In conclusion, our results indicate that blue light is a reliable therapy to reduce circadian dysfunctions in aged rats, but other studies assessing how blue light modulates the neural components to modulate this response are still needed.
Collapse
Affiliation(s)
- Eryck Holmes A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Narita Renata M. Seixas
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro Lucas F. Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Milena O. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Myung J, Hong S, Schmal C, Vitet H, Wu MY. Weak synchronization can alter circadian period length: implications for aging and disease conditions. Front Neurosci 2023; 17:1242800. [PMID: 37829718 PMCID: PMC10564985 DOI: 10.3389/fnins.2023.1242800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
The synchronization of multiple oscillators serves as the central mechanism for maintaining stable circadian rhythms in physiology and behavior. Aging and disease can disrupt synchronization, leading to changes in the periodicity of circadian activities. While our understanding of the circadian clock under synchronization has advanced significantly, less is known about its behavior outside synchronization, which can also fall within a predictable domain. These states not only impact the stability of the rhythms but also modulate the period length. In C57BL/6 mice, aging, diseases, and removal of peripheral circadian oscillators often result in lengthened behavioral circadian periods. Here, we show that these changes can be explained by a surprisingly simple mathematical relationship: the frequency is the reciprocal of the period, and its distribution becomes skewed when the period distribution is symmetric. The synchronized frequency of a population in the skewed distribution and the macroscopic frequency of combined oscillators differ, accounting for some of the atypical circadian period outputs observed in networks without synchronization. Building on this finding, we investigate the dynamics of circadian outputs in the context of aging and disease, where synchronization is weakened.
Collapse
Affiliation(s)
- Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hélène Vitet
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Jung J, Kang J, Kim T. Attenuation of homeostatic sleep response and rest-activity circadian rhythm in vitamin D deficient mice. Chronobiol Int 2023; 40:1097-1110. [PMID: 37661839 DOI: 10.1080/07420528.2023.2253299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
The link between vitamin D deficiency (VDD) and sleep disturbances has long been suggested. However, the direct causality between VDD, sleep disturbances, and circadian rhythm remains unclear. We aimed to characterize sleep-wake behavior and circadian rhythms in an animal model of VDD. VDD was induced by feeding vitamin D-deficient chow, and we analyzed sleep and circadian rhythm parameters. During light period, VDD mice exhibited reduced wake with more frequent wake bouts and increased NREM sleep time. However, during dark period, the wake EEG power spectrum peaked at theta band frequency, and slow-wave energy was suppressed in mice with VDD. Rest-activity analyses revealed increased circadian period, lower wheel counts, and more frequent and short activity bouts during VDD. Combining sleep and circadian data, we found significantly suppressed activities during the hours with a wake duration shorter than 30 minutes. Moreover, mice in VDD state exhibited a negative correlation between wake theta power and hourly wheel-running counts during dark period. Our data point to a direct link between VDD and disturbances in sleep and rest-activity circadian rhythm, featuring frequent wake bouts during the sleeping phase, reduced sleep pressure build-up in dark period, and reduced activity levels due to increased susceptibility to sleepiness.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
6
|
Braunstein S, Bennett NC, Voigt C, Oosthuizen MK. Differential locomotor activity responses to day-time light intensity in juvenile and adult solitary Cape mole-rats, Georychus capensis (Rodentia: Bathyergidae). Chronobiol Int 2023; 40:1084-1096. [PMID: 37667495 DOI: 10.1080/07420528.2023.2253298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The Cape mole-rat (Georychus capensis) is a solitary, strictly subterranean rodent that is responsive to light and entrains to photic cues despite having a reduced visual system. Circadian entrainment is maintained throughout life, but age can alter the amplitude of the response and re-entrainment time. Mole-rats are long-lived for their size which raises questions regarding the robustness of their circadian rhythms and how impacts their locomotor activity rhythms. The locomotor activity rhythms of juvenile and adult Cape mole-rats were investigated. They were exposed to pre-experimental and post-experimental control cycles under fluorescent lights, six 12 h light:12 h dark cycles of decreasing intensities and a constant dark cycle (DD). All animals exhibited more activity during the dark phases of all light regimes. Juveniles were more active than adults and displayed more variable activity during both the light and dark phases. Adults exhibited relatively stable levels of activity under all experimental conditions, whereas juvenile activity decreased as the light intensity was reduced. The amplitude of Cape mole-rat rhythms was consistently low, but similar across light regimes and between adults and juveniles. Cape mole-rats have functional circadian systems, are primarily nocturnal and respond differentially to light intensity depending on their age. Light intensity does not affect the locomotor activity responses of Cape mole-rats in a predictable manner, and could indicate more complex interactions with light wavelengths. The circadian systems of juveniles appear to be more sensitive than those of adults, although the mechanism of the light response remains unclear.
Collapse
Affiliation(s)
- S Braunstein
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - C Voigt
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - M K Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Schwartz PB, Walcheck MT, Nukaya M, Pavelec DM, Matkowskyj KA, Ronnekleiv-Kelly SM. Chronic jetlag accelerates pancreatic neoplasia in conditional Kras-mutant mice. Chronobiol Int 2023; 40:417-437. [PMID: 36912021 PMCID: PMC10337099 DOI: 10.1080/07420528.2023.2186122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
Misalignment of the circadian clock compared to environmental cues causes circadian desynchrony, which is pervasive in humans. Clock misalignment can lead to various pathologies including obesity and diabetes, both of which are associated with pancreatic ductal adenocarcinoma - a devastating cancer with an 80% five-year mortality rate. Although circadian desynchrony is associated with an increased risk of several solid-organ cancers, the correlation between clock misalignment and pancreas cancer is unclear. Using a chronic jetlag model, we investigated the impact of clock misalignment on pancreas cancer initiation in mice harboring a pancreas-specific activated Kras mutation. We found that chronic jetlag accelerated the development of pancreatic cancer precursor lesions, with a concomitant increase in precursor lesion grade. Cell-autonomous knock-out of the clock in pancreatic epithelial cells of Kras-mutant mice demonstrated no acceleration of precursor lesion formation, indicating non-cell-autonomous clock dysfunction was responsible for the expedited tumor development. Therefore, we applied single-cell RNA sequencing over time and identified fibroblasts as the cell population manifesting the greatest clock-dependent changes, with enrichment of specific cancer-associated fibroblast pathways due to circadian misalignment.
Collapse
Affiliation(s)
- Patrick B Schwartz
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Morgan T Walcheck
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Kristina A Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S Middleton Memorial Veterans Hospital, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean M Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
8
|
Carvalhas-Almeida C, Cavadas C, Álvaro AR. The impact of insomnia on frailty and the hallmarks of aging. Aging Clin Exp Res 2023; 35:253-269. [PMID: 36583849 PMCID: PMC9895045 DOI: 10.1007/s40520-022-02310-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Throughout the course of life, there are age-related changes in sleep. Despite these normal changes, there is a high percentage of older adults that report sleep dissatisfaction with a high pervasiveness of chronic insomnia, the most common sleep disorder worldwide, with its prevalence being expected to continuously increase due to the growing rates of aging and obesity. This can have different adverse health outcomes, especially by promoting both physical and cognitive decline, which ultimately may aggravate frailty in older adults. Moreover, age-related frailty and sleep dysfunction may have a common mechanism related to the hallmarks of cellular aging. Cellular aging was categorized into nine hallmarks, such as DNA damage, telomere attrition and epigenetic changes. In the context of geriatric and chronic insomnia research, this review aims at discussing the current evidence from both animal models and human cohorts addressing the link between chronic insomnia, the hallmarks of aging and their impact on frailty. Moreover, the most recent research about the putative effect of insomnia therapeutic approaches on hallmarks of aging will be also highlighted.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- EIT Health Ageing PhD School and Multidisciplinary Institute of Ageing (MIA-Portugal), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Trzeciak JR, Steele AD. Studying food entrainment: Models, methods, and musings. Front Nutr 2022; 9:998331. [PMID: 36211505 PMCID: PMC9532691 DOI: 10.3389/fnut.2022.998331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
The ability to tell time relative to predictable feeding opportunities has a long history of research, going back more than 100 years with behavioral observations of honeybees and rats. Animals that have access to food at a particular time of day exhibit “food anticipatory activity” (FAA), which is a preprandial increase in activity and arousal thought to be driven by food entrained circadian oscillator(s). However, the mechanisms behind adaptation of behavior to timed feeding continue to elude our grasp. Methods used to study circadian entrainment by food vary depending on the model system and the laboratory conducting the experiments. Most studies have relied on rodent model systems due to neuroanatomical tools and genetic tractability, but even among studies of laboratory mice, methods vary considerably. A lack of consistency within the field in experimental design, reporting, and definition of food entrainment, or even FAA, makes it difficult to compare results across studies or even within the same mutant mouse strain, hindering interpretation of replication studies. Here we examine the conditions used to study food as a time cue and make recommendations for study design and reporting.
Collapse
|
10
|
Leone VA, Onishi KG, Kennedy M, Riggle JP, Pierre JF, Maneval AC, Spedale MN, Theriault BR, Chang EB, Prendergast BJ. Atypical behavioral and thermoregulatory circadian rhythms in mice lacking a microbiome. Sci Rep 2022; 12:14491. [PMID: 36008471 PMCID: PMC9411200 DOI: 10.1038/s41598-022-18291-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
Trillions of microbial oscillators reside throughout the mammalian body, yet their contributions toward fundamental features of host circadian rhythms (CRs) have not been characterized. Here, we demonstrate that the microbiome contributes to host CRs in activity and thermoregulation. Mice devoid of microbes (germ-free, GF) exhibited higher-amplitude CRs in a light-dark cycle and longer circadian periods in constant darkness. Circadian entrainment to food was greater in GF mice, but resetting responses to simulated jet-lag were unaffected. Microbial transplantation with cecal contents of conventionally-raised mice normalized CRs of GF mice, indicating that the concurrent activity of gut microbes modulates host circadian networks. Obesogenic effects of high-fat diet were absent in GF mice, but some circadian-disruptive effects persisted. Transkingdom (host-microbe) interactions affect circadian period and entrainment of CRs in diverse traits, and microbes alter interactions among light- and food-entrainable circadian processes in the face of environmental (light, diet) perturbations.
Collapse
Affiliation(s)
- Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1933 Observatory Dr., Madison, WI, 53706, USA.
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E 57th St., Chicago, IL, 60637, USA.
| | - Megan Kennedy
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Jonathan P Riggle
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E 57th St., Chicago, IL, 60637, USA
| | - Joseph F Pierre
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrew C Maneval
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E 57th St., Chicago, IL, 60637, USA
| | - Melanie N Spedale
- Animal Resources Center, The University of Chicago, Chicago, IL, 60637, USA
| | - Betty R Theriault
- Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
11
|
Grimm J, Schulze H, Tziridis K. Circadian Sensitivity of Noise Trauma-Induced Hearing Loss and Tinnitus in Mongolian Gerbils. Front Neurosci 2022; 16:830703. [PMID: 35720709 PMCID: PMC9204100 DOI: 10.3389/fnins.2022.830703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Noise-induced hearing loss (HL) has a circadian component: In nocturnal mice, hearing thresholds (HT) have a significantly stronger effect to acoustic trauma when induced during the night compared to rather mild effects on hearing when induced during daytime. Here, we investigate whether such effects are also present in diurnal Mongolian gerbils and determined whether trauma-induced HL correlated with the development of a tinnitus percept in these animals. In particular, we investigated the effects of acoustic trauma (2 kHz, 115 dB SPL, 75 min) on HT and tinnitus development in 34 male gerbils exposed either at 9 AM, 1 PM, 5 PM, or 12 PM. HT was measured by acoustic brainstem response audiometry at defined times 1 day before and 1 week after the trauma. Possible tinnitus percepts were assessed behaviorally by the gap prepulse inhibition of the acoustic startle response at defined times 1 day before and 1 week after the trauma. We found daytime-dependent changes due to trauma in mean HT in a frequency-dependent manner comparable to the results in mice, but the results temporally shifted according to respective activity profiles. Additionally, we found linear correlations of these threshold changes with the strength of the tinnitus percept, with the most prominent correlations in the 5 PM trauma group. Taken together, circadian sensitivity of the HT to noise trauma can also be found in gerbils, and tinnitus strength correlates most strongly with HL only when the trauma is applied at the most sensitive times, which seem to be the evening.
Collapse
|
12
|
Cao F, Ralph MR, Stinchcombe AR. A Phenomenological Mouse Circadian Pacemaker Model. J Biol Rhythms 2022; 37:329-342. [PMID: 35485260 PMCID: PMC9160958 DOI: 10.1177/07487304221085455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mathematical models have been used extensively in chronobiology to explore characteristics of biological clocks. In particular, for human circadian studies, the Kronauer model has been modified multiple times to describe rhythm production and responses to sensory input. This phenomenological model comprises a single set of parameters which can simulate circadian responses in humans under a variety of environmental conditions. However, corresponding models for nocturnal rodents commonly used in circadian rhythm studies are not available and may require new parameter values for different species and even strains. Moreover, due to a considerable variation in experimental data collected from mice of the same strain, within and across laboratories, a range of valid parameters is essential. This study develops a Kronauer-like model for mice by re-fitting relevant parameters to published phase response curve and period data using total least squares. Local parameter sensitivity analysis and parameter distributions determine the parameter ranges that give a near-identical model and data distribution of periods. However, the model required further parameter adjustments to match characteristics of other mouse strains, implying that the model itself detects changes in the core processes of rhythm generation and control. The model is a useful tool to understand and interpret future mouse circadian clock experiments.
Collapse
Affiliation(s)
- Federico Cao
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
13
|
Chen Z, Raj A, Prateek GV, Di Francesco A, Liu J, Keyes BE, Kolumam G, Jojic V, Freund A. Automated, high-dimensional evaluation of physiological aging and resilience in outbred mice. eLife 2022; 11:e72664. [PMID: 35404230 PMCID: PMC9000950 DOI: 10.7554/elife.72664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Behavior and physiology are essential readouts in many studies but have not benefited from the high-dimensional data revolution that has transformed molecular and cellular phenotyping. To address this, we developed an approach that combines commercially available automated phenotyping hardware with a systems biology analysis pipeline to generate a high-dimensional readout of mouse behavior/physiology, as well as intuitive and health-relevant summary statistics (resilience and biological age). We used this platform to longitudinally evaluate aging in hundreds of outbred mice across an age range from 3 months to 3.4 years. In contrast to the assumption that aging can only be measured at the limits of animal ability via challenge-based tasks, we observed widespread physiological and behavioral aging starting in early life. Using network connectivity analysis, we found that organism-level resilience exhibited an accelerating decline with age that was distinct from the trajectory of individual phenotypes. We developed a method, Combined Aging and Survival Prediction of Aging Rate (CASPAR), for jointly predicting chronological age and survival time and showed that the resulting model is able to predict both variables simultaneously, a behavior that is not captured by separate age and mortality prediction models. This study provides a uniquely high-resolution view of physiological aging in mice and demonstrates that systems-level analysis of physiology provides insights not captured by individual phenotypes. The approach described here allows aging, and other processes that affect behavior and physiology, to be studied with improved throughput, resolution, and phenotypic scope.
Collapse
Affiliation(s)
- Zhenghao Chen
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Anil Raj
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - GV Prateek
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Andrea Di Francesco
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Justin Liu
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Brice E Keyes
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Ganesh Kolumam
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Adam Freund
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| |
Collapse
|
14
|
Mogavero F, van Zwieten K, Buitelaar JK, Glennon JC, Henckens MJAG. Deviant circadian rhythmicity, corticosterone variability and trait testosterone levels in aggressive mice. Eur J Neurosci 2022; 55:1492-1503. [PMID: 35229387 PMCID: PMC9313802 DOI: 10.1111/ejn.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
Although aggression has been linked to disturbances of circadian rhythm, insight into the neural substrate of this association is currently lacking. The suprachiasmatic nucleus (SCN) of the hypothalamus, the master circadian clock, is regulated by clock genes and known to influence the secretion of cortisosterone and testosterone, important hormones implicated in aggression. Here, we investigated deviations in the regulation of the locomotor circadian rhythm and hormonal levels in a mouse model of abnormal aggression. We tested aggressive BALB/cJ and control BALB/cByJ mice in the resident–intruder paradigm and compared them on their locomotor circadian rhythm during a 12 h light/12 h dark cycle and constant darkness. State (serum) corticosterone and trait (hair) corticosterone and testosterone levels were determined, and immunohistochemistry was performed to assess the expression of important clock proteins, PER1 and PER2, in the core and shell of the SCN at the start of their active phase. Compared with BALB/cByJ mice, aggressive BALB/cJ mice displayed: (1) a shorter free‐running period in constant darkness; (2) reduced state corticosterone variability between circadian peak and trough but no differences in corticosterone trait levels; (3) lower testosterone trait levels; (4) higher PER1 expression in the SCN shell with no changes in PER2 in either SCN subregion during the early dark phase. Together, these results suggest that aggressive BALB/cJ mice have disturbances in different components encompassing the circadian and hormonal cycle, emphasizing their value for future investigation of the causal relationship between SCN function, circadian clocks and aggression.
Collapse
Affiliation(s)
- F Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - K van Zwieten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - M J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Kiefer L, Koch L, Merdan-Desik M, Gaese BH, Nowotny M. Comparing the electrophysiological effects of traumatic noise exposure between rodents. J Neurophysiol 2022; 127:452-462. [PMID: 35020518 DOI: 10.1152/jn.00081.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Noise-induced hearing deficits are important health problems in the industrialized world. As the underlying physiological dysfunctions are not well understood, research in suitable animal models is urgently needed. Three rodent species (Mongolian gerbil, rat and mouse) were studied to compare the temporal dynamics of noise-induced hearing loss after identical procedures of noise exposure. Auditory brainstem responses (ABRs) were measured before, during and up to eight weeks after noise exposure for threshold determination and ABR waveform analysis. Trauma induction with stepwise increasing sound pressure level was interrupted by five interspersed ABR measurements. Comparing short- and long-term dynamics underlying the following noise-induced hearing loss revealed diverging time courses between the three species. Hearing loss occurred early on during noise exposure in all three rodent species at or above trauma frequency. Initial noise level (105 dB SPL) was most effective in rats while the delayed level-increase to 115 dB SPL affected mice much stronger. Induced temporary threshold shifts in rats and mice were larger in animals with lower pre-trauma ABR thresholds. The increase in activity (gain) along the auditory pathway was derived by comparing the amplitudes of short- and long-latency ABR waveform components. Directly after trauma, significant effects were found for rats (decreasing gain) and mice (increasing gain) while gerbils revealed high individual variability in gain changes. Taken together, our comparative study revealed pronounced species-specific differences in the development of noise-induced hearing loss and the related processing along the auditory pathway.
Collapse
Affiliation(s)
- Lenneke Kiefer
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Lisa Koch
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Melisa Merdan-Desik
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.,Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| | - Bernhard H Gaese
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.,Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
16
|
Crawford DL, Phillips AR, Williams TR. Evaluation of secondary electronic cigarette inhalation on lipid metabolism in C57BL/6J mice using indirect calorimetry. Metabol Open 2021; 12:100150. [PMID: 34888517 PMCID: PMC8636804 DOI: 10.1016/j.metop.2021.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022] Open
Abstract
The disruption of glucose homeostasis associated with the use of nicotine delivery systems may be due to a shift to lipid metabolism. Indirect calorimetry was used to measure the respiratory exchange ratio (RER) in female (N = 21) and male (N = 21) C57BL/6J mice exposed to room air (control) or e-cigarette vapor in a 1L chamber to test the hypothesis that lipid metabolism predominates in vaped mice. Metabolism was quantified via RER using a GA-200 gas analyzer (iWorx, Inc) and LabScribe v.4 (iWorx, Inc.) software. Blood glucose levels were assessed from a subset of the population using an Accu-Check glucometer (Roche Diagnostics, Inc.). Statistical analyses were conducted using R v.4.0.3. Median RER for controls was lower in females. Older females showed a reduction in RER when exposure occurred in the afternoon (p < 0.001), and in males when exposure occurred in the morning (p = 0.007). Glucose concentrations (mg/dL) were higher after e-cigarette inhalation compared with controls, but this difference was not significant (p = 0.464). The reduction in the respiratory exchange ratio supports the hypothesis that e-cigarette inhalation promotes lipid metabolism, and the magnitude of the effect is influenced by gender, age and time of day.
Collapse
Affiliation(s)
- Dolly L. Crawford
- Department of Biology and Toxicology, 401 College Avenue, Ashland University, Ashland, OH, 44905, USA
| | - Alexis R. Phillips
- Department of Biology and Toxicology, 401 College Avenue, Ashland University, Ashland, OH, 44905, USA
| | - Taylor R. Williams
- Department of Biology and Toxicology, 401 College Avenue, Ashland University, Ashland, OH, 44905, USA
| |
Collapse
|
17
|
REGγ regulates circadian clock by modulating BMAL1 protein stability. Cell Death Discov 2021; 7:335. [PMID: 34741025 PMCID: PMC8571338 DOI: 10.1038/s41420-021-00704-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Endogenous clocks generate rhythms in gene expression, which facilitates the organisms to cope through periodic environmental variations in accordance with 24-h light/dark time. A core question that needs to be elucidated is how such rhythms proliferate throughout the cells and regulate the dynamic physiology. In this study, we demonstrate the role of REGγ as a new regulator of circadian clock in mice, primary MEF, and SY5Y cells. Assessment of circadian conduct reveals a difference in circadian period, wheel mode, and the ability to acclimate the external light stimulus between WT and KO littermates. Compared to WT mice, REGγ KO mice attain the phase delay behavior upon light shock at early night. During the variation of 12/12 h light/dark (LD) exposure, levels of Per1, Per2, Cry1, Clock, Bmal1, and Rorα circadian genes in suprachiasmatic nucleus are significantly higher in REGγ KO than in WT mice, concomitant with remarkable changes in BMAL1 and PER2 proteins. In cultured cells depleted of REGγ, serum shock induces early response of the circadian genes Per1 and Per2 with the cyclic rhythm maintained. Mechanistic study indicates that REGγ directly degrades BMAL1 by the non-canonical proteasome pathway independent of ATP and ubiquitin. Silencing BMAL1 abrogates the changes in circadian genes in REGγ-deficient cells. However, inhibition of GSK-3β, a known promoter for degradation of BMAL1, exacerbates the action of REGγ depletion. In conclusion, our findings define REGγ as a new factor, which functions as a rheostat of circadian rhythms to mitigate the levels of Per1 and Per2 via proteasome-dependent degradation of BMAL1.
Collapse
|
18
|
Tabibzadeh S. CircadiOmic medicine and aging. Ageing Res Rev 2021; 71:101424. [PMID: 34389481 DOI: 10.1016/j.arr.2021.101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
The earth displays daily, seasonal and annual environmental cycles that have led to evolutionarily adapted ultradian, circadian and infradian rhythmicities in the entire biosphere. All biological organisms must adapt to these cycles that synchronize the function of their circadiome. The objective of this review is to discuss the latest knowledge regarding the role of circadiomics in health and aging. The biological timekeepers are responsive to the environmental cues at microsecond to seasonal time-scales and act with precision of a clock machinery. The robustness of these rhythms is essential to normal daily function of cells, tissues and organs. Mis-alignment of circadian rhythms makes the individual prone to aging, sleep disorders, cancer, diabetes, and neuro-degenerative diseases. Circadian and CircadiOmic medicine are emerging fields that leverage our in-depth understanding of health issues, that arise as a result of disturbances in circadian rhythms, towards establishing better therapeutic approaches in personalized medicine and for geroprotection.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618, United States.
| |
Collapse
|
19
|
Anderson R, Agarwal A, Ghosh A, Guan B, Casteel J, Dvorina N, Baldwin WM, Mazumder B, Nazarko TY, Merrick WC, Buchner DA, Hatzoglou M, Kondratov RV, Komar AA. eIF2A-knockout mice reveal decreased life span and metabolic syndrome. FASEB J 2021; 35:e21990. [PMID: 34665898 PMCID: PMC8848898 DOI: 10.1096/fj.202101105r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.
Collapse
Affiliation(s)
- Richard Anderson
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anchal Agarwal
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Arnab Ghosh
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Bo‐Jhih Guan
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jackson Casteel
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Nina Dvorina
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - William M. Baldwin
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | | | - William C. Merrick
- Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - David A. Buchner
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Maria Hatzoglou
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anton A. Komar
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
20
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
21
|
Chronobiotics KL001 and KS15 Extend Lifespan and Modify Circadian Rhythms of Drosophila melanogaster. Clocks Sleep 2021; 3:429-441. [PMID: 34449576 PMCID: PMC8395451 DOI: 10.3390/clockssleep3030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023] Open
Abstract
Chronobiotics are a group of drugs, which are utilized to modify circadian rhythms targeting clock-associated molecular mechanisms. The circadian clock is known as a controller of numerous processes in connection with aging. Hypothesis: KL001 and KS15 targeting CRY, affect lifespan, locomotor activity and circadian rhythm of Drosophila melanogaster. We observed a slight (2%, p < 0.001) geroprotective effect on median lifespan (5 µM solution of KL001 in 0.1% DMSO) and a 14% increase in maximum lifespan in the same group. KS15 10 µM solution extended males’ median lifespan by 8% (p < 0.05). The statistically significant positive effects of KL001 and KS15 on lifespan were not observed in female flies. KL001 5 µM solution improved locomotor activity in young male imagoes (p < 0.05), elevated morning activity peak in aged imagoes and modified robustness of their circadian rhythms, leaving the period intact. KS15 10 µM solution decreased the locomotor activity in constant darkness and minimized the number of rhythmic flies. KL001 5 µM solution improved by 9% the mean starvation resistance in male flies (p < 0.01), while median resistance was elevated by 50% (p < 0.0001). This phenomenon may suggest the presence of the mechanism associated with improvement of fat body glucose depos’ utilization in starvation conditions which is activated by dCRY binding KL001.
Collapse
|
22
|
Ashimori A, Nakahata Y, Sato T, Fukamizu Y, Matsui T, Yoshitane H, Fukada Y, Shinohara K, Bessho Y. Attenuated SIRT1 Activity Leads to PER2 Cytoplasmic Localization and Dampens the Amplitude of Bmal1 Promoter-Driven Circadian Oscillation. Front Neurosci 2021; 15:647589. [PMID: 34108855 PMCID: PMC8180908 DOI: 10.3389/fnins.2021.647589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
The circadian clock possesses robust systems to maintain the rhythm approximately 24 h, from cellular to organismal levels, whereas aging is known to be one of the risk factors linked to the alternation of circadian physiology and behavior. The amount of many metabolites in the cells/body is altered with the aging process, and the most prominent metabolite among them is the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is associated with posttranslational modifications of acetylation and poly-ADP-ribosylation status of circadian clock proteins and decreases with aging. However, how low NAD+ condition in cells, which mimics aged or pathophysiological conditions, affects the circadian clock is largely unknown. Here, we show that low NAD+ in cultured cells promotes PER2 to be retained in the cytoplasm through the NAD+/SIRT1 axis, which leads to the attenuated amplitude of Bmal1 promoter-driven luciferase oscillation. We found that, among the core clock proteins, PER2 is mainly affected in its subcellular localization by NAD+ amount, and a higher cytoplasmic PER2 localization was observed under low NAD+ condition. We further found that NAD+-dependent deacetylase SIRT1 is the regulator of PER2 subcellular localization. Thus, we anticipate that the altered PER2 subcellular localization by low NAD+ is one of the complex changes that occurs in the aged circadian clock.
Collapse
Affiliation(s)
- Atsushige Ashimori
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshiya Sato
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo, Japan
| | - Yuichiro Fukamizu
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
23
|
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun 2021; 12:2862. [PMID: 34001884 PMCID: PMC8129076 DOI: 10.1038/s41467-021-22922-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. Circadian clocks link physiologic processes to environmental conditions and a mismatch between internal and external rhythms has negative effects on organismal health. In this review, the authors discuss the interactions between circadian clocks and dietary interventions targeted to promote healthy aging.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Shuboni-Mulligan DD, Young DL, De La Cruz Minyety J, Vera E, Munasinghe J, Gall AJ, Gilbert MR, Armstrong TS, Smart DK. Impact of age on the circadian visual system and the sleep-wake cycle in mus musculus. NPJ Aging Mech Dis 2021; 7:10. [PMID: 33947857 PMCID: PMC8096965 DOI: 10.1038/s41514-021-00063-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Age plays a critical role in disease development and tolerance to cancer treatment, often leading to an increased risk of developing negative symptoms including sleep disturbances. Circadian rhythms and sleep become disrupted as organisms age. In this study, we explored the behavioral alterations in sleep, circadian rhythms, and masking using a novel video system and interrogate the long-term impact of age-based changes in the non-image forming visual pathway on brain anatomy. We demonstrated the feasibility and utility of the novel system and establish that older mice have disruptions in sleep, circadian rhythms, and masking behaviors that were associated with major negative volume alterations in the non-imaging forming visual system, critical for the induction and rhythmic expression of sleep. These results provide important insights into a mechanism, showing brain atrophy is linked to age in distinct non-image forming visual regions, which may predispose older individuals to developing circadian and sleep dysfunction when further challenged by disease or treatment.
Collapse
Affiliation(s)
| | - Demarrius L Young
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Elizabeth Vera
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Andrew J Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Panagiotou M, Michel S, Meijer JH, Deboer T. The aging brain: sleep, the circadian clock and exercise. Biochem Pharmacol 2021; 191:114563. [PMID: 33857490 DOI: 10.1016/j.bcp.2021.114563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
Aging is a multifactorial process likely stemming from damage accumulation and/or a decline in maintenance and repair mechanisms in the organisms that eventually determine their lifespan. In our review, we focus on the morphological and functional alterations that the aging brain undergoes affecting sleep and the circadian clock in both human and rodent models. Although both species share mammalian features, differences have been identified on several experimental levels, which we outline in this review. Additionally, we delineate some challenges on the preferred analysis and we suggest that a uniform route is followed so that findings can be smoothly compared. We conclude by discussing potential interventions and highlight the influence of physical exercise as a beneficial lifestyle intervention, and its effect on healthy aging and longevity. We emphasize that even moderate age-matched exercise is able to ameliorate several aging characteristics as far as sleep and circadian rhythms are concerned, independent of the species studied.
Collapse
Affiliation(s)
- M Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands.
| | - S Michel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - J H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - T Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
26
|
Ahmed R, Nakahata Y, Shinohara K, Bessho Y. Cellular Senescence Triggers Altered Circadian Clocks With a Prolonged Period and Delayed Phases. Front Neurosci 2021; 15:638122. [PMID: 33568972 PMCID: PMC7868379 DOI: 10.3389/fnins.2021.638122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Senescent cells, which show the permanent growth arrest in response to various forms of stress, accumulate in the body with the progression of age, and are associated with aging and age-associated diseases. Although the senescent cells are growth arrested, they still demonstrate high metabolic rate and altered gene expressions, indicating that senescent cells are still active. We recently showed that the circadian clock properties, namely phase and period of the cells, are altered with the establishment of replicative senescence. However, whether cellular senescence triggers the alteration of circadian clock properties in the cells is still unknown. In this study we show that the oxidative stress-induced premature senescence induces the alterations of the circadian clock, similar to the phenotypes of the replicative senescent cells. We found that the oxidative stress-induced premature senescent cells display the prolonged period and delayed phases. In addition, the magnitude of these changes intensified over time, indicating that cellular senescence changes the circadian clock properties. Our current results corroborate with our previous findings and further confirm that cellular senescence induces altered circadian clock properties, irrespective of the replicative senescence or the stress-induced premature senescence.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
27
|
Seasonality and light phase-resetting in the mammalian circadian rhythm. Sci Rep 2020; 10:19506. [PMID: 33177530 PMCID: PMC7658258 DOI: 10.1038/s41598-020-74002-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
We study the impact of light on the mammalian circadian system using the theory of phase response curves. Using a recently developed ansatz we derive a low-dimensional macroscopic model for the core circadian clock in mammals. Significantly, the variables and parameters in our model have physiological interpretations and may be compared with experimental results. We focus on the effect of four key factors which help shape the mammalian phase response to light: heterogeneity in the population of oscillators, the structure of the typical light phase response curve, the fraction of oscillators which receive direct light input and changes in the coupling strengths associated with seasonal day-lengths. We find these factors can explain several experimental results and provide insight into the processing of light information in the mammalian circadian system. In particular, we find that the sensitivity of the circadian system to light may be modulated by changes in the relative coupling forces between the light sensing and non-sensing populations. Finally, we show how seasonal day-length, after-effects to light entrainment and seasonal variations in light sensitivity in the mammalian circadian clock are interrelated.
Collapse
|
28
|
Pilorz V, Kolms B, Oster H. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice. J Biol Rhythms 2020; 35:612-627. [PMID: 33140660 DOI: 10.1177/0748730420965291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle. So far, however, little is known about the effect of the estrous cycle on behavioral and molecular responses to shifts in the LD rhythm. Based on this, we investigated whether estrous state affects the kinetics of phase shift during jetlag in behavior, physiology, and molecular clock rhythms in the SCN and in peripheral tissues. Female mice exposed to an advanced LD phase at proestrous or metestrous showed different phase-shift kinetics, with proestrous females displaying accelerated adaptation in behavior and physiology. Constant darkness release experiments suggest that these fast phase shifts do not reflect resetting of the SCN pacemaker. Explant experiments on SCN, adrenal gland, and uterus confirmed this finding with proestrous females showing significantly faster clock phase shifts in peripheral tissues compared with the SCN. Together, these findings provide strong evidence for an accelerated adaptation of proestrous compared with metestrous females to new LD conditions that is accompanied by rapid behavioral, physiological, and molecular rhythm resetting. Not only do these findings open up a new avenue to understand the effect of estrous cycle on the clock network under changing environmental conditions but also imply a greater susceptibility in proestrous females.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Beke Kolms
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| |
Collapse
|
29
|
Chatterjee S, Angelakos CC, Bahl E, Hawk JD, Gaine ME, Poplawski SG, Schneider-Anthony A, Yadav M, Porcari GS, Cassel JC, Giese KP, Michaelson JJ, Lyons LC, Boutillier AL, Abel T. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol 2020; 18:155. [PMID: 33121486 PMCID: PMC7597000 DOI: 10.1186/s12915-020-00886-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. Results We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. Conclusions These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms. Graphical abstract ![]()
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France.,Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan Bahl
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Joshua D Hawk
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shane G Poplawski
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, USA
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France
| | - Manish Yadav
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Jacob J Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France. .,LNCA, CNRS UMR 7364, Strasbourg, France.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
30
|
Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. Proc Natl Acad Sci U S A 2020; 117:28402-28411. [PMID: 33106420 PMCID: PMC7668169 DOI: 10.1073/pnas.2003524117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms including wake-sleep cycles are driven by molecular time cues generated by a self-sustaining transcriptional negative feedback loop. Among all clock proteins, PERIOD (PER) is considered the pacemaker protein because its rhythm of accumulation and nuclear entry generates the timing and duration of feedback inhibition. Here we provide a new understanding of how robust PER rhythms are generated: the collective action of interacting PER molecules, not a random mass action of individual molecules, allows compensation of spatial and temporal differences (or “noise”) of individual molecules. We also show that the collective PER rhythm requires healthy cytoplasmic trafficking, and that circadian sleep disorders can arise in such conditions as obesity, aging, and neurodegenerative disorders in which the cytoplasm becomes congested. The circadian clock is based on a transcriptional feedback loop with an essential time delay before feedback inhibition. Previous work has shown that PERIOD (PER) proteins generate circadian time cues through rhythmic nuclear accumulation of the inhibitor complex and subsequent interaction with the activator complex in the feedback loop. Although this temporal manifestation of the feedback inhibition is the direct consequence of PER’s cytoplasmic trafficking before nuclear entry, how this spatial regulation of the pacemaker affects circadian timing has been largely unexplored. Here we show that circadian rhythms, including wake-sleep cycles, are lengthened and severely unstable if the cytoplasmic trafficking of PER is disrupted by any disease condition that leads to increased congestion in the cytoplasm. Furthermore, we found that the time delay and robustness in the circadian clock are seamlessly generated by delayed and collective phosphorylation of PER molecules, followed by synchronous nuclear entry. These results provide clear mechanistic insight into why circadian and sleep disorders arise in such clinical conditions as metabolic and neurodegenerative diseases and aging, in which the cytoplasm is congested.
Collapse
|
31
|
Lippi SLP, Kakalec PA, Smith ML, Flinn JM. Wheel-Running Behavior Is Negatively Impacted by Zinc Administration in a Novel Dual Transgenic Mouse Model of AD. Front Neurosci 2020; 14:854. [PMID: 32922260 PMCID: PMC7456872 DOI: 10.3389/fnins.2020.00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurocognitive disorder that impacts both the brain and behavior. Metal ions, including zinc (Zn), have been seen to play an important role in AD-related pathology. In this study, we show alterations in wheel-running behavior both early and late in disease progression in a novel dual Tg mouse model of AD. This mouse includes both amyloid and tau pathology through its cross with the J20 (hAPP) and P301L (Tau) parentage. Animals were given either lab water or water that had been supplemented with 10 ppm Zn. Wheel running was assessed through individually housing mice and measuring wheel-running activity in both the light and dark cycles. Dual Tg mice showed significantly less activity in the first part of the dark cycle than WT mice at both 3.5 and 7 months of age (p < 0.05). Dual Tg mice given Zn water showed less activity compared to dual Tg mice on lab water, tau mice on Zn water, or WT mice given either lab or Zn water (p < 0.05) at 7 months. Female mice in this study consistently showed higher activity compared to male mice in all groups whereas Zn led to reduced activity. Daily activity rhythm was altered in both the tau and dual Tg mice, and Zn impacted this alteration through effects on amyloid, tau, and through circadian pathways.
Collapse
Affiliation(s)
| | | | | | - Jane M Flinn
- George Mason University, Fairfax, VA, United States
| |
Collapse
|
32
|
Gonçalves FB, Gonçalves BSB, Cavalcante JS, Azevedo CVM. Aging-related changes on social synchronization of circadian activity rhythm in a diurnal primate ( Callithrix jacchus). Chronobiol Int 2020; 37:980-992. [PMID: 32573282 DOI: 10.1080/07420528.2020.1773495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The input of environmental time cues and expression of circadian activity rhythms may change with aging. Among nonphotic zeitgebers, social cues from conspecific vocalizations may contribute to the stability and survival of individuals of social species, such as nonhuman primates. We evaluated aging-related changes on social synchronization of the circadian activity rhythm (CAR) in a social diurnal primate, the common marmoset. The activity of 18 male marmosets was recorded by actiwatches in two conditions. (1) Experimental - 4 young adult (5 ± 2 yrs of age) and 4 older (10 ± 2 yrs of age) animals maintained under LD 12/12 h and LL in a room with full insulation for light but only partial insulation for sound from vocalizations of conspecifics maintained outdoors in the colony; and (2) Control - 10 young adult animals maintained outdoors in the colony (5 animals as a control per age group). In LL, the CAR of young adults showed more stable synchronization with controls. Among the aged marmosets, two free-ran with τ > 24 h, whereas the other two showed relative coordination during the first 30 days in LL, but free-ran thereafter. These differences were reflected in the "social" phase angles (ψon and ψoff ) between rhythms of experimental and control animal groups. Moreover, the activity patterns of aged animals showed lower social synchrony with controls compared to young adults, with the time lags of the time series between each experimental group and control group being negative in aged and positive in young adult animals (t-test, p < 0.05). The index of stability of the CAR showed no differences according to age, while the intradaily variability of the CAR was higher in the aged animals during LD-resynchronization, who took additional days to resynchronize. Thus, the social modulation on CAR may vary with age in marmosets. In the aged group, there was a lower effect of social synchronization, which may be associated with aging-related changes in the synchronization and generation of the CAR as well as in system outputs.
Collapse
Affiliation(s)
- Fabiana B Gonçalves
- Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte , Caicó, RN, Brazil
| | - Bruno S B Gonçalves
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo , São Paulo, SP, Brazil
| | - Jeferson S Cavalcante
- Laboratório de Estudos Neuroquímicos, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| | - Carolina V M Azevedo
- Laboratório de Cronobiologia, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| |
Collapse
|
33
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
A high-salt/high fat diet alters circadian locomotor activity and glucocorticoid synthesis in mice. PLoS One 2020; 15:e0233386. [PMID: 32437460 PMCID: PMC7241774 DOI: 10.1371/journal.pone.0233386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/03/2020] [Indexed: 12/30/2022] Open
Abstract
Salt is an essential nutrient; however, excessive salt intake is a prominent public health concern worldwide. Various physiological functions are associated with circadian rhythms, and disruption of circadian rhythms is a prominent risk factor for cardiovascular diseases, cancer, and immune disease. Certain nutrients are vital regulators of peripheral circadian clocks. However, the role of a high-fat and high-salt (HFS) diet in the regulation of circadian gene expression is unclear. This study aimed to investigate the effect of an HFS diet on rhythms of locomotor activity, caecum glucocorticoid secretion, and clock gene expression in mice. Mice administered an HFS diet displayed reduced locomotor activity under normal light/dark and constant dark conditions in comparison with those administered a normal diet. The diurnal rhythm of caecum glucocorticoid secretion and the expression levels of glucocorticoid-related genes and clock genes in the adrenal gland were disrupted with an HFS diet. These results suggest that an HFS diet alters locomotor activity, disrupts circadian rhythms of glucocorticoid secretion, and downregulates peripheral adrenal gland circadian clock genes.
Collapse
|
35
|
Ahmed R, Ashimori A, Iwamoto S, Matsui T, Nakahata Y, Bessho Y. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging (Albany NY) 2020; 11:950-973. [PMID: 30738414 PMCID: PMC6382424 DOI: 10.18632/aging.101794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
Abstract
Over the last decade, a wide array of evidence has been accumulated that disruption of circadian clock is prone to cause age-related diseases and premature aging. On the other hand, aging has been identified as one of the risk factors linked to the alteration of circadian clock. These evidences suggest that the processes of aging and circadian clock feedback on each other at the animal level. However, at the cellular level, we recently revealed that the primary fibroblast cells derived from Bmal1-/- mouse embryo, in which circadian clock is completely disrupted, do not demonstrate the acceleration of cellular aging, i.e., cellular senescence. In addition, little is known about the impact of cellular senescence on circadian clock. In this study, we show for the first time that senescent cells possess a longer circadian period with delayed peak-time and that the variability in peak-time is wider in the senescent cells compared to their proliferative counterparts, indicating that senescent cells show alterations of circadian clock. We, furthermore, propose that investigation at cellular level is a powerful and useful approach to dissect molecular mechanisms of aging in the circadian clock.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Atsushige Ashimori
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Satoshi Iwamoto
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
36
|
Damulewicz M, Mazzotta GM. One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Front Physiol 2020; 11:99. [PMID: 32194430 PMCID: PMC7066326 DOI: 10.3389/fphys.2020.00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
37
|
Buijink MR, Olde Engberink AHO, Wit CB, Almog A, Meijer JH, Rohling JHT, Michel S. Aging Affects the Capacity of Photoperiodic Adaptation Downstream from the Central Molecular Clock. J Biol Rhythms 2020; 35:167-179. [PMID: 31983261 PMCID: PMC7134598 DOI: 10.1177/0748730419900867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions. We found that naturally aged mice of >24 months had a reduced rhythm amplitude in behavior compared with young controls (3-6 months). Moreover, the old animals had a strongly reduced ability to adapt to short photoperiods. Recording PER2::LUC protein expression in the suprachiasmatic nucleus revealed no impairment of the rhythms in PER2 protein under the 3 different photoperiods tested (LD: 8:16, 12:12, and 16:8). Thus, we observed a discrepancy between the behavioral phenotype and the molecular clock, and we conclude that the aging-related deficits emerge downstream of the core molecular clock. Since it is known that aging affects several intracellular and membrane components of the central clock cells, it is likely that an impairment of the interaction between the molecular clock and these components is contributing to the deficits in photoperiod adaptation.
Collapse
Affiliation(s)
- M Renate Buijink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anneke H O Olde Engberink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte B Wit
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Assaf Almog
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos H T Rohling
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
38
|
Schmitt EE, Johnson EC, Yusifova M, Bruns DR. The renal molecular clock: broken by aging and restored by exercise. Am J Physiol Renal Physiol 2019; 317:F1087-F1093. [PMID: 31461350 PMCID: PMC6879930 DOI: 10.1152/ajprenal.00301.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
The mammalian circadian clock governs physiological, endocrine, and metabolic responses coordinated in a 24-h rhythmic pattern by the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. The SCN also dictates circadian rhythms in peripheral tissues like the kidney. The kidney has several important physiological functions, including removing waste and filtering the blood and regulating fluid volume, blood osmolarity, blood pressure, and Ca2+ metabolism, all of which are under tight control of the molecular/circadian clock. Normal aging has a profound influence on renal function, central and peripheral circadian rhythms, and the sleep-wake cycle. Disrupted circadian rhythms in the kidney as a result of increased age likely contribute to adverse health outcomes such as nocturia, hypertension, and increased risk for stroke, cardiovascular disease, and end organ failure. Regular physical activity improves circadian misalignment in both young and old mammals, although the precise mechanisms for this protection remain poorly described. Recent advances in the heart and skeletal muscle literature suggest that regular endurance exercise entrains peripheral clocks, and we propose that similar beneficial adaptations occur in the kidney through regulation of renal blood flow and fluid balance.
Collapse
Affiliation(s)
- Emily E Schmitt
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming
| | - Evan C Johnson
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming
| | - Musharraf Yusifova
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
39
|
Liu J, Gao D, Dan J, Liu D, Peng L, Zhou R, Luo Y. The protective effect of cycloastragenol on aging mouse circadian rhythmic disorder induced by d-galactose. J Cell Biochem 2019; 120:16408-16415. [PMID: 31310357 DOI: 10.1002/jcb.28587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/04/2023]
Abstract
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d-galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d-galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d-galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Dongxiao Gao
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Dan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Lei Peng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ruoyu Zhou
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
40
|
Hashimoto A, Fujiki S, Nakamura W, Nakamura TJ. Effects of testosterone on circadian rhythmicity in old mice. J Physiol Sci 2019; 69:791-798. [PMID: 31301005 PMCID: PMC10717400 DOI: 10.1007/s12576-019-00695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/06/2019] [Indexed: 11/26/2022]
Abstract
Serum testosterone concentration decreases with age in humans and rodents. Accordingly, old male mice show changes in locomotor activity rhythms: a lengthened free-running period and decreased activity levels among others. To investigate whether testosterone replacement improves the age-related decline in circadian rhythmicity, we examined the effects of testosterone on the circadian rhythms of wheel running activity in old male mice. Intact male C57BL/6J mice (18-22 months old) were subcutaneously implanted with silicone tubes packed with testosterone propionate (TP) or cholesterol. TP treatment significantly decreased the daily wheel running revolutions in a normal light/dark (LD) cycle and in constant darkness (DD), but did not affect the free-running period. The same experiment performed on young male gonadectomized mice (3-5 months old) demonstrated that TP treatment significantly increased activity levels in both LD and DD. These results suggest that testosterone replacement exacerbates the age-related decline in circadian rhythmicity.
Collapse
Affiliation(s)
- Atsuyoshi Hashimoto
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Fujiki
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
41
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
42
|
Deibel SH, Young B, Mohajerani MH, McDonald RJ. Activity Rhythms Are Largely Intact in APPNL-G-F Alzheimer's Disease Mice. J Alzheimers Dis 2019; 71:213-225. [PMID: 31356203 DOI: 10.3233/jad-190102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythm dysfunction is present in Alzheimer's disease. Animal models of Alzheimer's disease have been employed to investigate whether this dysfunction is a risk factor or symptom of the disease. The circadian phenotype in mouse models of Alzheimer's disease is very disparate in terms of the degree and timing of the dysfunction. This is likely a result of some models elevating amyloid-β protein precursor instead of just the amyloid-β fragment present in human Alzheimer's disease. We characterized activity rhythms in a novel knock-in mouse model (APPNL-G-F) of Alzheimer's disease that elevates amyloid-β without overexpressing amyloid-β protein precursor. Despite increased rhythm amplitude, total activity, and a shortening of free-running period at 15 months of age, all other aspects of the activity rhythm were similar to controls from three to fifteen months of age. At two months of age, these mice were also able to entrain to a light-dark cycle with a period right on the edge of entrainment, which further suggests a healthy functioning circadian system. These data open the possibility that circadian rhythm disruptions in transgenic models of Alzheimer's disease could be a result of these models having an artificial phenotype caused by overexpression of amyloid-β protein precursor.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.,Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Bryant Young
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
43
|
Adler P, Mayne J, Walker K, Ning Z, Figeys D. Therapeutic Targeting of Casein Kinase 1δ/ε in an Alzheimer’s Disease Mouse Model. J Proteome Res 2019; 18:3383-3393. [DOI: 10.1021/acs.jproteome.9b00312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paula Adler
- Shanghai Institute of Materia Medica−University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Janice Mayne
- Shanghai Institute of Materia Medica−University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Krystal Walker
- Shanghai Institute of Materia Medica−University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zhibin Ning
- Shanghai Institute of Materia Medica−University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Shanghai Institute of Materia Medica−University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
44
|
Intermittent restraint stress induces circadian misalignment in the mouse bladder, leading to nocturia. Sci Rep 2019; 9:10069. [PMID: 31296902 PMCID: PMC6624370 DOI: 10.1038/s41598-019-46517-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Intermittent stress disrupts the circadian rhythm in clock genes such as Per2 only in peripheral organs without any effect on the central circadian clock in the suprachiasmatic nucleus. Here, the effect of restraint stress (RS) on circadian bladder function was investigated based on urination behavior and gene expression rhythms. Furthermore, PF670462 (PF), a Per2 phosphorylation enzyme inhibitor, was administered to investigate the effects on circadian bladder re-alignment after RS. Two-hour RS during the light (sleep) phase was applied to mice (RS mice) for 5 days. The following parameters were then examined: urination behaviors; clock gene expression rhythms and urinary sensory-related molecules such as piezo type mechanosensitive ion channel component 1 (Piezo1), transient receptor potential cation channel subfamily V member 4 (TRPV4), and Connexin26 (Cx26) in the bladder mucosa; Per2 expression in the excised bladder of Per2luciferase knock-in mice (Per2::luc); in vivo Per2 expression rhythms in the bladder of Per2::luc mice. Control mice did not show altered urination behavior in the light phase, whereas RS mice exhibited a higher voiding frequency and lower bladder capacity. In the bladder mucosa, RS mice also showed abrogated or misaligned Piezo1, TRPV4, Connexin26, and clock gene expression. The rhythmic expression of Per2 was also altered in RS mice both in excised- and in vivo bladder, compared with control mice. After PF administration, voiding frequency was reduced and bladder capacity was increased during the light phase in RS mice; the in vivo Per2 expression rhythm was also fully restored. Therefore, RS can alter circadian gene expression in the bladder during the light phase and might cause nocturia via changes in circadian bladder function due the dysregulation of clock genes. Amending the circadian rhythm therapeutically could be applied for nocturia.
Collapse
|
45
|
Michel S, Meijer JH. From clock to functional pacemaker. Eur J Neurosci 2019; 51:482-493. [PMID: 30793396 PMCID: PMC7027845 DOI: 10.1111/ejn.14388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
In mammals, the central pacemaker that coordinates 24‐hr rhythms is located in the suprachiasmatic nucleus (SCN). Individual neurons of the SCN have a molecular basis for rhythm generation and hence, they function as cell autonomous oscillators. Communication and synchronization among these neurons are crucial for obtaining a coherent rhythm at the population level, that can serve as a pace making signal for brain and body. Hence, the ability of single SCN neurons to produce circadian rhythms is equally important as the ability of these neurons to synchronize one another, to obtain a bona fide pacemaker at the SCN tissue level. In this chapter we will discuss the mechanisms underlying synchronization, and plasticity herein, which allows adaptation to changes in day length. Furthermore, we will discuss deterioration in synchronization among SCN neurons in aging, and gain in synchronization by voluntary physical activity or exercise.
Collapse
Affiliation(s)
- Stephan Michel
- Group Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Group Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Hodges EL, Ashpole NM. Aging circadian rhythms and cannabinoids. Neurobiol Aging 2019; 79:110-118. [PMID: 31035036 DOI: 10.1016/j.neurobiolaging.2019.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/04/2023]
Abstract
Numerous aspects of mammalian physiology exhibit cyclic daily patterns known as circadian rhythms. However, studies in aged humans and animals indicate that these physiological rhythms are not consistent throughout the life span. The simultaneous development of disrupted circadian rhythms and age-related impairments suggests a shared mechanism, which may be amenable to therapeutic intervention. Recently, the endocannabinoid system has emerged as a complex signaling network, which regulates numerous aspects of circadian physiology relevant to the neurobiology of aging. Agonists of cannabinoid receptor-1 (CB1) have consistently been shown to decrease neuronal activity, core body temperature, locomotion, and cognitive function. Paradoxically, several lines of evidence now suggest that very low doses of cannabinoids are beneficial in advanced age. One potential explanation for this phenomenon is that these drugs exhibit hormesis-a biphasic dose-response wherein low doses produce the opposite effects of higher doses. Therefore, it is important to determine the dose-, age-, and time-dependent effects of these substances on the regulation of circadian rhythms and other processes dysregulated in aging. This review highlights 3 fields-biological aging, circadian rhythms, and endocannabinoid signaling-to critically assess the therapeutic potential of endocannabinoid modulation in aged individuals. If the hormetic properties of exogenous cannabinoids are confirmed, we conclude that precise administration of these compounds may bidirectionally entrain central and peripheral circadian clocks and benefit multiple aspects of aging physiology.
Collapse
Affiliation(s)
- Erik L Hodges
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Nicole M Ashpole
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA.
| |
Collapse
|
47
|
Datta S, Samanta D, Tiwary B, Chaudhuri AG, Chakrabarti N. Sex and estrous cycle dependent changes in locomotor activity, anxiety and memory performance in aged mice after exposure of light at night. Behav Brain Res 2019; 365:198-209. [PMID: 30853396 DOI: 10.1016/j.bbr.2019.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Light-at-night (LAN) can affect mammalian behaviour. But, the effects of LAN on aged rodents remain undefined yet. In the present investigation, aged Swiss Albino mice, habituated in regular light-dark cycle, were exposed to bright-light-pulse (1-h) at night on the day of study followed by experimentations for assessment of locomotor activities in the open field, anxiety in the elevated plus maze and short-term memory for novel object recognition (NOR) in the habituated field. Under without-bright-light exposure, (a) aged proestrous females showed greater locomotor activities and less anxiety than in aged diestrous females, (b) aged males showed locomotor activities and anxiety level similar to aged diestrous females and aged proestrous females respectively and (c) all animals failed to retain in object discrimination memory. LAN exposure exhibited the continual failure of such retention of memory while animals showed free and spontaneous exploration with thigmotactic behaviour having no object bias and/or phobia, but time stay in objects by animals altered variably among sexes and stages of estrous cycle. Overall, the LAN caused (a) diminution in locomotor activities, rise in anxiety and failure of memory for recognition of both familiar and novel objects in aged proestrous females, (b) hyperlocomotor activities and reduction in anxiety in both males and diestrous females with the failure of memory for recognition of novel objects only in aged males while diestrous females showed enhanced exploration time to both objects during NOR. Thus, nocturnal behaviour of aged mice varies with sex and estrous cycle and light acts differentially on them.
Collapse
Affiliation(s)
- Siddhartha Datta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India.
| | - Diptaman Samanta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | - Basant Tiwary
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | | | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
48
|
Curran JA, Buhl E, Tsaneva-Atanasova K, Hodge JJL. Age-dependent changes in clock neuron structural plasticity and excitability are associated with a decrease in circadian output behavior and sleep. Neurobiol Aging 2019; 77:158-168. [PMID: 30825692 PMCID: PMC6491500 DOI: 10.1016/j.neurobiolaging.2019.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
Aging has significant effects on circadian behavior across a wide variety of species, but the underlying mechanisms are poorly understood. Previous work has demonstrated the age-dependent decline in behavioral output in the model organism Drosophila. We demonstrate that this age-dependent decline in circadian output is combined with changes in daily activity of Drosophila. Aging also has a large impact on sleep behavior, significantly increasing sleep duration while reducing latency. We used electrophysiology to record from large ventral lateral neurons of the Drosophila circadian clock, finding a significant decrease in input resistance with age but no significant changes in spontaneous electrical activity or membrane potential. We propose this change contributes to observed behavioral and sleep changes in light-dark conditions. We also demonstrate a reduction in the daily plasticity of the architecture of the small ventral lateral neurons, likely underlying the reduction in circadian rhythmicity during aging. These results provide further insights into the effect of aging on circadian biology, demonstrating age-related changes in electrical activity in conjunction with the decline in behavioral outputs.
Collapse
Affiliation(s)
- Jack A Curran
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
49
|
Kolbe I, Carrasco-Benso MP, López-Mínguez J, Luján J, Scheer FAJL, Oster H, Garaulet M. Circadian period of luciferase expression shortens with age in human mature adipocytes from obese patients. FASEB J 2019; 33:175-180. [PMID: 29965796 PMCID: PMC6355068 DOI: 10.1096/fj.201800441r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 11/11/2022]
Abstract
Daily rhythms in physiology and behavior change with age. An unresolved question is to what extent such age-related alterations in circadian organization are driven by the central clock in the suprachiasmatic nucleus (SCN), modifying timing signals to contributing peripheral tissue oscillators, and are mediated by underlying changes in the local cellular oscillators themselves. Using a bioluminescence reporter approach, we sought to determine whether circadian clock function in human adipocytes from subcutaneous (SAT) and visceral (VAT) adipose tissues changes with age. SAT and VAT biopsies were obtained from obese individuals during gastric bypass surgeries [ n = 16; body mass index: 44.8 ± 11.4 kg/m2; age: 44 ± 9 yr (range: 30-58)]. Cells were isolated and transduced with a lentiviral circadian reporter construct [brain and muscle aryl hydrocarbon receptor nuclear translocator-like:luciferase ( BMAL:LUC)], and bioluminescence was recorded over a period of 3 d. Human BMAL1:LUC adipocytes displayed a robust luminescence rhythm with comparable within-individual periods in mature and preadipocytes ( P > 0.05). With increasing age, the circadian period decreased in mature adipocytes ( P = 0.005) (β = 4 min/yr; P < 0.05). Our ex vivo approach indicated that ageing changes the organization of endogenous circadian oscillators in human adipocytes, independent of SCN signaling.-Kolbe, I., Carrasco-Benso, M. P., López-Mínguez, J., Luján, J., Scheer, F. A. J. L., Oster, H., Garaulet, M. Circadian period of luciferase expression shortens with age in human mature adipocytes from obese patients.
Collapse
Affiliation(s)
- Isa Kolbe
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - María Paz Carrasco-Benso
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
- Biomedical Research Institute, Murcia, Spain
| | - Jesús López-Mínguez
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
- Biomedical Research Institute, Murcia, Spain
| | - Juan Luján
- General Surgery Service, University Hospital Virgen de la Arrixaca, Murcia, Spain; and
| | - Frank A. J. L. Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Marta Garaulet
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
- Biomedical Research Institute, Murcia, Spain
| |
Collapse
|
50
|
Fonken LK, Frank MG, Gaudet AD, Maier SF. Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain Behav Immun 2018; 73:133-148. [PMID: 30009999 PMCID: PMC6129421 DOI: 10.1016/j.bbi.2018.07.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023] Open
Abstract
Over the course of an animal's lifespan, there is a protracted breakdown in basic homeostatic functions. Stressors (both psychological and physiological) can accelerate this process and compromise multiple homeostatic mechanisms. For example, both stress and aging can modulate neuroinflammatory function and cause a primed phenotype resulting in a heightened neuroinflammatory profile upon immune activation. Microglia, the brain's resident myeloid cell, produce "silent" immune machinery in response to stress and aging that does not cause immediate immune activation; rather, these changes prime the cell for a subsequent immune insult. Primed microglia exhibit a hyperinflammatory response upon immune activation that can exacerbate pathology. In this review, we will explore parallels between stress- and aging-induced neuroinflammatory priming. First, we will provide a background on the basic principles of neuroimmunology. Next, we will discuss evidence that neuroinflammatory responses become primed in the context of both stress and aging. We will also describe cell-specific contributions to neuroinflammatory priming with a focus on microglia. Finally, common mechanisms underlying priming in the context of stress and aging will be discussed: these mechanisms include glucocorticoid signaling; accumulation of danger signals; dis-inhibition of microglia; and breakdown of circadian rhythms. Overall, there are multifarious parallels between stress- and aging-elicited neuroinflammatory priming, suggesting that stress may promote a form of premature aging. Further unravelling mechanisms underlying priming could lead to improved treatments for buffering against stress- and aging-elicited behavioral pathologies.
Collapse
Affiliation(s)
- Laura K. Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712 USA;,To whom correspondence should be addressed: Laura K. Fonken, Division of Pharmacology and Toxicology, University of Texas at Austin, 107 W. Dean Keeton, BME 3.510C, Austin, TX 78712 USA.
| | - Matthew G. Frank
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309 USA
| | - Andrew D. Gaudet
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309 USA
| | - Steven F. Maier
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309 USA
| |
Collapse
|