1
|
Taha B, McGovern R, Lam C. A synthesized view of the CSF-blood barrier and its surgical implications for aging disorders. Front Aging Neurosci 2025; 16:1492449. [PMID: 39981073 PMCID: PMC11841429 DOI: 10.3389/fnagi.2024.1492449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
In this review, we explore the mechanisms of the blood-cerebrospinal fluid (CSF) barrier and CSF transport. We briefly review the mathematical framework for CSF transport as described by a set of well-studied partial differential equations. Moreover, we describe the major contributors of CSF flow through both diffusive and convective forces beginning at the molecular level and extending into macroscopic clinical observations. In addition, we review neurosurgical perspectives in understanding CSF outflow pathways. Finally, we discuss the implications of flow dysregulation in the context of neurodegenerative diseases and discuss the rising role of perivascular drainage pathways including glymphatics.
Collapse
Affiliation(s)
- Birra Taha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Cornelius Lam
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Minneapolis VA Health Care System, Veterans Health Administration, United States Department of Veterans Affairs, Minneapolis, MN, United States
| |
Collapse
|
2
|
van Osch MJP, Wåhlin A, Scheyhing P, Mossige I, Hirschler L, Eklund A, Mogensen K, Gomolka R, Radbruch A, Qvarlander S, Decker A, Nedergaard M, Mori Y, Eide PK, Deike K, Ringstad G. Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. NMR IN BIOMEDICINE 2024; 37:e5159. [PMID: 38634301 DOI: 10.1002/nbm.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
Collapse
Affiliation(s)
- Matthias J P van Osch
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Wåhlin
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Paul Scheyhing
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingrid Mossige
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lydiane Hirschler
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Eklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Klara Mogensen
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Ryszard Gomolka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Radbruch
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sara Qvarlander
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Andreas Decker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katerina Deike
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
3
|
Mehta RI, Mehta RI. Understanding central nervous system fluid networks: Historical perspectives and a revised model for clinical neurofluid imaging. NMR IN BIOMEDICINE 2024; 37:e5149. [PMID: 38584002 PMCID: PMC11531858 DOI: 10.1002/nbm.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
The central nervous system (CNS) lacks traditionally defined lymphatic vasculature. However, CNS tissues and barriers compartmentalize the brain, spinal cord, and adjacent spaces, facilitating the transmittal of fluids, metabolic wastes, immune cells, and vital signals, while more conventional lymphatic pathways in the meninges, cervicofacial and paraspinal regions transmit efflux fluid and molecules to peripheral lymph and lymph nodes. Thus, a unique and highly organized fluid circulation network encompassing intraparenchymal, subarachnoid, dural, and extradural segments functions in unison to maintain CNS homeostasis. Pathways involved in this system have been under investigation for centuries and continue to be the source of considerable interest and debate. Modern imaging and microscopy technologies have led to important breakthroughs pertaining to various elements of CNS fluid circuitry and exchange over the past decade, thus enhancing knowledge on mechanisms of mammalian CNS maintenance and disease. Yet, to better understand precise anatomical routes, the physiology and clinical significance of these CNS pathways, and potential therapeutic targets in humans, fluid conduits, flow-regulating factors, and tissue effects must be analyzed systematically and in a global manner in persons across age, demographical factors, and disease states. Here, we illustrate the system-wide nature of intermixing CNS fluid networks, summarize historical and clinical studies, and discuss anatomical and physiological similarities and differences that are relevant for translation of evidence from mice to humans. We also review Cushing's classical model of cerebrospinal fluid flow and present a new framework of this "third circulation" that emphasizes previously unexplained complexities of CNS fluid circulation in humans. Finally, we review future directions in the field, including emerging theranostic techniques and MRI studies required in humans.
Collapse
Affiliation(s)
- Rupal I. Mehta
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
4
|
Mirkhaef SA, Harbaugh L, Nagra G. Hydrocephalus: A Review of Etiology-Driven Treatment Strategies. Cureus 2024; 16:e68516. [PMID: 39364470 PMCID: PMC11448269 DOI: 10.7759/cureus.68516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/05/2024] Open
Abstract
Hydrocephalus is a broad term usually understood as cerebrospinal fluid (CSF) accumulation resulting in cerebral ventricular system expansion. The production of CSF is by the choroid plexus in lateral ventricles, flowing between the third and fourth ventricles and eventually to the subarachnoid space. It is critical for proper neuronal function. Hydrocephalus is a neurological pathology linked to high morbidity from neurocognitive and motor impairment. It is classified as either communicating or non-communicating. Communicating hydrocephalus is understood as a deficit at cranial arachnoid villi and granulation absorption sites. However, there has been evidence that extracranial lymphatic vessels in the ethmoid bone region also play a role, as indicated by decreased lymphatic absorption in rat models of hydrocephalus. Treatment typically involves surgical shunt placement or endoscopic third ventriculostomy (ETV) technique with or without choroid plexus cauterization (CPC). These surgical interventions have high failure risks and complications that require re-intervention, further increasing morbidity and mortality risks. To date, there are few nonsurgical treatment strategies, but many have proved limited benefit, and many patients still require surgery. This analysis lays out the typical treatments and explores new, innovative interventions by highlighting the active role of brain parenchymal tissue in the pathogenesis of hydrocephalus.
Collapse
Affiliation(s)
- Sarah A Mirkhaef
- Pathology, Arkansas College of Osteopathic Medicine, Fort Smith, USA
| | - Lauren Harbaugh
- Pathology, Arkansas College of Osteopathic Medicine, Fort Smith, USA
| | - Gurjit Nagra
- Pathophysiology, Arkansas College of Osteopathic Medicine, Fort Smith, USA
| |
Collapse
|
5
|
Mehta NH, Wang X, Keil SA, Xi K, Zhou L, Lee K, Tan W, Spector E, Goldan A, Kelly J, Karakatsanis NA, Mozley PD, Nehmeh S, Chazen JL, Morin S, Babich J, Ivanidze J, Pahlajani S, Tanzi EB, Saint-Louis L, Butler T, Chen K, Rusinek H, Carare RO, Li Y, Chiang GC, de Leon MJ. [1- 11C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects. Fluids Barriers CNS 2024; 21:30. [PMID: 38566110 PMCID: PMC10985958 DOI: 10.1186/s12987-024-00530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aβ+) and 16 Aβ- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aβ+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Harvard Medical School, Boston, MA, USA
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Samantha A Keil
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Kevin Lee
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Weill Cornell Medicine, School of Medicine New York, New York, NY, USA
| | - Wanbin Tan
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Edward Spector
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Amirhossein Goldan
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Molecule Imaging Innovations Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - P David Mozley
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Radiopharm Theranostics, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - J Levi Chazen
- Department of Radiology, Hospital for Special Surgery, New York, NY, USA
| | - Simon Morin
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Jana Ivanidze
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Emily B Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | | | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Downtown Phoenix Campus, Arizona, USA
| | - Henry Rusinek
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA.
| |
Collapse
|
6
|
Role of the glymphatic system in idiopathic intracranial hypertension. Clin Neurol Neurosurg 2022; 222:107446. [DOI: 10.1016/j.clineuro.2022.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
|
7
|
Wilting J, Becker J. The lymphatic vascular system: much more than just a sewer. Cell Biosci 2022; 12:157. [PMID: 36109802 PMCID: PMC9476376 DOI: 10.1186/s13578-022-00898-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Almost 400 years after the (re)discovery of the lymphatic vascular system (LVS) by Gaspare Aselli (Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.), structure, function, development and evolution of this so-called 'second' vascular system are still enigmatic. Interest in the LVS was low because it was (and is) hardly visible, and its diseases are not as life-threatening as those of the blood vascular system. It is not uncommon for patients with lymphedema to be told that yes, they can live with it. Usually, the functions of the LVS are discussed in terms of fluid homeostasis, uptake of chylomicrons from the gut, and immune cell circulation. However, the broad molecular equipment of lymphatic endothelial cells suggests that they possess many more functions, which are also reflected in the pathophysiology of the system. With some specific exceptions, lymphatics develop in all organs. Although basic structure and function are the same regardless their position in the body wall or the internal organs, there are important site-specific characteristics. We discuss common structure and function of lymphatics; and point to important functions for hyaluronan turn-over, salt balance, coagulation, extracellular matrix production, adipose tissue development and potential appetite regulation, and the influence of hypoxia on the regulation of these functions. Differences with respect to the embryonic origin and molecular equipment between somatic and splanchnic lymphatics are discussed with a side-view on the phylogeny of the LVS. The functions of the lymphatic vasculature are much broader than generally thought, and lymphatic research will have many interesting and surprising aspects to offer in the future.
Collapse
Affiliation(s)
- Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| | - Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Mehta NH, Sherbansky J, Kamer AR, Carare RO, Butler T, Rusinek H, Chiang GC, Li Y, Strauss S, Saint-Louis LA, Theise ND, Suss RA, Blennow K, Kaplitt M, de Leon MJ. The Brain-Nose Interface: A Potential Cerebrospinal Fluid Clearance Site in Humans. Front Physiol 2022; 12:769948. [PMID: 35058794 PMCID: PMC8764168 DOI: 10.3389/fphys.2021.769948] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
The human brain functions at the center of a network of systems aimed at providing a structural and immunological layer of protection. The cerebrospinal fluid (CSF) maintains a physiological homeostasis that is of paramount importance to proper neurological activity. CSF is largely produced in the choroid plexus where it is continuous with the brain extracellular fluid and circulates through the ventricles. CSF movement through the central nervous system has been extensively explored. Across numerous animal species, the involvement of various drainage pathways in CSF, including arachnoid granulations, cranial nerves, perivascular pathways, and meningeal lymphatics, has been studied. Among these, there is a proposed CSF clearance route spanning the olfactory nerve and exiting the brain at the cribriform plate and entering lymphatics. While this pathway has been demonstrated in multiple animal species, evidence of a similar CSF egress mechanism involving the nasal cavity in humans remains poorly consolidated. This review will synthesize contemporary evidence surrounding CSF clearance at the nose-brain interface, examining across species this anatomical pathway, and its possible significance to human neurodegenerative disease. Our discussion of a bidirectional nasal pathway includes examination of the immune surveillance in the olfactory region protecting the brain. Overall, we expect that an expanded discussion of the brain-nose pathway and interactions with the environment will contribute to an improved understanding of neurodegenerative and infectious diseases, and potentially to novel prevention and treatment considerations.
Collapse
Affiliation(s)
- Neel H. Mehta
- Undergraduate Department of Biology, Cornell University, Ithaca, NY, United States
| | | | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, NYU College of Dentistry, New York, NY, United States
| | - Roxana O. Carare
- Department of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Gloria C. Chiang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Sara Strauss
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - L. A. Saint-Louis
- Department of Radiology, NYU Langone Health, New York, NY, United States
| | - Neil D. Theise
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
| | - Richard A. Suss
- Division of Neuroradiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Inst. of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Michael Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
Pedler MG, Petrash JM, Subramanian PS. Prostaglandin analog effects on cerebrospinal fluid reabsorption via nasal mucosa. PLoS One 2021; 16:e0248545. [PMID: 34971554 PMCID: PMC8719688 DOI: 10.1371/journal.pone.0248545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) outflow has been demonstrated along nasal lymphatics via olfactory nerve projections; flow may be increased by stimulating lymphatic contractility using agents such as noradrenaline and the thromboxane A2 analog U46619. Lymphatics elsewhere in the body show increased contractility upon exposure to the prostaglandin F2alpha analog isoprostane-8-epi-prostaglandin. We investigated the ability of ophthalmic prostaglandin F2alpha analogs to increase CSF outflow when applied to the nasal mucosa by inhalation. METHODS Latanoprost (0.1, 0.5, or 1mg/ml), bimatoprost (0.3 or 3mg/ml), travoprost (0.04 or 0.4mg/ml), latanoprostene bunod (0.24 or 2.4mg/ml), tafluprost (0.25 or 2.5mg/ml), or control vehicle (10% DMSO) was administered to awake adult C57B/6 mice by nasal inhalation of 2μl droplets. Multiday dosing (daily for 3 days) of latanoprost also was evaluated. A total of 81 animals were studied including controls. General anesthesia was induced by injection, and fluorescent tracer (AlexaFluor647-labelled ovalbumin) was injected under stereotaxic guidance into the right lateral ventricle. Nasal turbinate tissue was harvested and homogenized after 1 hour for tracer detection by ELISA and fluorometric analysis. RESULTS Inhalation of latanoprost 0.5mg/ml and 1mg/ml led to a 11.5-fold increase in tracer recovery from nasal turbinate tissues compared to controls (3312 pg/ml vs 288 pg/ml, p<0.001 for 0.5mg/ml; 3355 pg/ml vs 288 pg/ml, p<0.001 for 1mg/ml), while latanoprost 0.1 mg/ml enhanced recovery 6-fold (1713 pg/ml vs 288 pg/ml, p<0.01). Tafluprost 0.25mg/ml and bimatoprost 0.3mg/ml showed a modest (1.4x, p<0.05) effect, and the remaining agents showed no significant effect on tracer recovery. After 3 days of daily latanoprost treatment and several hours after the last dose, a persistently increased recovery of tracer was found. CONCLUSIONS Prostaglandin F2alpha analogs delivered by nasal inhalation resulted in increased nasal recovery of a CSF fluorescent tracer, implying increased CSF outflow via the nasal lymphatics. The greatest effect, partially dose-dependent, was observed using latanoprost. Further studies are needed to determine the efficacy of these agents in reducing ICP in short and long-term applications.
Collapse
Affiliation(s)
- Michelle G. Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Prem S. Subramanian
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Ophthalmology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Yurayart N, Ninvilai P, Chareonviriyaphap T, Kaewamatawong T, Thontiravong A, Tiawsirisup S. Pathogenesis of Thai duck Tembusu virus in BALB/c mice: Descending infection and neuroinvasive virulence. Transbound Emerg Dis 2021; 68:3529-3540. [PMID: 33326703 DOI: 10.1111/tbed.13958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
Abstract
Duck Tembusu virus (DTMUV) is an emerging flavivirus that causes systemic disease in an avian host. The predominant cluster of DTMUV circulating in Thailand was recently classified as cluster 2.1. The pathogenesis of this virus has been extensively studied in avian hosts but not in mammalian hosts. Six-week-old BALB/c mice were intracerebrally or subcutaneously inoculated with Thai DTMUV to examine clinical signs, pathological changes, viral load and virus distribution. Results demonstrated that the virus caused disease in BALB/c mice by the intracerebral inoculation route. Infected mice demonstrated both systemic and neurological symptoms. Pathological changes and virus distribution were observed in all tested organs. Viral load in the brain was significantly higher than in other organs (p < .05), and the virus caused acute death in BALB/c mice. The virus was disseminated in all parts of the body, but no virus shedding was recorded in saliva and faeces. Findings highlighted the potential of Thai DTMUV to transmit disease in mammalian hosts.
Collapse
Affiliation(s)
- Nichapat Yurayart
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patchareeporn Ninvilai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Theerayuth Kaewamatawong
- Veterinary Pathology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Aunyaratana Thontiravong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sonthaya Tiawsirisup
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Pflepsen KR, Peterson CD, Kitto KF, Riedl MS, McIvor RS, Wilcox GL, Vulchanova L, Fairbanks CA. Biodistribution of Adeno-Associated Virus Serotype 5 Viral Vectors Following Intrathecal Injection. Mol Pharm 2021; 18:3741-3749. [PMID: 34460254 DOI: 10.1021/acs.molpharmaceut.1c00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pharmacokinetic profile of AAV particles following intrathecal delivery has not yet been clearly defined. The present study evaluated the distribution profile of adeno-associated virus serotype 5 (AAV5) viral vectors following lumbar intrathecal injection in mice. After a single bolus intrathecal injection, viral DNA concentrations in mouse whole blood, spinal cord, and peripheral tissues were determined using quantitative polymerase chain reaction (qPCR). The kinetics of AAV5 vector in whole blood and the concentration over time in spinal and peripheral tissues were analyzed. Distribution of the AAV5 vector to all levels of the spinal cord, dorsal root ganglia, and into systemic circulation occurred rapidly within 30 min following injection. Vector concentration in whole blood reached a maximum 6 h postinjection with a half-life of approximately 12 h. Area under the curve data revealed the highest concentration of vector distributed to dorsal root ganglia tissue. Immunohistochemical analysis revealed AAV5 particle colocalization with the pia mater at the spinal cord and macrophages in the dorsal root ganglia (DRG) 30 min after injection. These results demonstrate the widespread distribution of AAV5 particles through cerebrospinal fluid and preferential targeting of DRG tissue with possible clearance mechanisms via DRG macrophages.
Collapse
Affiliation(s)
- Kelsey R Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - R Scott McIvor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Dermatology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis? Biol Futur 2021; 72:45-60. [PMID: 34554497 DOI: 10.1007/s42977-021-00066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The central nervous system (CNS) lacks conventional lymphatics within the CNS parenchyma, yet still maintains fluid homeostasis and immunosurveillance. How the CNS communicates with systemic immunity has thus been a topic of interest for scientists in the past century, which has led to several theories of CNS drainage routes. In addition to perineural routes, rediscoveries of lymphatics surrounding the CNS in the meninges revealed an extensive network of lymphatics, which we now know play a significant role in fluid homeostasis and immunosurveillance. These meningeal lymphatic networks exist along the superior sagittal sinus and transverse sinus dorsal to the brain, near the cribriform plate below the olfactory bulbs, at the base of the brain, and surrounding the spinal cord. Inhibition of one or all of these lymphatic networks can reduce CNS autoimmunity in a mouse model of multiple sclerosis (MS), while augmenting these lymphatic networks can improve immunosurveillance, immunotherapy, and clearance in glioblastoma, Alzheimer's disease, traumatic brain injury, and cerebrovascular injury. In this review, we will provide historical context of how CNS drainage contributes to immune surveillance, how more recently published studies fit meningeal lymphatics into the context of CNS homeostasis and neuroinflammation, identify the complex dualities of lymphatic function during neuroinflammation and how therapeutics targeting lymphatic function may be more complicated than currently appreciated, and conclude by identifying some unresolved questions and controversies that may guide future research.
Collapse
|
13
|
Bothwell SW, Omileke D, Hood RJ, Pepperall DG, Azarpeykan S, Patabendige A, Spratt NJ. Altered Cerebrospinal Fluid Clearance and Increased Intracranial Pressure in Rats 18 h After Experimental Cortical Ischaemia. Front Mol Neurosci 2021; 14:712779. [PMID: 34434088 PMCID: PMC8380845 DOI: 10.3389/fnmol.2021.712779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Oedema-independent intracranial pressure (ICP) rise peaks 20-22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1-9.43, n = 12, vs. -0.3 mmHg, IQR = -1.9-1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0-0.11) and without ICP rise (0 μg/mL, IQR = 0-4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74-8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = -0.59, p = 0.006, Spearman's correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.
Collapse
Affiliation(s)
- Steven W Bothwell
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J Hood
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Debbie-Gai Pepperall
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sara Azarpeykan
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil J Spratt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Hunter New England Local Health District, Newcastle, NSW, Australia
| |
Collapse
|
14
|
Belov V, Appleton J, Levin S, Giffenig P, Durcanova B, Papisov M. Large-Volume Intrathecal Administrations: Impact on CSF Pressure and Safety Implications. Front Neurosci 2021; 15:604197. [PMID: 33935624 PMCID: PMC8079755 DOI: 10.3389/fnins.2021.604197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/24/2021] [Indexed: 12/04/2022] Open
Abstract
The increasing number of studies demonstrates the high potency of the intrathecal (IT) route for the delivery of biopharmaceuticals to the central nervous system (CNS). Our earlier data exhibited that both the infused volume and the infusion rate can regulate the initial disposition of the administered solute within the cerebrospinal fluid (CSF). This disposition is one of key factors in defining the subsequent transport of the solute to its intended target. On the other hand, fast additions of large volumes of liquid to the CSF inevitably raise the CSF pressure [a.k.a. intracranial pressure (ICP)], which may in turn lead to adverse reactions if the physiologically delimited threshold is exceeded. While long-term biological effects of elevated ICP (hydrocephalus) are known, the safety thresholds pertaining to short-term ICP elevations caused by IT administrations have not yet been characterized. This study aimed to investigate the dynamics of ICP in rats and non-human primates (NHPs) with respect to IT infusion rates and volumes. The safety regimes were estimated and analyzed across species to facilitate the development of translational large-volume IT therapies. The data revealed that the addition of a liquid to the CSF raised the ICP in a rate and volume-dependent manner. At low infusion rates (<0.12 ml/min in rats and <2 ml/min in NHPs), NHPs and rats displayed similar tolerance patterns. Specifically, safe accommodations of such added volumes were mainly facilitated by the accelerated pressure-dependent CSF drainage into the blood, with I stabilizing at different levels below the safety threshold of 28 ± 4 mm Hg in rats and 50 ± 5 mm Hg in NHPs. These ICPs were safely tolerated for extended durations (of at least 2–25 min). High infusion rates (including boluses) caused uncompensated exponential ICP elevations rapidly exceeding the safety thresholds. Their tolerance was species-dependent and was facilitated by the compensatory role of the varied components of craniospinal compliance while not excluding the possibility of other contributing factors. In conclusion, large volumes of liquids can safely be delivered via IT routes provided that ICP is monitored as a safety factor and cross-species physiological differences are accounted for.
Collapse
Affiliation(s)
- Vasily Belov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children-Boston, Boston, MA, United States
| | | | - Stepan Levin
- Massachusetts General Hospital, Boston, MA, United States
| | - Pilar Giffenig
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Mikhail Papisov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children-Boston, Boston, MA, United States
| |
Collapse
|
15
|
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci 2021; 78:2429-2457. [PMID: 33427948 PMCID: PMC8004496 DOI: 10.1007/s00018-020-03706-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Cerebrospinal fluid (CSF) is produced by the choroid plexuses within the ventricles of the brain and circulates through the subarachnoid space of the skull and spinal column to provide buoyancy to and maintain fluid homeostasis of the brain and spinal cord. The question of how CSF drains from the subarachnoid space has long puzzled scientists and clinicians. For many decades, it was believed that arachnoid villi or granulations, outcroppings of arachnoid tissue that project into the dural venous sinuses, served as the major outflow route. However, this concept has been increasingly challenged in recent years, as physiological and imaging evidence from several species has accumulated showing that tracers injected into the CSF can instead be found within lymphatic vessels draining from the cranium and spine. With the recent high-profile rediscovery of meningeal lymphatic vessels located in the dura mater, another debate has emerged regarding the exact anatomical pathway(s) for CSF to reach the lymphatic system, with one side favoring direct efflux to the dural lymphatic vessels within the skull and spinal column and another side advocating for pathways along exiting cranial and spinal nerves. In this review, a summary of the historical and contemporary evidence for the different outflow pathways will be presented, allowing the reader to gain further perspective on the recent advances in the field. An improved understanding of this fundamental physiological process may lead to novel therapeutic approaches for a wide range of neurological conditions, including hydrocephalus, neurodegeneration and multiple sclerosis.
Collapse
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Goodman JR, Iliff JJ. Vasomotor influences on glymphatic-lymphatic coupling and solute trafficking in the central nervous system. J Cereb Blood Flow Metab 2020; 40:1724-1734. [PMID: 31506012 PMCID: PMC7370362 DOI: 10.1177/0271678x19874134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the recent description of meningeal lymphatic vessels draining solutes from the brain interstitium and cerebrospinal fluid (CSF), the physiological factors governing cranial lymphatic efflux remain largely unexplored. In agreement with recent findings, cervical lymphatic drainage of 70 kD and 2000 kD fluorescent tracers injected into the adult mouse cortex was significantly impaired in the anesthetized compared to waking animals (tracer distribution across 2.1 ± 4.5% and 23.7 ± 15.8% of deep cervical lymph nodes, respectively); however, free-breathing anesthetized mice were markedly hypercapnic and acidemic (paCO2 = 64 ± 8 mmHg; pH = 7.22 ± 0.05). Mechanical ventilation normalized arterial blood gases in anesthetized animals, and rescued lymphatic efflux of interstitial solutes in anesthetized mice. Experimental hypercapnia blocked cervical lymphatic efflux of intraparenchymal tracers. When tracers were injected into the subarachnoid CSF compartment, glymphatic influx into brain tissue was virtually abolished by hypercapnia, while lymphatic drainage was not appreciably altered. These findings demonstrate that cervical lymphatic drainage of interstitial solutes is, in part, regulated by upstream changes in glymphatic CSF-interstitial fluid exchange. Further, they suggest that maintaining physiological blood gas values in studies of glymphatic exchange and meningeal lymphatic drainage may be critical to defining the physiological regulation of these processes.
Collapse
Affiliation(s)
- James R Goodman
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
Fargen KM. Idiopathic intracranial hypertension is not idiopathic: proposal for a new nomenclature and patient classification. J Neurointerv Surg 2019; 12:110-114. [DOI: 10.1136/neurintsurg-2019-015498] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 11/04/2022]
|
18
|
Kaskar OG, Fleischman D, Lee YZ, Thorp BD, Kuznetsov AV, Grace L. Identifying the Critical Factors Governing Translaminar Pressure Differential Through a Compartmental Model. Invest Ophthalmol Vis Sci 2019; 60:3204-3214. [PMID: 31335946 PMCID: PMC6657705 DOI: 10.1167/iovs.18-26200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose The effective management of glaucoma is hindered by an incomplete understanding of its pathologic mechanism. While important, intraocular pressure (IOP) alone is inadequate in explaining glaucoma. Non-IOP-mediated risk factors such as cerebrospinal fluid (CSF) pressure have been reported to contribute to glaucomatous optic neuropathy. Due to the difficulty associated with experimental measurement of the salient variables, such as the retrobulbar CSF pressure, porosity of the subarachnoid space (SAS), and especially those concerned with the perioptic SAS, there remains a limited understanding of the CSF behavior contributing to the translaminar pressure gradient (TLPG), hypothesized to be a critical factor in the development of glaucoma. Method An integrated compartmental model describing the intracranial and orbital CSF dynamics, coupled with intraocular dynamics, is developed based on first principles of fluid mechanics. A sensitivity analysis is performed to identify anatomic characteristics that significantly affect the retrobulbar subarachnoid space (RSAS) pressure and, consequently, the TLPG. Results Of the 28 parameters considered, the RSAS pressure is most sensitive to CSF flow resistance in the optic nerve SAS and the potential lymphatic outflow from the optic nerve SAS into the orbital space. A parametric study demonstrates that a combination of resistance in the range of 1.600 × 1012 - 1.930 × 1012 Pa s/m3 (200.0 - 241.3 mm Hg min/mL) with 5% to 10% lymphatic CSF outflow yields RSAS pressures that are consistent with the limited number of studies in the literature. Conclusions The results suggest that a small percentage of lymphatic CSF outflow through the optic nerve SAS is likely. In addition, flow resistance in the orbital CSF space, hypothesized to be a function of patient-specific optic nerve SAS architecture and optic canal geometry, is a critical parameter in regulating the RSAS pressure and TLPG.
Collapse
Affiliation(s)
- Omkar G. Kaskar
- North Carolina State University, Raleigh, North Carolina, United States
| | - David Fleischman
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Yueh Z. Lee
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Brian D. Thorp
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Landon Grace
- North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
19
|
Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019; 16:9. [PMID: 30967147 PMCID: PMC6456952 DOI: 10.1186/s12987-019-0129-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023] Open
Abstract
The fine balance between the secretion, composition, volume and turnover of cerebrospinal fluid (CSF) is strictly regulated. However, during certain neurological diseases, this balance can be disrupted. A significant disruption to the normal CSF circulation can be life threatening, leading to increased intracranial pressure (ICP), and is implicated in hydrocephalus, idiopathic intracranial hypertension, brain trauma, brain tumours and stroke. Yet, the exact cellular, molecular and physiological mechanisms that contribute to altered hydrodynamic pathways in these diseases are poorly defined or hotly debated. The traditional views and concepts of CSF secretion, flow and drainage have been challenged, also due to recent findings suggesting more complex mechanisms of brain fluid dynamics than previously proposed. This review evaluates and summarises current hypotheses of CSF dynamics and presents evidence for the role of impaired CSF dynamics in elevated ICP, alongside discussion of the proteins that are potentially involved in altered CSF physiology during neurological disease. Undoubtedly CSF secretion, absorption and drainage are important aspects of brain fluid homeostasis in maintaining a stable ICP. Traditionally, pharmacological interventions or CSF drainage have been used to reduce ICP elevation due to over production of CSF. However, these drugs are used only as a temporary solution due to their undesirable side effects. Emerging evidence suggests that pharmacological targeting of aquaporins, transient receptor potential vanilloid type 4 (TRPV4), and the Na+-K+-2Cl- cotransporter (NKCC1) merit further investigation as potential targets in neurological diseases involving impaired brain fluid dynamics and elevated ICP.
Collapse
Affiliation(s)
- Steven William Bothwell
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
| | - Damir Janigro
- FloTBI Inc., Cleveland, OH USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH USA
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
- Hunter Medical Research Institute, Newcastle, NSW Australia
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
21
|
Goodman JR, Adham ZO, Woltjer RL, Lund AW, Iliff JJ. Characterization of dural sinus-associated lymphatic vasculature in human Alzheimer's dementia subjects. Brain Behav Immun 2018; 73:34-40. [PMID: 30055243 PMCID: PMC6149215 DOI: 10.1016/j.bbi.2018.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/01/2022] Open
Abstract
Recent reports describing lymphatic vasculature in the meninges have challenged the traditional understanding of interstitial solute clearance from the central nervous system, although the significance of this finding in human neurological disease remains unclear. To begin to define the role of meningeal lymphatic function in the clearance of interstitial amyloid beta (Aβ), and the contribution that its failure may make to the development of Alzheimer's disease (AD), we examined meningeal tissue from a case series including AD and control subjects by confocal microscopy. Our findings confirm the presence of lymphatic vasculature in the human meninges and indicate that, unlike perivascular efflux pathways in the brain parenchyma in subjects with AD, Aβ is not deposited in or around meningeal lymphatic vessels associated with dural sinuses. Our findings demonstrate that while the meningeal lymphatic vasculature may serve as an efflux route for Aβ from the brain and cerebrospinal fluid, Aβ does not deposit in the walls of meningeal lymphatic vessels in the setting of AD.
Collapse
Affiliation(s)
- James R. Goodman
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Zachariah O. Adham
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Amanda W. Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J. Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Research Institute; Oregon Health & Science University, Portland, OR, USA.,Corresponding Author: Jeffrey J. Iliff, PhD, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L459 Portland, OR 97239 USA, , Phone: (503) 494-4047
| |
Collapse
|
22
|
Lymphatic drainage of cerebrospinal fluid in mammals - are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia (Bratisl) 2018; 73:563-568. [PMID: 30147112 PMCID: PMC6097054 DOI: 10.2478/s11756-018-0074-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
Abstract
The outflow of the cerebrospinal fluid (CSF) in animals was over the years the subject of detailed analysis. For a long time it was stated that arachnoid granulations of the venous sinuses play a key role in CSF circulation. However, recent studies on this subject have shown that a considerable part of the CSF is drained to the lymphatic vessels. Moreover, disorders in the CSF passage may result in severe central nervous system diseases such as e.g. hydrocephalus. In this paper, we summarize the current knowledge concerning the lymphatic drainage of the CSF in mammals. We present in detail comparative anatomy of different species taking into account cranial and spinal compartment. In addition, we clarified role of the lymphatic vessels in the CSF outflow and the relationship between impairment in this transport and central nervous system diseases. In the author’s opinion knowledge on CSF circulation is still poorly examined and therefore required comment.
Collapse
|
23
|
Sokołowski W, Czubaj N, Skibniewski M, Barszcz K, Kupczyńska M, Kinda W, Kiełbowicz Z. Rostral cranial fossa as a site for cerebrospinal fluid drainage - volumetric studies in dog breeds of different size and morphotype. BMC Vet Res 2018; 14:162. [PMID: 29776403 PMCID: PMC5960198 DOI: 10.1186/s12917-018-1483-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hydrocephalus is a multifactorial condition, whose aetiology is not fully understood. Congenital hydrocephalus frequently occurs in small and brachycephalic dog breeds. Although it is widely accepted that the cribriform plate located in the rostral cranial fossa (RCF) is a site of cerebrospinal fluid (CSF) drainage, the RCF has not been studied extensively. Literature reports indicate that a decreased caudal cranial fossa (CCF) volume in the course of the Chiari-like malformation may obstruct CSF circulation. We hypothesised that morphological diversity among different breeds in the volume of the RCF may affect CSF circulation. The aim of the study was to carry out a volumetric analysis of the RCF and the cranial cavity and to determine the ratio between them in dog breeds of different size and morphotype. We performed computed tomography (CT) morphometric analysis of the RCF compartment by obtaining volume measurements from the transverse and reformatted sagittal and dorsal planes. Results The rostral cranial fossa percentage – volume of the rostral cranial fossa/volume of cranial cavity × 100 (volRCF/volCC × 100) was lower in small and brachycephalic dog breeds than in the other dogs. Conclusions A reduced RCF volume was detected in small and brachycephalic dog breeds, some of which are predisposed to congenital hydrocephalus. This may lead to overcrowding of brain parenchyma in the RCF and may impede CSF circulation. Our observations may be useful for future studies focusing on the causes and new therapies to treat conditions such as hydrocephalus and syringomyelia. Electronic supplementary material The online version of this article (10.1186/s12917-018-1483-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wojciech Sokołowski
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Norbert Czubaj
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Michał Skibniewski
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Karolina Barszcz
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marta Kupczyńska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Wojciech Kinda
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366, Wroclaw, Poland
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366, Wroclaw, Poland
| |
Collapse
|
24
|
Lee KH, Nam H, Won JS, Hwang JY, Jang HW, Lee SH, Joo KM. In Vivo Spinal Distribution of Cy5.5 Fluorescent Dye after Injection via the Lateral Ventricle and Cisterna Magna in Rat Model. J Korean Neurosurg Soc 2018; 61:434-440. [PMID: 29660974 PMCID: PMC6046575 DOI: 10.3340/jkns.2017.0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/23/2017] [Indexed: 11/27/2022] Open
Abstract
Objective The purpose of this study was to find an optimal delivery route for clinical trials of intrathecal cell therapy for spinal cord injury in preclinical stage. Methods We compared in vivo distribution of Cy5.5 fluorescent dye in the spinal cord region at various time points utilizing in vivo optical imaging techniques, which was injected into the lateral ventricle (LV) or cisterna magna (CM) of rats. Results Although CM locates nearer to the spinal cord than the LV, significantly higher signal of Cy5.5 was detected in the thoracic and lumbar spinal cord region at all time points tested when Cy5.5 was injected into the LV. In the LV injection Cy5.5 signal in the thoracic and lumbar spinal cord was observed within 12 hours after injection, which was maintained until 72 hours after injection. In contrast, Cy5.5 signal was concentrated at the injection site in the CM injection at all time points. Conclusion These data suggested that the LV might be suitable for preclinical injection route of therapeutics targeting the spinal cord to test their treatment efficacy and biosafety for spinal cord diseases in small animal models.
Collapse
Affiliation(s)
- Kee-Hang Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Hyun Nam
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Seob Won
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Ji-Yoon Hwang
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Won Jang
- Department of Medical Education, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Ho Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
25
|
Cerebrospinal Fluid Dynamics and Intrathecal Delivery. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Praetorius J, Damkier HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 2017; 312:C673-C686. [PMID: 28330845 DOI: 10.1152/ajpcell.00041.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1) the choroid plexus epithelium as the source of mediators necessary for central nervous system development, 2) the choroid plexus as a route for microorganisms and immune cells into the central nervous system, and 3) the choroid plexus as a potential route for drug delivery into the central nervous system, bypassing the blood-brain barrier. Thus, the purpose of this review is to highlight current active areas of research in the choroid plexus physiology and a few matters of continuous controversy.
Collapse
Affiliation(s)
- Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | - Helle Hasager Damkier
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
The effects of blood and blood products on the arachnoid cell. Exp Brain Res 2017; 235:1749-1758. [PMID: 28285405 DOI: 10.1007/s00221-017-4927-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/20/2017] [Indexed: 12/15/2022]
Abstract
After traumatic brain injury (TBI), large amounts of red blood cells and hemolytic products are deposited intracranially creating debris in the cerebrospinal fluid (CSF). This debris, which includes heme and bilirubin, is cleared via the arachnoid granulations and lymphatic systems. However, the mechanisms by which erythrocytes and their breakdown products interfere with normal CSF dynamics remain poorly defined. The purpose of this study was to model in vitro how blood breakdown products affect arachnoid cells at the CSF-blood barrier, and the extent to which the resorption of CSF into the venous drainage system is mechanically impaired following TBI. Arachnoid cells were grown to confluency on permeable membranes. Rates of growth and apoptosis were measured in the presence of blood and lysed blood, changes in transepithelial electrical resistance (TEER) was measured in the presence of blood and hemoglobin, and small molecule permeability was determined in the presence of blood, lysed blood, bilirubin, and biliverdin. These results were directly compared with an established rat brain endothelial cell line (RBEC4) co-cultured with rat brain astrocytes. We found that arachnoid cells grown in the presence of whole or lysed erythrocytes had significantly slower growth rates than controls. Bilirubin and biliverdin, despite their low solubilities, altered the paracellular transport of arachnoid cells more than the acute blood breakdown components of whole and lysed blood. Mannitol permeability was up to four times higher in biliverdin treatments than controls, and arachnoid membranes demonstrated significantly decreased small molecule permeabilities in the presence of whole and lysed blood. We conclude that short-term (<24 h) arachnoid cell transport and long-term (>5 days) arachnoid cell viability are affected by blood and blood breakdown products, with important consequences for CSF flow and blood clearance after TBI.
Collapse
|
28
|
Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 2016; 15:275-92. [PMID: 26794270 DOI: 10.1038/nrd.2015.21] [Citation(s) in RCA: 755] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders is achieving sufficient blood-brain barrier (BBB) penetration. Research in the past few decades has revealed that the BBB is not only a substantial barrier for drug delivery to the CNS but also a complex, dynamic interface that adapts to the needs of the CNS, responds to physiological changes, and is affected by and can even promote disease. This complexity confounds simple strategies for drug delivery to the CNS, but provides a wealth of opportunities and approaches for drug development. Here, I review some of the most important areas that have recently redefined the BBB and discuss how they can be applied to the development of CNS therapeutics.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center and Department of Medicine, University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, 1660 South Columbian Way, Seattle, Washington 98108, USA
| |
Collapse
|
29
|
Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One 2014; 9:e113670. [PMID: 25409522 PMCID: PMC4237502 DOI: 10.1371/journal.pone.0113670] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Eclampsia, defined as unexplained seizure in a woman with preeclampsia, is a life-threatening complication of pregnancy with unclear etiology. Magnesium sulfate (MgSO4) is the leading eclamptic seizure prophylactic, yet its mechanism of action remains unclear. Here, we hypothesized severe preeclampsia is a state of increased seizure susceptibility due to blood-brain barrier (BBB) disruption and neuroinflammation that lowers seizure threshold. Further, MgSO4 decreases seizure susceptibility by protecting the BBB and preventing neuroinflammation. To model severe preeclampsia, placental ischemia (reduced uteroplacental perfusion pressure; RUPP) was combined with a high cholesterol diet (HC) to cause maternal endothelial dysfunction. RUPP+HC rats developed symptoms associated with severe preeclampsia, including hypertension, oxidative stress, endothelial dysfunction and fetal and placental growth restriction. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ; mg/kg) required to elicit seizure in RUPP+HC±MgSO4 and compared to normal pregnant controls (n = 6/group; gestational day 20). RUPP+HC rats were more sensitive to PTZ with seizure threshold being ∼65% lower vs. control (12.4±1.7 vs. 36.7±3.9 mg/kg PTZ; p<0.05) that was reversed by MgSO4 (45.7±8.7 mg/kg PTZ; p<0.05 vs. RUPP+HC). BBB permeability to sodium fluorescein, measured in-vivo (n = 5–7/group), was increased in RUPP+HC vs. control rats, with more tracer passing into the brain (15.9±1.0 vs. 12.2±0.3 counts/gram ×1000; p<0.05) and was unaffected by MgSO4 (15.6±1.0 counts/gram ×1000; p<0.05 vs. controls). In addition, RUPP+HC rats were in a state of neuroinflammation, indicated by 35±2% of microglia being active compared to 9±2% in normal pregnancy (p<0.01; n = 3–8/group). MgSO4 treatment reversed neuroinflammation, reducing microglial activation to 6±2% (p<0.01 vs. RUPP+HC). Overall, RUPP+HC rats were in a state of augmented seizure susceptibility potentially due to increased BBB permeability and neuroinflammation. MgSO4 treatment reversed this, increasing seizure threshold and decreasing neuroinflammation, without affecting BBB permeability. Thus, reducing neuroinflammation may be one mechanism by which MgSO4 prevents eclampsia during severe preeclampsia.
Collapse
|
30
|
Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD. Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 2014; 11:12. [PMID: 24932405 PMCID: PMC4057524 DOI: 10.1186/2045-8118-11-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many aspects of CSF dynamics are poorly understood due to the difficulties involved in quantification and visualization. In particular, there is debate surrounding the route of CSF drainage. Our aim was to quantify CSF flow, volume, and drainage route dynamics in vivo in young and aged spontaneously hypertensive rats (SHR) using a novel contrast-enhanced computed tomography (CT) method. METHODS ICP was recorded in young (2-5 months) and aged (16 months) SHR. Contrast was administered into the lateral ventricles bilaterally and sequential CT imaging was used to visualize the entire intracranial CSF system and CSF drainage routes. A customized contrast decay software module was used to quantify CSF flow at multiple locations. RESULTS ICP was significantly higher in aged rats than in young rats (11.52 ± 2.36 mmHg, versus 7.04 ± 2.89 mmHg, p = 0.03). Contrast was observed throughout the entire intracranial CSF system and was seen to enter the spinal canal and cross the cribriform plate into the olfactory mucosa within 9.1 ± 6.1 and 22.2 ± 7.1 minutes, respectively. No contrast was observed adjacent to the sagittal sinus. There were no significant differences between young and aged rats in either contrast distribution times or CSF flow rates. Mean flow rates (combined young and aged) were 3.0 ± 1.5 μL/min at the cerebral aqueduct; 3.5 ± 1.4 μL/min at the 3rd ventricle; and 2.8 ± 0.9 μL/min at the 4th ventricle. Intracranial CSF volumes (and as percentage total brain volume) were 204 ± 97 μL (8.8 ± 4.3%) in the young and 275 ± 35 μL (10.8 ± 1.9%) in the aged animals (NS). CONCLUSIONS We have demonstrated a contrast-enhanced CT technique for measuring and visualising CSF dynamics in vivo. These results indicate substantial drainage of CSF via spinal and olfactory routes, but there was little evidence of drainage via sagittal sinus arachnoid granulations in either young or aged animals. The data suggests that spinal and olfactory routes are the primary routes of CSF drainage and that sagittal sinus arachnoid granulations play a minor role, even in aged rats with higher ICP.
Collapse
Affiliation(s)
- Lucy A Murtha
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
| | - Qing Yang
- Apollo Medical Imaging Technology Pty Ltd, Suite 611, 365 Little Collins Street, Melbourne, Vic 3000, Australia
| | - Mark W Parsons
- Hunter New England Local Health District: Department of Neurology, John Hunter Hospital, Locked Bag 1, Hunter Region M.C, NSW 2310, Australia
| | - Christopher R Levi
- Hunter New England Local Health District: Department of Neurology, John Hunter Hospital, Locked Bag 1, Hunter Region M.C, NSW 2310, Australia
| | - Daniel J Beard
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
| | - Neil J Spratt
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
- Hunter New England Local Health District: Department of Neurology, John Hunter Hospital, Locked Bag 1, Hunter Region M.C, NSW 2310, Australia
| | - Damian D McLeod
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
31
|
Mathieu E, Gupta N, Macdonald RL, Ai J, Yücel YH. In vivo imaging of lymphatic drainage of cerebrospinal fluid in mouse. Fluids Barriers CNS 2013; 10:35. [PMID: 24360130 PMCID: PMC3879644 DOI: 10.1186/2045-8118-10-35] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mouse models are commonly used to study central nervous system disorders, in which cerebrospinal fluid (CSF) drainage may be disturbed. However, mouse CSF drainage into lymphatics has not been thoroughly characterized. We aimed to image this using an in vivo approach that combined quantum dot fluorescent nanoparticles with hyperspectral imaging. FINDINGS Quantum dot 655 was injected into the CSF of the cisterna magna in seven mice and visualized by in vivo hyperspectral imaging at time points 20 and 40 min, 1, 2, and 6 h after injection. In controls (n = 4), quantum dots were applied directly onto intact dura mater covering the cisterna magna. After imaging, lymph nodes in the neck were harvested and processed post-mortem for histological analysis. After injection into the CSF, quantum dot signal was detected in vivo in submandibular lymph nodes of all mice studied as early as 20 min, but not in controls. Post-mortem gross and histological examination of lymph nodes confirmed in vivo observations. CONCLUSIONS Non-invasive in vivo hyperspectral imaging is a useful tool to study CSF lymphatic drainage and is relevant to understanding this pathway in CNS disease models.
Collapse
Affiliation(s)
| | | | | | | | - Yeni H Yücel
- Keenan Research Centre for Biomedical Science, St, Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
32
|
Strahle J, Garton HJL, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 2013; 3:25-38. [PMID: 23976902 DOI: 10.1007/s12975-012-0182-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intraventricular hemorrhage (IVH) is a cause of significant morbidity and mortality and is an independent predictor of a worse outcome in intracerebral hemorrhage (ICH) and germinal matrix hemorrhage (GMH). IVH may result in both injuries to the brain as well as hydrocephalus. This paper reviews evidence on the mechanisms and potential treatments for IVH-induced hydrocephalus. One frequently cited theory to explain hydrocephalus after IVH involves obliteration of the arachnoid villi by microthrombi with subsequent inflammation and fibrosis causing CSF outflow obstruction. Although there is some evidence to support this theory, there may be other mechanisms involved, which contribute to the development of hydrocephalus. It is also unclear whether the causes of acute and chronic hydrocephalus after hemorrhage occur via different mechanisms; mechanical obstruction by blood in the former, and inflammation and fibrosis in the latter. Management of IVH and strategies for prevention of brain injury and hydrocephalus are areas requiring further study. A better understanding of the pathogenesis of hydrocephalus after IVH, may lead to improved strategies to prevent and treat post-hemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
33
|
Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield DA, Banks WA. Lipopolysaccharide impairs amyloid β efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. J Neuroinflammation 2012; 9:150. [PMID: 22747709 PMCID: PMC3410805 DOI: 10.1186/1742-2094-9-150] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier. Methods CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. Results We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells. Conclusions These results suggest that LRP-1 undergoes complex functional regulation following systemic inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD indicate that inflammation could induce and promote the disease.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pharmacology and Physiology, Saint Louis University, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Banks WA. Drug delivery to the brain in Alzheimer's disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:629-39. [PMID: 22202501 DOI: 10.1016/j.addr.2011.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
The successful treatment of Alzheimer's disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA , USA.
| |
Collapse
|
35
|
Kaminski M, Bechmann I, Kiwit J, Glumm J. Migration of monocytes after intracerebral injection. Cell Adh Migr 2012; 6:164-7. [PMID: 22568987 DOI: 10.4161/cam.20281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, we monitored green fluorescent protein (GFP)-expressing monocytes after injection at the entorhinal cortex lesion (ECL) site in mice. We followed their migration out of the central nervous system (CNS) along olfactory nerve fibers penetrating the lamina cribrosa, within the nasal mucosa, and their subsequent appearance within the deep cervical lymph nodes (CLN), with numbers peaking at day 7. This is the same route activated T cells use for reaching the CLN, as we have shown before. Interestingly, GFP cells injected into the brain and subsequently found in the CLN exhibited ramified morphologies, which are typical of microglia and dendritic cells. To gain more insight into immunity and regeneration within the CNS we want to monitor injected monocytes using magnetic resonance imaging (MRI) after labeling with very small superparamagnetic iron oxide particles (VSOP). Due to their small size, nanoparticles have huge potential for magnetic labeling of different cell populations and their MRI tracking in vivo. So far we have verified that incubation with VSOP particles does not alter their migration pattern after ECL.
Collapse
Affiliation(s)
- Miriam Kaminski
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
36
|
Meeker RB, Bragg DC, Poulton W, Hudson L. Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res 2012; 347:443-55. [PMID: 22281685 DOI: 10.1007/s00441-011-1301-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/08/2011] [Indexed: 12/23/2022]
Abstract
Although lentiviruses such as human, feline and simian immunodeficiency viruses (HIV, FIV, SIV) rapidly gain access to cerebrospinal fluid (CSF), the mechanisms that control this entry are not well understood. One possibility is that the virus may be carried into the brain by immune cells that traffic across the blood-CSF barrier in the choroid plexus. Since few studies have directly examined macrophage trafficking across the blood-CSF barrier, we established transwell and explant cultures of feline choroid plexus epithelium and measured trafficking in the presence or absence of FIV. Macrophages in co-culture with the epithelium showed significant proliferation and robust trafficking that was dependent on the presence of epithelium. Macrophage migration to the apical surface of the epithelium was particularly robust in the choroid plexus explants where 3-fold increases were seen over the first 24 h. Addition of FIV to the cultures greatly increased the number of surface macrophages without influencing replication. The epithelium in the transwell cultures was also permissive to PBMC trafficking, which increased from 17 to 26% of total cells after exposure to FIV. Thus, the choroid plexus epithelium supports trafficking of both macrophages and PBMCs. FIV significantly enhanced translocation of macrophages and T cells indicating that the choroid plexus epithelium is likely to be an active site of immune cell trafficking in response to infection.
Collapse
Affiliation(s)
- Rick B Meeker
- Department of Neurology and Curriculum in Neurobiology, University of North Carolina, CB #7025, 6109F Neuroscience Research Building 103 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
37
|
Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 2010; 7:9. [PMID: 20565964 PMCID: PMC2904716 DOI: 10.1186/1743-8454-7-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/21/2010] [Indexed: 01/01/2023] Open
Abstract
This review traces the development of our understanding of the anatomy and physiological properties of the two systems responsible for the drainage of cerebrospinal fluid (CSF) into the systemic circulation. The roles of the cranial and spinal arachnoid villi (AV) and the lymphatic outflow systems are evaluated as to the dominance of one over the other in various species and degree of animal maturation. The functional capabilities of the total CSF drainage system are presented, with evidence that the duality of the system is supported by the changes in fluid outflow dynamics in human and sub-human primates in hydrocephalus. The review also reconciles the relative importance and alterations of each of the outflow systems in a variety of clinical pathological conditions.
Collapse
|
38
|
Nagra G, Wagshul ME, Rashid S, Li J, McAllister JP, Johnston M. Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Res 2010; 7:4. [PMID: 20181144 PMCID: PMC2831828 DOI: 10.1186/1743-8454-7-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We recently reported a lymphatic cerebrospinal fluid (CSF) absorption deficit in a kaolin model of communicating hydrocephalus in rats with ventricular expansion correlating negatively with the magnitude of the impediment to lymphatic function. However, it is possible that CSF drainage was not significantly altered if absorption at other sites compensated for the lymphatic defect. The purpose of this study was to investigate the impact of the lymphatic absorption deficit on global CSF absorption (CSF outflow resistance). METHODS Kaolin was injected into the basal cisterns of Sprague Dawley rats. The development of hydrocephalus was assessed using magnetic resonance imaging (MRI). In one group of animals at about 3 weeks after injection, the movement of intraventricularly injected iodinated human serum albumin (125I-HSA) into the olfactory turbinates provided an estimate of CSF transport through the cribriform plate into nasal lymphatics (n = 18). Control animals received saline in place of kaolin (n = 10). In a second group at about 3.5 weeks after kaolin injection, intraventricular pressure was measured continuously during infusion of saline into the spinal subarachnoid space at various flow rates (n = 9). CSF outflow resistance was calculated as the slope of the steady-state pressure versus flow rate. Control animals for this group either received no injections (intact: n = 11) or received saline in place of kaolin (n = 8). RESULTS Compared to saline injected controls, lateral ventricular volume in the kaolin group was significantly greater (0.087 +/- 0.013 ml, n = 27 versus 0.015 +/- 0.001 ml, n = 17) and lymphatic function was significantly less (2.14 +/- 0.72% injected/g, n = 18 versus 6.38 +/- 0.60% injected/g, n = 10). Additionally, the CSF outflow resistance was significantly greater in the kaolin group (0.46 +/- 0.04 cm H2O microL(-1) min, n = 9) than in saline injected (0.28 +/- 0.03 cm H2O microL(-1) min, n = 8) or intact animals (0.18 +/- 0.03 cm H2O microL(-1) min, n = 11). There was a significant positive correlation between CSF outflow resistance and ventricular volume. CONCLUSIONS The data suggest that the impediment to lymphatic CSF absorption in a kaolin-induced model of communicating hydrocephalus has a significant impact on global CSF absorption. A lymphatic CSF absorption deficit would appear to play some role (either direct or indirect) in the pathogenesis of ventriculomegaly.
Collapse
Affiliation(s)
- Gurjit Nagra
- Brain Sciences Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Wagshul
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shams Rashid
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jie Li
- Department of Neurological Surgery, Wayne State University School of Medicine, University Health Center, St Antoine Detroit, MI, USA
| | - J Pat McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Miles Johnston
- Brain Sciences Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Rammling M, Madan M, Paul L, Behnam B, Pattisapu JV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res 2008; 5:15. [PMID: 18925964 PMCID: PMC2572581 DOI: 10.1186/1743-8454-5-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022] Open
Abstract
Background There is mounting evidence that spinal fluid absorption takes place not only at the arachnoid villi, but also at several extracranial sites, which might serve as a reserve mechanism for, or be primarily involved in the absorption of CSF in hydrocephalus. Methods We compared the nasal lymphatic pathway in congenital Hydrocephalus-Texas (H-Tx) rats in unaffected and affected hydrocephalic (HC) siblings with that of control Sprague Dawley (SD) rat pups. The animals were examined after immediate post mortem injection of Evan's blue dye into the cisterna magna at 6 and 10 days of age. The specimens were evaluated for amount of dye penetration into the nasal passages. Results We found more dye visualization in the olfactory regions of control SD (14/16 at P6, 14/16 at P10) and unaffected H-Tx (13/17 at P6, 13/16 at P10) compared with HC animals (0/14 at P6, 3/15 at P10). This difference was more pronounced at 10 days of age. The dye was not visualized in the cervical lymph nodes or venous channels in these acute experiments. Conclusion The results of this study suggest that nasal lymphatic cerebrospinal fluid absorption is reduced in the H-Tx rat hydrocephalus model.
Collapse
Affiliation(s)
- Matthias Rammling
- Hydrocephalus Research Laboratory, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
40
|
Furtado GC, Marcondes MCG, Latkowski JA, Tsai J, Wensky A, Lafaille JJ. Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:4648-55. [PMID: 18802067 PMCID: PMC3973185 DOI: 10.4049/jimmunol.181.7.4648] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Strong evidence supports that CNS-specific CD4(+) T cells are central to the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Using a model of spontaneous EAE, we demonstrated that myelin basic protein (MBP)-specific CD4(+) T cells up-regulate activation markers in the CNS-draining cervical lymph nodes at a time when there is no T cell activation anywhere else, including the CNS, and before the appearance of clinical signs. In spontaneous EAE, the number of MBP-specific T cell numbers does not build up gradually in the CNS; instead, a swift migration of IFN-gamma-producing T cells into the CNS takes place approximately 24 h before the onset of neurological signs of EAE. Surgical excision of the cervical lymph nodes in healthy pre-EAE transgenic mice delayed the onset of EAE and resulted in a less severe disease. In EAE induced by immunization with MBP/CFA, a similar activation of T cells in the draining lymph nodes of the injection site precedes the disease. Taken together, our results suggest that peripheral activation of T cells in draining lymph nodes is an early event in the development of EAE, which paves the way for the initial burst of IFN-gamma-producing CD4(+) T cell into the CNS.
Collapse
MESH Headings
- Animals
- Biomarkers/cerebrospinal fluid
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/surgery
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myelin Basic Protein/immunology
- Time Factors
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Gláucia C. Furtado
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Maria Cecilia G. Marcondes
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Jo-Ann Latkowski
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Julia Tsai
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Allen Wensky
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Juan J. Lafaille
- Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
41
|
Killer HE, Jaggi GP, Miller NR, Flammer J, Meyer P. Does immunohistochemistry allow easy detection of lymphatics in the optic nerve sheath? J Histochem Cytochem 2008; 56:1087-92. [PMID: 18765840 DOI: 10.1369/jhc.2008.950840] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the validity of anti-D2-40 and anti-LYVE-1 (antibodies against lymphatic endothelium) for IHC diagnosis and semiquantification of lymphatic vessels in the dura mater of the intraorbital portion of the human optic nerve (ON). Fourteen specimens were analyzed using light microscopy within 12 hr postmortem. We found in all specimens that both D2-40 and LYVE-1 stained lymphatic vessels as well as venules and arterioles. Our findings show lymphatic vessels in the meninges of the intraorbital portion of the human ON. Anti-D2-40 and anti-LYVE-1 antibodies, however, are not found to be exclusively specific to the endothelial layer of lymphatics because they also stain the endothelial layer of venules and arterioles. For the unequivocal identification of lymphatics, additional morphological criteria are necessary. Nevertheless, D2-40 and LYVE-1 staining allows rapid identification of endothelial layers.
Collapse
|
42
|
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008; 5:10. [PMID: 18479516 PMCID: PMC2412840 DOI: 10.1186/1743-8454-5-10] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 05/14/2008] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. OUTLINE 1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - John A Duncan
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Petra M Klinge
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Thomas Brinker
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Edward G Stopa
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Gerald D Silverberg
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| |
Collapse
|
43
|
Nonaka N, Farr SA, Kageyama H, Shioda S, Banks WA. Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Ther 2008; 325:513-9. [PMID: 18270319 DOI: 10.1124/jpet.107.132381] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Galanin-like peptide (GALP) shows potential as a therapeutic in the treatment of obesity and related conditions. In this study, we compared the uptake by brain regions and peripheral tissues of radioactively iodinated GALP (I-GALP) after intranasal (i.n.), i.v., and i.c.v. administration. I-GALP was stable in blood and brain during the 10-min study time regardless of route of administration, and similar levels were achieved in cerebrospinal fluid after i.v. and i.n. administration. However, levels in most brain regions were approximately 4 to 10 times higher and uptake by spleen, representative of peripheral tissues, approximately 10% as high after i.n. than i.v. administration. Thus, i.n. administration provided about a 40- to 100 fold improvement in targeting brain versus peripheral tissues compared with i.v. administration. Uptake of I-GALP by whole brain after i.n. administration was inhibited by approximately 50% by 1 mug/mouse of unlabeled GALP, thus demonstrating a saturable component to uptake. Combining I-GALP with cyclodextrins increased brain uptake approximately 3-fold. Selectivity for brain region uptake was also seen with route of administration and with use of cyclodextrins. The hippocampus had the greatest uptake after i.c.v. administration, the cerebellum after i.v. administration, the hypothalamus with i.n. administration without cyclodextrins, the hypothalamus and olfactory bulb (OB) after i.n. administration with alpha-cyclodextrin, and the OB after i.n. administration with dimethyl-beta cyclodextrin. These studies show that intranasal administration is an effective route of administration for the delivery of GALP to the brain and that targeting among brain regions may be possible with the use of various cyclodextrins.
Collapse
Affiliation(s)
- Naoko Nonaka
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, John Cochran Division, 915 N. Grand Blvd., St. Louis, MO 63106, USA.
| | | | | | | | | |
Collapse
|
44
|
Nagra G, Li J, McAllister JP, Miller J, Wagshul M, Johnston M. Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1752-9. [PMID: 18305019 DOI: 10.1152/ajpregu.00748.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been assumed that the pathogenesis of hydrocephalus includes a cerebrospinal fluid (CSF) absorption deficit. Because a significant portion of CSF absorption occurs into extracranial lymphatics located in the olfactory turbinates, the purpose of this study was to determine whether CSF transport was compromised at this location in a kaolin-induced communicating (extraventricular) hydrocephalus model in rats. Under 1-3% halothane anesthesia, kaolin (n = 10) or saline (n = 9) was introduced into the basal cisterns of Sprague-Dawley rats, and the development of hydrocephalus was assessed 1 wk later using MRI. After injection of human serum albumin ((125)I-HSA) into a lateral ventricle, the tracer enrichment in the olfactory turbinates 30 min postinjection provided an estimate of CSF transport through the cribriform plate into nasal lymphatics. Lateral ventricular volumes in the kaolin group (0.073 +/- 0.014 ml) were significantly greater than those in the saline-injected animals (0.016 +/- 0.001 ml; P = 0.0014). The CSF tracer enrichment in the olfactory turbinates (expressed as percent injected/g tissue) in the kaolin rats averaged 0.99 +/- 0.39 and was significantly lower than that measured in the saline controls (5.86 +/- 0.32; P < 0.00001). The largest degree of ventriculomegaly was associated with the lowest levels of lymphatic CSF uptake with lateral ventricular expansion occurring only when almost all of the lymphatic CSF transport capacity had been compromised. We conclude that lymphatic CSF absorption is impaired in a kaolin-communicating hydrocephalus model and that the degree of this impediment may contribute to the severity of the induced disease.
Collapse
Affiliation(s)
- G Nagra
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Johnston M, Armstrong D, Koh L. Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res 2007; 4:3. [PMID: 17437642 PMCID: PMC1858703 DOI: 10.1186/1743-8454-4-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/16/2007] [Indexed: 11/21/2022] Open
Abstract
The purpose of this investigation was to enhance our understanding of cerebrospinal fluid (CSF) absorption pathways. To achieve this, Microfil (a coloured silastic material) was infused into the subarachnoid space (cisterna magna) of sheep post mortem, and the relevant tissues examined macroscopically and microscopically. The Microfil was taken up by an extensive network of extracranial lymphatic vessels in the olfactory turbinates. In addition however, Microfil also passed consistently through the dura at the base of the brain. Microfil was noted in the spaces surrounding the venous network that comprises the cavernous sinus, in the adventitia of the internal carotid arteries and adjacent to the pituitary gland. Additionally, Microfil was observed within the endoneurial spaces of the trigeminal nerve and in lymphatic vessels emerging from the epineurium of the nerve. These results suggest several unconventional pathways by which CSF may be removed from the subarachnoid space. The movement of CSF to locations external to the cranium via these routes may lead to its absorption into veins and lymphatics outside of the skull. The physiological importance of these pathways requires further investigation.
Collapse
Affiliation(s)
- Miles Johnston
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Dianna Armstrong
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Lena Koh
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
46
|
Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M. Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1383-9. [PMID: 16793937 DOI: 10.1152/ajpregu.00235.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major pathway by which cerebrospinal fluid (CSF) is removed from the cranium is transport through the cribriform plate in association with the olfactory nerves. CSF is then absorbed into lymphatics located in the submucosa of the olfactory epithelium (olfactory turbinates). In an attempt to provide a quantitative measure of this transport, 125I-human serum albumin (HSA) was injected into the lateral ventricles of adult Fisher 344 rats. The animals were killed at 10, 20, 30, 40, and 60 min after injection, and tissue samples, including blood (from heart puncture), skeletal muscle, spleen, liver, kidney, and tail were excised for radioactive assessment. The remains were frozen. To sample the olfactory turbinates, angled coronal tissue sections anterior to the cribriform plate were prepared from the frozen heads. The average concentration of 125I-HSA was higher in the middle olfactory turbinates than in any other tissue with peak concentrations achieved 30 min after injection. At this point, the recoveries of injected tracer (percent injected dose/g tissue) were 9.4% middle turbinates, 1.6% blood, 0.04% skeletal muscle, 0.2% spleen, 0.3% liver, 0.3% kidney, and 0.09% tail. The current belief that arachnoid projections are responsible for CSF drainage fails to explain some important issues related to the pathogenesis of CSF disorders. The rapid movement of the CSF tracer into the olfactory turbinates further supports a role for lymphatics in CSF absorption and provides the basis of a method to investigate the novel concept that diseases associated with the CSF system may involve impaired lymphatic CSF transport.
Collapse
Affiliation(s)
- Gurjit Nagra
- Dept. of Laboratory Medicine and Pathobiology, Neuroscience Research, Sunnybrook Health Sciences Centre, Univ. of Toronto, Research Bldg., S-111, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
47
|
Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2005; 2:6. [PMID: 16174293 PMCID: PMC1266390 DOI: 10.1186/1743-8454-2-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/20/2005] [Indexed: 01/19/2023] Open
Abstract
In most tissues and organs, the lymphatic circulation is responsible for the removal of interstitial protein and fluid but the parenchyma of the brain and spinal cord is devoid of lymphatic vessels. On the other hand, the literature is filled with qualitative and quantitative evidence supporting a lymphatic function in cerebrospinal fluid (CSF) absorption. The experimental data seems to warrant a re-examination of CSF dynamics and consideration of a new conceptual foundation on which to base our understanding of disorders of the CSF system. The objective of this paper is to review the key studies pertaining to the role of the lymphatic system in CSF absorption.
Collapse
Affiliation(s)
- Lena Koh
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Andrei Zakharov
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Miles Johnston
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
48
|
Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 2004; 1:2. [PMID: 15679948 PMCID: PMC546409 DOI: 10.1186/1743-8454-1-2] [Citation(s) in RCA: 359] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/10/2004] [Indexed: 11/20/2022] Open
Abstract
Background The parenchyma of the brain does not contain lymphatics. Consequently, it has been assumed that arachnoid projections into the cranial venous system are responsible for cerebrospinal fluid (CSF) absorption. However, recent quantitative and qualitative evidence in sheep suggest that nasal lymphatics have the major role in CSF transport. Nonetheless, the applicability of this concept to other species, especially to humans has never been clarified. The purpose of this study was to compare the CSF and nasal lymph associations in human and non-human primates with those observed in other mammalian species. Methods Studies were performed in sheep, pigs, rabbits, rats, mice, monkeys and humans. Immediately after sacrifice (or up to 7 hours after death in humans), yellow Microfil was injected into the CSF compartment. The heads were cut in a sagittal plane. Results In the seven species examined, Microfil was observed primarily in the subarachnoid space around the olfactory bulbs and cribriform plate. The contrast agent followed the olfactory nerves and entered extensive lymphatic networks in the submucosa associated with the olfactory and respiratory epithelium. This is the first direct evidence of the association between the CSF and nasal lymph compartments in humans. Conclusions The fact that the pattern of Microfil distribution was similar in all species tested, suggested that CSF absorption into nasal lymphatics is a characteristic feature of all mammals including humans. It is tempting to speculate that some disorders of the CSF system (hydrocephalus and idiopathic intracranial hypertension for example) may relate either directly or indirectly to a lymphatic CSF absorption deficit.
Collapse
Affiliation(s)
- Miles Johnston
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Andrei Zakharov
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Christina Papaiconomou
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Giselle Salmasi
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Dianna Armstrong
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
49
|
Johnston M, Papaiconomou C. Cerebrospinal fluid transport: a lymphatic perspective. Physiology (Bethesda) 2002; 17:227-30. [PMID: 12433975 DOI: 10.1152/nips.01400.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The textbook view that projections of the arachnoid membrane into the cranial venous sinuses represent the primary cerebrospinal fluid (CSF) absorption sites seems incompatible with many clinical and experimental observations. On balance, there is more quantitative evidence suggesting a function for extracranial lymphatic vessels than exists to support a role for arachnoid villi and granulations in CSF transport.
Collapse
Affiliation(s)
- M Johnston
- Neuroscience Research, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Ontario M4N 3M5, Canada
| | | |
Collapse
|
50
|
Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M. Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol 2002; 283:R869-76. [PMID: 12228056 DOI: 10.1152/ajpregu.00173.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachnoid villi and granulations are thought to represent the primary sites where cerebrospinal fluid (CSF) is absorbed. However, these structures do not appear to exist in the fetus but begin to develop around the time of birth and increase in number with age. With the use of a constant pressure-perfusion system in 2- to 6-day-old lambs, we observed that global CSF transport (0.012 +/- 0.003 ml x min(-1) x cmH(2)O(-1)) and CSF outflow resistance (96.5 +/- 17.8 cmH(2)O x ml(-1) x min) were very similar to comparable measures in adult animals despite the relative paucity of arachnoid villi at this stage of development. In the neonate, the recovery patterns of a radioactive protein CSF tracer in various lymph nodes and tissues indicated that CSF transport occurred through multiple lymphatic pathways. An especially important route was transport through the cribriform plate into extracranial lymphatics located in the nasal submucosa. To investigate the importance of the cribriform route in cranial CSF clearance, the cranial CSF compartment was isolated surgically from its spinal counterpart. When the cribriform plate was sealed extracranially under these conditions, CSF transport was impaired significantly. These data demonstrate an essential function for lymphatics in neonatal CSF transport and imply that arachnoid projections may play a limited role earlier in development.
Collapse
Affiliation(s)
- C Papaiconomou
- Neuroscience Research, Department of Laboratory Medicine and Pathobiology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5
| | | | | | | |
Collapse
|