1
|
Inoue N, Sakamoto Y, Manse Y, Ninomiya K, Morikawa T. Oligomeric secoiridoid glycosides with hepatoprotective activity from the flowers of Jasminum sambac (L.) Aiton. PHYTOCHEMISTRY 2025; 237:114538. [PMID: 40345309 DOI: 10.1016/j.phytochem.2025.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
A methanol extract of the flowers of Jasminum sambac (L.) Aiton (Oleaceae) exhibited hepatoprotective effects against d-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. Five previously undescribed oligomeric secoiridoid glycosides, jasminumosides A-E (1-5), were isolated from the extract, along with 19 known compounds (6-24). The structures of 1-5 were determined based on their spectroscopic properties and chemical evidence. Among the isolates, three oligomeric secoiridoid glycosides, sambacoside A (6) and molihuasides C (10) and D (11), exhibited hepatoprotective effects at doses ranging between 12.5 and 25 mg/kg, p.o.
Collapse
Affiliation(s)
- Naoki Inoue
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Yusuke Sakamoto
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan; Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Wang W, Wu D, Liu J, Yang DA. Potential protective role of Lycium ruthenicum Murray polysaccharides against lipopolysaccharide-induced liver injury via mitochondrial biogenesis. Int J Biol Macromol 2025; 306:141365. [PMID: 39993693 DOI: 10.1016/j.ijbiomac.2025.141365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Acute liver injury (ALI), which manifests as abnormal liver function and hepatocyte damage, lacks effective treatment modalities and is associated with a high mortality rate. Recent studies have revealed that hepatoprotection is related to polysaccharide components. In this study, we examined the effect and mechanism of Lycium ruthenicum Murray polysaccharides (LRMP) on liver injury induced by lipopolysaccharide (LPS). Male ICR mice were pre-administered LRMP (100 and 400 mg/kg BW) once daily for 21 days. A single injection of LPS (10 mg/kg BW) was administered on day 21 to induce ALI. The difference between the groups indicated that LRMP supplementation had no adverse effect on body weight. LRMP administration considerably alleviated liver injury, as evidenced by the decreased levels of aspartate transaminase and alanine transaminase, increased levels of albumin, and preservation of liver structural integrity. Moreover, LRMP reduced oxidative stress and inflammatory responses in the liver, maintained mitochondrial structure, regulated mitochondrial apoptotic pathway, and upregulated Sirtuin 1/peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway involved in mitochondrial biogenesis. This study suggests the potential therapeutic application of LRMP in liver-related diseases, which will provide a basis for innovative strategies.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Animal Science, Ningxia University, Yinchuan 750021, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Desheng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Li X, Wang J, Li S, Yu S, Liu H, Liu Y. A systematic review on botany, ethnopharmacology, phytochemistry and pharmacology of Potentilla anserina L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118481. [PMID: 38909825 DOI: 10.1016/j.jep.2024.118481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla Anserina Linnaeus, a traditional Chinese herb with ethnic characteristics, is considered a superior material by the people of Qinghai and Tibet. Traditionally, it has been used to invigorate the spleen, quench thirst, tonify the blood, astringing to stop bleeding, and relieve diarrhea. This is the reason for its frequent usage in treating spleen deficiency, diarrhea, and various bleeding disorders. At the same time, P. anserina is often consumed as food by the Tibetan people to obtain nourishment and health benefits. AIM OF THE REVIEW The present review provides a systematic description of P. anserina, covering its botany, ethnopharmacology, phytochemical constituents, and various pharmacological activities of extracts. This overview aims to provide insights into research directions and potential applications of P. anserina. MATERIALS AND METHODS Information on P. anserina was gathered through various sources, including Google Scholar, PubMed, Elsevier, CNKI, and Web of Science. In addition, information was available from native texts and prominent ethnopharmacologists. RESULTS So far, 154 different chemical substances have been isolated and identified from P. anserina, with tannins, flavonoids, and triterpenes accounting for the majority. Polysaccharides and triterpenes are the main material components responsible for the pharmacological activity of P. anserina. Research shows that P. anserina exhibits rich pharmacological activities, including antioxidant, antiviral, blood tonic, immune regulation, cardiovascular system treatment, diabetes treatment, and liver protection. CONCLUSIONS Some traditional applications of P. anserina have been confirmed. However, due to incomplete evaluation indicators and other reasons, further in vitro and in vivo studies are needed to clarify its pharmacological evaluation, which remains a focus of future research. Additionally, we recommend that future studies concentrate on the quality control and safety evaluation of P. anserina to address research gaps and offer theoretical support for the plant's potential functions and clinical applications.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shuqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shaojun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Hao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
4
|
Yuan C, Fan J, Jiang L, Ye W, Chen Z, Wu W, Huang Q, Qian L. Integrated Analysis of Gut Microbiome and Liver Metabolome to Evaluate the Effects of Fecal Microbiota Transplantation on Lipopolysaccharide/D-galactosamine-Induced Acute Liver Injury in Mice. Nutrients 2023; 15:nu15051149. [PMID: 36904149 PMCID: PMC10005546 DOI: 10.3390/nu15051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Acute liver failure (ALF) refers to the occurrence of massive hepatocyte necrosis in a short time, with multiple complications, including inflammatory response, hepatic encephalopathy, and multiple organ failure. Additionally, effective therapies for ALF are lacking. There exists a relationship between the human intestinal microbiota and liver, so intestinal microbiota modulation may be a strategy for therapy of hepatic diseases. In previous studies, fecal microbiota transplantation (FMT) from fit donors has been used to modulate intestinal microbiota widely. Here, we established a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-gal) induced ALF to explore the preventive and therapeutic effects of FMT, and its mechanism of action. We found that FMT decreased hepatic aminotransferase activity and serum total bilirubin levels, and decreased hepatic pro-inflammatory cytokines in LPS/D-gal challenged mice (p < 0.05). Moreover, FMT gavage ameliorated LPS/D-gal induced liver apoptosis and markedly reduced cleaved caspase-3 levels, and improved histopathological features of the liver. FMT gavage also restored LPS/D-gal-evoked gut microbiota dysbiosis by modifying the colonic microbial composition, improving the abundance of unclassified_o_Bacteroidales (p < 0.001), norank_f_Muribaculaceae (p < 0.001), and Prevotellaceae_UCG-001 (p < 0.001), while reducing that of Lactobacillus (p < 0.05) and unclassified_f_Lachnospiraceae (p < 0.05). Metabolomics analysis revealed that FMT significantly altered LPS/D-gal induced disordered liver metabolites. Pearson's correlation revealed strong correlations between microbiota composition and liver metabolites. Our findings suggest that FMT ameliorate ALF by modulating gut microbiota and liver metabolism, and can used as a potential preventive and therapeutic strategy for ALF.
Collapse
Affiliation(s)
- Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982171
| |
Collapse
|
5
|
Zhou X, Li X, Yi K, Liang C, Geng S, Zhu J, Xie C, Zhong C. Magnesium isoglycyrrhizinate ameliorates lipopolysaccharide-induced liver injury by upregulating autophagy and inhibiting inflammation via IL-22 expression. Bioorg Chem 2022; 128:106034. [DOI: 10.1016/j.bioorg.2022.106034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
|
6
|
Kim MW, Kang JH, Jung HJ, Park SY, Hwang JI, Seong JK, Yoon YS, Oh SH. Deficiency of Ninjurin1 attenuates LPS/D-galactosamine-induced acute liver failure by reducing TNF-α-induced apoptosis in hepatocytes. J Cell Mol Med 2022; 26:5122-5134. [PMID: 36071453 PMCID: PMC9575046 DOI: 10.1111/jcmm.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nerve injury‐induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D‐galactosamine (D‐gal)‐induced acute liver failure (ALF) model. When treated with LPS/D‐gal, conventional Ninj1 knock‐out (KO) mice exhibited a mild inflammatory phenotype as compared with wild‐type (WT) mice. Unexpectedly, myeloid‐specific Ninj1 KO mice showed no attenuation of LPS/D‐gal‐induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF‐α‐induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock‐down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF‐α‐mediated apoptosis. Consistent with in vitro results, hepatocyte‐specific ablation of Ninj1 in mice alleviated LPS/D‐gal‐induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D‐gal‐induced ALF by alleviating TNF‐α/TNFR1‐induced cell death.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Se Yong Park
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
7
|
Li C, Lai S, Yi R, Zhou X, Zhao X, Li Q. Blood Coral Polysaccharide Helps Prevent D-Gal/LPS-Induced Acute Liver Failure in Mice. J Inflamm Res 2022; 15:4499-4513. [PMID: 35966003 PMCID: PMC9374204 DOI: 10.2147/jir.s369176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The liver protection of blood coral polysaccharide (BCP) was investigated. Materials and Methods We evaluated the effect of BCP on liver pathology, liver function, oxidation and inflammation-related indicators of D-Gal/LPS-induced acute liver failure (ALF) mice in vivo. Results Liver index and liver pathology observation in mice showed that BCP could inhibit liver tissue swelling and hemorrhage, hepatocyte damage, and inflammatory infiltration in ALF. Serum liver function results showed that BCP effectively inhibits the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), total bilirubin (TBil), alkaline phosphatase (AKP), myeloperoxidase (MPO). High dose-blood coral polysaccharide (H-BCP) was better than silymarin. Serum antioxidant and immune results showed that BCP increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px), and inhibited the levels of malondialdehyde (MDA) and nitric oxide (NO). Also, BCP increased immunoglobulins G (IgG) and A (IgA) levels, thereby enhancing humoral immunity. Liver anti-inflammatory ELISA results showed that BCP reduced the levels of interleukin (IL)-6, IL-1β, IL-17, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and enhanced the level of anti-inflammatory factor IL-10. H-BCP was the most effective treatment. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) of liver tissues confirmed that BCP increases the relative expression levels of antioxidant and anti-inflammatory-related cuprozinc superoxide dismutase (Cu/Zn-SOD, SOD1), manganese superoxide dismutase (Mn-SOD, SOD2), CAT, GSH, GSH-Px, and IL-10. In contrast, it inhibits inflammation-related genes IL-6, IL-1β, IL-17, TNF-α, IFN-γ, inducible nitric oxide synthase (iNOS, NOS2), and cyclooxygenase (COX)-2. In addition, BCP also inhibits the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and enhance B-cell inhibitor-α (IκB-α) gene relative expression in the liver, which may be related to NF-κB pathway inhibition. Conclusion BCP prevents D-Gal/LPS-induced ALF in mice, and its effect is concentration dependent.
Collapse
Affiliation(s)
- Chong Li
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, Republic of Korea
| | - Shu Lai
- Department of Pharmacology, Jiulongpo District People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Ruokun Yi
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Xianrong Zhou
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, Republic of Korea
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Qiang Li
- Department of Emergency, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, People's Republic of China
| |
Collapse
|
8
|
Shao S, Zhang Y, Li G, Yu Z, Cao Y, Zheng L, Zhang K, Han X, Shi Z, Cui H, Song X, Hong W, Han T. The dynamics of cell death patterns and regeneration during acute liver injury in mice. FEBS Open Bio 2022; 12:1061-1074. [PMID: 35184410 PMCID: PMC9063440 DOI: 10.1002/2211-5463.13383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022] Open
Abstract
Acute liver injury is a serious clinical syndrome with multiple causes and unclear pathological process. Here, CCl4‐ and D‐galactosamine/lipopolysaccharide (D‐gal/LPS)‐induced acute liver injury was established to explore the cell death patterns and determine whether or not liver regeneration occurred. In CCl4‐induced hepatic injury, three phases, including the early, progressive, and recovery phase, were considered based on alterations of serum transaminases and liver morphology. Moreover, in this model, cytokines exhibited double‐peak fluctuations; apoptosis and pyroptosis persisted throughout all phases; autophagy occurred in the early and the progressive phases; and sufficient and timely hepatocyte regeneration was observed only during the recovery phase. All of these phenomena contribute to mild liver injury and subsequent regeneration. Strikingly, only the early and progressive phases were observed in the D‐gal/LPS model. Slight pyroptosis occurred in the early phase but diminished in the progressive phase, while apoptosis, reduced autophagy, and slight but subsequently diminished regeneration occurred only during the progressive phase, accompanied by a strong cytokine storm, resulting in severe liver injury with high mortality. Taken together, our work reveals variable modes and dynamics of cell death and regeneration, which lead to different consequences for mild and severe acute liver injury, providing a helpful reference for clinical therapy and prognosis.
Collapse
Affiliation(s)
- Shuai Shao
- The School of Medicine NanKai University Tianjin China
| | - Yu Zhang
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Guantong Li
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Zhenjun Yu
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Yingying Cao
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Lina Zheng
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Kun Zhang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaohui Han
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Zhemin Shi
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Hongmei Cui
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaomeng Song
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Wei Hong
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Tao Han
- The School of Medicine NanKai University Tianjin China
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
- Department of Hepatology and Gastroenterology Tianjin Union Medical Center Nankai University Tianjin China
- Department of Hepatology and Gastroenterology Tianjin Third Central Hospital affiliated to Nankai University Tianjin China
| |
Collapse
|
9
|
Hwang S, Yang YM. Exosomal microRNAs as diagnostic and therapeutic biomarkers in non-malignant liver diseases. Arch Pharm Res 2021; 44:574-587. [PMID: 34165701 PMCID: PMC8223764 DOI: 10.1007/s12272-021-01338-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/20/2021] [Indexed: 12/16/2022]
Abstract
The liver is a vital organ responsible for various physiological functions, such as metabolism, immune response, digestion, and detoxification. Crosstalk between hepatocytes, hepatic macrophages, and hepatic stellate cells is critical for liver pathology. Exosomes are small extracellular vesicles (50-150 nm) that play an important role in cell-cell or organ-organ communication as they transfer their cargo, such as protein, DNA, and RNA to recipient cells or distant organs. In various liver diseases, the number of liver cell-derived exosomes is increased and the exosomal microRNA (miRNA) profile is altered. Early studies investigated the value of circulating exosomal miRNAs as biomarkers. Several exosomal miRNAs showed excellent diagnostic values, suggesting their potential as diagnostic biomarkers in liver diseases. Exosomal miRNAs have emerged as critical regulators of liver pathology because they control the expression of multiple genes in recipient cells. In this review, we discuss the biology of exosomes and summarize the recent findings of exosome-mediated intercellular and organ-to-organ communication during liver pathology. As there are many review articles dealing with exosomal miRNAs in liver cancer, we focused on non-malignant liver diseases. The therapeutic potential of exosomal miRNAs in liver pathology is also highlighted.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, South Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea.
- KNU Researcher training program for developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
10
|
Uckun FM, Carlson J, Orhan C, Powell J, Pizzimenti NM, van Wyk H, Ozercan IH, Volk M, Sahin K. Rejuveinix Shows a Favorable Clinical Safety Profile in Human Subjects and Exhibits Potent Preclinical Protective Activity in the Lipopolysaccharide-Galactosamine Mouse Model of Acute Respiratory Distress Syndrome and Multi-Organ Failure. Front Pharmacol 2020; 11:594321. [PMID: 33244300 PMCID: PMC7683794 DOI: 10.3389/fphar.2020.594321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background: New treatment platforms that can prevent acute respiratory distress syndrome (ARDS) or reduce its mortality rate in high-risk coronavirus disease 2019 (COVID-19) patients, such as those with an underlying cancer, are urgently needed. Rejuveinix (RJX) is an intravenous formulation of anti-oxidants and anti-inflammatory agents. Its active ingredients include ascorbic acid, cyanocobalamin, thiamine hydrochloride, riboflavin 5' phosphate, niacinamide, pyridoxine hydrochloride, and calcium D-pantothenate. RJX is being developed as an anti-inflammatory and anti-oxidant treatment platform for patients with sepsis, including COVID-19 patients with viral sepsis and ARDS. Here, we report its clinical safety profile in a phase 1 clinical study (ClinicalTrials.gov Identifier: NCT03680105) and its potent protective activity in the lipopolysaccharide galactosamine (LPS-GalN) mouse model of ARDS. Methods: A phase 1, double-blind, placebo-controlled, randomized, two-part, ascending dose-escalation study was performed in participating 76 healthy volunteer human subjects in compliance with the ICH (E6) good clinical practice guidelines to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of RJX (Protocol No. RPI003; ClinicalTrials.gov Identifier: NCT03680105). The ability of RJX to prevent fatal shock, ARDS, and multi-organ failure was examined in the well-established LPS-GalN mouse model of sepsis and ARDS. Standard methods were employed for the statistical analysis of data in both studies. Findings: In the phase 1 clinical study, no participant developed serious adverse events (SAEs) or Grade 3-Grade 4 adverse events (AEs) or prematurely discontinued participation in the study. In the non-clinical study, RJX exhibited potent and dose-dependent protective activity, decreased the inflammatory cytokine responses (interleukin-6, tumor necrosis factor alpha, transforming growth factor beta), and improved survival in the LPS-GalN mouse model of sepsis and ARDS. Histopathological examinations showed that RJX attenuated the LPS-GalN induced acute lung injury (ALI) and pulmonary edema as well as liver damage. Conclusion: RJX showed a very favorable safety profile and tolerability in human subjects. It shows potential to favorably affect the clinical course of high-risk COVID-19 by preventing ARDS and its complications.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Drug Discovery Program, Reven Pharmaceuticals, Golden, CO, United States
- Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Ares Pharmaceuticals, St. Paul, MN, United States
| | - James Carlson
- Drug Discovery Program, Reven Pharmaceuticals, Golden, CO, United States
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary, Firat University, Elazig, Turkey
| | - Joy Powell
- Drug Discovery Program, Reven Pharmaceuticals, Golden, CO, United States
| | | | - Hendrik van Wyk
- Drug Discovery Program, Reven Pharmaceuticals, Golden, CO, United States
| | - Ibrahim H. Ozercan
- Department of Pathology Faculty of Medicine, Firat University, Elazig, Turkey
| | - Michael Volk
- Drug Discovery Program, Reven Pharmaceuticals, Golden, CO, United States
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary, Firat University, Elazig, Turkey
| |
Collapse
|
11
|
Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure. Sci Rep 2020; 10:389. [PMID: 31942020 PMCID: PMC6962206 DOI: 10.1038/s41598-019-57284-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure.
Collapse
|
12
|
Wang M, Mao D, Li H. Chinese Medicine Jiedu Huayu Granules Reduce Liver Injury in Rats by Regulating T-Cell Immunity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1873541. [PMID: 31885638 PMCID: PMC6900944 DOI: 10.1155/2019/1873541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 10/31/2019] [Indexed: 01/11/2023]
Abstract
Liver injury, one of the causes of liver failure, is mainly due to T-cell-mediated immunity. Traditional Chinese medicine Jiedu Huayu granules are often used to suppress liver damage and improve liver function. The specific regulatory mechanism of Jiedu Huayu granules has not been fully studied, and its function in the immune system remains unclear. Therefore, in this study, the mechanism of Jiedu Huayu granules in the prevention of hepatic injury was studied in a rat model of hepatic injury induced by D-galactoside and lipopolysaccharide. The cytotoxic T lymphocytes (CTLs) in the peripheral blood were examined. Perforin, granule B, and PD1 expression in CTL increased after the induction of hepatic injury and could be reduced by Jiedu Huayu granules. Hepatic apoptotic factors OX62, FAS, and TNFR1 associated with CTL function were also reduced by Jiedu Huayu granules. These results suggested that Jiedu Huayu granules could inhibit the inflammatory response to relieve liver damage by mediating the T-cell immunity. Therefore, the discovery of the mechanism of action of Jiedu Huayu granules in the immune system could allow their use more effectively in clinical practice.
Collapse
Affiliation(s)
- Minggang Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dewen Mao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - Hanmin Li
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
13
|
Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2887-2897. [PMID: 31695322 PMCID: PMC6707369 DOI: 10.2147/dddt.s220190] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Background Acute liver failure is an inflammation-mediated hepatocyte injury. Mesenchymal stem cell (MSC) transplantation is currently considered to be an effective treatment strategy for acute liver failure. Exosomes are an important paracrine factor that can be used as a direct therapeutic agent. However, the use of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) in the treatment of acute liver failure has not been reported. Purpose Here, we established a model of hepatocyte injury and apoptosis induced by D-galactosamine and lipopolysaccharide (D-GalN/LPS) to study the protective effect of BMSC-Exos on hepatocyte apoptosis, and further explored its protective mechanism. Methods BMSC-Exos was identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot. Laser confocal microscopy was used to observe the uptake of Dil-Exos by hepatocytes. D-GalN/LPS-induced primary hepatocytes were pretreated with BMSC-Exos in vitro, and then the cells were harvested. The apoptosis of hepatocytes was observed by TUNEL staining, flow cytometry and Western blot. Electron microscopy and mRFP-GFP-LC3 and Western blot was used to observe autophagy. Results BMSC-Exos increased the expression of autophagy marker proteins LC3 and Beclin-1 and promoted the formation of autophagosomes. After BMSC-Exos treatment, the expression levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly decreased, while the expression level of the anti-apoptotic protein Bcl-2 was upregulated. However, when the autophagy inhibitor 3MA was present, the effect of BMSC-Exos on inhibiting apoptosis was significantly reversed. Conclusions Our results showed for the first time that BMSC-Exos had the potential to reduce hepatocyte apoptosis after acute liver failure. In particular, we found that BMSC-Exos attenuated hepatocyte apoptosis by promoting autophagy.
Collapse
Affiliation(s)
- Shuxian Zhao
- Medical College of Qingdao University, Qingdao 266071, Shandong, People's Republic of China.,Department of Infectious Disease, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Yan Liu
- Department of Infectious Disease, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Zenghui Pu
- Department of Infectious Disease, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| |
Collapse
|
14
|
Morikawa T, Xie H, Pan Y, Ninomiya K, Yuan D, Jia X, Yoshikawa M, Nakamura S, Matsuda H, Muraoka O. A Review of Biologically Active Natural Products from a Desert Plant Cistanche tubulosa. Chem Pharm Bull (Tokyo) 2019; 67:675-689. [PMID: 31257323 DOI: 10.1248/cpb.c19-00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Orobanchaceae plant Cistanche tubulosa (SCHENK) WIGHT (Kanka-nikujuyou in Japanese), which is one of the authorized plant resources as Cistanches Herba in both Japanese and Chinese Pharmacopoeias, is a perennial parasitic plant growing on roots of sand-fixing plants. The stems of C. tubulosa have traditionally been used for treatment of impotence, sterility, lumbago, and body weakness as well as a promoting agent of blood circulation. In recent years, Cistanches Herba has also been widely used as a health food supplement in Japan, China, and Southeast Asian countries. Here we review our recent studies on chemical constituents from the stems of C. tubulosa as well as their bioactivities such as vasorelaxtant, hepatoprotective, and glucose tolerance improving effects.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Haihui Xie
- Kyoto Pharmaceutical University.,South China Botanical Garden, Chinese Academy of Sciences
| | - Yingni Pan
- Pharmaceutical Research and Technology Institute, Kindai University.,School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Dan Yuan
- School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Xiaoguang Jia
- Kyoto Pharmaceutical University.,Xinjiang Institute of Chinese Materia Medica and Ethnodrug
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Kyoto Pharmaceutical University
| | | | | | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| |
Collapse
|
15
|
Mechanisms of TQ-6, a Novel Ruthenium-Derivative Compound, against Lipopolysaccharide-Induced In Vitro Macrophage Activation and Liver Injury in Experimental Mice: The Crucial Role of p38 MAPK and NF-κB Signaling. Cells 2018; 7:cells7110217. [PMID: 30463239 PMCID: PMC6262332 DOI: 10.3390/cells7110217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
Several studies have reported that metal complexes exhibit anti-inflammatory activities; however, the molecular mechanism is not well understood. In this study, we used a potent ruthenium (II)-derived compound, [Ru(η6-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), to investigate the molecular mechanisms underlying the anti-inflammatory effects against lipopolysaccharide (LPS)-induced macrophage activation and liver injury in mice. Treating LPS-stimulated RAW 264.7 cells with TQ-6 suppressed nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner. The LPS-induced expression of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were reduced in TQ-6-treated cells. TQ-6 suppressed, LPS-stimulated p38 MAPK phosphorylation, IκBα degradation, and p65 nuclear translocation in cells. Consistent with the in vitro studies, TQ-6 also suppressed the expression of iNOS, TNF-α, and p65 in the mouse model with acute liver injury induced by LPS. The present study showed that TQ-6 could protect against LPS-induced in vitro inflammation in macrophage and in vivo liver injury in mice, and suggested that NF-κB could be a promising target for protecting against LPS-induced inflammation and liver injury by TQ-6. Therefore, TQ-6 can be a potential therapeutic agent for treating inflammatory diseases.
Collapse
|
16
|
Qinna NA, Ghanim BY. Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 2018; 39:178-190. [PMID: 30350376 DOI: 10.1002/jat.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The urge of identifying new pharmacological interventions to prevent or attenuate liver injury is of critical importance and needs an expanded experimental toolbox. Hepatocyte injury and cellular death is a prominent feature behind the pathology of liver diseases. Several research activities focused on identifying chemicals and hepatotoxicants that induce cell death by apoptosis, in addition to presenting its corresponding signaling pathway. Although such efforts provided further understanding of the mechanisms of cell death, it has also raised confusion concerning identifying the involvement of several modes of cell death including apoptosis, necrosis and fibrosis. The current review highlights the ability of several chemicals and potential hepatotoxicants to induce liver damage in rodents by means of apoptosis while the probable involvement of other modes of cell death is also exposed. Thus, several chemical substances including hepatotoxins, mycotoxins, hyperglycemia inducers, metallic nanoparticles and immunosuppressant drugs are reviewed to explore the hepatic cytotoxic spectrum they could exert on hepatocytes of rodents. In addition, the current review address the mechanism by which hepatotoxicity is initiated in hepatocytes in different rodents aiding the researcher in choosing the right animal model for a better research outcome.
Collapse
Affiliation(s)
- Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
17
|
TNFα sensitizes hepatocytes to FasL-induced apoptosis by NFκB-mediated Fas upregulation. Cell Death Dis 2018; 9:909. [PMID: 30185788 PMCID: PMC6125596 DOI: 10.1038/s41419-018-0935-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Although it is well established that TNFα contributes to hepatitis, liver failure and associated hepatocarcinogenesis via the regulation of inflammation, its pro-apoptotic role in the liver has remained enigmatic. On its own, TNFα is unable to trigger apoptosis. However, when combined with the transcriptional inhibitor GaLN, it can cause hepatocyte apoptosis and liver failure in mice. Moreover, along with others, we have shown that TNFα is capable of sensitizing cells to FasL- or drug-induced cell death via c-Jun N-terminal kinase (JNK) activation and phosphorylation/activation of the BH3-only protein Bim. In this context, TNFα could exacerbate hepatocyte cell death during simultaneous inflammatory and T-cell-mediated immune responses in the liver. Here we show that TNFα sensitizes primary hepatocytes, established hepatocyte cell lines and mouse embryo fibroblasts to FasL-induced apoptosis by the transcriptional induction and higher surface expression of Fas via the NFκB pathway. Genetic deletion, diminished expression or dominant-negative inhibition of the NFκB subunit p65 resulted in lower Fas expression and inhibited TNFα-induced Fas upregulation and sensitization to FasL-induced cell death. By hydrodynamic injection of p65 shRNA into the tail vein of mice, we confirm that Fas upregulation by TNFα is also NFκB-mediated in the liver. In conclusion, TNFα sensitization of FasL-induced apoptosis in the liver proceeds via two parallel signaling pathways, activation of JNK and Bim phosphorylation and NFκB-mediated Fas upregulation.
Collapse
|
18
|
Zhang H, Jia R, Wang F, Qiu G, Qiao P, Xu X, Wu D. Catalpol protects mice against Lipopolysaccharide/D-galactosamine-induced acute liver injury through inhibiting inflammatory and oxidative response. Oncotarget 2017; 9:3887-3894. [PMID: 29423091 PMCID: PMC5790508 DOI: 10.18632/oncotarget.23242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to investigate the protective effect of catalpol on Lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver injury in mice. The mouse model was established by injection of LPS and D-gal. Catalpol (2.5, 5, 10 mg/kg) were pretreated intraperitoneally 1 h before LPS and D-gal. The survival rate, AST, ALT, MDA, MPO activity, hepatic tissue histology, TNF-α level, and NF-κB activation were assayed. The results revealed that catalpol dose-dependently elevated the survival rate. Furthermore, catalpol reduced the activities of AST, ALT, MDA, and MPO. The production of TNF-α was also inhibited by treatment of catalpol. In addition, catalpol inhibited LPS/D-gal-induced NF-κB activation. The expression of Nrf2 and HO-1 were up-regulated by treatment of catalpol. These results indicated that pretreatment with catalpol could attenuate LPS/D-gal-induced acute liver injury in mice and the underlying mechanism may due to the inhibition of NF-κB signaling pathway and the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haogang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fujing Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Pengfei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xunzheng Xu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dequan Wu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
19
|
Liu Y, Li F, Zhang L, Wu J, Wang Y, Yu H. Taurine alleviates lipopolysaccharide‑induced liver injury by anti‑inflammation and antioxidants in rats. Mol Med Rep 2017; 16:6512-6517. [PMID: 28901400 PMCID: PMC5865819 DOI: 10.3892/mmr.2017.7414] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/20/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the protective effect of taurine on lipopolysaccharide (LPS)-induced liver injury and its mechanisms. Male rats were randomly divided into three groups: Normal saline, LPS model and taurine treatment. Experimental animals were treated with saline or taurine (dissolved in saline, 200 mg/kg/day) via intravenous injection. After 2 h, saline or LPS (0.5 mg/kg) was administrated via intraperitoneal injection. Markers of liver injury, pro-inflammatory cytokines and superoxide dismutase (SOD) activity were determined in plasma. Liver tissues were removed for morphological analysis and determination by western blot analysis. Taurine significantly reduced the elevation in the levels of LPS-induced aspartate transaminase and alanine transaminase and decreased the concentrations of LPS-induced inflammatory factors including tumor necrosis factor-α and interleukin-6. Taurine also increased the activity of SOD in serum and the expression of heme oxygenase-1 protein in liver tissue. Taurine pretreatment also reduced the elevated expression levels of LPS-induced cyclooxygenase-2, nuclear factor κB and extracellular regulated protein kinase. The results from the present study demonstrated that taurine alleviates LPS-induced liver injury. The beneficial role of taurine may be associated with its reduction of pro-inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Yueyan Liu
- Department of Physiology, School of Clinical Medicine, West Anhui Health Vocational College, Lu'an, Anhui 237005, P.R. China
| | - Feng Li
- Department of Physiology, School of Clinical Medicine, West Anhui Health Vocational College, Lu'an, Anhui 237005, P.R. China
| | - Li Zhang
- Department of Anatomy, School of Clinical Medicine, West Anhui Health Vocational College, Lu'an, Anhui 237005, P.R. China
| | - Jianfeng Wu
- Department of Physiology, School of Clinical Medicine, West Anhui Health Vocational College, Lu'an, Anhui 237005, P.R. China
| | - Yanmei Wang
- Department of Anatomy, School of Clinical Medicine, West Anhui Health Vocational College, Lu'an, Anhui 237005, P.R. China
| | - Hong Yu
- Department of Physiology, School of Clinical Medicine, West Anhui Health Vocational College, Lu'an, Anhui 237005, P.R. China
| |
Collapse
|
20
|
Nejak-Bowen K, Moghe A, Cornuet P, Preziosi M, Nagarajan S, Monga SP. Role and Regulation of p65/β-Catenin Association During Liver Injury and Regeneration: A "Complex" Relationship. Gene Expr 2017; 17:219-235. [PMID: 28474571 PMCID: PMC5700461 DOI: 10.3727/105221617x695762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An important role for β-catenin in regulating p65 (a subunit of NF-κB) during acute liver injury has recently been elucidated through use of conditional β-catenin knockout mice, which show protection from apoptosis through increased activation of p65. Thus, we hypothesized that the p65/β-catenin complex may play a role in regulating processes such as cell proliferation during liver regeneration. We show through in vitro and in vivo studies that the p65/β-catenin complex is regulated through the TNF-α pathway and not through Wnt signaling. However, this complex is unchanged after partial hepatectomy (PH), despite increased p65 and β-catenin nuclear translocation as well as cyclin D1 activation. We demonstrate through both in vitro silencing experiments and chromatin immunoprecipitation after PH that β-catenin, and not p65, regulates cyclin D1 expression. Conversely, using reporter mice we show p65 is activated exclusively in the nonparenchymal (NPC) compartment during liver regeneration. Furthermore, stimulation of macrophages by TNF-α induces activation of NF-κB and subsequent secretion of Wnts essential for β-catenin activation in hepatocytes. Thus, we show that β-catenin and p65 are activated in separate cellular compartments during liver regeneration, with p65 activity in NPCs contributing to the activation of hepatocyte β-catenin, cyclin D1 expression, and subsequent proliferation.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Akshata Moghe
- ‡Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamela Cornuet
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan Preziosi
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shanmugam Nagarajan
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- ‡Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Ninomiya K, Chaipech S, Kunikata Y, Yagi R, Pongpiriyadacha Y, Muraoka O, Morikawa T. Quantitative Determination of Stilbenoids and Dihydroisocoumarins in Shorea roxburghii and Evaluation of Their Hepatoprotective Activity. Int J Mol Sci 2017; 18:E451. [PMID: 28230758 PMCID: PMC5343985 DOI: 10.3390/ijms18020451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
A simultaneous quantitative analytical method for 13 stilbenoids including (-)-hopeaphenol (1), (+)-isohopeaphenol (2), hemsleyanol D (3), (-)-ampelopsin H (4), vaticanols A (5), E (6), and G (7), (+)-α-viniferin (8), pauciflorol A (9), hopeafuran (10), (-)-balanocarpol (11), (-)-ampelopsin A (12), and trans-resveratrol 10-C-β-d-glucopyranoside (13), and two dihydroisocoumarins, phayomphenols A₁ (14) and A₂ (15) in the extract of Shorea roxburghii (dipterocarpaceae) was developed. According to the established protocol, distributions of these 15 polyphenols (1-15) in the bark and wood parts of S. roxburghii and a related plant Cotylelobium melanoxylon were evaluated. In addition, the principal polyphenols (1, 2, 8, 13-15) exhibited hepatoprotective effects against d-galactosamine (d-galN)/lipopolysaccharide (LPS)-induced liver injury in mice at a dose of 100 or 200 mg/kg, p.o. To characterize the mechanisms of action, the isolates were examined in in vitro studies assessing their effects on (i) d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes; (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages; and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of these polyphenols (1, 2, and 8) were suggested to be dependent on the inhibition of LPS-induced macrophage activation and reduction of sensitivity of hepatocytes to TNF-α. However, none of the isolates reduced the cytotoxicity caused by d-GalN.
Collapse
Affiliation(s)
- Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Saowanee Chaipech
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Faculty of Agro-Industry, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
| | - Yusuke Kunikata
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Ryohei Yagi
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Yutana Pongpiriyadacha
- Faculty of Science and Technology, Rajamangala University of Technology Srivijaya, Thungyai, Nakhon Si Thammarat 80240, Thailand.
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|
22
|
Zhang SN, Yang NB, Ni SL, Dong JZ, Shi CW, Li SS, Zhang SG, Tang XY, Lu MQ. Splenic CD11c(low)CD45RB(high) dendritic cells derived from endotoxin-tolerant mice attenuate experimental acute liver failure. Sci Rep 2016; 6:33206. [PMID: 27625297 PMCID: PMC5021931 DOI: 10.1038/srep33206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/22/2016] [Indexed: 01/20/2023] Open
Abstract
Endotoxin tolerance (ET) is suggested to attenuate the severity of acute liver failure (ALF) in mice, possibly through both innate and adaptive immunity. However, the involvement of regulatory dendritic cells (DCregs) in ET has not been fully elucidated. In this study, their effect on ALF in mice was investigated. Splenic DCregs from ET-exposed mice (ET-DCregs) showed lower expression levels of CD40, CD80, and MHC-II markers and stronger inhibition of allogenic T cells and regulation of IL-10 and IL-12 secretion than splenic DCregs from normal mice (nDCregs). Moreover, the mRNA and protein levels of TNF-α and P65 in splenic ET-DCregs were significantly lower than those in the splenic nDCregs. The survival rate was significantly increased and liver injury was mitigated in mice with ALF treated with splenic ET-DCregs. In addition, A20 expression was decreased in the liver of ALF mice, but elevated after infusion of splenic nDCregs and ET-DCregs, and a much higher elevation was observed after infusing the latter cells. The functionality of splenic DCregs was altered after ET exposure, contributing to protection of the livers against D-GalN/LPS-induced ALF.
Collapse
Affiliation(s)
- Sai-Nan Zhang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Nai-Bin Yang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Shun-Lan Ni
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Jin-Zhong Dong
- Department of Intensive Care Unit, The First Hospital of Ningbo, Ningbo 315010, Zhejiang, P. R. China
| | - Chun-Wei Shi
- Department of Infection Diseases, The First Hospital of Xiaoshan, Hangzhou 311200, Zhejiang, P. R. China
| | - Shan-Shan Li
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Sheng-Guo Zhang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Xin-Yue Tang
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| | - Ming-Qin Lu
- Department of Infection Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou 325000, Zhejiang, P. R. China
| |
Collapse
|
23
|
Ninomiya K, Miyazawa S, Ozeki K, Matsuo N, Muraoka O, Kikuchi T, Yamada T, Tanaka R, Morikawa T. Hepatoprotective Limonoids from Andiroba (Carapa guianensis). Int J Mol Sci 2016; 17:E591. [PMID: 27104518 PMCID: PMC4849045 DOI: 10.3390/ijms17040591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 01/07/2023] Open
Abstract
Three gedunin-type limonoids, gedunin (1), 6α-acetoxygedunin (2), and 7-deacetoxy-7-oxogedunin (3), which were isolated from the seed and flower oils of andiroba (Carapa guianensis Aublet, Meliaceae), exhibited hepatoprotective effects at doses of 25 mg/kg, p.o. against d-galactosamine (d-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. To characterize the mechanisms of action of 1-3 and clarify the structural requirements for their hepatoprotective effects, 17 related limonoids (1-17) isolated from the seed and/or flower oils of C. guianensis were examined in in vitro studies assessing their effects on (i) d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. The mechanisms of action of 1-3 are likely to involve the inhibition of LPS-induced macrophage activation and reduced sensitivity of hepatocytes to TNF-α; however, these compounds did not decrease the cytotoxicity caused by d-GalN. In addition, the structural requirements of limonoids (1-17) for inhibition of LPS-induced NO production in mouse peritoneal macrophages and TNF-α-induced cytotoxicity in L929 cells were evaluated.
Collapse
Affiliation(s)
- Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Seiya Miyazawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Kaiten Ozeki
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Natsuko Matsuo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| | - Takashi Kikuchi
- Laboratory of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Takeshi Yamada
- Laboratory of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Reiko Tanaka
- Laboratory of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|
24
|
Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, Du J, Zhang J. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis 2016; 7:e2176. [PMID: 27054331 PMCID: PMC4855679 DOI: 10.1038/cddis.2016.9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/20/2023]
Abstract
The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1−/− mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury.
Collapse
Affiliation(s)
- T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China.,Cambridge Suda Genome Resource Center, Soochow University, Suzhou, China
| | - Z Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - J Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
25
|
Liu Z, Liu W, Huang Y, Guo J, Zhao R, Yang X. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs. Lipids Health Dis 2015; 14:64. [PMID: 26121977 PMCID: PMC4495945 DOI: 10.1186/s12944-015-0064-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the practical commercial pig farms, inflammation is a perennial problem, yet most of studies on inflammation are focused on immune response. Actually, inflammation can induce body metabolism disorder which will finally influence animals' growth. In this study, we investigated the effect of acute inflammation on the triglyceride (TG) metabolism in the liver of growing pigs and the possible underlying mechanisms. METHODS Twelve male growing pigs were randomly divided into two groups, a control group (received saline) and a LPS group (intramuscular injected with 15 μg/kg LPS). Six hours after LPS injection, the pigs were euthanized and sampled. Biochemical indexes, inflammation factors, lipid metabolism related parameters and mitochondrial function were evaluated. The relationship between glucocorticoid receptor (GR) and the key enzymes of de novo lipogenesis were also investigated by chromatin immunoprecipitation assay (ChIP). RESULTS LPS induced a serious inflammation in the liver of growing pigs proved by liver morphologic changes, the up-regulated plasma cortisol, tumor necrosis factor-α (TNF-α) content and gene expression of inflammation related genes in liver. For de novo lipogenesis, LPS significantly decreased the gene expression of fatty acid synthase (FAS), Acetyl-CoA carboxylase-1 (ACC-1) and Stearoyl-CoA desaturase-1 (SCD-1), and the protein expression of ACC-1 and SCD-1. For lipolysis, only the gene expression of adipose triglyceride lipase (ATGL) was decreased. LPS did nothing to the gene expression of hormone-sensitive lipase (HSL) and the lipolytic enzymes activities. For β-oxidation, LPS significantly increased the protein expression of CPT-1α, but the gene expression of mitochondrial DNA-encoded genes and the activities of mitochondrial complex IV and V demonstrated no obviously changes. Furthermore, ChIP results showed that LPS significantly decreased the level of GR binding to ACC-1 promoter. CONCLUSION LPS infection has a profound impact on hepatic TG metabolism. This impact is mainly demonstrated by the significantly deceased de novo lipogenesis, and GR may involve in its regulation.
Collapse
Affiliation(s)
- Zhiqing Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Weifeng Liu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jun Guo
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
26
|
Li W, Shi J, Papa F, Maggi F, Chen X. Isofuranodiene, the main volatile constituent of wild celery (Smyrnium olusatrum L.), protects d-galactosamin/lipopolysacchride-induced liver injury in rats. Nat Prod Res 2015; 30:1162-5. [DOI: 10.1080/14786419.2015.1041139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wenping Li
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P.R. China
| | - Jingshan Shi
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P.R. China
| | - Fabrizio Papa
- School of Science and Technology, University of Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Xiuping Chen
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, P.R. China
| |
Collapse
|
27
|
Hamesch K, Borkham-Kamphorst E, Strnad P, Weiskirchen R. Lipopolysaccharide-induced inflammatory liver injury in mice. Lab Anim 2015; 49:37-46. [DOI: 10.1177/0023677215570087] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given.
Collapse
Affiliation(s)
- K Hamesch
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - E Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - P Strnad
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH University Aachen, Aachen, Germany
| | - R Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
28
|
Tomar S, Nagarkatti M, Nagarkatti PS. 3,3'-Diindolylmethane attenuates LPS-mediated acute liver failure by regulating miRNAs to target IRAK4 and suppress Toll-like receptor signalling. Br J Pharmacol 2015; 172:2133-47. [PMID: 25521277 DOI: 10.1111/bph.13036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/13/2014] [Accepted: 12/03/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. 3,3'-Diindolylmethane (DIM) is a natural plant-derived compound with anti-cancer activities. Recently, DIM has also been shown to have anti-inflammatory properties. Here, we tested the hypothesis that DIM would suppress endotoxin-induced ALF. EXPERIMENTAL APPROACH We investigated the therapeutic potential of DIM in a mouse model of D-galactosamine/Lipopolysaccharide (GalN/LPS)-induced ALF. The efficacy of DIM treatment was assessed by survival, liver histopathology, serum levels of alanine transaminase, pro-inflammatory cytokines and number of activated liver macrophages. Effects of DIM on the expression of two miRNAs, 106a and 20b, and their predicted target gene were measured by qRT-PCR and Western blotting. Effects of DIM on the release of TNF-α from RAW264.7 macrophages transfected with mimics of these miRNAs and activated by LPS was assessed by elisa. KEY RESULTS DIM treatment protected mice from ALF symptoms and reduced the number of activated liver macrophages. DIM increased expression of miR-106a and miR-20b in liver mononuclear cells and decreased expression of their predicted target gene IL-1 receptor-associated kinase 4 (IRAK4), involved in signalling from Toll-like receptor 4 (TLR4). In vitro transfection of RAW264.7 cells using miRNA mimics of miR-106a and 20b decreased expression of IRAK4 and of TNF-α secretion, following LPS stimulation. CONCLUSIONS AND IMPLICATIONS DIM attenuated GalN/LPS-induced ALF by regulating the expression of unique miRNAs that target key molecules in the TLR4 inflammatory pathway. DIM may represent a potential novel hepatoprotective agent.
Collapse
Affiliation(s)
- S Tomar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
29
|
Saleh IG, Ali Z, Hammad MA, Wilson FD, Hamada FM, Abd-Ellah MF, Walker LA, Khan IA, Ashfaq MK. Stem cell intervention ameliorates epigallocatechin-3-gallate/lipopolysaccharide-induced hepatotoxicity in mice. Hum Exp Toxicol 2015; 34:1180-94. [PMID: 25701483 DOI: 10.1177/0960327115572707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stem cells are identified as a novel cell therapy for regenerative medicine because of their ability to differentiate into many functional cell types. We have shown earlier a new model of hepatotoxicity in mice by administering (1500 mg/kg) epigallocatechin-3-gallate (EGCG) intragastric (IG) for 5 days after a single intraperitoneal dose (6 mg/kg) of lipopolysaccharide (LPS). In this study, we aimed to study the effect of intrahepatic (IH) injection of mouse embryonic stem cells (MESCs) on the hepatotoxicity induced by EGCG/LPS in mice. Mice were administered EGCG/LPS and rested for 3 days. MESCs were obtained from American Type Culture Collection and cultured in vitro for 4 days. Stem cells were injected IH. Seven days later, a single dose of LPS (6 mg/kg) followed by daily doses of IG administration of EGCG were re-administered for 5 days. At the end of the experiment, blood samples were collected for analysis of biochemical parameters associated with liver. Results showed that the group of mice that were administered MESCs prior to EGCG/LPS showed lower levels of alanine amino transferase, alkaline phosphatase, and bilirubin, higher albumin/globulin ratio, and less remarkable histopathological lesions. Also, that group of mice showed less expression of oxidative stress biomarkers (oxidized low-density lipoprotein Ox.LDL and chemokine CXCL16), less expression of nuclear protein receptors (retinoic acid receptor and retinoid X receptor), and less expression of inflammatory biomarkers (tumor necrosis factor α and transforming growth factor β1) compared with other groups of mice that were not given MESCs. In conclusion, MESCs can ameliorate EGCG/LPS-induced hepatotoxicity in mice.
Collapse
Affiliation(s)
- I G Saleh
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Z Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - M A Hammad
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - F D Wilson
- Mississippi Veterinary Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS, USA
| | - F M Hamada
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - M F Abd-Ellah
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - L A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA Department of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - I A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA Department of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS, USA Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - M K Ashfaq
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
30
|
Morikawa T, Ninomiya K, Imura K, Yamaguchi T, Akagi Y, Yoshikawa M, Hayakawa T, Muraoka O. Hepatoprotective triterpenes from traditional Tibetan medicine Potentilla anserina. PHYTOCHEMISTRY 2014; 102:169-181. [PMID: 24697904 DOI: 10.1016/j.phytochem.2014.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 01/30/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
A methanol extract from the tuberous roots of Potentilla anserina (Rosaceae) exhibited hepatoprotective effects against d-galactosamine (d-GalN)/lipopolysaccharide-induced liver injuries in mice. Six triterpene 28-O-monoglucopyranosyl esters, potentillanosides A-F, were isolated from the extract along with 32 known compounds, including 15 triterpenes. The structures of potentillanosides A-F were determined on the basis of spectroscopic properties and chemical evidence. Four ursane-type triterpene 28-O-monoglycosyl esters, potentillanoside A (IC50=46.7μM), 28-O-β-d-glucopyranosyl pomolic acid (IC50=9.5μM), rosamutin (IC50=35.5μM), and kaji-ichigoside F1 (IC50=14.1μM), inhibited d-GalN-induced cytotoxicity in primary cultured mouse hepatocytes. Among these four triterpenes, potentillanoside A, rosamutin, and kaji-ichigoside F1 exhibited in vivo hepatoprotective effects at doses of 50-100mg/kg, p.o. The mode of action was ascribable to the reduction in cytotoxicity caused by d-GalN.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Katsuya Imura
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Takahiro Yamaguchi
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Yoshinori Akagi
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Takao Hayakawa
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|
31
|
Protective effect of danhong injection on acute hepatic failure induced by lipopolysaccharide and d-galactosamine in mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:153902. [PMID: 24772178 PMCID: PMC3977120 DOI: 10.1155/2014/153902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/24/2014] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
Acute hepatic failure (AHF), which leads to an extremely high mortality rate, has become the focus of attention in clinic. In this study, Danhong injection (DHI) was investigated to evaluate the preventive and protective effect on AHF induced by lipopolysaccharide (LPS) and D-galactosamine (GalN) in mice. For AHF induction, ICR mice were intraperitoneally injected with D-GalN (700 mg/kg) and LPS (20 μ g/kg). DHI was administrated twice, at 12 and 1 h, respectively, before D-GalN/LPS injection. After stimulation with D-GalN/LPS for 1 and 6 h, serum and livers were collected for analysis. We found that mice administrated with DHI displayed a higher survival rate, lower serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), glutathione S-transferase (GST), and tumor necrosis factor (TNF)- α . DHI inhibited the elevations of hepatic lipid peroxidation (malondialdehyde), caspase-8 activity, and mRNA expression levels of inflammatory cytokines (interleukin-1 β and interleukin-6) increased by D-GalN/LPS in the liver. Furthermore, liver histopathological analysis indicated that the DHI group showed markedly fewer apoptotic (TUNEL positive) cells and less pathological changes than those in the AHF model group. These results provide a novel insight into the pharmacological actions of DHI as a potential candidate for treating AHF.
Collapse
|
32
|
Comparative Neuroprotective Effects of Dexamethasone and Minocycline during Hepatic Encephalopathy. Neurol Res Int 2014; 2014:254683. [PMID: 24693424 PMCID: PMC3945529 DOI: 10.1155/2014/254683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/08/2013] [Accepted: 12/26/2013] [Indexed: 01/30/2023] Open
Abstract
Objective. Encephalopathy and brain edema are serious complications of acute liver injury and may lead to rapid death of patients. The present study was designed to investigate the role of the inflammatory mediators and oxidative stress in the cytotoxic brain oedema and the neuroprotective effects of both minocycline and dexamethasone.
Methods. 48 male albino rats were divided into 4 groups: control group, acute liver injury (ALI) group, minocycline pretreated ALI group, and dexamethasone pretreated ALI group. 24 hours after acute liver injury serum ammonia, liver enzymes, brain levels of heme oxygenase-1 gene, iNOS gene expression, nitrite/nitrate, and cytokines were measured. In addition, the grades of encephalopathy and brain water content were assessed. Results. ALI was associated with significant increases in all measured inflammatory mediators, oxidative stress, iNOS gene expression, and nitrite/nitrate. Both minocycline and dexamethasone significantly modulated the inflammatory changes and the oxidative/nitrosative stress associated with ALI. However, only minocycline but not dexamethasone significantly reduced the cytotoxic brain oedema. Conclusion. Both minocycline and dexamethasone could modulate inflammatory and oxidative changes observed in brain after ALI and could be novel preventative therapy for hepatic encephalopathy episodes.
Collapse
|
33
|
A20-An Omnipotent Protein in the Liver: Prometheus Myth Resolved? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:117-39. [DOI: 10.1007/978-1-4939-0398-6_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Wu Z, Kong X, Zhang T, Ye J, Fang Z, Yang X. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine. Eur J Pharmacol 2013; 724:112-21. [PMID: 24365491 DOI: 10.1016/j.ejphar.2013.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 02/05/2023]
Abstract
The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production.
Collapse
Affiliation(s)
- Zhongping Wu
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China.
| | - Xiangliang Kong
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Tong Zhang
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Jin Ye
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Zhaoqin Fang
- Teaching & Research Department of Clinical and Classic Medicine, College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Shanghai 201203, China
| | - Xuejun Yang
- Department of Nephrology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
35
|
Huang C, Wang J, Chen Z, Wang Y, Zhang W. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice. PLoS One 2013; 8:e67582. [PMID: 23805318 PMCID: PMC3689707 DOI: 10.1371/journal.pone.0067582] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/19/2013] [Indexed: 12/15/2022] Open
Abstract
The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of pro-inflammatory factors and prevents LPS-induced liver injury likely by disrupting NHE1-Hsp70 interaction which consequently reduces the activation of IκB-α-NF-κB pathway in liver.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Jia Wang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Zhuo Chen
- Invasive Technology Department, Nantog First People‚s Hospital, Nantong, Jiangsu, People’s Republic of China
| | - Yuzhe Wang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
- * E-mail:
| |
Collapse
|
36
|
Hepatoprotective effect of germanium-containing Spirulina in rats with d-galactosamine- and lipopolysaccharide-induced hepatitis. Br J Nutr 2013; 111:135-40. [DOI: 10.1017/s0007114513001943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, the protective effects of dietary Spirulina (SP) and germanium-containing Spirulina (GeSP) were compared in rats with liver injury induced by an intraperitoneal injection of d-galactosamine and lipopolysaccharide (GalN/LPS). Wistar rats were fed one of the following diets: the basal diet (GalN/LPS-CON group; n 6), the basal diet supplemented with 5 % SP or GeSP (GalN/LPS-SP and GalN/LPS-GeSP group, respectively; n 7 each). After administering these diets for 7 d, each rat was intraperitoneally injected with GalN/LPS. Increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were suppressed in the GalN/LPS-GeSP group (GalN/LPS-CON v. GalN/LPS-GeSP: ALT 1052 (sem 187) v. 509 (sem 88) IU/l and AST 2183 (sem 368) v. 1170 (sem 196) IU/l) following the injection of GalN/LPS. Plasma levels of interferon-γ (IFN-γ) and TNF-α in GeSP-fed rats were significantly lower when compared with those in the GalN/LPS-CON group (GalN/LPS-CON v. GalN/LPS-GeSP: IFN-γ 142·8 (sem 17·5) v. 66·8 (sem 9·7) pg/ml and TNF-α 72·3 (sem 15·4) v. 31·2 (sem 6·8) pg/ml). However, the decrease in these levels observed in the GalN/LPS-SP group was not as prominent as those observed in the GalN/LPS-GeSP group. Furthermore, the increase in liver catalase (CAT) and glutathione peroxidase (GPx) activities, as well as the level of oxidised glutathione (GSSG), was more suppressed in GeSP-fed rats (GalN/LPS-CON v. GalN/LPS-GeSP: CAT 457 (sem 47) v. 262 (sem 54) U/mg liver protein; GPx 1·30 (sem 0·11) v. 0·53 (sem 0·09) U/mg liver protein; GSSG 2·18 (sem 0·33) v. 1·31 (sem 0·24) mmol/kg liver) after the injection of GalN/LPS. These changes were more pronounced in the GalN/LPS-GeSP group than in the GalN/LPS-SP group. These results suggest that GeSP could afford a significant protective effect in the alleviation of GalN/LPS-induced hepatic damage. In addition, the results indicate that GeSP is more effective than SP.
Collapse
|
37
|
Kim SJ, Kim KM, Park J, Kwak JH, Kim YS, Lee SM. Geniposidic acid protects against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:271-277. [PMID: 23298456 DOI: 10.1016/j.jep.2012.12.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposidic acid (GA) is an iridoid glucoside isolated from Gardeniae jasminoides Ellis (Rubiaceae) that has long been used to treat inflammation, jaundice and hepatic disorders. AIMS OF THE STUDY This study examined the cytoprotective properties of GA against D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. MATERIALS AND METHODS Mice were given an intraperitoneal injection of GA (12.5, 25, 50 mg/kg) 1h before receiving GalN (800 mg/kg)/LPS (40 μg/kg). Liver and blood samples were collected 1 and 8 h after GalN/LPS injection. RESULTS The survival rate of the GA group was significantly higher than the control. GalN/LPS increased serum aminotransferase activity, serum tumor necrosis factor-α level and hepatic lipid peroxidation and decreased hepatic glutathione content. These changes were attenuated by GA. GA augmented increases in serum interleukin-6 level, heme oxygenase-1 and NF-E2-related factor 2 protein expression. Mice treated with GA decreased cleaved caspase-8 and caspase-3 protein expression and showed significantly fewer apoptotic cells. GA increased Bcl-xL protein expression and decreased Bax protein expression. Moreover, GA treatment enhanced phosphorylation of signal transducer and activator of transcription 3. CONCLUSION Our findings suggest that geniposidic acid alleviates GalN/LPS-induced liver injury by enhancing antioxidative defense system and reducing apoptotic signaling pathways.
Collapse
Affiliation(s)
- So-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Nejak-Bowen K, Kikuchi A, Monga SPS. Beta-catenin-NF-κB interactions in murine hepatocytes: a complex to die for. Hepatology 2013; 57:763-74. [PMID: 22941935 PMCID: PMC3566301 DOI: 10.1002/hep.26042] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/13/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Wnt/β-catenin signaling plays an important role in hepatic homeostasis, especially in liver development, regeneration, and cancer, and loss of β-catenin signaling is often associated with increased apoptosis. To elucidate how β-catenin may be regulating hepatocyte survival, we investigated the susceptibility of β-catenin conditional knockout (KO) mice and their wild-type (WT) littermates to Fas and tumor necrosis factor-α (TNF-α), two common pathways of hepatocyte apoptosis. While comparable detrimental effects from Fas activation were observed in WT and KO, a paradoxical survival benefit was observed in KO mice challenged with D-galactosamine/lipopolysaccharide. KO mice showed significantly lower morbidity and liver injury due to early, robust, and protracted activation of NF-κB in the absence of β-catenin. Enhanced NF-κB activation in KO mice was associated with increased basal inflammation and Toll-like receptor 4 expression and lack of the p65/β-catenin complex in hepatocytes. The p65/β-catenin complex in WT livers underwent temporal dissociation allowing for NF-κB activation to regulate hepatocyte survival following TNF-α-induced hepatic injury. Decrease of total β-catenin protein but not its inactivation induced p65 activity, whereas β-catenin stabilization either chemically or due to mutations repressed it in hepatomas in a dose-dependent manner, whereas β-catenin stabilization repressed it either chemically or due to mutations. CONCLUSION The p65/β-catenin complex in hepatocytes undergoes dynamic changes during TNF-α-induced hepatic injury and plays a critical role in NF-κB activation and cell survival. Modulation of β-catenin levels is a unique mode of regulating NF-κB activity and thus may present novel opportunities in devising therapeutics in specific hepatic injuries.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Satdarshan P. S. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA,Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
39
|
Zimmermann HW, Trautwein C, Tacke F. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front Physiol 2012; 3:56. [PMID: 23091461 PMCID: PMC3475871 DOI: 10.3389/fphys.2012.00056] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022] Open
Abstract
Different etiologies such as drug toxicity, acute viral hepatitis B, or acetaminophen poisoning can cause acute liver injury or even acute liver failure (ALF). Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF), interleukin-6 (IL-6), IL-1beta, or monocyte-chemoattractant protein-1 (MCP-1, CCL2) as well as activating other non-parenchymal liver cells, e.g., endothelial or hepatic stellate cells. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g., via caspase activation, but also activate protective signaling pathways, e.g., via nuclear factor kappa B (NF-κB). Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+) monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1) are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation, and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.
Collapse
|
40
|
Lundberg P, Yang HJ, Jung SJ, Behlke MA, Rose SD, Cantin EM. Protection against TNFα-dependent liver toxicity by intraperitoneal liposome delivered DsiRNA targeting TNFα in vivo. J Control Release 2011; 160:194-9. [PMID: 22094102 DOI: 10.1016/j.jconrel.2011.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor-alpha (TNFα) is a classic proinflammatory cytokine implicated in the pathogenesis of several autoimmune and inflammatory diseases including viral encephalitis. Macrophages being major producers of TNFα are thus attractive targets for in vivo RNA interference (RNAi) mediated down regulation of TNFα. The application of RNAi technology to in vivo models however presents obstacles, including rapid degradation of RNA duplexes in plasma, insufficient delivery to the target cell population and toxicity associated with intravenous administration of synthetic RNAs and carrier compounds. We exploited the phagocytic ability of macrophages for delivery of Dicer-substrate small interfering RNAs (DsiRNAs) targeting TNFα (DsiTNFα) by intraperitoneal administration of lipid-DsiRNA complexes that were efficiently taken up by peritoneal macrophages and other phagocytic cells. We report that DsiTNFα-lipid complexes delivered intraperitoneally altered the disease outcome in an acute sepsis model. Down-regulation of TNFα in peritoneal CD11b+ monocytes reduced liver damage in C57BL/6 mice and significantly delayed acute mortality in mice treated with low dose LPS plus d-galactosamine (D-GalN).
Collapse
Affiliation(s)
- Patric Lundberg
- Division of Immunology, Beckman Research Institute at City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
41
|
Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. The role of tumour necrosis factor-α and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis 2011; 27:77-86. [PMID: 21980144 DOI: 10.1093/mutage/ger063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammatory diseases are characterised by systemically elevated levels of tumour necrosis factor (TNF)-α, a proinflammatory cytokine with pleiotropic downstream effects. We have previously demonstrated increased genotoxicity in peripheral leukocytes and various tissues in models of intestinal inflammation. In the present study, we asked whether TNF-α is sufficient to induce DNA damage systemically, as observed in intestinal inflammation, and whether tumour necrosis factor receptor (TNFR) signalling would be necessary for the resultant genotoxicity. In the wild-type mice, 500 ng per mouse of TNF-α was sufficient to induce DNA damage to multiple cell types and organs 1-h post-administration. Primary splenic T cells manifested TNF-α-induced DNA damage in the absence of other cell types. Furthermore, TNFR1(-/-)TNFR2(-/-) mice demonstrated decreased systemic DNA damage in a model of intestinal inflammation and after TNF-α injection versus wild-type mice, indicating the necessity of TNFR signalling. Nuclear factor (NF)-κB inhibitors were also able to decrease damage induced by TNF-α injection in wild-type mice. When TNF-α administration was combined with interleukin (IL)-1β, another proinflammatory cytokine, DNA damage persisted for up to 24 h. When combined with IL-10, an anti-inflammatory cytokine, decreased genotoxicity was observed in vivo and in vitro. TNF-α/TNFR-mediated signalling is therefore sufficient and plays a large role in mediating DNA damage to various cell types, subject to modulation by other cytokines and their mediators.
Collapse
Affiliation(s)
- Aya M Westbrook
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
42
|
Stuart WD, Kulkarni RM, Gray JK, Vasiliauskas J, Leonis MA, Waltz SE. Ron receptor regulates Kupffer cell-dependent cytokine production and hepatocyte survival following endotoxin exposure in mice. Hepatology 2011; 53:1618-28. [PMID: 21520175 PMCID: PMC3082400 DOI: 10.1002/hep.24239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK-/- mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNF-α). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wildtype (TK+/+) and TK-/- mice were studied. Utilizing quantitative reverse-transcription polymerase chain reaction (RT-PCR), we demonstrated that Ron is expressed in these cell types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK-/- mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK-/- Kupffer cells produce increased levels of TNF-α and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK-/- Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK-/- Kupffer cells are detrimental to wildtype hepatocytes. In addition, we observed that TK-/- hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. CONCLUSION We dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury.
Collapse
Affiliation(s)
- William D. Stuart
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Rishikesh M. Kulkarni
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Jerilyn K. Gray
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Juozas Vasiliauskas
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Mike A. Leonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521
| | - Susan E. Waltz
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267–0521, Departments of Research, Cincinnati Veterans Affairs Medical Center and Shriners Hospital for Children, Cincinnati, OH 45267–0521,Address correspondence to: Susan E. Waltz, Ph.D., Department of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH 45267–0521, Tel: 513.558.8675, Fax: 513.558.4428,
| |
Collapse
|
43
|
Takano K, Shinoda M, Tanabe M, Miyasho T, Yamada S, Ono S, Masugi Y, Suda K, Fukunaga K, Hayashida T, Hibi T, Obara H, Takeuchi H, Kawachi S, Kawasako K, Okamoto M, Yokota H, Maruyama I, Kitagawa Y. Protective effect of high-mobility group box 1 blockade on acute liver failure in rats. Shock 2010; 34:573-579. [PMID: 20351624 DOI: 10.1097/shk.0b013e3181df0433] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-mobility group box 1 (HMGB1) is a monocyte-derived inflammatory mediator that is released in some conditions including shock, tissue injury, and endotoxin-induced lethality. In this study, we determined the plasma and hepatic tissue levels of HMGB1 in a drug-induced rat acute liver failure (ALF) model and investigated the effect of HMGB1 blockade on ALF. Adult male Sprague-Dawley rats, weighing 250 to 300 g, were used for this study. d-galactosamine was injected into the penile vein to induce ALF. To determine HMGB1 levels, plasma and hepatic tissue samples were serially collected after the d-galactosamine injection. To test the effect of HMGB1 blockade, anti-HMGB1 polyclonal antibodies or control antibodies were injected into the penile vein right after injection of d-galactosamine. Levels of HMGB1 were increased in plasma and decreased in hepatic tissue after induction of ALF. Immunohistochemical examination for HMGB1 showed that liver from animals with ALF had little staining, whereas normal liver had strong staining in the nuclei. Injection of anti-HMGB1 antibodies resulted in significant suppression of plasma HMGB1 and hepatic enzymes, marked suppression of plasma inflammatory cytokines, marked improvement of histological findings, and significant improvement of survival. The decrease of hepatic HMGB1 was also significantly suppressed in the group injected with anti-HMGB1 antibodies. The present study suggests that in ALF, the liver may release HMGB1 into the plasma, and that neutralizing the released HMGB1 has a protective effect against injury.
Collapse
Affiliation(s)
- Kiminori Takano
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Morikawa T, Pan Y, Ninomiya K, Imura K, Matsuda H, Yoshikawa M, Yuan D, Muraoka O. Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plant Cistanche tubulosa1. Bioorg Med Chem 2010; 18:1882-90. [DOI: 10.1016/j.bmc.2010.01.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 12/18/2022]
|
45
|
The protective role of pregnane X receptor in lipopolysaccharide/D-galactosamine-induced acute liver injury. J Transl Med 2010; 90:257-65. [PMID: 19997066 PMCID: PMC2814901 DOI: 10.1038/labinvest.2009.129] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor transcription factor regulating drug-metabolizing enzymes and transporters that facilitate xenobiotic and endobiotic detoxification. Recent studies show that PXR is important in abrogating intestinal tissue damage. This study examines the role of PXR in lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced acute liver injury using wild-type and PXR-null mice. LPS/GalN-treated PXR-null mice had greater increases of alanine transaminase (ALT), hepatocyte apoptosis, necrosis, and hemorrhagic liver injury than wild-type mice. LPS/GalN-mediated phosphorylation of JNK1/2 and ERK1/2 was differentially regulated in wild-type and PXR-null mice. Importantly, LPS/GalN-induced hepatic Stat3 survival signaling was impaired and early activation of Jak2 was delayed in PXR-null mice. Expression levels of pro-survival proteins Bcl-xL and heme oxygenase-1 (HO-1), which are downstream of Stat3, were substantially lower in PXR-null than wild-type mouse livers after LPS/GalN treatment. Autophagy is also involved in LPS/GalN-induced liver injury. Lack of PXR resulted in a significant reduction of LC3B-I, -II as well as Beclin-1 protein levels after LPS/GalN treatment. In addition, PXR is implicated in hepatocytes homeostasis. Taken together, PXR is a critical hepatoprotective factor. Increases of LPS/GalN-induced hepatocyte apoptosis and liver injury in PXR-null mice are due to deregulated mitogen-activated protein (MAP) kinase activation as well as delayed Jak2/Stat3 activation, which lead to a compromise in defense mechanisms that involve Bcl-xL-, HO-1, and autophagy-mediated pathways.
Collapse
|
46
|
Dijkstra F, Jozwiak M, De Matteo R, Duncan J, Hale N, Harding R, Rees S. Erythropoietin ameliorates damage to the placenta and fetal liver induced by exposure to lipopolysaccharide. Placenta 2010; 31:282-8. [PMID: 20106521 DOI: 10.1016/j.placenta.2009.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/17/2022]
Abstract
Intrauterine infection and inflammation have been causally linked to preterm birth and fetal brain injury. Using an ovine model of endotoxin-induced brain injury we have recently shown that recombinant human erythropoietin (rhEPO) reduces brain injury and protects against damage to myelination in major myelinated axon tracts. Our present objective was to determine whether rhEPO is also protective of the placenta and the fetal liver, organs which could influence fetal well-being. At 107 +/- 1 days of gestational age (DGA) chronically catheterized fetal sheep were randomly assigned to receive, on 3 consecutive days, either: 1) an i.v. bolus dose of lipopolysaccharide (LPS; approximately 0.9 microg/kg; n = 8); 2) i.v. bolus dose of LPS, followed at 1 h by 5000 IU/kg of rhEPO (LPS + rhEPO, n = 8); 3) rhEPO (n = 3). Seven untreated fetuses served as controls (n = 7). The placenta and fetal liver were examined histologically at 116 +/- 1 DGA; a placental injury index was formulated comprising measures of placental area, apoptosis, tissue injury and the size of the intervillous space. In LPS-exposed fetuses this index was greater than in control or rhEPO alone fetuses (p < 0.02). Treatment of LPS-exposed fetuses with rhEPO resulted in a reduction in the index (p < 0.05) and in the extent of liver necrosis. We conclude that rhEPO offers protection to the placenta and fetal liver in the presence of acute inflammation.
Collapse
Affiliation(s)
- F Dijkstra
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
Yaeesh S, Jamal Q, Shah AJ, Gilani AH. Antihepatotoxic activity of Saussurea lappa
extract on D-galactosamine and lipopolysaccharide-induced hepatitis in mice. Phytother Res 2009; 24 Suppl 2:S229-32. [DOI: 10.1002/ptr.3089] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Yun SS, Kim SP, Kang MY, Nam SH. Inhibitory effect of curcumin on liver injury in a murine model of endotoxemic shock. Biotechnol Lett 2009; 32:209-14. [DOI: 10.1007/s10529-009-0153-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
49
|
Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides. Bioorg Med Chem 2009; 17:7313-23. [PMID: 19775895 DOI: 10.1016/j.bmc.2009.08.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.
Collapse
Affiliation(s)
- Hisashi Matsuda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock. Clin Microbiol Rev 2009; 22:224-39, Table of Contents. [PMID: 19366913 DOI: 10.1128/cmr.00047-08] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian immune system is optimized to cope effectively with the constant threat of pathogens. However, when the immune system overreacts, sepsis, severe sepsis, or septic shock can develop. Despite extensive research, these conditions remain the leading cause of death in intensive care units. The matrix metalloproteinases (MMPs) constitute a family of proteases that are expressed in developmental, physiological, and pathological processes and also in response to infections. Studies using MMP inhibitors and MMP knockout mice indicate that MMPs play essential roles in infection and in the host defense against infection. This review provides a brief introduction to some basic concepts of infections caused by gram-negative bacteria and reviews reports describing MMP expression and inhibition, as well as studies with MMP-deficient mice in models of infection caused by gram-negative bacteria and of septic shock. We discuss whether MMPs should be considered novel drug targets in infection and septic shock.
Collapse
|