1
|
Ong BJA, See Tow HX, Fong ATW, Ling RR, Shekar K, Teoh K, Ti LK, MacLaren G, Fan BE, Ramanathan K. Monitoring Hemostatic Function during Cardiac Surgery with Point-of-Care Viscoelastic Assays: A Narrative Review. Semin Thromb Hemost 2025. [PMID: 39938563 DOI: 10.1055/s-0045-1802573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Bleeding is a well-known and severe complication of cardiac surgery. Cardiopulmonary bypass, along with heparinization and hemodilution, is thought to affect all pathways of the hemostatic process, leading to excessive bleeding and worsened morbidity and mortality. The traditionally used standard laboratory tests (SLTs) were not designed for the surgical setting, have long turnaround times, and are poor predictors of bleeding. This review aims to give an overview of viscoelastic assays (VEAs), compare VEAs to conventional testing methods, and summarize the evidence for VEAs in cardiac surgery. A search of Medline via Pubmed, Scopus, and Embase yielded 2,868 papers, which we reviewed and summarized the key findings. VEAs such as rotational thromboelastometry and thromboelastography provide a quick turnaround, graphical, global impression of hemostasis in whole blood. VEAs allow for the analysis of specific contributors to the coagulation process and may facilitate cause-oriented hemostatic treatment and the development of treatment algorithms. VEAs have been found to have a high specificity and high negative predictive value for coagulopathic bleeding. Patients treated with VEA-based algorithms have been shown to have lower rates of bleeding, transfusion requirements, and exposure to allogeneic blood products. However, VEA-based algorithms have not demonstrated a mortality benefit and evidence for outcomes such as surgical re-exploration and hospital length of stay remains equivocal. In conclusion, VEAs have been shown to be comparable if not superior to SLTs in cardiac surgery. Further large-scale studies are needed to better evaluate the impact of VEAs on clinical outcomes.
Collapse
Affiliation(s)
- Brandon Jin An Ong
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Hui Xin See Tow
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Alyssa Tze Wei Fong
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Australia and New Zealand Intensive Care Research Centre, School of Preventive Medicine and Public Health, Monash University, Melbourne, Victoria, Australia
- Department of Anaesthesia, National University Hospital, National University Health System, Singapore
| | - Kiran Shekar
- Intensive Care Unit, Caboolture Hospital, Brisbane, Queensland, Australia
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
- Faculty of Health, Queensland University of Technology, University of Queensland, Brisbane, Queensland, Australia
| | - Kristine Teoh
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Division of Adult Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | - Lian Kah Ti
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Department of Anaesthesia, National University Hospital, National University Health System, Singapore
| | - Graeme MacLaren
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Cardiothoracic Intensive Care Unit, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | - Bingwen Eugene Fan
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Hematology, Tan Tock Seng Hospital, Singapore
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Cardiothoracic Intensive Care Unit, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| |
Collapse
|
2
|
Lesouhaitier M, Belicard F, Tadié JM. Cardiopulmonary bypass and VA-ECMO induced immune dysfunction: common features and differences, a narrative review. Crit Care 2024; 28:300. [PMID: 39256830 PMCID: PMC11389086 DOI: 10.1186/s13054-024-05058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
Cardiopulmonary bypass (CPB) and veno-arterial extracorporeal membrane oxygenation are critical tools in contemporary cardiac surgery and intensive care, respectively. While these techniques share similar components, their application contexts differ, leading to distinct immune dysfunctions which could explain the higher incidence of nosocomial infections among ECMO patients compared to those undergoing CPB. This review explores the immune modifications induced by these techniques, comparing their similarities and differences, and discussing potential treatments to restore immune function and prevent infections. The immune response to CPB and ECMO involves both humoral and cellular components. The kinin system, complement system, and coagulation cascade are rapidly activated upon blood contact with the circuit surfaces, leading to the release of pro-inflammatory mediators. Ischemia-reperfusion injury and the release of damage-associated molecular patterns further exacerbate the inflammatory response. Cellular responses involve platelets, neutrophils, monocytes, dendritic cells, B and T lymphocytes, and myeloid-derived suppressor cells, all of which undergo phenotypic and functional alterations, contributing to immunoparesis. Strategies to mitigate immune dysfunctions include reducing the inflammatory response during CPB/ECMO and enhancing immune functions. Approaches such as off-pump surgery, corticosteroids, complement inhibitors, leukocyte-depleting filters, and mechanical ventilation during CPB have shown varying degrees of success in clinical trials. Immunonutrition, particularly arginine supplementation, has also been explored with mixed results. These strategies aim to balance the inflammatory response and support immune function, potentially reducing infection rates and improving outcomes. In conclusion, both CPB and ECMO trigger significant immune alterations that increase susceptibility to nosocomial infections. Addressing these immune dysfunctions through targeted interventions is essential to improving patient outcomes in cardiac surgery and critical care settings. Future research should focus on refining these strategies and developing new approaches to better manage the immune response in patients undergoing CPB and ECMO.
Collapse
Affiliation(s)
- Mathieu Lesouhaitier
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- SITI, Pole de Biologie, Pontchaillou University Hospital, Etablissement Français du Sang Bretagne, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.
- CIC-1414, INSERM, Rennes, France.
| | - Félicie Belicard
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
- SITI, Pole de Biologie, Pontchaillou University Hospital, Etablissement Français du Sang Bretagne, 2 rue Henri Le Guilloux, 35033, Rennes, France
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Jean-Marc Tadié
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- SITI, Pole de Biologie, Pontchaillou University Hospital, Etablissement Français du Sang Bretagne, 2 rue Henri Le Guilloux, 35033, Rennes, France.
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.
- CIC-1414, INSERM, Rennes, France.
| |
Collapse
|
3
|
Frunt R, El Otmani H, Smits S, Clark CC, Maas C. Factor XII contact activation can be prevented by targeting 2 unique patches in its epidermal growth factor-like 1 domain with a nanobody. J Thromb Haemost 2024; 22:2562-2575. [PMID: 38897387 DOI: 10.1016/j.jtha.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Factor (F)XII triggers contact activation by binding to foreign surfaces, with the epidermal growth factor-like 1 (EGF-1) domain being the primary binding site. Blocking FXII surface-binding might hold therapeutic value to prevent medical device-induced thrombosis. OBJECTIVES To unravel and prevent EGF-1-mediated FXII surface-binding with a variable domain of heavy chain-only antibody (VHH). METHODS FXII variants with glutamine substitutions of 2 positively charged amino acid patches within the EGF-1 domain were created. Their role in FXII contact activation was assessed using kaolin pull-down experiments, amidolytic activity assays, and clotting assays. FXII EGF-1 domain-specific VHHs were raised to inhibit EGF-1-mediated FXII contact activation while preserving quiescence. RESULTS Two unique, positively charged patches in the EGF-1 domain were identified (upstream, 73K74K76K78H81K82H; downstream, 87K113K). Neutralizing the charge of both patches led to a 99% reduction in FXII kaolin binding, subsequent decrease in autoactivation of 94%, and prolongation of clot formation in activated partial thromboplastin time assays from 36 (±2) to 223 (±13) seconds. Three FXII EGF-1-specific VHHs were developed that are capable of inhibiting kaolin binding and subsequent contact system activation in plasma. The most effective VHH "F2" binds the positively charged patches and thereby dose-dependently extends activated partial thromboplastin time clotting times from 29 (±2) to 43 (±3) seconds without disrupting FXII quiescence. CONCLUSION The 2 unique, positively charged patches in FXII EGF-1 cooperatively mediate FXII surface-binding, making both patches crucial for contact activation. Targeting these with FXII EGF-1-specific VHHs can exclusively decrease FXII surface-binding and subsequent contact activation, while preserving zymogen quiescence. These patches thus have potential as druggable targets in preventing medical device-induced thrombosis.
Collapse
Affiliation(s)
- Rowan Frunt
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Hinde El Otmani
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Simone Smits
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chantal C Clark
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen Maas
- Central Diagnostic Laboratory Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Helms J, Curtiaud A, Severac F, Tschirhart M, Merdji H, Bourdin M, Contant G, Depasse F, Abou Rjeily R, Sattler L, Meziani F, Angles-Cano E. Fibrinolysis as a Causative Mechanism for Bleeding Complications on Extracorporeal Membrane Oxygenation: A Pilot Observational Prospective Study. Anesthesiology 2024; 141:75-86. [PMID: 38502917 DOI: 10.1097/aln.0000000000004980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) is associated with a high risk of bleeding complications. The specific impact of ECMO on fibrinolysis remains unexplored. The objective of the current pilot observational prospective study was to investigate the longitudinal dynamics of fibrinolytic markers-i.e., changes over time-in the context of bleeding events in patients on ECMO. METHODS Longitudinal dynamics of contact phase components (kininogen and bradykinin) and fibrinolysis markers (tissue plasminogen activator [tPA], plasminogen activator inhibitor-1 [PAI-1], their complexes [tPA•PAI-1], plasmin-antiplasmin complexes, plasminogen, and D-dimer) were measured in patients undergoing venovenous and venoarterial ECMO, before implantation, at 0, 6, and 12 h after implantation, and daily thereafter. RESULTS The cohort consisted of 30 patients (214 ECMO days). The concentrations of tPA, D-dimer, plasmin-antiplasmin complexes, PAI-1, and tPA•PAI-1 complexes were increased, whereas plasminogen decreased compared to normal values. A noteworthy divergence was observed between hemorrhagic and nonhemorrhagic patients: in bleeding patients, D-dimer, plasmin-antiplasmin, tPA, PAI-1, and tPA•PAI-1 followed an increasing kinetics before hemorrhage and then decreased to their baseline level; conversely, nonbleeding patients showed a decreasing kinetics in these markers. Also, D-dimer and tPA followed an increasing kinetics in bleeding patients compared to nonbleeding patients (median values for D-dimer dynamics: 1,080 vs. -440 ng/ml, P = 0.05; tPA dynamics: 0.130 vs. 0.100 nM, P = 0.038), and both markers significantly increased the day before hemorrhage. A tPA concentration above 0.304 nM was associated with bleeding events (odds ratio, 4.92; 95% CI, 1.01 to 24.08; P = 0.049). CONCLUSIONS Contact activation induces fibrinolysis in ECMO patients, especially in patients experiencing bleeding. This finding supports the role of this mechanism as a possible causal factor for hemorrhages during ECMO and open new avenues for novel therapeutic perspectives. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Julie Helms
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit (NHC), Strasbourg, France; INSERM (French National Institute of Health and Medical Research), Unit 1260, Regenerative Nanomedicine, Medicine Federation of Strasbourg, Strasbourg, France
| | - Anaïs Curtiaud
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit (NHC), Strasbourg, France; INSERM (French National Institute of Health and Medical Research), Unit 1260, Regenerative Nanomedicine, Medicine Federation of Strasbourg, Strasbourg, France
| | - François Severac
- Strasbourg University Hospital, Clinical Research Methods Group (GMRC), Strasbourg, France
| | - Marine Tschirhart
- INSERM (French National Institute of Health and Medical Research), Unit 1260, Regenerative Nanomedicine, Medicine Federation of Strasbourg, Strasbourg, France
| | - Hamid Merdji
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit (NHC), Strasbourg, France; INSERM (French National Institute of Health and Medical Research), Unit 1260, Regenerative Nanomedicine, Medicine Federation of Strasbourg, Strasbourg, France
| | - Matthieu Bourdin
- Diagnostica Stago, Prospective Research Department, Gennevilliers, France
| | - Geneviève Contant
- Diagnostica Stago, Prospective Research Department, Gennevilliers, France
| | - François Depasse
- Diagnostica Stago, Clinical Development, Asnières sur Seine, France
| | - Ramy Abou Rjeily
- Paris Cite University-INSERM U-1140, Innovative Therapies in Haemostasis, Paris, France
| | - Laurent Sattler
- Strasbourg University Hospital, Laboratory of Hematology, Hautepierre, Strasbourg, France
| | - Ferhat Meziani
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit (NHC), Strasbourg, France; INSERM (French National Institute of Health and Medical Research), Unit 1260, Regenerative Nanomedicine, Medicine Federation of Strasbourg, Strasbourg, France
| | - Eduardo Angles-Cano
- Paris Cite University-INSERM U-1140, Innovative Therapies in Haemostasis, Paris, France
| |
Collapse
|
5
|
Provitera L, Amelio GS, Tripodi M, Raffaeli G, Macchini F, Amodeo I, Gulden S, Cortesi V, Manzoni F, Cervellini G, Tomaselli A, Zuanetti G, Lonati C, Battistin M, Kamel S, Parente V, Pravatà V, Villa S, Villamor E, Mosca F, Cavallaro G. Veno-Arterial Extracorporeal Membrane Oxygenation (ECMO) Impairs Bradykinin-Induced Relaxation in Neonatal Porcine Coronary Arteries. Biomedicines 2022; 10:biomedicines10092083. [PMID: 36140183 PMCID: PMC9495700 DOI: 10.3390/biomedicines10092083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a lifesaving support for respiratory and cardiovascular failure. However, ECMO induces a systemic inflammatory response syndrome that can lead to various complications, including endothelial dysfunction in the cerebral circulation. We aimed to investigate whether ECMO-associated endothelial dysfunction also affected coronary circulation. Ten-day-old piglets were randomized to undergo either 8 h of veno-arterial ECMO (n = 5) or no treatment (Control, n = 5). Hearts were harvested and coronary arteries were dissected and mounted as 3 mm rings in organ baths for isometric force measurement. Following precontraction with the thromboxane prostanoid (TP) receptor agonist U46619, concentration−response curves to the endothelium-dependent vasodilator bradykinin (BK) and the nitric oxide (NO) donor (endothelium-independent vasodilator) sodium nitroprusside (SNP) were performed. Relaxation to BK was studied in the absence or presence of the NO synthase inhibitor Nω-nitro-L-arginine methyl ester HCl (L-NAME). U46619-induced contraction and SNP-induced relaxation were similar in control and ECMO coronary arteries. However, BK-induced relaxation was significantly impaired in the ECMO group (30.4 ± 2.2% vs. 59.2 ± 2.1%; p < 0.0001). When L-NAME was present, no differences in BK-mediated relaxation were observed between the control and ECMO groups. Taken together, our data suggest that ECMO exposure impairs endothelium-derived NO-mediated coronary relaxation. However, there is a NO-independent component in BK-induced relaxation that remains unaffected by ECMO. In addition, the smooth muscle cell response to exogenous NO is not altered by ECMO exposure.
Collapse
Affiliation(s)
- Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giacomo S. Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence:
| | - Francesco Macchini
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pediatric Surgery, ASST Grande Ospedale Metropolitano (GOM) Niguarda, 20162 Milan, Italy
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Tomaselli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gabriele Zuanetti
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michele Battistin
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Shady Kamel
- Betamed Perfusion Service, 00192 Rome, Italy
| | | | - Valentina Pravatà
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Villa
- Transfusion Center and Blood Component Bank of Rare Groups, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), University of Maastricht, 6229 Maastricht, The Netherlands
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
6
|
Lisman T, Adelmeijer J, Huskens D, Meijers JCM. Aprotinin Inhibits Thrombin Generation by Inhibition of the Intrinsic Pathway, but is not a Direct Thrombin Inhibitor. TH OPEN 2021; 5:e363-e375. [PMID: 34485811 PMCID: PMC8407936 DOI: 10.1055/s-0041-1735154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 12/01/2022] Open
Abstract
Background
Aprotinin is a broad-acting serine protease inhibitor that has been clinically used to prevent blood loss during major surgical procedures including cardiac surgery and liver transplantation. The prohemostatic properties of aprotinin likely are related to its antifibrinolytic effects, but other mechanisms including preservation of platelet function have been proposed.
Aim
Here we assessed effects of aprotinin on various hemostatic pathways in vitro, and compared effects to tranexamic acid(TXA), which is an antifibrinolytic but not a serine protease inhibitor.
Methods
We used plasma-based clot lysis assays, clotting assays in whole blood, plasma, and using purified proteins, and platelet activation assays to which aprotinin or TXA were added in pharmacological concentrations.
Results
Aprotinin and TXA dose-dependently inhibited fibrinolysis in plasma. Aprotinin inhibited clot formation and thrombin generation initiated via the intrinsic pathway, but had no effect on reactions initiated by tissue factor. However, in the presence of thrombomodulin, aprotinin enhanced thrombin generation in reactions started by tissue factor. TXA had no effect on coagulation. Aprotinin did not inhibit thrombin, only weakly inhibited the TF-VIIa complex and had no effect on platelet activation and aggregation by various agonists including thrombin. Aprotinin and TXA inhibited plasmin-induced platelet activation.
Conclusion
Pharmacologically relevant concentrations of aprotinin inhibit coagulation initiated via the intrinsic pathway. The antifibrinolytic activity of aprotinin likely explains the prohemostatic effects of aprotinin during surgical procedures. The anticoagulant properties may be beneficial during surgical procedures in which pathological activation of the intrinsic pathway, for example by extracorporeal circuits, occurs.
Collapse
Affiliation(s)
- Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Synapse Research Institute, Maastricht, The Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Tranexamic acid rapidly inhibits fibrinolysis, yet transiently enhances plasmin generation in vivo. Blood Coagul Fibrinolysis 2021; 32:172-179. [PMID: 33443933 DOI: 10.1097/mbc.0000000000001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tranexamic acid (TXA) is a lysine analogue that inhibits plasmin generation and has been used for decades as an antifibrinolytic agent to reduce bleeding. Recent reports have indicated that TXA can paradoxically promote plasmin generation. Blood was obtained from 41 cardiac surgical patients randomly assigned to TXA or placebo before start of surgery (preOP), at the end of surgery (EOS), then again on postoperative day 1 (POD-1) as well as POD-3. Plasma levels of tissue-type plasminogen activator (t-PA), urokinase (u-PA), the plasmin-antiplasmin (PAP) complex, as well as t-PA and u-PA-induced clot lysis assays were then determined. Clot lysis and PAP complex levels were also assessed in healthy volunteers before and at various time points after taking 1 g TXA orally. Surgery induced an increase in circulating t-PA, yet not u-PA at EOS. t-PA levels were unaffected by TXA; however, u-PA levels were significantly reduced in patients on POD-3. t-PA and u-PA-induced clot lysis were both inhibited in plasma from TXA-treated patients. In contrast, PAP complex formation, representing plasmin generation, was unexpectedly enhanced in the plasma of patients administered TXA at the EOS time point. In healthy volunteers, oral TXA effectively blocked fibrinolysis within 30 min and blockade was sustained for 8 h. However, TXA also increased PAP levels in volunteers 4 h after administration. Our findings demonstrate that TXA can actually augment PAP complex formation, consistent with an increase in plasmin generation in vivo despite the fact that it blocks fibrinolysis within 30 min. This may have unanticipated consequences in vivo.
Collapse
|
8
|
Roumy A, Liaudet L, Rusca M, Marcucci C, Kirsch M. Pulmonary complications associated with veno-arterial extra-corporeal membrane oxygenation: a comprehensive review. Crit Care 2020; 24:212. [PMID: 32393326 PMCID: PMC7216520 DOI: 10.1186/s13054-020-02937-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a life-saving technology that provides transient respiratory and circulatory support for patients with profound cardiogenic shock or refractory cardiac arrest. Among its potential complications, VA-ECMO may adversely affect lung function through various pathophysiological mechanisms. The interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response which may increase pulmonary vascular permeability and promote the sequestration of polymorphonuclear neutrophils within the lung parenchyma. Also, VA-ECMO increases the afterload of the left ventricle (LV) through reverse flow within the thoracic aorta, resulting in increased LV filling pressure and pulmonary congestion. Furthermore, VA-ECMO may result in long-standing pulmonary hypoxia, due to partial shunting of the pulmonary circulation and to reduced pulsatile blood flow within the bronchial circulation. Ultimately, these different abnormalities may result in a state of persisting lung inflammation and fibrotic changes with concomitant functional impairment, which may compromise weaning from VA-ECMO and could possibly result in long-term lung dysfunction. This review presents the mechanisms of lung damage and dysfunction under VA-ECMO and discusses potential strategies to prevent and treat such alterations.
Collapse
Affiliation(s)
- Aurélien Roumy
- Department of Cardiovascular Surgery, University Hospital, Lausanne, Switzerland.
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Marco Rusca
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Carlo Marcucci
- Department of Anesthesiology, University Hospital, Lausanne, Switzerland
| | - Matthias Kirsch
- Department of Cardiovascular Surgery, University Hospital, Lausanne, Switzerland
| |
Collapse
|
9
|
Tanaka KA, Mondal S, Morita Y, Williams B, Strauss ER, Cicardi M. Perioperative Management of Patients With Hereditary Angioedema With Special Considerations for Cardiopulmonary Bypass. Anesth Analg 2020; 131:155-169. [DOI: 10.1213/ane.0000000000004710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Meesters MI, von Heymann C. Optimizing Perioperative Blood and Coagulation Management During Cardiac Surgery. Anesthesiol Clin 2019; 37:713-728. [PMID: 31677687 DOI: 10.1016/j.anclin.2019.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bleeding and transfusion are common in cardiac surgery and associated with poorer outcome. Bleeding is frequently due to coagulopathy caused by the complex interaction between cardiopulmonary bypass, major surgical trauma, anticoagulation management, and perioperative factors. Patient blood management has emerged to improve outcome by the prediction, prevention, monitoring, and treatment of bleeding and transfusion. Each part of this chain has several individual modalities and when combined leads to result in a better outcome. This article reviews the hemostasis disturbances in cardiac surgery with cardiopulmonary bypass and gives an overview of the most important patient blood management strategies.
Collapse
Affiliation(s)
- Michael Isaäc Meesters
- Department of Anesthesiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| | - Christian von Heymann
- Department of Anaesthesia, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Vivantes Klinikum im Friedrichshain, Landsberger Allee 49, Berlin 10249, Germany
| |
Collapse
|
11
|
Abstract
Bradykinin has important physiological actions related to the regulation of blood vessel tone and renal function, and protection from ischemia reperfusion injury. However, bradykinin also contributes to pathological states such as angioedema and inflammation. Bradykinin is metabolized by many different peptidases that play a major role in the control of bradykinin levels. Peptidase inhibitor therapies such as angiotensin converting enzyme (ACE) and neprilysin inhibitors increase bradykinin levels, and the challenge for such therapies is to achieve the beneficial cardiovascular and renal effects without the adverse consequences such as angioedema that may result from increased bradykinin levels. Neprilysin also metabolizes natriuretic peptides. However, despite the potential therapeutic benefit of increased natriuretic peptide and bradykinin levels, neprilysin inhibitor therapy has only modest efficacy in essential hypertension and heart failure. Initial attempts to combine neprilysin inhibition with inhibition of the renin angiotensin system led to the development of omapatrilat, a drug that combines ACE and neprilysin inhibition. However, omapatrilat produced an unacceptably high incidence of angioedema in patients with hypertension (2.17%) in comparison with the ACE inhibitor enalapril (0.68%), although angioedema incidence was less in patients with heart failure with reduced ejection fraction (HFrEF) treated with omapatrilat (0.8%), and not different from that for enalapril therapy (0.5%). More recently, LCZ696, a drug that combines angiotensin receptor blockade and neprilysin inhibition, was approved for the treatment of HFrEF. The approval of LCZ696 therapy for HFrEF represents the first approval of long-term neprilysin inhibitor administration. While angioedema incidence was acceptably low in HFrEF patients receiving LCZ696 therapy (0.45%), it remains to be seen whether LCZ696 therapy for other conditions such as hypertension is also accompanied by an acceptable incidence of angioedema.
Collapse
Affiliation(s)
- Duncan J Campbell
- Department of Molecular Cardiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,St. Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Gunaratne R, Kumar S, Frederiksen JW, Stayrook S, Lohrmann JL, Perry K, Bompiani KM, Chabata CV, Thalji NK, Ho MD, Arepally G, Camire RM, Krishnaswamy S, Sullenger BA. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat Biotechnol 2018; 36:606-613. [PMID: 29863725 PMCID: PMC6349032 DOI: 10.1038/nbt.4153] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/27/2018] [Indexed: 02/05/2023]
Abstract
Unfractionated heparin (UFH), the standard anticoagulant for cardiopulmonary bypass (CPB) surgery, carries a risk of post-operative bleeding and is potentially harmful in patients with heparin-induced thrombocytopenia-associated antibodies. To improve the activity of an alternative anticoagulant, the RNA aptamer 11F7t, we solved X-ray crystal structures of the aptamer bound to factor Xa (FXa). The finding that 11F7t did not bind the catalytic site suggested that it could complement small-molecule FXa inhibitors. We demonstrate that combinations of 11F7t and catalytic-site FXa inhibitors enhance anticoagulation in purified reaction mixtures and plasma. Aptamer-drug combinations prevented clot formation as effectively as UFH in human blood circulated in an extracorporeal oxygenator circuit that mimicked CPB, while avoiding side effects of UFH. An antidote could promptly neutralize the anticoagulant effects of both FXa inhibitors. Our results suggest that drugs and aptamers with shared targets can be combined to exert more specific and potent effects than either agent alone.
Collapse
Affiliation(s)
- Ruwan Gunaratne
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
- Duke University, Medical Scientist Training Program, Durham, NC 27710
| | - Shekhar Kumar
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Steven Stayrook
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Kay Perry
- Northeastern Collaborative Access Team (NE-CAT) and Departments of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439
| | | | - Charlene V. Chabata
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
| | - Nabil K. Thalji
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Michelle D. Ho
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Rodney M. Camire
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Sriram Krishnaswamy
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bruce A. Sullenger
- Duke University, Department of Pharmacology and Cancer Biology, Durham, NC 27710
- Duke University, Department of Surgery, Durham, NC 27710
| |
Collapse
|
13
|
Seelhammer TG, Mangla J, Demirci O. The Use of Thromboelastography to Titrate Tranexamic Acid Therapy for Abatement of Lysis-Induced Hemorrhagic Complications During Venoarterial Extracorporeal Membrane Oxygenation. J Cardiothorac Vasc Anesth 2018; 33:1059-1062. [PMID: 30765211 DOI: 10.1053/j.jvca.2018.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Troy G Seelhammer
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| | - Jimmi Mangla
- Department of Surgery, Mayo Clinic, Rochester, MN
| | - Onur Demirci
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Allen S, McBride WT, Young IS, MacGowan SW, McMurray TJ, Prabhu S, Penugonda SP, Armstrong MA. A clinical, renal and immunological assessment of Surface Modifying Additive Treated (SMART™) cardiopulmonary bypass circuits. Perfusion 2016; 20:255-62. [PMID: 16231621 DOI: 10.1191/0267659105pf815oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biocompatible cardiopulmonary bypass (CPB) circuits aim to reduce contact activation and its physiological consequences. We investigated the hypothesis that use of Surface Modifying Additive (SMA)-treated circuits (Sorin Group Ltd) compared with non-SMA circuits would be associated with preservation of blood pressure during CPB and modulation of perioperative subclinical renal function (urinary α-1-microglobulin (α-1-m)) and plasma and urinary cytokine changes. In a study of low-risk CABG patients ( n=40), randomized to SMA ( n=20) versus non-SMA circuits ( n=20), we found better preserved blood pressure at CPB initiation in SMA patients (p <0.05), particularly in ACE-inhibited SMA patients ( n=11) versus ACE-inhibited non-SMA patients ( n=10) (p <0.05). Plasma anti-inflammatory IL-10, as well as urinary α-1-m, were elevated 48 hours postoperatively (p <0.05). SMA patients also had lower blood loss (p <0.05). SMA circuits have some clinical benefit, especially in ACE-inhibited patients.
Collapse
Affiliation(s)
- Stephen Allen
- Department of Anaesthetics and Intensive Care Medicine, The Queen's University of Belfast, Belfast, Northern Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Aminocaproic acid for the management of bleeding in patients on extracorporeal membrane oxygenation: Four adult case reports and a review of the literature. Heart Lung 2016; 45:232-6. [DOI: 10.1016/j.hrtlng.2016.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/22/2022]
|
16
|
Abdeen MS, Albert A, Maxhera B, Hoffmann T, Petrov G, Sixt S, Roussel E, Westenfeld R, Lichtenberg A, Saeed D. Implanting permanent left ventricular assist devices in patients on veno-arterial extracorporeal membrane oxygenation support: do we really need a cardiopulmonary bypass machine? Eur J Cardiothorac Surg 2016; 50:542-7. [DOI: 10.1093/ejcts/ezw073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 11/13/2022] Open
|
17
|
Contribution of endogenous bradykinin to fibrinolysis, inflammation, and blood product transfusion following cardiac surgery: a randomized clinical trial. Clin Pharmacol Ther 2012; 93:326-34. [PMID: 23361105 DOI: 10.1038/clpt.2012.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bradykinin increases during cardiopulmonary bypass (CPB) and stimulates the release of nitric oxide, inflammatory cytokines, and tissue-type plasminogen activator (t-PA), acting through its B2 receptor. This study tested the hypothesis that endogenous bradykinin contributes to the fibrinolytic and inflammatory response to CPB and that bradykinin B2 receptor antagonism reduces fibrinolysis, inflammation, and subsequent transfusion requirements. Patients (N = 115) were prospectively randomized to placebo, ε-aminocaproic acid (EACA), or HOE 140, a bradykinin B2 receptor antagonist. Bradykinin B2 receptor antagonism decreased intraoperative fibrinolytic capacity as much as EACA, but only EACA decreased D-dimer formation and tended to decrease postoperative bleeding. Although EACA and HOE 140 decreased fibrinolysis and EACA attenuated blood loss, these treatments did not reduce the proportion of patients transfused. These data suggest that endogenous bradykinin contributes to t-PA generation in patients undergoing CPB, but that additional effects on plasmin generation contribute to decreased D-dimer concentrations during EACA treatment.
Collapse
|
18
|
Modulation of C1-Inhibitor and Plasma Kallikrein Activities by Type IV Collagen. Int J Biomater 2012; 2012:212417. [PMID: 22481936 PMCID: PMC3296203 DOI: 10.1155/2012/212417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/10/2011] [Indexed: 11/23/2022] Open
Abstract
The contact system of coagulation can be activated when in contact with biomaterials. As collagen is being tested in novel biomaterials in this study, we have investigated how type IV collagen affects plasma kallikrein and C1-inhibitor. Firstly, we showed C1-inhibitor binds to type IV collagen with a Kd of 0.86 μM. The effects of type IV collagen on plasma kallikrein, factor XIIa, and β-factor XIIa activity and on C1-inhibitor function were determined. Factor XIIa rapidly lost activity in the presence of type IV collagen, whereas plasma kallikrein and β-factor XIIa were more stable. The rate of inhibition of plasma kallikrein by C1-inhibitor was decreased by type IV collagen in a dose-dependent manner. These studies could be relevant to the properties of biomaterials, which contain collagen, and should be considered in the testing for biocompatibility.
Collapse
|
19
|
Sniecinski RM, Chandler WL. Activation of the Hemostatic System During Cardiopulmonary Bypass. Anesth Analg 2011; 113:1319-33. [DOI: 10.1213/ane.0b013e3182354b7e] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Kolte D, Bryant J, Holsworth D, Wang J, Akbari P, Gibson G, Shariat-Madar Z. Biochemical characterization of a novel high-affinity and specific plasma kallikrein inhibitor. Br J Pharmacol 2011; 162:1639-49. [PMID: 21175583 DOI: 10.1111/j.1476-5381.2010.01170.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Kallikrein acts on high molecular weight kininogen (HK) to generate HKa (cleaved HK) and bradykinin (BK). BK exerts its effects by binding to B(2) receptors. The activation of B(2) receptors leads to the formation of tissue plasminogen activator, nitric oxide (NO) and prostacyclin (PGI(2) ). An elevated kallikrein-dependent pathway has been linked to cardiovascular disease risk. The aim of this study was to investigate whether our novel plasma kallikrein inhibitor abolishes kallikrein-mediated generation of BK from HK and subsequent BK-induced NO and PGI(2) formation, thereby influencing endothelial pathophysiology during chronic inflammatory diseases. EXPERIMENTAL APPROACH Kinetic analysis was initially used to determine the potency of PF-04886847. Biochemical ligand binding assays, immunological methods and calcium flux studies were used to determine the selectivity of the kallikrein inhibitor. In addition, the effect of PF-04886847 on BK-induced relaxation of the rat aortic ring was determined in a model of lipopolysaccharide-induced tissue inflammation. KEY RESULTS Evidence was obtained in vitro and in situ, indicating that PF-04886847 is a potent and specific inhibitor of plasma kallikrein. PF-04886847 efficiently blocked calcium influx as well as NO and PGI(2) formation mediated through the BK-stimulated B(2) receptor signalling pathway. PF-04886847 blocked kallikrein-induced endothelial-dependent relaxation of isolated rat aortic rings pre-contracted with phenylephrine. CONCLUSIONS AND IMPLICATIONS PF-04886847 was shown to be the most potent small molecule inhibitor of plasma kallikrein yet described; it inhibited kallikrein in isolated aortic rings and cultured endothelial cells. Overall, our results indicate that PF-04886847 would be useful for the treatment of kallikrein-mediated inflammatory disorders.
Collapse
Affiliation(s)
- D Kolte
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS, USA CVMED Exploratory, Pfizer Global Research and Development, Groton, CT, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Eaton MP, Iannoli EM. Coagulation considerations for infants and children undergoing cardiopulmonary bypass. Paediatr Anaesth 2011; 21:31-42. [PMID: 21155925 DOI: 10.1111/j.1460-9592.2010.03467.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiac surgery involving cardiopulmonary bypass imposes a significant pathophysiologic burden on patients. Pediatric patients are especially predisposed to the adverse effects of surgery and bypass on the coagulation system, with resultant bleeding, transfusion, and poor outcomes. These risks accrue to pediatric patients in inverse proportion to their weight and are attributable to hematologic immaturity, coagulation defects associated with congenital heart disease, bypass equipment, and the nature of congenital heart surgery. Standard anticoagulation does not completely inhibit thrombin generation, and continuous consumption of coagulation factor continues throughout bypass. Conventional measurements of anticoagulation during bypass poorly reflect this incomplete anticoagulation, and alternate methods may improve anticoagulant therapy. Emerging therapies for blocking the effects of bypass on the coagulation system hold promise for decreasing bleeding and related complications, and improving outcomes in congenital heart surgery.
Collapse
Affiliation(s)
- Michael P Eaton
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
22
|
Chatterjee K, Thornton JL, Bauer JW, Vogler EA, Siedlecki CA. Moderation of prekallkrein-factor XII interactions in surface activation of coagulation by protein-adsorption competition. Biomaterials 2009; 30:4915-20. [PMID: 19552950 PMCID: PMC2749226 DOI: 10.1016/j.biomaterials.2009.05.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/30/2009] [Indexed: 10/20/2022]
Abstract
Traditional biochemistry of contact activation of blood coagulation suggesting that anionic hydrophilic surfaces are specific activators of the cascade is inconsistent with known trends in protein adsorption. To investigate contact activation reactions, a chromogenic assay was used to measure prekallkrein (PK) hydrolysis to kallikrein (Kal) by activated factor XII (FXIIa) at test hydrophilic (clean glass) and hydrophobic (silanized glass) surfaces in the presence of bovine serum albumin (BSA). Hydrolysis of PK by FXIIa is detected after contact of the zymogen FXII with a test hydrophobic surface only if putatively-adsorbed FXIIa is competitively displaced by BSA. By contrast, FXIIa activity is detected spontaneously following FXII activation by a hydrophilic surface and requires no adsorption displacement. These results (i) show that an anionic hydrophilic surface is not a necessary cofactor for FXIIa-mediated hydrolysis of PK, (ii) indicate that PK hydrolysis does not need to occur by an activation complex assembled directly on an anionic, activating surface, (iii) confirms that contact activation of FXII (autoactivation) is not specific to anionic hydrophilic surfaces, and (iv) demonstrates that protein-adsorption competition is an essential feature that must be included in any comprehensive mechanism of surface-induced blood coagulation.
Collapse
Affiliation(s)
- Kaushik Chatterjee
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jennifer L. Thornton
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - James W. Bauer
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Erwin A. Vogler
- Department of Bioengineering, Pennsylvania State University, University Park, PA 16802
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802
| | - Christopher A. Siedlecki
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
23
|
Bryant J, Shariat-Madar Z. Human plasma kallikrein-kinin system: physiological and biochemical parameters. Cardiovasc Hematol Agents Med Chem 2009; 7:234-50. [PMID: 19689262 PMCID: PMC4905712 DOI: 10.2174/187152509789105444] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma prekallikrein to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity.
Collapse
Affiliation(s)
- J.W. Bryant
- Pfizer Global Research and Development, CVMED Exploratory, Groton, CT 06340
| | - z Shariat-Madar
- School of Pharmacy, Department of Pharmacology, University of Mississippi, University, MS 38677-1848
| |
Collapse
|
24
|
Yokoyama K, Takabayashi S, Komada T, Onoda K, Mitani Y, Iwata H, Shimpo H. Removal of prostaglandin E2 and increased intraoperative blood pressure during modified ultrafiltration in pediatric cardiac surgery. J Thorac Cardiovasc Surg 2009; 137:730-5. [DOI: 10.1016/j.jtcvs.2008.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 08/01/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|
25
|
Yoon H, Blaber SI, Evans DM, Trim J, Juliano MA, Scarisbrick IA, Blaber M. Activation profiles of human kallikrein-related peptidases by proteases of the thrombostasis axis. Protein Sci 2008; 17:1998-2007. [PMID: 18697857 PMCID: PMC2578812 DOI: 10.1110/ps.036715.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/27/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of KLK function. Much recent work has been devoted to elucidating the potential for activation cascades between members of the KLK family, with physiologically relevant KLK regulatory cascades now described in skin desquamation and semen liquefaction. Despite this expanding knowledge of KLK regulation, details regarding the potential for functional intersection of KLKs with other regulatory proteases are essentially unknown. To elucidate such interaction potential, we have characterized the ability of proteases associated with thrombostasis to hydrolyze the pro-peptide sequences of the KLK family using a previously described pro-KLK fusion protein system. A subset of positive hydrolysis results were subsequently quantified with proteolytic assays using intact recombinant pro-KLK proteins. Pro-KLK6 and 14 can be activated by both plasmin and uPA, with plasmin being the best activator of pro-KLK6 identified to date. Pro-KLK11 and 12 can be activated by a broad-spectrum of thrombostasis proteases, with thrombin exhibiting a high degree of selectivity for pro-KLK12. The results show that proteases of the thrombostasis family can efficiently activate specific pro-KLKs, demonstrating the potential for important regulatory interactions between these two major protease families.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4300, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Rosner MH, Portilla D, Okusa MD. Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med 2008; 23:3-18. [PMID: 18230632 DOI: 10.1177/0885066607309998] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiopulmonary bypass surgery occurs in nearly 1 million patients per year. Acute kidney injury requiring dialysis can occur in up to 1% of these patients. The development of acute kidney injury is associated with substantial morbidity and mortality independent of all other factors, and many patients are left dependent on dialysis therapies. The pathogenesis of acute kidney injury involves multiple pathways. Hemodynamic, inflammatory, and nephrotoxic factors are involved and overlap each other in leading to kidney injury. Clinical studies have identified risk factors for acute kidney injury that can be used to effectively determine the risk of acute kidney injury in patients undergoing bypass surgery. These high-risk patients can then be targeted for renal protective strategies. Thus far, no single strategy has conclusively demonstrated its ability to prevent renal injury post-bypass surgery. Novel anti-inflammatory agents are in development and offer hope as potential therapies.
Collapse
Affiliation(s)
- Mitchell H Rosner
- Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
27
|
Matsuo T, Yagi K. Interaction between .ALPHA.-Linolenic Acid-Enriched Oil and ACE Inhibitor Concerning the Decrease in Blood Pressure in SHR. J Oleo Sci 2008; 57:11-4. [DOI: 10.5650/jos.57.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Paparella D, Brister SJ, Buchanan MR. Coagulation disorders of cardiopulmonary bypass: a review. Intensive Care Med 2004; 30:1873-81. [PMID: 15278267 DOI: 10.1007/s00134-004-2388-0] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 06/24/2004] [Indexed: 01/17/2023]
Abstract
BACKGROUND Postoperative bleeding is one of the most common complications of cardiac surgery. DISCUSSION Extensive surgical trauma, prolonged blood contact with the artificial surface of the cardiopulmonary bypass (CPB) circuit, high doses of heparin, and hypothermia are all possible triggers of a coagulopathy leading to excessive bleeding. Platelet activation and dysfunction also occur and are caused mainly by heparin, hypothermia, and inadequate protamine administration. Heparin and protamine administration based on heparin concentrations as opposed to fixed doses may reduce coagulopathy and postoperative blood loss. CONCLUSIONS A better comprehension of the multifactorial mechanisms of activation of coagulation, inflammation, and fibrinolytic pathways during CPB may enable a more effective use of the technical and pharmaceutical options which are currently available.
Collapse
Affiliation(s)
- Domenico Paparella
- Division of Cardiac Surgery, Dipartimento di Emergenza e Trapianti di Organo, University of Bari, Piazza Giulio Cesare 11, 70100 Bari, Italy.
| | | | | |
Collapse
|
29
|
Schremmer-Danninger E, Naidoo S, Neuhof C, Valeske K, Snyman C, Sander C, Bhoola KD, Neuhof H. Visualisation of tissue kallikrein, kininogen and kinin receptors in human skin following trauma and in dermal diseases. Biol Chem 2004; 385:1069-76. [PMID: 15576327 DOI: 10.1515/bc.2004.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During dermal injury and inflammation the serine proteases kallikreins cleave endogenous, multifunctional substrates (kininogens) to form bradykinin and kallidin. The actions of kinins are mediated by preferential binding to constitutively expressed kinin-B2 receptors or inducible kinin-B1 receptors. A feature of the kinin-B1 receptors is that they show low levels of expression, but are distinctly upregulated following tissue injury and inflammation. Because recent evidence suggested that kinin-B1 receptors may perform a protective role during inflammation, we investigated the specific occurrence of the kallikrein-kinin components in skin biopsies obtained from normal skin, patients undergoing surgery, basalioma, lichenificated atopic eczema, and psoriasis. The tissue was immunolabeled in order to determine the localisation of tissue pro-kallikrein, kallikrein, kininogen and kinin receptors. The kinin components were visualised in normal, diseased and traumatised skin, except that no labelling was observed for kininogen in normal skin. Of the five types of tissue examined, upregulation of kinin-B1 receptors was observed only in skin biopsies obtained following surgery. In essence, the expression of kinin-B1 receptors did not appear to be enhanced in the other biopsies. Within the multiple steps of the inflammatory cascade in wound healing, our results suggest an important regulatory role for kinin-B1 receptors during the first phase of inflammation following injury.
Collapse
Affiliation(s)
- Elisabeth Schremmer-Danninger
- Department of Clinical Chemistry and Clinical Biochemistry, Hospital of Surgery, Ludwig-Maximilians-University Munich, Nussbaumstrasse 20, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Neuhof C, Walter O, Dapper F, Bauer J, Zickmann B, Fink E, Tillmanns H, Neuhof H. Bradykinin and histamine generation with generalized enhancement of microvascular permeability in neonates, infants, and children undergoing cardiopulmonary bypass surgery. Pediatr Crit Care Med 2003; 4:299-304. [PMID: 12831410 DOI: 10.1097/01.pcc.0000074264.13983.99] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether generation and liberation of bradykinin and histamine contribute to generalized edema formation in pediatric cardiopulmonary bypass surgery. DESIGN Prospective observational study. SETTING Pediatric heart surgery of a university hospital. PATIENTS Forty-one neonates, infants, and children undergoing cardiopulmonary bypass to correct congenital cardiac anomalies. INTERVENTIONS Plasma concentrations of bradykinin and histamine were determined before, during, and after cardiopulmonary bypass. Fluid balance was evaluated by control of fluid intake and output. MEASUREMENTS AND MAIN RESULTS The susceptibility to generalized edema formation increased significantly (r = -.457; p <.005) with decreasing age. Approximately three times higher plasma concentrations of bradykinin (p <.001) were found at the onset of anesthesia and during the total observation period in patients with a fluid retention of >6% of body weight compared with patients with a lower retention rate. Plasma bradykinin reached significantly (p <.01) higher peak concentrations of 237.9 +/- 58.6 fmol/mL during cardiopulmonary bypass and of 227.5 +/- 90.7 fmol/mL during the early postoperative period in patients with severe edema formation in contrast to only 86.6 +/- 10.9 and 65.5 +/- 26.8 fmol/mL in patients with minor fluid retention. A tendency (p =.06) to slightly increasing histamine concentrations from 2.07 +/- 0.13 nmol/L at baseline to 3.32 +/- 1.41 nmol/L during 90 mins of cardiopulmonary bypass was only observed in patients with high fluid retention. CONCLUSIONS Bradykinin seems to be essentially involved in the enhancement of microvascular permeability in pediatric cardiopulmonary bypass surgery, although a dominant causal role cannot be claimed by this study. Histamine, however, doesn't appear to play a major role and may only contribute as a cofactor. To what extent an increased expression of bradykinin-1 and bradykinin-2 receptors or a reduced potential of bradykinin-degrading enzymes is involved is the object of a further clinical study.
Collapse
Affiliation(s)
- Christiane Neuhof
- Department of Internal Medicine/Cardiology, Justus-Liebig-University of Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakamura K, Onitsuka T, Yano M, Yano Y, Matsuyama M, Niina K. Influence of heparin dosage on hemostasis under combined use of Nafamostat mesilate during deep hypothermic circulatory arrest. Gen Thorac Cardiovasc Surg 2003; 51:186-91. [PMID: 12776949 DOI: 10.1007/s11748-003-0029-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Nafamostat mesilate (NM) is a guanidine acid derivative which is synthesized in Japan as an antifibrinolytic drug. It has been successfully used to decrease blood loss and blood product requirement in cardiac operations. As there have been some reports that insufficient heparinization might induce the coagulopathic state in aprotinin-treated patients undergoing deep hypothermia and circulatory arrest (DHCA), we have reviewed 16 consecutive patients who underwent total aortic arch replacement using DHCA and the associated use of NM. METHODS The patients were divided into two groups; a Normal-dosage Group (n = 8) who received 3 mg/kg of heparin, and a Low-dosage Group (n = 8) who received 1.5 mg/kg of heparin. The Celite-activating clotting time was maintained at longer than 1,000 seconds in both groups. Blood loss, transfusion requirements and the volume of postoperative mediastinal tube drainage were compared between the two groups. RESULTS We observed no adverse effects of NM and no significant difference in transfusion requirements between both groups. There was a significant difference in blood loss during the operation between the two groups (p < 0.05) (Low-dosage Group 1,973 +/- 959 ml vs Normal-dosage Group 1,059 +/- 704 ml). CONCLUSIONS NM was a safe antifibrinolytic drug. Adequate heparinization was necessary to reduce hemorrhage in patients undergoing aortic arch replacement using DHCA and the associated use of NM.
Collapse
Affiliation(s)
- Kunihide Nakamura
- Second Department of Surgery, Miyazaki Medical College, Kiyotake, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Costello JM, Backer CL, de Hoyos A, Binns HJ, Mavroudis C. Aprotinin reduces operative closure time and blood product use after pediatric bypass. Ann Thorac Surg 2003; 75:1261-6. [PMID: 12683573 DOI: 10.1016/s0003-4975(02)04667-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of aprotinin in children undergoing cardiopulmonary bypass is controversial. We hypothesized that aprotinin would reduce blood product use and operative closure time in selected pediatric patients. METHODS For a 6-month period starting in October 1999, consecutive cardiopulmonary bypass patients 6 months of age or less (n = 18) or having a repeat sternotomy (n = 18) received aprotinin. Similar consecutive patients from the preceding 6 months served as controls (n = 35 and 41, respectively). Data extracted from medical records included preoperative clinical characteristics, operative and postoperative procedures, and total blood product use. RESULTS Patients in the aprotinin and control groups were well matched with regard to preoperative and intraoperative variables. Patients 6 months of age or less who received aprotinin required less operative closure time when compared with controls (median, 93 vs 127 minutes, p = 0.004), and trended toward requiring fewer red blood cell unit exposures (median, three vs five exposures, p = 0.07). Patients undergoing repeat sternotomy who received aprotinin required less operative closure time when compared with controls (mean, 126 vs 159 minutes, p = 0.007), fewer red blood cell unit exposures (median three vs four exposures, p = 0.002), and fewer fresh-frozen plasma unit exposures (median, zero vs one exposure, p = 0.007). CONCLUSIONS Aprotinin reduced operative closure time and blood product exposure in pediatric patients undergoing cardiopulmonary bypass who were 6 months of age or less or underwent a repeat sternotomy.
Collapse
Affiliation(s)
- John M Costello
- Division of Cardiology and Critical Care Medicine, Children's Memorial Hospital, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
33
|
Parthasarathy N, Torti SV, Torti FM. Ferritin binds to light chain of human H-kininogen and inhibits kallikrein-mediated bradykinin release. Biochem J 2002; 365:279-86. [PMID: 12071855 PMCID: PMC1222672 DOI: 10.1042/bj20011637] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferritin is an iron-storage protein that exists in both intracellular and extracellular compartments. We have previously identified H-kininogen (high-molecular-weight kininogen) as a ferritin-binding protein [Torti and Torti (1998) J. Biol. Chem. 273, 13630-13635]. H-Kininogen is a precursor of the potent pro-inflammatory peptide bradykinin, which is released from H-kininogen following cleavage of H-kininogen by the serine protease kallikrein. In this report, we demonstrate that binding of ferritin to H-kininogen occurs via the modified light chain of H-kininogen, and that ferritin binds preferentially to activated H-kininogen. We further demonstrate that binding of ferritin to H-kininogen retards the proteolytic cleavage of H-kininogen by kallikrein and its subsequent release of bradykinin from H-kininogen. Ferritin does not interfere with the ability of kallikrein to digest a synthetic substrate, suggesting that ferritin specifically impedes the ability of kallikrein to digest H-kininogen, perhaps by steric hindrance. Based on these results, we propose a model of sequential H-kininogen cleavage and ferritin binding. These results are consistent with the hypothesis that the binding of ferritin to H-kininogen may serve to modulate bradykinin release.
Collapse
Affiliation(s)
- Narayanan Parthasarathy
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
34
|
Abstract
1. Kinin peptides are implicated in many physiological and pathological processes, including the regulation of blood pressure and sodium homeostasis, inflammation and the cardioprotective effects of preconditioning. In humans, the plasma and tissue kallikrein-kinin systems (KKS) generate bradykinin and kallidin peptides, respectively. 2. We established methodology for the measurement of bradykinin and kallidin peptides and their metabolites in order to study the function of the plasma and tissue KKS in humans. 3. Bradykinin peptides were more abundant than kallidin peptides in blood and cardiac atrial tissue, whereas kallidin peptides were predominant in urine. The levels of kinin peptides in tissue were higher than in blood, confirming the primary tissue localization of the KKS. 4. Angiotensin-converting enzyme inhibition increased blood levels of bradykinin and kallidin peptides. 5. Blood levels of kallidin peptides were suppressed in patients with severe cardiac failure, indicating that the activity of the tissue KKS is suppressed in this condition. 6. Bradykinin peptide levels were increased in the urine of patients with interstitial cystitis, suggesting a role for these peptides in the pathogenesis and/or symptomatology of this condition. 7. Cardiopulmonary bypass, a model of activation of the contact system, activated both the plasma and tissue KKS. 8. Measurement of individual bradykinin and kallidin peptides and their metabolites gives important information about the operation of the plasma and tissue KKS and their role in physiology and disease states.
Collapse
Affiliation(s)
- D J Campbell
- St Vincent's Institute of Medical Research and The University of Melbourne Department of Medicine, Fitzroy, Victoria, Australia.
| |
Collapse
|